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A short review of Bose-Einstein correlations in hadronic e+e− annihilation is presented.
Bose-Einstein correlations of pairs of identical charged pions in hadronic Z-boson decays
are analyzed in terms of various parametrizations. A good description is achieved using
a Lévy stable distribution in conjunction with a hadronization model having highly
correlated configuration and momentum space, the τ -model. Using these results, the
source function is reconstructed.

1. Introduction

In particle and nuclear physics, intensity interferometry provides a direct exper-

imental method for the determination of sizes, shapes and lifetimes of particle-

emitting sources (for reviews see, e.g., Refs. 1–5). In particular, boson interferometry

provides a powerful tool for the investigation of the space-time structure of parti-

cle production processes, since Bose-Einstein correlations (BEC) of two identical

bosons reflect both geometrical and dynamical properties of the particle radiating

source.

After a brief review of some results on BEC in e+e− annihilation, we present

new results from the l3 Collaboration on BEC in hadronic Z decay. We investigate

various static parametrizations in terms of the four-momentum difference, Q =√
−(p1 − p2)2 and find that none give an adequate description of the Bose-Einstein

correlation function. However, within the framework of models assuming strongly

correlated coordinate and momentum space a good description is achieved. Using

this description, the complete space-time picture of the particle emitting source in

hadronic Z-boson decay is reconstructed.

∗Visitor from Budapest, Hungary, sponsored by the Scientific Exchange between Hungary (OTKA)
and The Netherlands (NWO), project B64-27/N25186.
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2. Review of some BEC results in e+e− annihilation

The correlation function of q particles with four-momenta p1, p2, ..., pq is given by

the ratio of the two-particle number density, ρq(p1, ..., pq), to the product of the

single-particle number densities, ρ1(p1)...ρ1(pq). Since we are here interested only

in the correlation due to Bose-Einstein interference, the product of single-particle

densities is replaced by ρ0q(p1, ..., pq), the q-particle density that would occur in

the absence of BEC. Since the mass of the q identical particles is fixed, the Bose-

Einstein correlation function, Rq, is defined in 3q-dimensional momentum space. It

is usually regarded as a function of Q, where Q2 = M2
q − (qm)2 with Mq the mass

of the q particles and m the mass of each particle. If the particles have identical

four-momenta, Q = 0.

In this paper we restrict ourselves to 2-particle BEC. In that case, Q2 is simply

the four-momentum difference, Q =
√
−(p1 − p2)2, and the Bose-Einstein correla-

tion function is given by

R2(p1, p2) =
ρ2(p1, p2)

ρ0(p1, p2)
(1)

R2(Q) =
ρ2(Q)

ρ0(Q)
, (2)

where we write simply ρ0 instead of ρ02.

It can be shown in a variety of ways that Rq is related to the spatial distribution

of the particle production.2, 6 For example, assuming incoherent particle production

and a spatial source density of pion emitters, S(x), leads to R2(Q) = 1 + |G(Q)|2,
where G(Q)=

∫
dx eiQxS(x) = |G| eiφ is the Fourier transform of S(x). Assuming

S(x) to be a Gaussian with radius r results in

R2(Q) = 1 + λe−Q2r2

, (3)

where we have inserted, as is customary, an additional parameter, λ, which is meant

to account for several effects such as partial coherence (completely coherent particle

production would imply λ = 0), multiple sources and particle purity.

The lack of time dependence in S is certainly wrong. The assumption of a

spherical Gaussian distribution of particle emitters may seem unlikely in e+e−

annihilation, where there is a definite jet structure. However, we must keep in mind

that BEC only occur among particles produced close to each other in phase space.

Thus, success of (3) in describing the data does not imply that the hadronization

volume is a sphere of radius r.

Other parametrizations have been considered in the literature. Nevertheless,

in spite of the above-noted limitations, this Gaussian parametrization (3) is most

frequently used by experimentalists. When it does not fit well, an expansion about

the Gaussian (Edgeworth expansion7) can be used instead. Clearly, results can be

compared only if the same parametrization is used.
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2.1. Experimental Difficulties

There are several experimental problems affecting BEC results and their interpre-

tation. Particle purity, resonances and weak decays all affect the measured values

of λ and r. For example, in hadronic Z decay about 15% of the charged particles

are not pions and about 84% of charged pions are produced via resonances. Other

problems are the effect of final-state interactions, both Coulomb and strong, and

the choice of the “reference sample,” the sample for which ρ0 is the density. For a

discussion of these problems, see, e.g., Ref. 8. Finally, there is the effect of long-

range correlations not adequately taken into account by the reference sample. R2

is not usually found to be constant at large Q. To account for this the right hand

side of (3) is multiplied by an appropriate factor, usually a linear dependence on

Q: γ (1 + δQ).

2.2. Experimental Results

2.3. Dependence on the reference sample

The values of λ and r found for charged-pion pairs from hadronic Z decays by

aleph,9, 10 delphi,11 l312 and opal
13–15 are displayed in Fig. 1. Solid points are

corrected for pion purity; open points are not. This correction increases the value

of λ but has little effect on the value of r. All of the results with r > 0.7 fm were

obtained using an unlike-sign reference sample, while those with smaller r were

obtained with a mixed reference sample. The choice of reference sample clearly has

a large effect on the observed values of λ and r. In comparing results we must

therefore be sure that the reference samples used are comparable.

2.4. Dependence on the center-of-mass energy

Comparison of values of r obtained using the same reference sample for
√

s = 29–91

GeV shows no evidence of a
√

s dependence,8 as seen in Fig. 1.

2.5. Dependence on the particle mass

It has been suggested, on several grounds,20 that r should depend on the particle

mass as r ∝ 1/
√

m. Values of r found at lep for various types of particle are shown

in Fig. 1. Comparing only results using the same type of reference sample (in this

case mixed), we see no evidence for a 1/
√

m dependence. Rather, the data suggest

one value of r for mesons and a smaller value for baryons. The value for baryons,

about 0.1 fm, seems very small; if true it is telling us something unexpected about

the mechanism of baryon production. However, Gustafson has suggested that such

a conclusion is premature,21 since the baryon results rely strongly on comparisons

with Monte Carlo and the uncertainties in the Monte Carlo implementation of

baryon production are large.
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Fig. 1. (left) λ and r at
√

s = MZ found in the lep experiments.9–15 (right) Dependence of r on
the center-of-mass energy from 2-particle BEC for charged pions,9–19 For clarity some points are
shifted slightly in

√
s.

Fig. 2. Dependence of r on the mass of the particle as determined at
√

s = MZ from 2-particle
BEC for charged pions,9–15 charged kaons22,23 and neutral kaons22,24, 25 and from Fermi-Dirac
correlations for protons24 and lambdas.26,27 The curves illustrate a 1/

√
m dependence.

2.6. Elongation of the source

The Gaussian parametrization (3) assumes a spherical source. Given the jet struc-

ture of e+e− events, one might expect a more ellipsoidal shape. String models

predict such a shape with the longitudinal (along the jet axis) radius being longer

than the transverse radii.28–30

To investigate this, the parametrization is generalized to allow different radii

along and perpendicular to the jet axis. The analysis uses the longitudinal center-of-

mass system (LCMS). The LCMS system is defined in the following way: The pion

pair is boosted along the jet-axis (e.g., the thrust axis), to a frame where the sum of

the longitudinal momenta of the two pions is zero. The transverse axes, called “out”

and “side” are defined such that the out direction is along the vector sum of the two

pion momenta, ~p1 + ~p2, and the side direction completes the Cartesian coordinate

frame. The advantage of the LCMS is that the energy difference, and therefore

the difference in emission time of the pions, couples only to the out-component,
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Qout. Thus QL and Qside reflect only spatial dimensions of the source, while Qout

reflects a mixture of spatial and temporal dimensions. Three-dimensional analyses

parametrizing R2 as a function of QL, Qside, and Qout have been performed by l331

and opal.15 The longitudal radius, rL, is found to be about 20% larger than the

side (transverse) radius, rside. Further, the amount of the elongation increases when

narrower 2-jet events are selected.15

On the other hand, aleph
10 and delphi

32 have restricted themselves to two-

dimensional analyses, in which the out and side components are replaced by a

transverse one, Q2
t = Q2

out+Q2
side. This has the disadvantage that the interpretation

of the corresponding parameter, rt, as a transverse radius is not unambiguous,

since it includes the effect of the difference in emission time. Nevertheless, both

experiments find the transverse radius smaller than the longitudinal one.

It should also be mentioned that zeus performed a similar 2-dimensional analy-

sis in deep inelastic ep interactions.33 The ratio rt/rL found is similar to that found

by delphi and aleph and is independent of the virtuality of the exchanged photon.

2.7. Dependence on the transverse mass

There have been reports that the radius, r, found in 2-pion BEC depends on the

average transverse mass of the pions.34, 35 The results of these analyses in the LCMS

are shown in Fig. 3. The radii decrease with mt, approximately as r = a + b/
√

mt.

2.8. Conclusions

The study of BEC in e+e− presents a number of problems, both experimental and

theoretical. Values obtained for parameters vary considerably among experiments,

even when the same parametrization is used. Nevertheless, certain features are clear:

BEC exist; they seem independent of cms energy; and the source shape is somewhat

elongated in the jet direction. Additionally, the (Fermi-Dirac) radius for baryons

may be smaller than the radius for mesons, and there is some evidence that the

radius decreases with increasing transverse mass of the pions.

3. New Analysis

We now turn to a new analysis of BEC in hadronic Z decay. We investigate various

static parametrizations in terms of the four-momentum difference, Q, and find that

none give an adequate description of the Bose-Einstein correlation function. How-

ever, within the framework of models assuming strongly correlated coordinate and

momentum space a good description is achieved, which is then used to reconstruct

the complete space-time picture of the particle emitting source in hadronic Z-boson

decay.

The data used in the analysis were collected by the l3 detector36–40 at an e+e−

center-of-mass energy of
√

s ' 91.2 GeV. Approximately 36 million like-sign pairs

of well-measured charged tracks of about 0.8 million hadronic Z decays are used.41
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Fig. 3. Dependence of r on the average transverse mass of the pions as determined at
√

s = MZ

from 2-particle BEC for charged pions.34,35 The curves illustrate a r = a + b/
√

mt or r = b/
√

mt

dependence.

We perform analyses on the complete sample as well as on two- and three-

jet samples. The latter are found using calorimeter clusters with the Durham jet

algorithm42–44 with a jet resolution parameter ycut = 0.006. To determine the thrust

axis of the event we also use calorimeter clusters.

4. Bose-Einstein Correlation Function

The two-particle Bose-Einstein correlation function is given by (1) or (2). In these

equations, ρ2 is corrected for detector acceptance and efficiency using Monte Carlo

events, to which a full detector simulation has been applied, on a bin-by-bin basis.

An event mixing technique is used to construct ρ0. This technique removes all

correlations, not just Bose-Einstein. Hence, ρ0 is corrected for this using Monte

Carlo.41

Since Bose-Einstein correlations can be large only at small four-momentum dif-

ference Q, they are often parametrized in this one-dimensional distance measure.

There is no reason, however, to expect the hadron source to be spherically symmet-

ric in jet fragmentation. As stated above (Sect. 2.6), an elongation of the source

along the jet axis10, 15, 31, 32 has been observed. While this effect is well established,

the elongation is actually only about 20%, which suggests that a parametrization

in terms of the single variable Q, may be a good approximation.
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Fig. 4. For two-jet events: (a) R2 as function of the squares of the 3-momentum difference, q, and
the energy difference, q0; (b) R2 vs. q2 when q2 ≈ q2

0 ; and (c) R2 as function of the squares of the
transverse momentum difference and the combination of longitudinal momentum difference and
energy difference.

This is not the case in heavy-ion and hadron-hadron interactions, where BEC

are found not to depend simply on Q, but on components of the momentum dif-

ference separately.5, 45–48 However, in e+e− annihilation at lower energy18 it has

been observed that Q is the appropriate variable. We checked this and confirm that

this is indeed the case: We observe (see Fig. 4 that R2 does not decrease when both

q2 = (~p1−~p2)
2 and q2

0 = (E1−E2)
2 are large while Q2 = q2−q2

0 is small, but is maxi-

mal for Q2 = q2−q2
0 = 0, independent of the individual values of q and q0. The same

is observed in a different decomposition: Q2 = Q2
t + Q2

L,B, where Q2
t = (~pt1 − ~pt2)

2

is the component transverse to the thrust axis and Q2
L,B = (pl1−pl2)

2− (E1−E2)
2

combines the longitudinal momentum and energy differences. Again, R2 is maximal

along the line Q = 0, as is also shown in Fig. 4. This is observed both for two-jet

and three-jet events. We conclude that a parametrization in terms of Q can be

considered a good approximation for the purposes of this article.

5. Parametrizations of BEC

With a few assumptions,2, 5, 6 the two-particle correlation function, (1), is related

to the Fourier transformed source distribution:

R2(p1, p2) = γ
[
1 + λ|f̃ (Q)|2

]
(1 + δQ) , (4)

where f(x) is the (configuration space) density distribution of the source, and f̃(Q)

is the Fourier transform (characteristic function) of f(x). The parameter γ and

the (1 + δQ) term have been introduced to parametrize possible long-range corre-

lations not adequately accounted for in the reference sample, and the parameter

λ to account for several factors, such as the possible lack of complete incoherence

of particle production and the presence of long-lived resonance decays if the par-

ticle emission consists of a small, resolvable core and a halo with experimentally

unresolvable large length scales.49, 50
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Fig. 5. The Bose-Einstein correlation function R2 for two-jet events with the result of a fit of (left)
the Gaussian and (right) the Edgeworth parametrizations, (5) and (6), respectively. The dashed

line represents the long-range part of the fit, i.e., γ(1 + δQ).

5.1. Gaussian distributed source

The simplest assumption is that the source has a symmetric Gaussian distribution,

in which case f̃(Q) = exp
(
iµQ − (rQ)2

2

)
and

R2(Q) = γ
[
1 + λ exp

(
−(rQ)2

)]
(1 + δQ) . (5)

A fit of (5) to the data results in an unacceptably low confidence level. The fit

is particularly bad at low Q values, as is shown in Fig. 5a for two-jet events and in

Fig. 6a for three-jet events, from which we conclude that the shape of the source

deviates from a Gaussian.

A model-independent way to study deviations from the Gaussian parametriza-

tion is to use5, 51, 52 the Edgeworth expansion7 about a Gaussian. Keeping only the

first non-Gaussian term, we have

R2(Q) = γ
(
1 + λ exp

(
−(rQ)2

) [
1 +

κ

3!
H3(rQ)

])
(1 + δQ) , (6)

where κ is the third-order cumulant moment and H3(rQ) ≡ (
√

2rQ)3−3
√

2rQ is the

third-order Hermite polynomial. Note that the second-order cumulant corresponds

to the radius r.

A fit of (6) to the two-jet data, shown in Fig. 5b, is indeed much better than

the purely Gaussian fit, and the departure from a Gaussian is highly significant:

κ = 0.71±0.06. However, the confidence level is still marginal, and close inspection

of the figure shows that the fit curve is systematically above the data in the region

0.6–1.2GeV and that the data for Q ≥ 1.5GeV appear flatter than the curve, as is

also the case for the purely Gaussian fit. Similar behavior is observed for three-jet

events (Fig. 6b).
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Fig. 6. The Bose-Einstein correlation function R2 for three-jet events with the result of a fit of
(left) the Gaussian and (right) the Edgeworth parametrizations, (5) and (6), respectively. The

dashed line represents the long-range part of the fit, i.e., γ(1 + δQ).

5.2. Lévy distributed source

The symmetric Lévy stable distribution is characterized by three parameters: x0,

r, and α. Its Fourier transform, f̃(Q), has the following form:

f̃(Q) = exp

(
iQx0 −

|rQ|α
2

)
. (7)

The index of stability, α, satisfies the inequality 0 < α ≤ 2. The case α = 2 corre-

sponds to a Gaussian source distribution with mean x0 and standard deviation r.

For more details, see, e.g., Ref. 53.

Then R2 has the following, relatively simple, form:54

R2(Q) = γ [1 + λ exp (−(rQ)α)] (1 + δQ) . (8)

From the fit of (8) to the two-jet data, shown in Fig. 7, it is clear that the correlation

function is far from Gaussian: α = 1.34 ± 0.04. The confidence level, although

improved compared to the fit of (5), is still unacceptably low, in fact worse than that

for the Edgeworth parametrization. The same is true for three-jet events (Fig. 7).

Both the symmetric Lévy parametrization and the Edgeworth parametrizations

do a fair job of describing the region Q < 0.6 GeV, but fail at higher Q. In the region

Q ≥ 1.5 GeV, R2 is nearly constant (≈ 1). However, in the region 0.6–1.5GeV R2

has a smaller value, dipping below unity,a which is indicative of an anti-correlation.

This is clearly seen in Fig. 7 by comparing the data in this region to an extrapolation

of a linear fit, (8) with λ = 0, in the region Q ≥ 1.5 GeV. The inability to describe

this dip in R2 is the primary reason for the failure of both the Edgeworth and

symmetric Lévy parametrizations.

aMore correctly, dipping below the value of the parameter γ.
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Fig. 7. The Bose-Einstein correlation function R2 for two-jet events (left) and for three-jet events
(right). The curve corresponds to the fit of the symmetric Lévy parametrization, (8). The dashed

line represents the long-range part of the fit, i.e., γ(1 + δQ). The dot-dashed line represents a
linear fit in the region Q > 1.5 GeV.

5.3. Time dependence of the source

The parametrizations discussed so far, which have proved insufficient to describe

the BEC, all assume a static source. The parameter r, representing the size of the

source as seen in the rest frame of the pion pair, is a constant. It has, however, been

observed that r depends on the transverse mass, mt =
√

m2 + p2
t =

√
E2 − p2

z, of

the pions.34, 35 It has been shown55, 56 that this dependence can be understood

if the produced pions satisfy, approximately, the (generalized) Bjorken-Gottfried

condition,57–62 whereby the four-momentum of a produced particle and the space-

time position at which it is produced are linearly related:

xµ = dkµ . (9)

Such a correlation between space-time and momentum-energy is also a feature of the

Lund string model as incorporated in Jetset, which is very successful in describing

detailed features of the hadronic final states of e+e− annihilation.

In the previous section we have seen that BEC depend, at least approximately,

only on Q and not on its components separately. This is a non-trivial result. For

a hydrodynamical type of source, on the contrary, BEC decrease when any of the

relative momentum components is large.5, 45 Further, we have seen that R2 in the

region 0.6–1.5GeV dips below its values at higher Q.

A model which predicts such Q-dependence while incorporating the Bjorken-

Gottfried condition is the so-called τ -model, described below.
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5.3.1. The τ -model

A model of strongly correlated phase-space, known as the τ -model,63 explains the

experimental observation that BEC in e+e− reactions depend only on Q rather than

on the components of Q separately. This model also predicts a specific transverse

mass dependence of R2, which we subject to an experimental test here.

In this model, it is assumed that the average production point in the overall

center-of-mass system, x = (t, rx, ry, rz), of particles with a given four-momentum

k is given by

xµ(kµ) = dkµ . (10)

In the case of two-jet events,

d = τ/mt , (11)

where mt is the transverse mass and τ =

√
t
2 − r2

z is the longitudinal proper time.b

For isotropically distributed particle production, the transverse mass is replaced

by the mass in (11), while for the case of three-jet events the relation is more

complicated. The second assumption is that the distribution of xµ(kµ) about its

average, δ∆(xµ(kµ)−xµ(kµ)), is narrower than the proper-time distribution. Then

the emission function of the τ -model is

S(x, k) =

∫
∞

0

dτH(τ)δ∆(x − dk)ρ1(k) , (12)

where H(τ) is the longitudinal proper-time distribution, the factor δ∆(x − dk)

describes the strength of the correlations between coordinate space and momentum

space variables and ρ1(k) is the experimentally measurable single-particle spectrum.

The two-pion distribution, ρ2(k1, k2), is related to S(x, k), in the plane-wave

approximation, by the Yano-Koonin formula:64

ρ2(k1, k2) =

∫
d4x1d

4x2S(x1, k1)S(x2, k2)

·
(
1 + cos

(
[k1 − k2] [x1 − x2]

) )
. (13)

Approximating the function δ∆ by a Dirac delta function, the argument of the

cosine becomes

(k1 − k2)(x̄1 − x̄2) = −0.5(d1 + d2)Q
2 . (14)

Then the two-particle Bose-Einstein correlation function is approximated by

R2(k1, k2) = 1 + λReH̃2

(
Q2

2mt

)
, (15)

bThe terminology ‘longitudinal’ proper time and ‘transverse’ mass seems customary in the liter-

ature even though their definitions are analogous τ =

q

t
2 − r2

z
and mt =

p

E2 − p2
z
.
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where H̃(ω) =
∫

dτH(τ) exp(iωτ) is the Fourier transform of H(τ). Thus an invari-

ant relative momentum dependent BEC appears. Note that R2 depends not only

on Q but also on the average transverse mass of the two pions, mt.

Since there is no particle production before the onset of the collision, H(τ)

should be a one-sided distribution. We choose a one-sided Lévy distribution, which

has the characteristic function54 (for α 6= 1)

H̃(ω) = exp

[
−1

2

(
∆τ |ω|

)α
(
1 − i sign(ω) tan

(απ

2

))
+ i ωτ0

]
(16)

where the parameter τ0 is the proper time of the onset of particle production and

∆τ is a measure of the width of the proper-time distribution. For the special case

α = 1, see, e.g., Ref. 53. Using this characteristic function in (15) yields

R2(Q, mt) = γ

[
1 + λ cos

(
τ0Q

2

mt
+ tan

(απ

2

) (
∆τQ2

2mt

)α)

· exp

(
−

(
∆τQ2

2mt

)α)]
(1 + δQ) . (17)

5.3.2. The τ -model for average mt

Before proceeding to fits of (17), we first consider a simplification of the equation

obtained by assuming (a) that particle production starts immediately, i.e., τ0 = 0,

and (b) an average mt dependence, which is implemented in an approximate way

by defining an effective radius, R =
√

∆τ/(2mt). This results in:

R2(Q) = γ
[
1 + λ cos

[
(RaQ)2α

]
exp

(
−(RQ)2α

)]
(1 + δQ) , (18)

where Ra is related to R by

R2α
a = tan

(απ

2

)
R2α . (19)

Fits of (18) are first performed with Ra as a free parameter. The fit results obtained,

for two-jet, three-jet, and all events are listed in Table 1 and shown in Fig. 8 for

two-jet events and for three-jet events. They have acceptable confidence levels,

describing well the dip below unity in the 0.6–1.5GeV region, as well as the low-Q

peak.

The fit parameters for the two-jet events satisfy (19). However, those for three-

jet and all events do not. We note that the values of the parameters α and R do not

differ greatly between 2- and 3-jet samples, the most significant difference appearing

to be nearly 3σ for α. However, these parameters are rather highly correlated (in the

fit for all events, the correlation coefficients are ρ(λ, R) = 0.95, ρ(λ, α) = −0.67 and

ρ(R, α) = −0.61, which makes the simple calculation of the statistical significance

of differences in the parameters unreliable.

Fit results imposing (19) are given in Table 2. For two-jet events, the values

of the parameters are nearly identical to those in the fit with Ra free—only the

uncertainties have changed. For three-jet and all events, the imposition of (19)
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Fig. 8. The Bose-Einstein correlation function R2 for two-jet events (left) and for three-jet events
(right). The curve corresponds to the fit of the one-sided Lévy parametrization, (18). The dashed

line represents the long-range part of the fit, i.e., γ(1 + δQ).

Table 1. Results of fits of (18) for two-jet, three-jet, and all events. The uncertainties are only
statistical.

parameter 2-jet 3-jet all

α 0.42 ± 0.02 0.35 ± 0.01 0.38 ± 0.01

λ 0.67 ± 0.03 0.84 ± 0.04 0.73 ± 0.02

R (fm) 0.79 ± 0.04 0.89 ± 0.03 0.81 ± 0.03

Ra (fm) 0.59 ± 0.03 0.88 ± 0.04 0.81 ± 0.02

δ 0.003 ± 0.002 –0.003 ± 0.002 0.003 ± 0.001

γ 0.979 ± 0.005 1.001 ± 0.005 0.997 ± 0.003

χ2/DoF 97/94 102/94 98/94

confidence level 40% 27% 37%

results in values of α and R closer to those for two-jet events, but the confidence

levels are very bad, a consequence of incompatibility with (19), an incompatibility

that is not surprizing given that (11) is only valid for two-jet events. Therefore, we

only consider two-jet events in the remaining sections of this article.

5.3.3. The τ -model with mt dependence

Fits of (17) to the two-jet data are performed in several mt intervals. The resulting

fits are shown for several mt intervals in Fig. 9, and the values of the parameters

obtained in the fits are displayed in Fig. 10. The quality of the fits is seen to be

statistically acceptable and the fitted values of the model parameters, α, τ0 and

∆τ , are stable and within errors independent of mt, confirming the expectation

of the τ -model. We conclude that the τ -model with a one-sided Levy proper-time
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Table 2. Results of fits of (18) imposing (19) for two-jet, three-jet, and all events. The uncertainties
are only statistical.

parameter 2-jet 3-jet all

α 0.42 ± 0.01 0.44 ± 0.01 0.45 ± 0.01

λ 0.67 ± 0.03 0.77 ± 0.04 0.69 ± 0.03

R (fm) 0.79 ± 0.03 0.84 ± 0.04 0.79 ± 0.03

δ 0.003 ± 0.001 0.010 ± 0.001 0.009 ± 0.001

γ 0.979 ± 0.005 0.972 ± 0.001 0.973 ± 0.001

χ2/DoF 97/95 174/95 175/95

confidence level 42% 10−6 10−6

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Q (GeV)

R
2 (

Q
,m

t)

Fig. 9. The results of fits of (17) to two-jet data for various intervals of mt.

distribution describes the data with parameters τ0 ≈ 0 fm, α ≈ 0.38 ± 0.05 and

∆τ ≈ 3.5 ± 0.6 fm. These values are consistent with the fit of (18) in the previous

section, including the value of R, which, combined with the average value of mt

(0.563GeV), corresponds to ∆τ = 3.5 fm. Just as in the fit of (18), the parameters

of the Lévy distribution are highly correlated. Typical values of the correlation

coefficients are ρ(λ, ∆τ) = 0.95, ρ(λ, α) = −0.67 and ρ(∆τ, α) = −0.9.
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Fig. 10. The fit parameters from fits of (17) to two-jet data for various intervals of mt.

6. The emission function of two-jet events

Within the framework of the τ -model, we now reconstruct the space-time picture

of the emitting process for two-jet events. The emission function in configuration

space, S(x), is the proper time derivative of the integral over k of S(x, k), which in

the τ -model is given by (12). Approximating δ∆ by a Dirac delta function, we find

S(x) =
d4n

dτd3r
=

(mt

τ

)3

H(τ)ρ1

(
k =

mtr

τ

)
. (20)

To simplify the reconstruction of S(x) we assume that it can be factorized in

the following way:

S(rt, z, t) = I(rt)G(η)H(τ) , (21)

where I(rt) is the single-particle transverse distribution, G(η) is the space-time ra-

pidity distribution of particle production, and H(τ) is the proper-time distribution.

With the strongly correlated phase-space of the τ -model, η = y and rt = ptτ/mt.

Hence,

G(η) = Ny(η) , (22)

I(rt) =
(mt

τ

)3

Npt
(rtmt/τ) , (23)

where Ny and Npt
are the single-particle inclusive rapidity and pt distributions,

respectively. The factorization of transverse and longitudinal distributions has been

checked. The distribution of pt is, to a good approximation, independent of the

rapidity.41
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Fig. 12. Two views of the temporal-longitudinal part of the source function normalized to the
average number of pions per event.

With these assumptions and using H(τ) as obtained from the fit of (17) (shown

in Fig. 11) together with the inclusive rapidity and pt distributions,41 the full emis-

sion function is reconstructed. Its integral over the transverse distribution is plotted

in Fig. 12. It exhibits a “boomerang” shape with a maximum at low t and z but

with tails reaching out to very large values of t and z, a feature also observed in

hadron-hadron65 and heavy ion collisions.66

The transverse part of the emission function is obtained by integrating over z

and azimuthal angle. Fig. 13 shows the transverse part of the emission function

for various proper times. Particle production starts immediately, increases rapidly

and decreases slowly. A ring-like structure, similar to the expanding, ring-like wave

created by a pebble in a pond, is observed. These pictures together form a movie

that ends in about 3.5 fm, making it the shortest movie ever made of a process in

nature. An animated gif file covering the first 0.3 fm (10−24 sec) is available.67
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Fig. 13. The transverse source function normalized to the average number of pions per event for
various proper times.

7. Discussion

BEC of all events as well as two- and three-jet events are observed to be well-

described by a Lévy parametrization incorporating strong correlations between

configuration- and momentum-space. A Lévy distribution arises naturally from a

fractal, or from a random walk or anomalous diffusion,68 and the parton shower of

the leading log approximation of QCD is a fractal.69–72 In this case, the Lévy index

of stability is related to the strong coupling constant, αs, by73, 74

αs =
2π

3
α2 . (24)
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Assuming (generalized) local parton hadron duality,75–77 one can expect that the

distribution of hadrons retains the features of the gluon distribution. For the value

of α found in fits of (18) we find αs = 0.37 ± 0.04 for two-jet events, This is a

reasonable value for a scale of 1–2GeV, which is where the production of hadrons

takes place. For comparison, from τ decay, αs(mτ ≈ 1.8 GeV) = 0.35± 0.03.78

It is of particular interest to point out the mt dependence of the “width” of

the source. In (17) the parameter associated with the width is ∆τ . Note that it

enters (17) as ∆τQ2/mt. In a Gaussian parametrization the radius r enters the

parametrization as r2Q2. Our observance that ∆τ is independent of mt thus corre-

sponds to r ∝ 1/
√

mt and can be interpreted as confirmation of the observance34, 35

of such a dependence of the Gaussian radii in 2- and 3-dimensional analyses of Z

decays. The lack of dependence of all the parameters of (17) on the transverse mass

is in accordance with the τ -model.

Using the BEC fit results and the τ -model, the emission function of two-jet

events is reconstructed. Particle production begins immediately after collision, in-

creases rapidly and then decreases slowly, occuring predominantly close to the light

cone. In the transverse plane a ring-like structure expands outwards, which is similar

to the picture in hadron-hadron interactions but unlike that of heavy ion collisions.
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