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1 Introduction

Factorial moments of the charged-particle multiplicity distribution are commonly
used to study dynamical fluctuations. Very briefly, one wants to study the scal-
ing properties of the probability moments of the multiplicity distribution, C,(M),
defined for a division of phase space into M regions by

G =375 ﬁ (1)

where y,(m) is the ¢"® moment of the probability distribution that a particle occurs
in phase-space interval m. Assuming that statistical fluctuations are Poissonian,
the Cy(M) can be estimated by the factiorial moments," which for N events are
given by
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where f,(n,;) is the unnormalized factorial moment of order g for the i*" event in
bin m, which is given by
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fo(nmi) = I:IO(n,m —7) = nni(Mmi — D) (i — 2)..(Mms — ¢ + 1) (3)

where n; is the number of particles in bin m of the i*® event. These F,(M) are
also known as “vertical” factorial moments. They involve an average over bins of
an average over events.

Performing the averages in the opposite order results in the “horizontal” factorial
moments,
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which are more economically computed, but which have not been proven to be
unbiased estimators of the C,(M).?

(4)



If the binning is chosen such that the average number of particles is the same
for each bin, the denominator in (2) can be taken outside of the sum over M, and
the vertical factorial moment is equal to the horizontal factorial moment.

2 Estimated statistical uncertainty
—FError Propagation

In this section we derive the formulae to estimate the statistical uncertainties on
the factorial moments. We follow the conventional method of “error propagation”.
The procedure is straightforward, but has its pitfalls.

It starts with the quantities which are actually measured, the number of par-
ticles in each bin, n,,;, from which moments, i.e., averages over bins or events,
are calculated and their variances estimated. In the case of the vertical factorial
moments these moments are averages over events, for horizontal factorial moments
they are averages over bins. From these moments the factorial moments themselves
are calculated, and the variances of these moments are “propagated” to obtain the
variances of the factorial moments.

We should keep in mind that this “propagation” involves a non-linear transfor-
mation and hence is only a first-order approximation. Also, moments estimation is
non-parametric, 4.e., no knowledge of the true distribution of the moments is used.
The estimated variance can therefore be an overestimation.

In the following (...) denotes an average over events, (...) an average over bins,
and (...) —an average over both bins and events.

2.1 Vertical factorial moments

Rewriting (2), we have
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which has variance
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As is well known,** for N events, the estimated variance of (f;(nm;)) is given by

<fq2(nmz)> - <fq(nmi)>2
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V[(£a(nma))] = (7)

and the estimated covariance of the averages in the numerator and denominator of
(5) by

(fo(nmi) f1r(mi)) = (fa(1mi)) (fi(72mi))
N-1 '

cov [(fg(rmi)) » (f1(nm:))] = (8)



The variance of the quotient of the two quantities, A and BY, is, following the usual

“propagation of errors”®4
A VIA] 2 A? A
%4 [E] = B +q B2‘1+2V[B] — 2qW cov][A, B] . (9)

The variance of a single term in the sum over M in (5) is then
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which can be substituted in (6).

2.2 Horizontal factorial moments

Rewriting (4), we have
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The variance of F,'(M) is then
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2.3 The wrong formula

It might be tempting to reason as follows when the binning has been constructed
such that (fi(nm:)) is the same for all m. Then (f1(nm:)) = (f1(nmi)),,, = Nu/NM,
where Ny, is the total number of tracks in the N events, and both (2) (4) can be
written




Regarding N, as a constant would then give, similarly to (7),
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which is identical to that from using just the first term of (10) in (6) and to the
first term of (12), as expected under the assumption of no uncertainty on Ni.
Similarly, the covariance of Fj for different numbers of bins, L and M is given
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This formula is formula (4.3) of Frank Botterweck’s thesis® and formula (9.10)
of Yuan Hu’s thesis,” both having made the assumption that the uncertainty on
(f1(nmi)), and thus on Ny, is negligible.

But N, is not a constant. If the experiment were repeated, giving a new sam-
ple of N events, N could well be, indeed would almost certainly be, different.
Moreover, the value of of Ny, and hence of (fi(nm;))  , is correlated with that of
(fo(nmi)) - Hence, (17) and (18) are incorrect. Neglect of this correlation leads to
an overestimation of the statistical uncertainty on Fj.

The overestimation is most dramatic for ¢ = 1 where the numerator and de-
nominator of (2) are identical, which implies F; = 1 + 0. However, neglect of the
covariance leads to a non-zero value. The overestimation decreases as ¢ increases.

2.4 Covariance for different M

Since the interest in the factorial moments is not so much in their values, but rather
in their behavior as a function of M, in particular whether they obey a power law,

Fy(M) = b, M% (19)

it is necessary to have the entire covariance matrix, cov [Fy (L), F,(M)]. At present
I only have the wrong formula, (18).

If we were interested in the behavior of F, with g, we would also need the
covariance matrix, cov [F,(M), F.(M)].

3 Estimated statistical uncertainty—Resampling

An alternative to error propagation, albeit a very computer intensive one, is to
use resampling methods such as the bootstrap.> This consists of making S new
samples from the original sample of N events. Each of these samples also consists
of N events, which are chosen randomly with replacement from the original sample.



The uncertainty on a quantity is estimated by (essentially) the r.m.s. of the S
values of the quantity obtained from these samples, the variance being given by
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where F(M) is the value of F,(M) found in sample s. Similarly, the resampling
estimate of the covariance is given by
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cov [Fy(L), Fy(M)] = <™ . - el .
(22)

Clearly, this method runs into difficulties if the quantity whose variance is being
estimated depends heavily on the tails of distributions, since one cannot obtain
events further into the tails than those present in the original sample. The method
should therefore not be used for high-order factorial moments. This problem can
be avoided if one has a good Monte Carlo model. Then instead of resampling the

data, one can use S Monte Carlo samples of NV events.

4 Comparison of propagation and resampling

Using a sample of about 9.7 million good tracks from 804125 selected Z decays
from L3, variances estimated from error propagation and from resampling are com-
pared. This data sample is not corrected for detector effects. It is very similar, if
not identical, to that used by Yuan Hu'—some event or track selections may be
slightly different. Both of the above-described resampling methods are used. In the
first, 250 new samples of 804125 events are formed from the original data sample.*
In the second, 250 samples are formed by randomly choosing 804125 events from
the simulated JETSET sample (known as qe535) at detector level, which contains
2397175 selected events.

If the uncertainty is correctly estimated, the variance of the distribution of values
of F, should agree with the average value of the estimated variance on F5>. They do
not when the wrong formula, (17), is used to estimate the variance, as is shown in
Figure 1 where the ratio of the uncertainty obtained by resampling to the average
of that estimated by (17) is plotted as a function of M for y, ps, Pmajor and Prandom-
The use of (17) overestimates the uncertainty by as much as a factor 5 at low M,
while at large M the overestimation is less. Resampling detector-level JETSET leads
to a similar conclusion (Figure 2).

On the other hand, the uncertainty estimated by (6) agrees reasonably well for
all M with that found by resampling, as is shown in Figures 3 and 4.

*The number of samples is less in the case of the wrong formula.



Having seen, using resampling, that the wrong formula for the variance, (17), is
indeed wrong, and by a large amount, it can be no surprise that the wrong formula
for covariance, (18), also gives large disagreement with that obtained by resampling.
This is shown in Figure 5.

Further, this disagreement is not just a consequence of the wrong formula for
the covariance. The correlations themselves,

_cov [Fy(L), Fy(M)]
p[Fy(L), Fy(M)] = JVIE(DVFy(M)]

(23)

are also incorrect, as seen in Figure 6. Note that (18) overestimates the correlations,
particularly at small L or M. The results of resampling the data and resampling
JETSET are in good agreement, as seen in Figure 7 where the difference between
the correlations estimated by the two methods is plotted.

Not having a correct formula, it is clear that we must use resampling to obtain
the covariance matrix. Possibilities are to

e obtain the covariance matrix by resampling, either from data or JETSET; or

e obtain the correlation matrix by resampling and the variances by (10) and
(6), from which the covariance matrix can be calculated from (23).

Best would be to do both for both data and JETSET and take any differences as
systematic uncertainties.

5 Conclusions

Formulae (10) and (6) for the case of vertical and (12) for the case of horizontal fac-
torial moments provide adequate estimates of the statistical uncertainty on the Fy,
agreeing with the estimates found by resampling. Formulae (17) and (18) are based
on a mistaken assumption and provide an incorrect estimate of the uncertainty.

In the absence of a correct formula for the estimated covariance of estimates of
F, for different numbers of bins, two suggestions are made, involving either incorrect
estimation followed by a correction factor determined from resampling or to simply
use the resampling estimate.
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Figure 1: Ratio of the uncertainty on F, obtained by resampling to the average
estimated uncertainty on F, obtained using (17) as a function of M for y, ps, dmajor
and ¢random determined from 50 resamplings of the data.
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Figure 2: Ratio of the uncertainty on F, obtained by resampling to the average
estimated uncertainty on F5 obtained using (17) as a function of M for y, p;, Pmajor
and @random determined from 100 resamplings of JETSET, each sample the same size
as the data sample.
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Figure 3: Ratio of the uncertainty on F, obtained by resampling to the average
estimated uncertainty on F5 obtained using (6) as a function of M for y, pi, dmajor
and ¢random determined from 250 resamplings of the data.
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Figure 4: Ratio of the uncertainty on F, obtained by resampling to the average
estimated uncertainty on F5 obtained using (6) as a function of M for y, py, Pmajor
and @random determined from 250 resamplings of JETSET, each sample the same size
as the data sample.
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Figure 5: Ratio of the square root of the covariance of F5(M) for the rapidity, v,
estimated by resampling to that estimated by (18) for (left) resampling the data
and (right) resampling JETSET.
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Figure 6: Left: Correlation of Fy(M) for the rapidity, y, estimated (left) by re-
sampling and (right) by (18) for (top) data and (bottom) JETSET samples of the
same size as the data. The diagonal elements, which are by definition unity, are not
plotted.
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Figure 7: Difference between the correlations estimated by the resampling the data
and by resampling JETSET.
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