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A parametrization of the Bose–Einstein correlation function of pairs of identical pions produced in
hadronic e+e− annihilation is proposed within the framework of a model (the τ -model) in which
space–time and momentum space are very strongly correlated. Using information from the Bose–Einstein
correlations as well as from single-pion spectra, it is then possible to reconstruct the space–time evolu-
tion of pion production.
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1. Introduction

In particle and nuclear physics, intensity interferometry pro-
vides a direct experimental method for the determination of sizes,
shapes and lifetimes of particle-emitting sources (for reviews see,
e.g., [1–5]). In particular, boson interferometry provides a power-
ful tool for the investigation of the space–time structure of particle
production processes, since Bose–Einstein correlations (BEC) of two
identical bosons reflect both geometrical and dynamical properties
of the particle radiating source. Given the point-like nature of the
underlying interaction, e+e− annihilation provides an ideal envi-
ronment to study these properties in multiparticle production by
quark fragmentation.

2. Bose–Einstein correlation function

The two-particle correlation function of two particles with four-
momenta p1 and p2 is given by the ratio of the two-particle
number density, ρ2(p1, p2), to the product of the two single-
particle number densities, ρ1(p1)ρ1(p2). Being only interested in
the correlation R2 due to Bose–Einstein interference, the prod-
uct of single-particle densities is replaced by ρ0(p1, p2), the two-
particle density that would occur in the absence of Bose–Einstein
correlations:

R2(p1, p2) = ρ2(p1, p2)

ρ0(p1, p2)
. (1)
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Since the mass of the two identical particles of the pair is
fixed to the pion mass, the correlation function is defined in
six-dimensional momentum space. Since Bose–Einstein correla-
tions can be large only at small four-momentum difference Q =√−(p1 − p2)2, they are often parametrized in terms of this one-
dimensional distance measure. There is no reason, however, to
expect the hadron source for jet fragmentation to be spheri-
cally symmetric. Recent investigations, using the Bertsch–Pratt
parametrization [6,7], have, in fact, found an elongation of the
source along the jet axis [8–12] in the longitudinal center-of-
mass (LCMS) frame [13]. While this effect is well established,
the elongation is actually only about 20%, which suggests that a
parametrization in terms of the single variable Q , may be a good
approximation.

There have been indications that the size of the source, as
measured using BEC, depends on the transverse mass, mt =√

m2 + p2
t =

√
E2 − p2

z , of the pions [12,14,15]. It has been shown
[16,17] that such a dependence can be understood if the produced
pions satisfy, approximately, the (generalized) Bjorken–Gottfried
condition [18–23], whereby the four-momentum of a produced
particle and the space–time position at which it is produced are
linearly related: x = dp. Such a correlation between space–time
and momentum–energy is also a feature of the Lund string model
as incorporated in Jetset [24], which is very successful in describ-
ing detailed features of the hadronic final states of e+e− annihila-
tion. Recently, experimental support for this strong correlation has
been found [12].

A model which predicts both a Q - and an mt -dependence
while incorporating the Bjorken–Gottfried condition is the so-
called τ -model [25]. In this article we develop this model further
and apply it to the reconstruction of the space–time evolution of
pion production in e+e− annihilation.
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3. BEC in the τ model

In the τ -model, it is assumed that the average production point
in the overall center-of-mass system, x̄ = (t̄, r̄x, r̄ y, r̄z), of particles
with a given four-momentum p is given by

x̄(p) = aτ p. (2)

In the case of two-jet events, a = 1/mt where mt is the trans-
verse mass and τ =

√
t̄2 − r̄2

z is the longitudinal proper-time.2 For
isotropically distributed particle production, the transverse mass is
replaced by the mass in the definition of a and τ is the proper-
time. In the case of three-jet events the relation is more compli-
cated.

The correlation between coordinate space and momentum
space variables is described by the distribution of x(p) about its
average by δ�(x(p) − x̄(p)) = δ�(x − aτ p). The emission function
of the τ -model is then given by [25]

S(x, p) =
∞∫

0

dτ H(τ )δ�(x − aτ p)ρ1(p), (3)

where H(τ ) is the (longitudinal) proper-time distribution and
ρ1(p) is the experimentally measurable single-particle momentum
spectrum, both H(τ ) and ρ1(p) being normalized to unity.

The two-pion distribution, ρ2(p1, p2), is related to S(x, p), in
the plane-wave approximation, by the Yano–Koonin formula [26]:

ρ2(p1, p2) =
∫

d4x1 d4x2 S(x1, p1)S(x2, p2)

× {
1 + cos

[
(p1 − p2)(x1 − x2)

]}
. (4)

Assuming that the distribution of x(p) about its average is much
narrower than the proper-time distribution, Eq. (4) can be evalu-
ated in a saddle-point approximation. Approximating the function
δ� by a Dirac delta function yields the same result. Thus the inte-
gral of Eq. (3) becomes

∞∫
0

dτ H(τ )ρ1

(
x

aτ

)
, (5)

and the argument of the cosine in Eq. (4) becomes

(p1 − p2)(x̄1 − x̄2) = −0.5(a1τ1 + a2τ2)Q 2. (6)

Substituting Eqs. (5) and (6) in Eq. (4) leads to the following ap-
proximation of the two-particle Bose–Einstein correlation function:

R2(Q ,a1,a2) = 1 + Re H̃

(
a1 Q 2

2

)
H̃

(
a2 Q 2

2

)
, (7)

where H̃(ω) = ∫
dτ H(τ )exp(iωτ) is the Fourier transform of

H(τ ).
This formula simplifies further if R2 is measured with the re-

striction

a1 ≈ a2 ≈ ā. (8)

In that case, R2 becomes

R2(Q , ā) = 1 + Re H̃2
(

āQ 2

2

)
. (9)

Thus for a given average of a of the two particles, R2 is found
to depend only on the invariant relative momentum Q . Further,

2 The terminology ‘longitudinal’ proper-time and ‘transverse’ mass seems custom-

ary in the literature even though their definitions are analogous τ =
√

t̄2 − r̄2
z and

mt =
√

E2 − p2
z .
Fig. 1. The Bose–Einstein correlation function R2 for events generated by Pythia.
The curve corresponds to a fit of the one-sided Lévy parametrization, Eq. (13).

the model predicts a specific dependence on ā, which for two-jet
events is a specific dependence on m̄t .3

Since there is no particle production before the onset of the
collision, H(τ ) should be a one-sided distribution. We choose a
one-sided Lévy distribution, which has the characteristic function
(Fourier transform) [27] (for α �= 1)4

H̃(ω) = exp

{
−1

2

(
�τ |ω|)α

×
[

1 − i sign(ω) tan

(
απ

2

)]
+ iωτ0

}
, (10)

where the parameter τ0 is the proper-time of the onset of particle
production and �τ is a measure of the width of the proper-time
distribution. Using this characteristic function in Eq. (9) yields

R2(Q , ā) = 1 + cos

[
āτ0 Q 2 + tan

(
απ

2

)(
ā�τ Q 2

2

)α]

× exp

[
−

(
ā�τ Q 2

2

)α]
, (11)

which for two-jet events is

R2(Q ,m̄t) = 1 + cos

[
τ0 Q 2

m̄t
+ tan

(
απ

2

)(
�τ Q 2

2m̄t

)α]

× exp

[
−

(
�τ Q 2

2m̄t

)α]
. (12)

We now consider a simplification of the equation obtained
by assuming (a) that particle production starts immediately, i.e.,
τ0 = 0, and (b) an average a-dependence, which is implemented in
an approximate way by defining an effective radius, R = √

ā�τ/2,
which for 2-jet events becomes R = √

�τ/(2m̄t). This results in:

R2(Q ) = 1 + cos
[
(Ra Q )2α

]
exp

[−(R Q )2α
]
, (13)

where Ra is related to R by

R2α
a = tan

(
απ

2

)
R2α. (14)

To illustrate that Eq. (13) can provide a reasonable parametriza-
tion, we show in Fig. 1 a fit of Eq. (13) with Ra a free parameter
to Z-boson decays generated by Pythia [29] with BEC simulated
by the BE32 algorithm [30] as tuned to l3 data [31]. In particu-
lar, it describes well the dip in R2 below unity in the Q -region
0.5–1.5 GeV, unlike the usual Gaussian or exponential parametriza-
tions. While generalizations [32] of the Gaussian by an Edgeworth
expansion and of the exponential by a Laguerre expansion can

3 In the initial formulation of the τ -model this dependence was averaged
over [25] due to the lack of mt dependent data at that time.

4 For the special case α = 1, see, e.g., Ref. [28].
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describe the dip, they require more additional parameters than
Eq. (13). Recently the l3 Collaboration has presented preliminary
results showing that Eq. (13) describes their data on hadronic Z
decay [33].

4. The emission function of two-jet events

Within the framework of the τ -model, we now show how to
reconstruct the space–time picture of pion emission. We restrict
ourselves to two-jet events where we know what a is, namely a =
1/mt . The emission function in configuration space, Sx(x), is the
proper-time derivative of the integral over p of S(x, p), which in
the τ -model is given by Eq. (3). Approximating δ� by a Dirac delta
function, we find

Sx(x) = 1

n̄

d4n

dτd3x
=

(
mt

τ

)3

H(τ )ρ1

(
p = mt x

τ

)
, (15)

where n and n̄ are the number and average number of pions pro-
duced, respectively.

Given the symmetry of two-jet events, Sx does not depend on
the azimuthal angle, and we can write it in cylindrical coordinates
as

Sx(r, z, t) = P (r, η)H(τ ), (16)

where η is the space–time rapidity. With the strongly correlated
phase-space of the τ -model, η = y and r = ptτ/mt . Consequently,

P (r, η) =
(

mt

τ

)3

ρpt ,y(rmt/τ ,η), (17)

where ρpt ,y is the joint single-particle distribution of pt and y.
The reconstruction of Sx is simplified if ρpt ,y can be factorized

in the product of the single-particle pt and rapidity distributions,
i.e., ρpt ,y = ρpt (pt)ρy(y). Then Eq. (17) becomes

P (r, η) =
(

mt

τ

)3

ρpt (rmt/τ )ρy(η). (18)

The transverse part of the emission function is obtained by
integrating over z as well as azimuthal angle. Pictures of this func-
tion evaluated at successive times would together form a movie
revealing the time evolution of particle production in 2-jet events
in e+e− annihilation.

To summarize: Within the τ -model, H(τ ) is obtained from a
fit of Eq. (12) to the Bose–Einstein correlation function. From H(τ )

together with the inclusive distribution of rapidity and pt , the full
emission function in configuration space, Sx , can then be recon-
structed.
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