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Causal Dynamical Triangulations
Causal Dynamical Triangulations, for short
CDT, is a new approach to the nonperturba-
tive quantization of gravity. As in the case of
Euclidean dynamical triangulation approaches,
CDT provides a regularization of the gravita-
tional path integral through a sum over piece-
wise linear geometries where the edge length
of the individual building blocks serves as an
ultraviolet cutoff. However, in the latter the
principle of microcausality has been imple-
mented in the path integral by only allow-
ing for geometries which have a definite causal
structure even at the smallest scales. This lead
to considerable successes over the Euclidean
model. This summary reviews sum of the re-
cent results obtained in the case where space-
time is two-dimensional and analytical results
can be obtained.

Stefan Zohren, Imperial College London

Why quantum gravity?
Quantum field theory has proven to be a marvelously
successful way to describe three of the four funda-
mental forces of nature. For gravity however we do
not have a well-defined predictive quantum field theo-
retic description yet, but we do have a very successful
classical field theoretic description in the form of Ein-
stein’s general relativity. Since the other forces are
well described by quantized field theories, it seems
natural that there also exists a quantum theory of
Einstein’s general relativity.

Another reason for believing that such a theory of
quantum gravity should exist is the fact that grav-
ity is universal in the sense that it couples to all
forms of energy. Hence the energy fluctuations at
small distances due to Heisenberg’s uncertainty re-
lations induce also quantum fluctuations in the gravi-

tational field. This leads to the prediction that space-
time geometry has a highly non-trivial microstructure
at extremely small scales proportional to the Planck
length, lp=

√
h̄GN c−3≈1.616×10−35m.

There are however obvious problems in construct-
ing a quantum theory of general relativity. It has
already been shown in the seventies by ’t Hooft and
Veltman that perturbative quantum gravity is non-
renormalizable in four dimensions1. This does not
mean that it is impossible to find a predictive theory
of quantum general relativity. There are good indica-
tions that one can define a theory of quantum general
relativity nonperturbatively2,3.

There are several nonperturbative approaches to
quantum general relativity of which many are stud-
ied by researchers of the ENRAGE network. Some
of those attempts suggest that the ultraviolet diver-
gences can be resolved by the existence of a mini-
mal length scale, commonly expressed in terms of the
Planck length lp. A famous example is loop quantum
gravity4,5,6; in this canonical quantization program
the discrete spectra of area and volume operators are
interpreted as evidence for fundamental discreteness.
Other approaches, such as four-dimensional spin-foam
models7 or causal set theory8,9, postulate fundamen-
tal discreteness from the outset. Unfortunately, most
of these quantization programs still have problems in
recovering a sensible classical limit. The latest suc-
cesses in the approach of causal set theory will be pre-
sented in one of the forthcoming ENRAGE newslet-
ters.

There are also nonperturbative approaches which
do not introduce a fundamental discreteness scale
from the outset. One example is the exact renor-
malization group flow method for Euclidean quan-
tum gravity in the continuum3. Another attempt is
Causal Dynamical Triangulations (CDT), a covariant
path integral formulation, in which Lorentzian quan-
tum gravity is obtained as a continuum limit of a su-
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perposition of simplicial space-time geometries2.

The CDT approach
The CDT program is a quantization scheme for gen-
eral relativity where no supersymmetry or ad hoc
fundamental discreteness is assumed from the out-
set. The program is meant to give a rigorous nonper-
turbative definition of a path integral over all causal
geometries (by this we mean the equivalence class
of a Lorentzian metric modulo its diffeomorphisms)
weighted by the Einstein-Hilbert action

Z =
∫
D[gµν ]eiSEH[gµν ]. (1)

From lattice QCD we know that discrete methods
are a powerful tool to investigate nonperturbative ef-
fects in quantum field theory. In CDT one uses a
specific discretization similar to Regge calculus where
the geometry itself is encoded in a simplicial lattice.
The advantage of using this type of discretization is
that one is automatically working with gauge invari-
ant degrees of freedom. There is no need to introduce
coordinates in the construction10. There is however
a crucial difference between Regge calculus and dy-
namical triangulations. In the first the dynamics is
encoded in the variation of the edge lengths whereas
in dynamical triangulations the edge lengths are fixed
but the dynamics is encoded in the gluing of the sim-
plicial building blocks.

In the explicit construction of CDT the path in-
tegral over all causal geometries is written as a sum
over all causal triangulations T weighted by the Regge
action (the simplicial analog of the Einstein-Hilbert
action including a cosmological constant λ),

Z(λ,GN ) =
∑

causal T

1
CT

eiSRegge , (2)

where CT is the discrete symmetry factor of the tri-
angulation T . In contrast to previous attempts of
dynamical triangulations the triangulations appear-
ing in causal dynamical triangulations have a definite
foliated structure. In this type of triangulations each
(d−1)-dimensional spatial slice is realized as an Eu-
clidean triangulation whose simplicial building blocks
have all squared edge lengths given by l2s = a2. The
successive spatial slices are connected by time-like
edges of squared edge lengths l2t =−αa2 with α > 0,
such that all building blocks in T are d-simplices (see
Fig. 1 for an illustration in 1+1 dimensions). Here
the parameter a is a cut-off length that one takes to
zero in order to obtain the continuum limit of the reg-
ularized path integral (2). Note that in this limit the

individual triangulations correspond to the individual
histories of the path integral, which in general do not
resemble smooth manifolds.

The foliated structure of the triangulations intro-
duces a natural notion of discrete global time t given
by the label of the successive spatial slices. Note that
one has to be careful in attaching a physical mean-
ing to this global time as we discuss later on. The
clear distinction between space-like edges and time-
like edges enables us to define a Wick rotation on
each causal triangulation by analytic continuation of
α 7→ −α. It is important to realize that the set of
Euclidean triangulations one obtains after the Wick
rotation is strictly smaller than the set of all Euclidean
triangulations.

Recent results in 3+1 dimensions
Before describing the analytic results in 1+1 dimen-
sions let us mention some of the recent exciting suc-
cesses of CDT in 3+1 dimensions as a motivation for
the CDT approach to quantum gravity (see also11 for
a general overview).

In absence of an analytic solution for the 3+1 di-
mensional model, one uses Monte Carlo simulations
to obtain numerical results. A very important non-
trivial test for every nonperturbative formulation of
quantum gravity is whether it can reproduce a sen-
sible classical limit at macroscopic scales. The nu-
merical results indicate that the scaling behavior of
the spatial volume as a function of space-time vol-
ume is that of a four-dimensional universe at large
scales, a first indication of sensible classical behav-
ior12. Moreover, after integrating out all dynamical
variables apart from the spatial volume as a function
of proper time, one can derive the scale factor whose
dynamics is described by the simplest minisuperspace
model used in quantum cosmology13.

Having passed the first consistency checks regard-
ing the macroscopical structure of space-time it is
very interesting what predictions one can make for the
quantum nature of the microstructure of space-time.
One important observable which has been measured
is the spectral dimension of space-time which is the
dimension a diffusion process would feel on the space-
time ensemble. Surprisingly, this quantity depends on
the scale at which it is measured. More precisely, one
observes a dimensional reduction from four at large
scales to two at small scales within measurement ac-
curacy14. This gives an indication that nonperturba-
tive quantum gravity defined through CDT provides
an effective ultraviolet cut-off through a dynamical
dimensional reduction of space-time.
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Figure 1: A section of a se-
quence [t, t + 2] of two space-
time strips of a triangulated two-
dimensional spacetime contribut-
ing to the regularized path inte-
gral.

Analytic results in 1+1 dimen-
sions
To better understand the methods used in CDT it is
useful to look in more detail at the 1+1 dimensional
model, since it is exactly solvable15.

Although two-dimensional quantum gravity does
not have any propagating degrees of freedom it is
a fertile playground to study certain aspects of dif-
feomorphism invariant theories. Among the issues
that have been addressed within the two-dimensional
framework are the inclusion of a sum over topologies16
and the emergence of a background geometry purely
from quantum fluctuations17 which we want to dis-
cuss in the following.

Recall that the Einstein-Hilbert action in two di-
mensions is given by

SEH[g] =
∫
M
d2x
√
|det g|Λ− 2πKχ(M) (3)

where K = G−1
N is the inverse Newton’s constant,

χ(M)=2−2g the Euler characteristic of the manifold
M and g the genus of M . Therefore, for fixed spatial
topology, the curvature term in the action contributes
just a constant phase factor to the path integral. If
one allows for topology changes this term becomes im-
portant for the quantum dynamics as we will see in
the next section. In this section we fix the topology
of space-time to be R×S1. The most natural thing
to calculate is the propagator from an initial geom-
etry of length lin to a final geometry of length lout
in time t. Using the discrete analog of the Einstein-
Hilbert action (3) one can write down the propagator
after Wick rotation as the path integral (2) for fixed
boundaries lin and lout,

Gλ(lin, lout; t) =
∑

causal T:
lin→lout

e−λa
2 N(T ), (4)

where λ is the bare cosmological constant and N(T )
the number of triangles in the triangulation. In two
dimensions the sum in (4) can be evaluated and one
obtains the continuum limit after a suitable choice of
renormalization, yielding the continuum propagator

GΛ(Lin, Lout;T ) = e−
√

2Λ(Lin+Lout) coth(
√

2ΛT )

sinh(
√

2ΛT )
×

×

√
2Λ

LinLout
I1

(
2
√

2ΛLinLout
sinh(

√
2ΛT )

)
, (5)

where I1(x) denotes the modified Bessel function of
the first kind and Λ, Li and T are the continuum
counterparts of λ, li and t. Physically this solution
can be interpreted as a fluctuating two-dimensional
“universe” (Fig. 2), where the average spatial length
and its fluctuations are determined by the cosmolog-
ical constant, 〈L〉 ∼ 〈∆L〉 ∼ 1/

√
Λ. This means that

the two-dimensional “universe” is purely governed by
quantum fluctuations and we have no notion of a semi-
classical background. This situation changes when we
will discuss the transition to non-compact space-times
later on in the text.

Remarkably, the continuum propagator (5) agrees
with the result of the propagator obtained from a con-
tinuum calculation in the proper-time gauge of 1+1
dimensional pure gravity18. This indicates that the
above choice of global time is similar to the one used in
the proper-time gauge. Another interesting question
is whether the result obtained in (5) is independent
of the choice of foliation. There are good indications
that due to the broad universality class of this model
one also obtains the same dynamics (5) for different
choices of time slicing19.

3
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Figure 2: A typical two-dimensional Lorentzian space-
time. The compactified direction shows the spatial
hypersurfaces of length L and the vertical axis labels
time T . Technically, the picture was generated by
a Monte Carlo simulation, where a total volume of
N = 18816 triangles and a total time of t = 168 steps
was used. Further, initial and final boundary has been
identified.

Including topology changes
A recurring question in the history of quantum gravity
approaches is whether one should allow for topology
changes of space-time. In terms of path integrals this
translates into whether one should include the sum
over topologies in the path integral

Z =
∑

topol.

∫
D[gµν ]eiSEH[gµν ]. (6)

There have been several attempts to solve the path
integral (6) in the setting of Euclidean quantum grav-
ity. The big problem however that becomes apparent
even in the simplest case of two dimensions is that the
full sum over topologies cannot be uniquely defined
nonperturbatively, since the sum over genera is badly
divergent. One of the main differences between this
approach and the one we propose here is that we re-
strict the class of topology changes by means of impos-
ing an (almost everywhere) causal structure. In the
following we show that this restriction on the topol-
ogy changes leads to a better defined path integral

and we introduce a model with infinitesimal worm-
holes where one can perform the sum over topologies
explicitly20,21,16.

We define the sum over topologies in (6) by per-
forming surgery moves directly on the triangulations
to obtain regularized versions of higher-genus man-
ifolds20,21. For the construction of these moves let
us concentrate on a single space-time strip of topol-
ogy [0, 1] × S1 and height ∆t = 1 as illustrated in
Fig. 3. The infinitesimal wormholes can be con-
structed by identifying two of the time-like edges and
subsequently cutting open the geometry along this
edge. By applying this procedure repeatedly and
obeying certain causality constraints20,21, more and
more wormholes can be created.

To obtain the dynamics of the model it is suffi-
cient to analyze the one-step propagator. Including
the topological term in the action and performing the
Wick rotation gives

Gλ,κ(lin, lout; t = 1) =
∑

causal T:
lin→lout

e−λa
2 N−2κg(T ), (7)

where the sum is taken over all possible triangula-
tions T of height t = 1 with fixed initial bound-
ary lin and final boundary lout, but arbitrary genus
0 ≤ g(T ) ≤ [N/2] (here N = lin+lout is the number
of triangles in T , which coincides with the number
of time-like edges). Further, λ is the bare cosmologi-
cal constant and κ is the bare inverse Newton’s con-
stant. The sum over all possible triangulations with
arbitrary genus can be performed unambiguously and
one can obtain the continuum limit after a suitable
choice of renormalization and double scaling limit for
λ and κ, yielding the continuum propagator16 of the
form of (5), where the renormalized cosmological con-
stant Λ is replaced by the effective cosmological con-
stant Λeff = Λ(1− e−4π/GN ) which both depends on
the renormalized cosmological constant and Newton’s
constant.

In addition to the known geometrical observables
this model possesses a new type of topological observ-
able, namely, the density of wormholes, which can be
calculated to give a finite expression

n =
〈Ng〉
〈V 〉

= 1

e
4π
GN − 1

Λ. (8)

4
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Figure 3: Construction of a wormhole: starting from
a space-time strip of topology [0, 1]×S1 as in the pure
CDT model (i), one identifies two time-like edged (ii)
and then cuts open the geometry perpendicular to
this line (iii). The two resulting saddle points at time
t and t+1 are labeled with pt and pt+1.

It is useful to reinterpret the physical system in
terms of its physical quantities, namely the cosmolog-
ical constant Λ and the density of wormholes in units
of Λ, i.e. η= n

Λ . These two quantities can be seen to
set the physical scales of the system. Whereas in the
case without topology changes (5) there was only one
scale, namely, the cosmological scale 〈L〉 ∼ 1/

√
Λ, in

the case with topology changes there is in addition the
relative scale η between cosmological and topological
fluctuations. Both together define the effective fluc-
tuations in length through 〈L〉 ∼ 1/

√
Λeff , where we

can now write Λeff =Λ/(1+η). One can observe that
the presence of wormholes in spacetime leads to a de-
crease in the “effective” cosmological constant Λeff .
This connects nicely to former attempts to derive a
mechanism, the so-called Coleman’s mechanism, to
explain the smallness of the cosmological constant in
a formal Euclidean path integral formulation of four-
dimensional quantum gravity in the continuum with
the presence of infinitesimal wormholes22. The worm-
holes considered in those models resemble those of our
toy model in that both are non-local identifications
of the spacetime geometry of infinitesimal size. The
counting of the wormholes considered here is of course
different, since we are working in a genuinely causal
and background independent setup which enables us
to actually perform the sum over topologies explicitly,
without assuming any information on a background
manifold.

The emergence of background
geometry
In the previous sections we described the quantum
geometry of the 1+1 dimensional universe in the case
where the geometry was compact. We have seen that
under this conditions the geometry was purely gov-
erned by quantum fluctuations. Therefore, there was
no sensible notion of a semi-classical background. In
the following we want to describe the transition in
which the compact geometries become non-compact.
We will see that in this case we find the emergence of a
semiclassical background dressed with small quantum
fluctuations.17

To determine the background geometry of the 1+1
dimensional universe we calculate the average spatial
length at proper time t ∈ [0, T ]

〈L(t)〉X,Y,T = 1
GΛ(X,Y ;T )

×

×
∫ ∞

0
dL GΛ(X,L; t) L GΛ(L, Y ;T − t). (9)

Here X and Y are the boundary cosmological con-
stants which are the conjugate variables of the bound-
ary lengths Lin and Lout. The continuum propagator
GΛ(X,Y ;T ) with respect to the boundary cosmolog-
ical constants can be obtained form GΛ(Lin, Lout;T ),
i.e. (5), by inverse Laplace transformation.

Evaluating the average length at the boundary
t = T and taking the limit T →∞ gives

lim
T→∞

〈L(T )〉X,Y,T = 1
Y +
√

Λ
. (10)

Interestingly, one observes that there is a special value
Y =−

√
Λ of the boundary cosmological constant for

which the boundary length diverges and the geome-
try becomes non-compact. Using this critical value for
the boundary cosmological constant Y one can obtain
the boundary length for finite T

Lc(T ) = 〈L(T )〉
X,Y=−

√
Λ;T

= 1√
Λ

1
coth

√
ΛT − 1

. (11)

Instead of using boundary cosmological constants one
can also fix the spatial length of the boundaries. Us-
ing the continuum propagator GΛ(L1, L2;T ) we can
evaluate the average spatial length 〈L(t)〉Lin,Lout,T for
fixed lengths Lin and Lout of the boundary loops.

In the following we want to investigate the quan-
tum geometry in the case where it becomes non-
compact. Therefore we set the boundary length at
t = T to the critical value Lc(T ) as defined in (11)

5
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and for simplicity we shrink the spatial geometry at
t = 0 to a point. In the limit T →∞ one obtains the
average length of the spatial geometry at proper time
t ∈ [0, T ]

〈L(t)〉 ≡ lim
T→∞

〈L(t)〉Lin=0,Lout=Lc(T ),T

= 1√
Λ

sinh(2
√

Λt). (12)

Due to the fact that L and T are defined from the con-
tinuum limit of a simplicial geometry there is a rela-
tive constant of proportionality that can only be fixed
by comparing with continuum calculations18 yielding
Lcont(t) = π〈L(t)〉. From this result the metric for
the background geometry is readily obtained,

ds2 = dt2 + L2
cont

4π2 dθ2

= dt2 + sinh2(2
√

Λt)
4Λ

dθ2. (13)

This is nothing but the metric of the Poincaré disc
which can be seen as a Wick rotated version of AdS2
with constant negative curvature R = −8Λ.

To better understand the quantum nature of the
geometry it is useful to compute the fluctuations of
the spatial length. From expressions analogous to (9)
one can determine the relative fluctuations

∆L(t)
〈L(t)〉

≡
√
〈L2(t)〉 − 〈L(t)〉2
〈L(t)〉

∼ e−
√

Λt. (14)

Surprisingly, the fluctuations of the spatial geometry
become exponentially small for t� Λ−1/2. Conclud-
ing from (13) and (14), one can view the quantum
geometry as a version of Wick rotated AdS2 dressed
with small quantum fluctuations.

We have shown that in 2D quantum gravity de-
fined through CDT there is a transition from com-
pact geometry to non-compact AdS2-like geometry
for a special value of the boundary cosmological con-
stant. This phenomenon is similar to the Euclidean
case where non-compact ZZ-branes appear in a tran-
sition from compact 2D geometries in Liouville quan-
tum gravity.23 A surprising feature of the CDT re-
sult is that the fluctuations become exponentially
small which enables us to interpret the emerging AdS2
spacetime as a genuine semiclassical background. It
is interesting that similar results have been reported
in four-dimensional CDT where numerical simulations
indicate the emergence of a semi-classical background
from a nonperturbative and background-independent
path integral.2

Conclusion
We have presented a summary of some of the recent
results obtained within the framework of CDT in two
spacetime dimensions. Among those were the inclu-
sion of a sum over topologies and the emergence of a
background geometry purely from quantum fluctua-
tions. In particular, the possibility of obtaining an-
alytical results in two spacetime dimensions provides
us with a better understanding of some of the phe-
nomena which have been numerically observed in the
four-dimensional context. The reader who wants to
learn more about those recent successes in four di-
mensions is referred to the following nontechnical in-
troduction11.
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