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BEC, the τ -model, and jets at the Z pole

W.J. Metzger, L3 Collaboration

IMAPP, Radboud University, 6525 AJ Nijmegen, Netherlands

Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z
decays are analyzed in terms of various parametrizations. A good description is achieved
using a Lévy stable distribution in conjunction with a model where a particle’s momentum is
highly correlated with its space-time point of production, the τ -model. However, a small but
significant elongation of the particle emission region is observed in the Longitudinal Center
of Mass frame, which is not accommodated in the τ -model. Further, for three-jet events the
region is found to be larger in the event plane than out of the plane.

§1. Introduction

We have recently published1) a study of Bose-Einstein correlations (BEC) in
hadronic Z decay where we found good agreement with parametrizations arising in
the τ -model.2), 3) This work is summarized in Section 2, and some new (preliminary)
results are presented in Section 3.

The data were collected by the l3 detector at an e+e− center-of-mass energy of√
s ≃ 91.2 GeV. Approximately 36 million like-sign pairs of well-measured charged

tracks from about 0.8 million hadronic Z decays are used.4) Events are classified as
two- or three-jet events using calorimeter clusters with the Durham jet algorithm.
To determine the event (thrust) axis we also use calorimeter clusters.

Two-particle BEC are measured by the BEC correlation function R2(p1, p2) =
ρ2(p1, p2)/ρ0(p1, p2), the ratio of the two-particle number density to that which would
occur in the absence of BEC. An event mixing technique is used to construct ρ0.

§2. Summary of Previous Results1)

With a few assumptions, R2 is related to the Fourier transform, f̃(Q), of the
(configuration space) density distribution of the source, f(x):

R2(Q) = γ
[

1 + λ|f̃(Q)|2
]

(1 + δQ) , (2.1)

where Q =
√

−(p1 − p2)2. The parameter γ and the (1+δQ) term are introduced to
parametrize possible long-range correlations inadequately accounted for in ρ0, and λ
to measure the strength of the BEC. However, (2.1) is ruled out by the data, which
show that R2 has a significant dip below unity in the region 0.6–1.5 GeV, indicative
of an anti-correlation.

This anti-correlation region is predicted in the τ -model.2), 3) and the data are
in good agreement1) with its predictions, both in its full and its simplified form, the
latter being given by

R2(Q) = γ
[

1 + λ cos
(

(RaQ)2α
)

exp
(

− (RQ)2α
)]

(1 + ǫQ) , (2.2)
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where R is an effective radius, Ra is related to R by

R2α
a = tan

(απ

2

)

R2α , (2.3)

and α is the index of stability of the Lévy distribution assumed to describe the
proper-time distribution of particle emission. The strong coupling constant αs is
related to α.5), 6)

The τ -model predicts that the two-particle BEC correlation function R2 depends
on the two-particle momentum difference only through Q, not through components
of Q separately. However, R2 has been found to depend on components of Q,7)–11)

the shape of the region of homogeneity being elongated along the event (thrust)
axis. The question is whether this is an artifact of the Edgeworth or Gaussian
parametrizations used in these studies or shows a defect of the τ -model.

This is investigated in the Longitudinal Center of Mass System∗) (LCMS), where

Q2 = Q2
L +Q2

side +Q2
out − (∆E)2 (2.4)

= Q2
L +Q2

side +Q2
out

(

1− β2
)

, β =
p1out + p2out
E1 +E2

. (2.5)

Assuming azimuthal symmetry about the event axis suggests that the region of
homogeneity have an ellipsoidal shape with the longitudinal axis along the event
axis. In (2.2) R2Q2 is then replaced by

R2Q2 =⇒ A2 = R2
LQ

2
L +R2

sideQ
2
side + ρ2outQ

2
out , (2.6)

which results in

R2(Q) = γ

[

1 + λ cos

(

tan
(απ

2

)

A2α

)

exp
(

−A2α
)

]

· (1 + ǫLQL + ǫsideQside + ǫoutQout) .

(2.7)

The longitudinal and transverse size of the source are measured by RL and Rside,
respectively, whereas ρout reflects both the transverse and temporal sizes.∗∗) We also
investigate two other decompositions of Q:

Q2 = Q2
LE +Q2

side +Q2
out , Q2

LE = Q2
L − (∆E)2 , (2.8a)

A2 = R2
LEQ

2
LE +R2

sideQ
2
side +R2

outQ
2
out ; (2.8b)

Q2 = Q2
L +Q2

side + q2out , q2out = Q2
out − (∆E)2 , (2.8c)

A2 = R2
LQ

2
L +R2

sideQ
2
side + r2outq

2
out . (2.8d)

The first, (2.8a), corresponds to the LCMS frame where the longitudinal and energy
terms are combined; its three components of Q are invariant with respect to Lorentz
boosts along the event axis. The second, (2.8c), corresponds to the LCMS frame

∗) Also known as the Longitudinal Co-Moving System; for definition of variables, see Ref. 1).
∗∗) In the literature7)–12) the coefficient of Q2

out in (2.6) is usually denoted R2
out. We prefer to

use ρ2out to emphasize that, unlike RL and Rside, ρout contains a dependence on β.
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boosted to the rest frame of the pair; its three components are invariant under
Lorentz boosts along the out direction.

Fits of (2.7) with (2.6), (2.8b), and (2.8d) show that R2 depends differently on
the components of Q. Also, the values of Rside/RL found are consistent with values
found previously using Gaussian or Edgeworth parametrizations.7)–11)

§3. New (Preliminary) Results

Fig. 1. The radius R from fits of (2.2)

for various y23 subsamples.

Recent work investigates the dependence
of the BEC radius on the ‘jettiness’ of
the event, using the simplified τ -model
parametrization, (2.2), and its extension (2.7)
to dependence on ~Q rather than Q.

Using the Durham algorithm, events can
be classified according to the number of jets.
The number of jets in a particular event de-
pends on ycut. We define y23 as that value of
ycut at which the number of jets changes from
two to three. The event sample is then split
into subsamples according to the value of y23.
The subsample with the smallest value of y23 corresponds to narrow two-jet events,
whereas that with the largest y23 consists of three or more very well separated jets.
Fits of (2.2) are performed for each subsample. The estimates of α and R are very
highly correlated in the fits. Therefore, to stabilize the fits we fix the value of α to
the value found in a fit of the entire sample: α = 0.443. We see in Fig. 1 that R
increases with y23. This is consistent with an earlier observation of OPAL.13)

The dependence on y23 of the radii for components of Q, (2.6) and (2.8d), is
shown in Fig. 2. While the values of RL found in the LCMS-rest frame fits are
systematically lower than in the LCMS frame, the values of Rside/RL agree extremely
well. Note that at all values of y23 Rside < RL while rout > RL. Thus there is no
azimuthal symmetry about the thrust axis, not even for the narrowest two-jet sample.
Further, we observe that RL and Rout are approximately independent of y23, whereas
both Rside and rout increase with y23.

We find (cf. Fig. 3) that the out direction tends to be in the direction of themajor

axis, i.e., that the out direction tends to be in the event plane, or equivalently, that
the side direction tends to be out of the event plane.

To further investigate the dependence on the event plane, each y23 subsample
is divided into ‘in-plane’ and ‘out-of-plane’ samples which use, respectively, only
particles having azimuthal angle less than or greater than 45◦ of the major axis..
The values of R from fits of (2.2) are shown in Fig. 4. We see that for small y23 there
is little dependence of R on whether the tracks are in or out of the event plane, but
for large y23 R is larger for the in-plane sample.
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Fig. 2. The radii from fits in the LCMS and LCMS-rest frames for various y23 subsamples.
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Fig. 3. The angle between out and major.

Fig. 4. The radius R from fits of (2.2) for various

y23 subsamples, which are split into ‘in-plane’

and ‘out-of-plane’ samples.
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