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A parametrization of the Bose-Einstein correlation function of pairs of identical pions produced in
hadronic ete~ annihilation is proposed within the framework of a model (the T-model) in which
space-time and momentum space are very strongly correlated. Using information from the Bose-Einstein
correlations as well as from single-pion spectra, it is then possible to reconstruct the space-time evolu-
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1. Introduction

In particle and nuclear physics, intensity interferometry pro-
vides a direct experimental method for the determination of sizes,
shapes and lifetimes of particle-emitting sources (for reviews see,
e.g., [1-5]). In particular, boson interferometry provides a power-
ful tool for the investigation of the space-time structure of particle
production processes, since Bose-Einstein correlations (BEC) of two
identical bosons reflect both geometrical and dynamical properties
of the particle radiating source. Given the point-like nature of the
underlying interaction, ete~ annihilation provides an ideal envi-
ronment to study these properties in multiparticle production by
quark fragmentation.

2. Bose-Einstein correlation function

The two-particle correlation function of two particles with four-
momenta p; and p, is given by the ratio of the two-particle
number density, p2(p1,p2), to the product of the two single-
particle number densities, p1(p1)01(p2). Being only interested in
the correlation R, due to Bose-Einstein interference, the prod-
uct of single-particle densities is replaced by po(p1, p2), the two-
particle density that would occur in the absence of Bose-Einstein
correlations:

p2(p1, p2)

. 1
po(p1, p2) M

Ra(p1,p2) =
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Since the mass of the two identical particles of the pair is
fixed to the pion mass, the correlation function is defined in
six-dimensional momentum space. Since Bose-Einstein correla-
tions can be large only at small four-momentum difference Q =
Vv —(p1 — p2)?, they are often parametrized in terms of this one-
dimensional distance measure. There is no reason, however, to
expect the hadron source for jet fragmentation to be spheri-
cally symmetric. Recent investigations, using the Bertsch-Pratt
parametrization [6,7], have, in fact, found an elongation of the
source along the jet axis [8-12] in the longitudinal center-of-
mass (LCMS) frame [13]. While this effect is well established,
the elongation is actually only about 20%, which suggests that a
parametrization in terms of the single variable Q, may be a good
approximation.

There have been indications that the size of the source, as
measured using BEC, depends on the transverse mass, m; =

J/m2 + p? = /E2 — pZ, of the pions [12,14,15]. It has been shown
[16,17] that such a dependence can be understood if the produced
pions satisfy, approximately, the (generalized) Bjorken-Gottfried
condition [18-23], whereby the four-momentum of a produced
particle and the space-time position at which it is produced are
linearly related: x = dp. Such a correlation between space-time
and momentum-energy is also a feature of the Lund string model
as incorporated in JETSET [24], which is very successful in describ-
ing detailed features of the hadronic final states of e*e~ annihila-
tion. Recently, experimental support for this strong correlation has
been found [12].

A model which predicts both a Q- and an m;-dependence
while incorporating the Bjorken-Gottfried condition is the so-
called t-model [25]. In this article we develop this model further
and apply it to the reconstruction of the space-time evolution of
pion production in eTe~ annihilation.
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3. BECin the T model

In the T-model, it is assumed that the average production point
in the overall center-of-mass system, X = (&, Ty, ry,Tz), of particles
with a given four-momentum p is given by

X(p) =atp. (2)

In the case of two-jet events, a = 1/m; where m; is the trans-
verse mass and T = +/t2 —Z is the longitudinal proper-time.> For
isotropically distributed particle production, the transverse mass is
replaced by the mass in the definition of a and t is the proper-
time. In the case of three-jet events the relation is more compli-
cated.

The correlation between coordinate space and momentum
space variables is described by the distribution of x(p) about its
average by 8a (x(p) — x(p)) = 8a(x —atp). The emission function
of the T-model is then given by [25]

S(x, p)=/dr H(t)8a(x —atp)p1(p), (3)
0

where H(t) is the (longitudinal) proper-time distribution and
p1(p) is the experimentally measurable single-particle momentum
spectrum, both H(t) and pi(p) being normalized to unity.

The two-pion distribution, p2(p1, p2), is related to S(x, p), in
the plane-wave approximation, by the Yano-Koonin formula [26]:

02(p1,p2) = / d*x1 d*x2 S(x1, p1)S(x2, p2)

x {1+ cos[(p1 — p2)(x1 —x2)]}. @

Assuming that the distribution of x(p) about its average is much
narrower than the proper-time distribution, Eq. (4) can be evalu-
ated in a saddle-point approximation. Approximating the function
§a by a Dirac delta function yields the same result. Thus the inte-
gral of Eq. (3) becomes

/d‘L’ H(r)pl(%), (5)

0
and the argument of the cosine in Eq. (4) becomes
(P1— P21 — %) = —0.5(1T1 +a272) Q. (6)

Substituting Eqgs. (5) and (6) in Eq. (4) leads to the following ap-
proximation of the two-particle Bose-Einstein correlation function:

2 2
RZ(Q,al,az):l—i—ReI:I(a]S )H(azf ) 7

where H(w) = Jdt H(t)exp(iwt) is the Fourier transform of
H(t).

This formula simplifies further if R, is measured with the re-
striction

a1 ~a; ~a. (8)

In that case, R, becomes
=2
_ -, fa
RZ(Q,a):l—e—ReHZ(%). (9)

Thus for a given average of a of the two particles, R, is found
to depend only on the invariant relative momentum Q. Further,

2 The terminology ‘longitudinal’ proper-time and ‘transverse’ mass seems custom-
ary in the literature even though their definitions are analogous t = /t2 —Z and

my = /E2 — p2.
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Fig. 1. The Bose-Einstein correlation function R, for events generated by PyTHIA.
The curve corresponds to a fit of the one-sided Lévy parametrization, Eq. (13).

the model predicts a specific dependence on a, which for two-jet
events is a specific dependence on m;.

Since there is no particle production before the onset of the
collision, H(t) should be a one-sided distribution. We choose a
one-sided Lévy distribution, which has the characteristic function
(Fourier transform) [27] (for o £ 1)

—%(Arlwl)a

.. T .
X [1 — isign(w) tan(7>] + la)T()}, (10)

where the parameter 7 is the proper-time of the onset of particle
production and A7 is a measure of the width of the proper-time
distribution. Using this characteristic function in Eq. (9) yields

_ I\«
RZ(Q,&):l+cos[éth2+tan<?><aA;Q ) :|

_ N
xexp[—(aA;Q ) :|, (11)

which for two-jet events is

2 2\ &
RZ(Q,mt)=1+cos|:T0_Q +tan(%)<ArQ ) ]

me 2ﬁ'l[

2\«
xexp[—(Aztht ) ] (12)

We now consider a simplification of the equation obtained
by assuming (a) that particle production starts immediately, i.e.,
7o =0, and (b) an average a-dependence, which is implemented in
an approximate way by defining an effective radius, R = \/aAt/2,

which for 2-jet events becomes R = /At /(2m;). This results in:

Hw) = exp{

R2(Q) =1+ cos[(RaQ)** ] exp[—(RQ)**], (13)
where R, is related to R by
R2 =tan(?)R2°‘. (14)

To illustrate that Eq. (13) can provide a reasonable parametriza-
tion, we show in Fig. 1 a fit of Eq. (13) with R, a free parameter
to Z-boson decays generated by PyTHIA [29] with BEC simulated
by the BE3; algorithm [30] as tuned to L3 data [31]. In particu-
lar, it describes well the dip in R, below unity in the Q -region
0.5-1.5 GeV, unlike the usual Gaussian or exponential parametriza-
tions. While generalizations [32] of the Gaussian by an Edgeworth
expansion and of the exponential by a Laguerre expansion can

3 In the initial formulation of the r-model this dependence was averaged
over [25] due to the lack of m; dependent data at that time.
4 For the special case o =1, see, e.g., Ref. [28].
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describe the dip, they require more additional parameters than
Eq. (13). Recently the L3 Collaboration has presented preliminary
results showing that Eq. (13) describes their data on hadronic Z
decay [33].

4. The emission function of two-jet events

Within the framework of the t-model, we now show how to
reconstruct the space-time picture of pion emission. We restrict
ourselves to two-jet events where we know what a is, namely a =
1/m¢. The emission function in configuration space, Sx(x), is the
proper-time derivative of the integral over p of S(x, p), which in
the T-model is given by Eq. (3). Approximating 5§ by a Dirac delta
function, we find

1 d*n me\> mex
Sx(x) = (—) H(T); (p=7>, (15)

ndrdix  \t
where n and n are the number and average number of pions pro-
duced, respectively.
Given the symmetry of two-jet events, Sy does not depend on
the azimuthal angle, and we can write it in cylindrical coordinates
as

Sx(r,z,t)=P(r,n)H(7), (16)

where 7 is the space-time rapidity. With the strongly correlated
phase-space of the r-model, n =y and r = p;t /m;. Consequently,

me 3
P(r,n) = (7> Ppe.y(rme /T, 1), (17)

where pp, y is the joint single-particle distribution of p; and y.

The reconstruction of Sy is simplified if pp, , can be factorized
in the product of the single-particle p; and rapidity distributions,
ie., op.,y = Pp,(Pr)Py(¥). Then Eq. (17) becomes

me 3
P(r,n) = (?> Pp: (rm /T) py (1). (18)

The transverse part of the emission function is obtained by
integrating over z as well as azimuthal angle. Pictures of this func-
tion evaluated at successive times would together form a movie
revealing the time evolution of particle production in 2-jet events
in eTe~ annihilation.

To summarize: Within the t-model, H(t) is obtained from a
fit of Eq. (12) to the Bose-Einstein correlation function. From H(7)
together with the inclusive distribution of rapidity and p¢, the full
emission function in configuration space, Sy, can then be recon-
structed.
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