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1 Introdu
tion

Fa
torial moments of the 
harged-parti
le multipli
ity distribution are 
ommonly

used to study dynami
al 
u
tuations. Very brie
y, one wants to study the s
al-

ing properties of the probability moments of the multipli
ity distribution, C

q

(M),

de�ned for a division of phase spa
e into M regions by
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where �

q

(m) is the q

th

moment of the probability distribution that a parti
le o

urs

in phase-spa
e interval m. Assuming that statisti
al 
u
tuations are Poissonian,

the C

q

(M) 
an be estimated by the fa
tiorial moments,

1

whi
h for N events are

given by
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where f

q

(n

mi

) is the unnormalized fa
torial moment of order q for the i

th

event in

bin m, whi
h is given by
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where n

mi

is the number of parti
les in bin m of the i

th

event. These F

q

(M) are

also known as \verti
al" fa
torial moments. They involve an average over bins of

an average over events.

Performing the averages in the opposite order results in the \horizontal" fa
torial

moments,
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whi
h are more e
onomi
ally 
omputed, but whi
h have not been proven to be

unbiased estimators of the C

q

(M).

2
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If the binning is 
hosen su
h that the average number of parti
les is the same

for ea
h bin, the denominator in (2) 
an be taken outside of the sum over M , and

the verti
al fa
torial moment is equal to the horizontal fa
torial moment.

2 Estimated statisti
al un
ertainty

|Error Propagation

In this se
tion we derive the formulae to estimate the statisti
al un
ertainties on

the fa
torial moments. We follow the 
onventional method of \error propagation".

The pro
edure is straightforward, but has its pitfalls.

It starts with the quantities whi
h are a
tually measured, the number of par-

ti
les in ea
h bin, n

mi

, from whi
h moments, i.e., averages over bins or events,

are 
al
ulated and their varian
es estimated. In the 
ase of the verti
al fa
torial

moments these moments are averages over events, for horizontal fa
torial moments

they are averages over bins. From these moments the fa
torial moments themselves

are 
al
ulated, and the varian
es of these moments are \propagated" to obtain the

varian
es of the fa
torial moments.

We should keep in mind that this \propagation" involves a non-linear transfor-

mation and hen
e is only a �rst-order approximation. Also, moments estimation is

non-parametri
, i.e., no knowledge of the true distribution of the moments is used.

The estimated varian
e 
an therefore be an overestimation.

In the following h: : :i denotes an average over events, h: : :i

M

an average over bins,

and h: : :i

NM

an average over both bins and events.

2.1 Verti
al fa
torial moments

Rewriting (2), we have
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whi
h has varian
e
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As is well known,

3,4

for N events, the estimated varian
e of hf
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)i is given by
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and the estimated 
ovarian
e of the averages in the numerator and denominator of

(5) by
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The varian
e of the quotient of the two quantities, A and B

q

, is, following the usual

\propagation of errors"

3,4
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The varian
e of a single term in the sum over M in (5) is then
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whi
h 
an be substituted in (6).

2.2 Horizontal fa
torial moments

Rewriting (4), we have
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The varian
e of F

H

q

(M) is then
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where
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2.3 The wrong formula

It might be tempting to reason as follows when the binning has been 
onstru
ted

su
h that hf

1
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)i is the same for all m. Then hf
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where N
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is the total number of tra
ks in the N events, and both (2) (4) 
an be

written
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Regarding N

tr

as a 
onstant would then give, similarly to (7),
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whi
h is identi
al to that from using just the �rst term of (10) in (6) and to the

�rst term of (12), as expe
ted under the assumption of no un
ertainty on N

tr

.

Similarly, the 
ovarian
e of F

q

for di�erent numbers of bins, L and M is given

by
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This formula is formula (4.3) of Frank Botterwe
k's thesis

6

and formula (9.10)

of Yuan Hu's thesis,

7

both having made the assumption that the un
ertainty on

hf

1

(n

mi

)i, and thus on N

tr

, is negligible.

But N

tr

is not a 
onstant. If the experiment were repeated, giving a new sam-

ple of N events, N

tr


ould well be, indeed would almost 
ertainly be, di�erent.

Moreover, the value of of N

tr

, and hen
e of hf

1

(n

mi

)i

NM

, is 
orrelated with that of

hf

q

(n

mi

)i

NM

. Hen
e, (17) and (18) are in
orre
t. Negle
t of this 
orrelation leads to

an overestimation of the statisti
al un
ertainty on F

q

.

The overestimation is most dramati
 for q = 1 where the numerator and de-

nominator of (2) are identi
al, whi
h implies F

1

= 1 � 0. However, negle
t of the


ovarian
e leads to a non-zero value. The overestimation de
reases as q in
reases.

2.4 Covarian
e for di�erent M

Sin
e the interest in the fa
torial moments is not so mu
h in their values, but rather

in their behavior as a fun
tion of M , in parti
ular whether they obey a power law,

F

q

(M) = b

q

M

�

q

; (19)

it is ne
essary to have the entire 
ovarian
e matrix, 
ov [F

q

(L); F

q

(M)℄. At present

I only have the wrong formula, (18).

If we were interested in the behavior of F

q

with q, we would also need the


ovarian
e matrix, 
ov [F

q

(M); F

r

(M)℄.

3 Estimated statisti
al un
ertainty|Resampling

An alternative to error propagation, albeit a very 
omputer intensive one, is to

use resampling methods su
h as the bootstrap.

5

This 
onsists of making S new

samples from the original sample of N events. Ea
h of these samples also 
onsists

of N events, whi
h are 
hosen randomly with repla
ement from the original sample.
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The un
ertainty on a quantity is estimated by (essentially) the r.m.s. of the S

values of the quantity obtained from these samples, the varian
e being given by
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where F

qs

(M) is the value of F

q

(M) found in sample s. Similarly, the resampling

estimate of the 
ovarian
e is given by
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Clearly, this method runs into diÆ
ulties if the quantity whose varian
e is being

estimated depends heavily on the tails of distributions, sin
e one 
annot obtain

events further into the tails than those present in the original sample. The method

should therefore not be used for high-order fa
torial moments. This problem 
an

be avoided if one has a good Monte Carlo model. Then instead of resampling the

data, one 
an use S Monte Carlo samples of N events.

4 Comparison of propagation and resampling

Using a sample of about 9.7 million good tra
ks from 804125 sele
ted Z de
ays

from L3, varian
es estimated from error propagation and from resampling are 
om-

pared. This data sample is not 
orre
ted for dete
tor e�e
ts. It is very similar, if

not identi
al, to that used by Yuan Hu

7

|some event or tra
k sele
tions may be

slightly di�erent. Both of the above-des
ribed resampling methods are used. In the

�rst, 250 new samples of 804125 events are formed from the original data sample.

�

In the se
ond, 250 samples are formed by randomly 
hoosing 804125 events from

the simulated jetset sample (known as qe535) at dete
tor level, whi
h 
ontains

2397175 sele
ted events.

If the un
ertainty is 
orre
tly estimated, the varian
e of the distribution of values

of F

2

should agree with the average value of the estimated varian
e on F

2

. They do

not when the wrong formula, (17), is used to estimate the varian
e, as is shown in

Figure 1 where the ratio of the un
ertainty obtained by resampling to the average

of that estimated by (17) is plotted as a fun
tion of M for y, p

t

, �

major

and �

random

.

The use of (17) overestimates the un
ertainty by as mu
h as a fa
tor 5 at low M ,

while at large M the overestimation is less. Resampling dete
tor-level jetset leads

to a similar 
on
lusion (Figure 2).

On the other hand, the un
ertainty estimated by (6) agrees reasonably well for

all M with that found by resampling, as is shown in Figures 3 and 4.

�

The number of samples is less in the 
ase of the wrong formula.
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Having seen, using resampling, that the wrong formula for the varian
e, (17), is

indeed wrong, and by a large amount, it 
an be no surprise that the wrong formula

for 
ovarian
e, (18), also gives large disagreement with that obtained by resampling.

This is shown in Figure 5.

Further, this disagreement is not just a 
onsequen
e of the wrong formula for

the 
ovarian
e. The 
orrelations themselves,

� [F

q

(L); F

q

(M)℄ =


ov [F

q

(L); F

q

(M)℄

q

V [F

q

(L)℄V [F

q

(M)℄

(23)

are also in
orre
t, as seen in Figure 6. Note that (18) overestimates the 
orrelations,

parti
ularly at small L or M . The results of resampling the data and resampling

jetset are in good agreement, as seen in Figure 7 where the di�eren
e between

the 
orrelations estimated by the two methods is plotted.

Not having a 
orre
t formula, it is 
lear that we must use resampling to obtain

the 
ovarian
e matrix. Possibilities are to

� obtain the 
ovarian
e matrix by resampling, either from data or jetset; or

� obtain the 
orrelation matrix by resampling and the varian
es by (10) and

(6), from whi
h the 
ovarian
e matrix 
an be 
al
ulated from (23).

Best would be to do both for both data and jetset and take any di�eren
es as

systemati
 un
ertainties.

5 Con
lusions

Formulae (10) and (6) for the 
ase of verti
al and (12) for the 
ase of horizontal fa
-

torial moments provide adequate estimates of the statisti
al un
ertainty on the F

q

,

agreeing with the estimates found by resampling. Formulae (17) and (18) are based

on a mistaken assumption and provide an in
orre
t estimate of the un
ertainty.

In the absen
e of a 
orre
t formula for the estimated 
ovarian
e of estimates of

F

q

for di�erent numbers of bins, two suggestions are made, involving either in
orre
t

estimation followed by a 
orre
tion fa
tor determined from resampling or to simply

use the resampling estimate.
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Figure 1: Ratio of the un
ertainty on F
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obtained by resampling to the average

estimated un
ertainty on F
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obtained using (17) as a fun
tion of M for y, p

t
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and �
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determined from 50 resamplings of the data.
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Figure 4: Ratio of the un
ertainty on F

2

obtained by resampling to the average

estimated un
ertainty on F

2

obtained using (6) as a fun
tion of M for y, p

t

, �
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and �
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determined from 250 resamplings of jetset, ea
h sample the same size

as the data sample.
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(M) for the rapidity, y,

estimated by resampling to that estimated by (18) for (left) resampling the data

and (right) resampling jetset.
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Figure 6: Left: Correlation of F
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(M) for the rapidity, y, estimated (left) by re-

sampling and (right) by (18) for (top) data and (bottom) jetset samples of the
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plotted.
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