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1 Introdution

Fatorial moments of the harged-partile multipliity distribution are ommonly

used to study dynamial utuations. Very briey, one wants to study the sal-

ing properties of the probability moments of the multipliity distribution, C

q

(M),

de�ned for a division of phase spae into M regions by
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where �

q

(m) is the q

th

moment of the probability distribution that a partile ours

in phase-spae interval m. Assuming that statistial utuations are Poissonian,

the C

q

(M) an be estimated by the fatiorial moments,
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whih for N events are

given by

F

q

(M) =

1

M

M

X

m=1

1

N

P

N

i=1

f

q

(n

mi

)

�

1

N

P

N

i=1

f

1

(n

mi

)

�

q

(2)

where f

q

(n

mi

) is the unnormalized fatorial moment of order q for the i

th

event in

bin m, whih is given by
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where n

mi

is the number of partiles in bin m of the i

th

event. These F

q

(M) are

also known as \vertial" fatorial moments. They involve an average over bins of

an average over events.

Performing the averages in the opposite order results in the \horizontal" fatorial

moments,
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whih are more eonomially omputed, but whih have not been proven to be

unbiased estimators of the C

q

(M).
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If the binning is hosen suh that the average number of partiles is the same

for eah bin, the denominator in (2) an be taken outside of the sum over M , and

the vertial fatorial moment is equal to the horizontal fatorial moment.

2 Estimated statistial unertainty

|Error Propagation

In this setion we derive the formulae to estimate the statistial unertainties on

the fatorial moments. We follow the onventional method of \error propagation".

The proedure is straightforward, but has its pitfalls.

It starts with the quantities whih are atually measured, the number of par-

tiles in eah bin, n

mi

, from whih moments, i.e., averages over bins or events,

are alulated and their varianes estimated. In the ase of the vertial fatorial

moments these moments are averages over events, for horizontal fatorial moments

they are averages over bins. From these moments the fatorial moments themselves

are alulated, and the varianes of these moments are \propagated" to obtain the

varianes of the fatorial moments.

We should keep in mind that this \propagation" involves a non-linear transfor-

mation and hene is only a �rst-order approximation. Also, moments estimation is

non-parametri, i.e., no knowledge of the true distribution of the moments is used.

The estimated variane an therefore be an overestimation.

In the following h: : :i denotes an average over events, h: : :i

M

an average over bins,

and h: : :i

NM

an average over both bins and events.

2.1 Vertial fatorial moments

Rewriting (2), we have
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whih has variane
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As is well known,

3,4

for N events, the estimated variane of hf
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and the estimated ovariane of the averages in the numerator and denominator of

(5) by
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The variane of the quotient of the two quantities, A and B

q

, is, following the usual

\propagation of errors"
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The variane of a single term in the sum over M in (5) is then
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whih an be substituted in (6).

2.2 Horizontal fatorial moments

Rewriting (4), we have
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The variane of F
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(M) is then
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where
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2.3 The wrong formula

It might be tempting to reason as follows when the binning has been onstruted

suh that hf

1
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)i is the same for all m. Then hf
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is the total number of traks in the N events, and both (2) (4) an be
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Regarding N

tr

as a onstant would then give, similarly to (7),
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whih is idential to that from using just the �rst term of (10) in (6) and to the

�rst term of (12), as expeted under the assumption of no unertainty on N

tr

.

Similarly, the ovariane of F

q

for di�erent numbers of bins, L and M is given
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This formula is formula (4.3) of Frank Botterwek's thesis

6

and formula (9.10)

of Yuan Hu's thesis,

7

both having made the assumption that the unertainty on

hf

1

(n

mi

)i, and thus on N

tr

, is negligible.

But N

tr

is not a onstant. If the experiment were repeated, giving a new sam-

ple of N events, N

tr

ould well be, indeed would almost ertainly be, di�erent.

Moreover, the value of of N

tr

, and hene of hf

1
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)i
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, is orrelated with that of

hf

q
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. Hene, (17) and (18) are inorret. Neglet of this orrelation leads to

an overestimation of the statistial unertainty on F

q

.

The overestimation is most dramati for q = 1 where the numerator and de-

nominator of (2) are idential, whih implies F

1

= 1 � 0. However, neglet of the

ovariane leads to a non-zero value. The overestimation dereases as q inreases.

2.4 Covariane for di�erent M

Sine the interest in the fatorial moments is not so muh in their values, but rather

in their behavior as a funtion of M , in partiular whether they obey a power law,

F
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it is neessary to have the entire ovariane matrix, ov [F

q

(L); F

q

(M)℄. At present

I only have the wrong formula, (18).

If we were interested in the behavior of F

q

with q, we would also need the

ovariane matrix, ov [F

q

(M); F

r

(M)℄.

3 Estimated statistial unertainty|Resampling

An alternative to error propagation, albeit a very omputer intensive one, is to

use resampling methods suh as the bootstrap.

5

This onsists of making S new

samples from the original sample of N events. Eah of these samples also onsists

of N events, whih are hosen randomly with replaement from the original sample.

4



The unertainty on a quantity is estimated by (essentially) the r.m.s. of the S

values of the quantity obtained from these samples, the variane being given by
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where F
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(M) is the value of F
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(M) found in sample s. Similarly, the resampling

estimate of the ovariane is given by
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Clearly, this method runs into diÆulties if the quantity whose variane is being

estimated depends heavily on the tails of distributions, sine one annot obtain

events further into the tails than those present in the original sample. The method

should therefore not be used for high-order fatorial moments. This problem an

be avoided if one has a good Monte Carlo model. Then instead of resampling the

data, one an use S Monte Carlo samples of N events.

4 Comparison of propagation and resampling

Using a sample of about 9.7 million good traks from 804125 seleted Z deays

from L3, varianes estimated from error propagation and from resampling are om-

pared. This data sample is not orreted for detetor e�ets. It is very similar, if

not idential, to that used by Yuan Hu

7

|some event or trak seletions may be

slightly di�erent. Both of the above-desribed resampling methods are used. In the

�rst, 250 new samples of 804125 events are formed from the original data sample.

�

In the seond, 250 samples are formed by randomly hoosing 804125 events from

the simulated jetset sample (known as qe535) at detetor level, whih ontains

2397175 seleted events.

If the unertainty is orretly estimated, the variane of the distribution of values

of F

2

should agree with the average value of the estimated variane on F

2

. They do

not when the wrong formula, (17), is used to estimate the variane, as is shown in

Figure 1 where the ratio of the unertainty obtained by resampling to the average

of that estimated by (17) is plotted as a funtion of M for y, p

t

, �

major

and �

random

.

The use of (17) overestimates the unertainty by as muh as a fator 5 at low M ,

while at large M the overestimation is less. Resampling detetor-level jetset leads

to a similar onlusion (Figure 2).

On the other hand, the unertainty estimated by (6) agrees reasonably well for

all M with that found by resampling, as is shown in Figures 3 and 4.

�

The number of samples is less in the ase of the wrong formula.
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Having seen, using resampling, that the wrong formula for the variane, (17), is

indeed wrong, and by a large amount, it an be no surprise that the wrong formula

for ovariane, (18), also gives large disagreement with that obtained by resampling.

This is shown in Figure 5.

Further, this disagreement is not just a onsequene of the wrong formula for

the ovariane. The orrelations themselves,

� [F

q

(L); F

q

(M)℄ =

ov [F

q

(L); F

q

(M)℄

q

V [F

q

(L)℄V [F

q

(M)℄

(23)

are also inorret, as seen in Figure 6. Note that (18) overestimates the orrelations,

partiularly at small L or M . The results of resampling the data and resampling

jetset are in good agreement, as seen in Figure 7 where the di�erene between

the orrelations estimated by the two methods is plotted.

Not having a orret formula, it is lear that we must use resampling to obtain

the ovariane matrix. Possibilities are to

� obtain the ovariane matrix by resampling, either from data or jetset; or

� obtain the orrelation matrix by resampling and the varianes by (10) and

(6), from whih the ovariane matrix an be alulated from (23).

Best would be to do both for both data and jetset and take any di�erenes as

systemati unertainties.

5 Conlusions

Formulae (10) and (6) for the ase of vertial and (12) for the ase of horizontal fa-

torial moments provide adequate estimates of the statistial unertainty on the F

q

,

agreeing with the estimates found by resampling. Formulae (17) and (18) are based

on a mistaken assumption and provide an inorret estimate of the unertainty.

In the absene of a orret formula for the estimated ovariane of estimates of

F

q

for di�erent numbers of bins, two suggestions are made, involving either inorret

estimation followed by a orretion fator determined from resampling or to simply

use the resampling estimate.
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Figure 5: Ratio of the square root of the ovariane of F

2

(M) for the rapidity, y,

estimated by resampling to that estimated by (18) for (left) resampling the data

and (right) resampling jetset.
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Figure 6: Left: Correlation of F

2

(M) for the rapidity, y, estimated (left) by re-

sampling and (right) by (18) for (top) data and (bottom) jetset samples of the

same size as the data. The diagonal elements, whih are by de�nition unity, are not

plotted.
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Figure 7: Di�erene between the orrelations estimated by the resampling the data

and by resampling jetset.
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