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They say that Understanding ought to work by the rules of right

reason. These rules are, or ought to be, ontained in Logi; but

the atual siene of logi is onversant at present only with things

either ertain, impossible, or entirely doubtful, none of whih (for-

tunately) we have to reason on. Therefore the true logi for this

world is the alulus of Probabilities, whih takes aount of the

magnitude of the probability whih is, or ought to be, in a reason-

able man's mind.

|J. Clerk Maxwell

Chapter 1

Introdution

Statistis is a tool useful in the design, analysis and interpretation of experi-

ments. Like any other tool, the more you understand how it works the better you

an use it.

The fundamental laws of lassial physis do not deal with statistis, nor with

probability. Newton's law of gravitation F = G

Mm

r

2

ontains an exponent 2 in

the denominator|exatly 2, not 2:000 � 0:001. But where did the 2 ome from?

It ame from analysis of many detailed and aurate astronomial observations of

Tyho Brahe and others.

In \statistial" physis you have suh a ompliated situation that you treat it

in a \statistial" manner, although I would prefer to make a distintion between

statistis and probability and all it a probabilisti manner. In quantum mehanis

the probability is intrinsi to the theory rather than a mere onveniene to get

around omplexity.

Thus in studying physis you have no need of statistis, although in some sub-

jets you do need probability. But when you do physis you need to know what

measurements really mean. For that you need statistis.

Using probability we an start with a well de�ned problem and alulate the

hane of all possible outomes of an experiment. With probability we an thus go

from theory to the data.

In statistis we are onerned with the inverse problem. From data we want to

infer something about physial laws. Statistis is sometimes alled an art rather

1



2 CHAPTER 1. INTRODUCTION

than a siene, and there is a grain of truth in it. Although there are standard

approahes, most of the time there is no \best" solution to a given problem. Our

most ommon tasks for statistis fall into two ategories: parameter estimation and

hypothesis testing.

In parameter estimation we want to determine the value of some parameter in a

model or theory. For example, we observe that the fore between two harges varies

with the distane r between them. We make a theory that F � r

��

and want to

determine the value of � from experiment.

In hypothesis testing we have an hypothesis and we want to test whether that

hypothesis is true or not. An example is the Fermi theory of �-deay whih predits

the form of the eletron's energy spetrum. We want to know whether that is

orret. Of ourse we will not be able to give an absolute yes or no answer. We

will only be able to say how on�dent we are, e.g., 95%, that the theory is orret,

or rather that the theory predits the orret shape of the energy spetrum. Here

the meaning of the 95% on�dene is that if the theory is orret, and if we were

to perform the experiment many times, 95% of the experiments would appear to

agree with the theory and 5% would not.

Parameter estimation and hypothesis testing are not ompletely separate topis.

It is obviously nonsense to estimate a parameter if the theory ontaining the pa-

rameter does not agree with the data. Also the theory we want to test may ontain

parameters; the test then is whether values for the parameters exist whih allow

the theory to agree with the data.

Although the main subjet of this ourse is statistis, it should be lear that

an understanding of statistis requires understanding probability. We will begin

therefore with probability. Having had probability, it seems only natural to also

treat, though perhaps briey, Monte Carlo methods, partiularly as they are often

useful not only in the design and understanding of an experiment but also an be

used to develop and test our understanding of probability and statistis.

There are a great many books on statistis. They vary greatly in ontent and

intended audiene. Notation is by no means standard. In preparing these letures I

have relied heavily on the following soures (sometimes to the extent of essentially

opying large setions):

� R. J. Barlow,

1

a reent text book in the Manhester series. Most of what

you need to know is in this book, although the level is perhaps a bit low.

Nevertheless (or perhaps therefore), it is a pleasure to read.

� Siegmund Brandt,

2

a good basi book at a somewhat higher level. Unfor-

tunately, the FORTRAN sample programs it ontains are rather old-fashioned.

There is an emphasis on matrix notation. There is also a German edition.

� A. G. Frodesen, O. Skjeggestad, and H. T�fte,

3

also a good basi text (despite

the words \partile physis" in the title) at a higher level. Unfortunately, it

is out of print.



1.1. LANGUAGE 3

� W. T. Eadie et al.,

4

or the seond edition of this book by F. James

5

, a book

at an advaned level. It is diÆult to use if you are not already fairly familiar

with the subjet.

� G. P. Yost,

6

the leture notes for a ourse at Imperial College, London. They

are somewhat short on explanation.

� Glen Cowan,

7

a reent book at a level similar to these letures. In fat, had

this book been available I probably would have used it rather than writing

these notes.

Other books of general interest are those of Lyons,

8

Meyer,

9

and Bevington.

10

A omprehensive referene for almost all of probability and statistis is the three-

volume work by Kendall and Stuart

11

. Sine the death of Kendall, volumes 1 and 2

(now alled 2a) are being kept up to date by others,

12,13

and a volume (2b) on

Bayesian statistis has been added.

14

Volume 3 has been split into several small

books, \Kendall's Library of Statistis", overing many speialized topis. Another

lassi of less enylopedi sope is the one-volume book by Cram�er

15

.

1.1 Language

Statistis, like physis, has it own speialized terminology with words whose mean-

ing di�ers from the meaning in everyday use or the meaning in physis. An example

is the word estimate. In statistis \estimate" is used where the physiist would say

\determine" or \measure", as in parameter estimation. The physiist or indeed

ordinary people tend to use \estimate" to mean little more than \guess" as in \I

would estimate that this room is about 8 meters wide." We will generally use the

statistiians' word.

Muh of statistis has been developed in onnetion with population studies

(soiology, mediine, agriulture, et.) and industrial quality ontrol. One annot

study the entire population; so one \draws a sample". But the population exists.

In experimental physis the set of all measurements (or observations) forms the

\sample". If we make more measurements we inrease the size of the sample, but

we an never attain the \population". The population does not really exist but is

an underlying abstration. For us some terminology of the statistiians is therefore

rather inappropriate. We therefore sometimes make substitutions like the following:
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\demographi" terminology \physis" terminology

sample data (set)

draw a sample observe, measure

sample of size N N observations, N measurements

population observable spae

population mean parent mean

= mean of the underlying distribution

population variane, et. parent variane, et.

sample mean sample mean = mean of the data

= experimental mean or average

We will just say \mean" when it is lear from the ontext whether we are referring

to the parent or the sample mean.

1.2 Computer usage

In this day and age, data analysis without a omputer is inoneivable. While there

exist (a great many) programs to perform statistial analyses of data, they tend to

be diÆult to learn and/or limited in what they an do. Their use also tends to

indue a ook-book mentality. Consequently, we shall not use them, but will write

our own programs (in FORTRAN or C). In this way we will at least know what we are

doing. Subroutines will be provided for a few oneptually simple, but tehnially

ompliated, tasks.

Data is often presented in a histogram (1 or 2 dimensional). Computer pakages

to do this will be available.

As an aid to understanding it is often useful to use random numbers, i.e., perform

simple Monte Carlo (f. Part II). On a omputer there is generally a routine whih

returns a \pseudo-random" number. What that atually is will be treated in setion

6.1.2. An example of suh use is to generate random numbers aording to a given

distribution, e.g., uniformly between 0 and 1, and then to histogram some funtion

of these numbers.

Parameter estimation (hapter 8) is often most onveniently done by numerially

�nding the maximum (or minimum) of some funtion. Computer programs to do

this will also be available.

1.3 Some advie to the student

The goal of this ourse is not to provide a ook book of statistial data analysis.

Instead, we aim for some understanding of statistial tehniques, of whih there

are many. Lak of time will prelude rigorous proof (or sometimes any proof) of

results. Moreover, we will introdue some theoretial onepts, whih will not seem
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immediately useful, but whih should put the student in a better position to go

beyond what is inluded in this ourse, as will almost ertainly be neessary at

some time in his areer. Further, we will point out the assumptions underlying,

and the limitations of, various tehniques.

A major diÆulty for the student is the diversity of the questions statistial teh-

niques are supposed to answer, whih results in a plethora of methods. Moreover,

there is seldom a single \orret" method, and deiding whih method is \best" is

not always straightforward, even after you have deided what you mean by \best".

A further ompliation arises from what we mean by \probability". There are

two major interpretations, \frequentist" (or \lassial") and \Bayesian" (or \sub-

jetive"), whih leads to two di�erent ways to do statistis. While the emphasis

will be on the lassial approah, some e�ort will go into the Bayesian approah as

well.

While there are many questions and many tehniques, they are related. In order

to see the relationships, the student is strongly advised not to fall behind.

Finally, some advie to astronomers whih is equally valid for physiists:

Whatever your hoie of area, make the hoie to live your professional

life at a high level of statistial sophistiation, and not at the level|

basially freshman lab. level|that is the unfortunate ommon urreny

of most astronomers. Thereby we will all move forward together.

|William H. Press

16





Part I

Probability

7





\La th�eorie des probabilit�es n'est que

le bon sens reduit au alul."

|P.-S. de Laplae, \M�eanique C�eleste"

Chapter 2

Probability

2.1 First priniples

2.1.1 Probability|What is it?

We begin by taking the \frequentist" approah. A given experiment is assumed

to have a ertain number of possible outomes or events E. Suppose we repeat

the idential experiment N times and �nd outome E

i

N

i

times. We de�ne the

probability of outome E

i

to be

P (E

i

) = lim

N!1

N

i

N

(2.1)

We an also be more abstrat. Intuitively, probability must have the following

properties. Let 
 be the set of all possible outomes.

Axioms:

1. P (
) = 1 The experiment must have an outome.

2. 0 � P (E), E 2 


3. P ([E

i

) =

P

P (E

i

), for any set of disjoint E

i

; E

i

2 


(Axiom of Countable Additivity)

It is straightforward to derive the following theorems:

1. P (E) = 1� P (E

�

), where 
 = E [ E

�

, E and E

�

disjoint.

2. P (E) � 1

9
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3. P (;) = 0, where ; is the null set.

4. If E

1

,E

2

2 
 and not neessarily disjoint, then

P (E

1

[ E

2

) = P (E

1

) + P (E

2

)� P (E

1

\ E

2

)

A philosopher one said, \It is neessary

for the very existene of siene that

the same onditions always produe the same results."

Well, they do not. |Rihard P. Feynman

2.1.2 Sampling

We restrit ourselves to experiments where the outome is one or more real numbers,

X

i

. Repetition of the experiment will not always yield the same outome. This

ould be due to an inability to reprodue exatly the initial onditions and/or to

a probabilisti nature of the proess under study, e.g., radioative deay. The X

i

are therefore alled random variables (r.v.), i.e., variables whose values annot

be predited exatly. Note that the word `random' in the term `random variable'

does not mean that the allowed values of X

i

are equiprobable, ontrary to its use

in everyday speeh. The set of possible values of X

i

, whih we have denoted 
, is

alled the sample spae. A r.v. an be

� disrete: The sample spae 
 is a set of disrete points. Examples are the

result of a throw of a die, the sex of a hild (F=1, M=2), the age (in years)

of students studying statistis, names of people (Marieke=507, Piet=846).

� ontinuous: 
 is an interval or set of intervals. Examples are the frequeny of

radiation from a blak body, the angle at whih an eletron is emitted from

an atom in �-deay, the height of students studying statistis.

� a ombination of disrete and ontinuous.

An experiment results thus in an outome whih is a set of real numbers X

i

whih are random variables. They form a sampling of a parent `population'. Note

the di�erene between the sample, the sample spae and the population:

� The population is a list of all members of the population. Some members of

the population may be idential.

� The sample spae is the set of all possible results of the experiment (the

sampling). Idential results are represented by only one member of the set.
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� The sample is a list of the results of a partiular experiment. Some of the

results may be idential. How often a partiular result, i.e., a partiular

member of the sample spae, ours in the sample should be approximately

proportional to how often that result ours in the population.

The members of the population are equiprobable while the members of the sample

spae are not neessarily equiprobable. The sample reets the population whih is

derived from the sample spae aording to some probability distribution, usually

alled the parent (or underlying) probability distribution.

2.1.3 Probability density funtion (p.d.f.)

Conventionally, one uses a apital letter for the experimental result, i.e., the sam-

pling of a r.v. and the orresponding lower ase letter for other values of the r.v.

Here are some examples of probability distributions:

� the throw of a die. The sample spae is 
 = f1; 2; 3; 4; 5; 6g. The probability

distribution is P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =

1

6

, whih gives

a parent population of f1; 2; 3; 4; 5; 6g. An example of an experimental result

is X = 3.

� the throw of a die having sides marked with one 1, two 2's, and three 3's.

The sample spae is 
 = f1; 2; 3g. The probability distribution is P (1) =

1

6

,

P (2) =

1

3

, P (3) =

1

2

. The parent population is f1; 2; 2; 3; 3; 3g. An experi-

mental result is X = 3 (maybe).

In the disrete ase we have a probability funtion, f(x), whih is greater than zero

for eah value of x in 
. From the axioms of probability,

X




f(x) = 1

P (A) � P (X 2 A) =

X

A

f(x) ; A � 


For a ontinuous r.v., the probability of any exat value is zero sine there are

an in�nite number of possible values. Therefore it is only meaningful to talk of the

probability that the outome of the experiment, X, will be in a ertain interval.

f(x) is then a probability density funtion (p.d.f.) suh that

P (x � X � x + dx) = f(x) dx ,

Z




f(x) dx = 1 (2.2)

Sine most quantities of interest to us are ontinuous we will usually only treat

the ontinuous ase unless the orresponding treatment of the disrete ase is not

obvious. Usually going from the ontinuous to the disrete ase is simply the re-

plaement of integrals by sums. We will also use the term p.d.f. for f(x) although
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in the disrete ase it is really a probability rather than a probability density. Some

authors use the term `probability law' instead of p.d.f., thus avoiding the mislead-

ing (atually wrong) use of the word `density' in the disrete ase. However, suh

use of the word `law' is misleading to a physiist, f. Newton's seond law, law of

onservation of energy, et.

2.1.4 Cumulative distribution funtion (.d.f.)

The umulative distribution funtion (.d.f.) is the probability that the value of a

r.v. will be � a spei� value. The .d.f. is denoted by the apital letter orrespond-

ing to the small letter signifying the p.d.f. The .d.f. is thus given by

F (x) =

Z

x

�1

f(x

0

) dx

0

= P (X � x) (2.3)

Clearly, F (�1) = 0 and F (+1) = 1.

Properties of the .d.f.:

� 0 � F (x) � 1

� F (x) is monotone and not dereasing.

� P (a � X � b) = F (b)� F (a)

� F (x) disontinuous at x implies

P (X = x) = lim

Æx!0

[F (x+ Æx)� F (x� Æx)℄ , i.e., the size of the jump.

� F (x) ontinuous at x implies P (X = x) = 0.

The .d.f. an be onsidered to be more fundamental than the p.d.f. sine the

.d.f. is an atual probability rather than a probability density. However, in appli-

ations we usually need the p.d.f. Sometimes it is easier to derive �rst the .d.f.

from whih you get the p.d.f. by

f(x) =

�F (x)

�x

(2.4)

2.1.5 Expetation values

Consider some single-valued funtion, u(x) of the random variable x for whih f(x)

is the p.d.f. Then the expetation value of u(x) is de�ned:

E [u(x)℄ =

Z

+1

�1

u(x) f(x) dx (2.5)

=

Z

+1

�1

u(x) dF (x) ; f(x) ontinuous (2.6)

Properties of the expetation value:
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� If k is a onstant, then E [k℄ = k

� If k is a onstant and u a funtion of x, then E [ku℄ = kE [u℄

� If k

1

and k

2

are onstants and u

1

and u

2

are funtions of x, then

E [k

1

u

1

+ k

2

u

2

℄ = k

1

E [u

1

℄ + k

2

E [u

2

℄, i.e., E is a linear operator.

Note that some books, e.g., Barlow

1

, use the notation hu(x)i instead of E [u(x)℄.

2.1.6 Moments

Moments are ertain speial expetation values. The m

th

moment is de�ned (think

of the moment of inertia) as

E [x

m

℄ =

Z

+1

�1

x

m

f(x) dx (2.7)

The moment is said to exist if it is �nite. The most ommonly used moment is the

(population or parent) mean,

� � E [x℄ =

Z

+1

�1

xf(x) dx (2.8)

The mean is often a good measure of loation, i.e., it frequently tells roughly where

the most probable region is, but not always.

-

6

x

f(x)

�

-

6

x

f(x)

�

In statistis we will see that the sample mean, x, the average of the result of a

number of experiments, an be used to estimate the parent mean, �, the mean of

the underlying p.d.f.

Central moments are moments about the mean. The m

th

entral moment is

de�ned as

E [(x� �)

m

℄ =

Z

+1

�1

(x� �)

m

f(x) dx (2.9)

If � is �nite, the �rst entral moment is learly zero. If f(x) is symmetri about its

mean, all odd entral moments are zero.

The seond entral moment is alled the variane. It is denoted by V [x℄, �

2

x

,

or just �

2

.

�

2

x

� V [x℄ � E

h

(x� �)

2

i

(2.10)

= E

h

x

2

i

� �

2

(2.11)
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The square root of the variane, �, is alled the standard deviation. It is a measure

of the spread of the p.d.f. about its mean.

Sine all symmetrial distributions have all odd entral moments zero, the odd

entral moments provide a measure of the asymmetry. The �rst entral moment is

zero. The third entral moment is thus the lowest order odd entral moment. One

makes it dimensionless by dividing by �

3

and de�ning the skewness as



1

�

E

h

(x� �)

3

i

�

3

(2.12)

This is the de�nition of Fisher, whih is the most ommon. However, be aware that

other de�nitions exist, e.g., the Pearson skewness,

�

1

�

0

�

E

h

(x� �)

3

i

�

3

1

A

2

= 

2

1

(2.13)

The sharpness of the peaking of the p.d.f. is measured by the kurtosis (also

spelled urtosis). There are two ommon de�nitions, the Pearson kurtosis,

�

2

�

E

h

(x� �)

4

i

�

4

(2.14)

and the Fisher kurtosis,



2

�

E

h

(x� �)

4

i

�

4

� 3 = �

2

� 3 (2.15)

The �3 makes 

2

= 0 for a Gaussian. For this reason, it is somewhat more on-

venient, and is the de�nition we shall use. A p.d.f. with 

2

> 0 (< 0) is alled

leptokurti (platykurti) and is less (more) peaked than a Gaussian, i.e., having

higher (lower) tails.

Moments are often normalized in some other way than we have done with 

1

and 

2

, e.g., with the orresponding power of �:



k

�

E

h

x

k

i

�

k

; r

k

�

E

h

(x� �)

k

i

�

k

(2.16)

It an be shown that if all entral moments exist, the distribution is ompletely

haraterized by them. In statistis we an estimate eah parent moment by its

sample moment (f. setion 8.3.2) and so, in priniple, reonstrut the p.d.f.

Other attributes of a p.d.f.:

� mode: The loation of a maximum of f(x). A p.d.f. an be multimodal.

� median: That value of x for whih the .d.f. F (x) =

1

2

. The median is not

always well de�ned, sine there an be more than one suh value of x.
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.d.f.

-

6

1

1

2

x

F (x)

median

-

6

1

1

2

x

F (x)

medians

p.d.f.

-

6

x

f(x)

-

6

x

f(x)

\If any one imagines that he knows something,

he does not yet know as he ought to know."

|1 Corinthians 8:2

2.2 More on Probability

2.2.1 Conditional Probability

Suppose we restrit the set of results of our experiment (observations or events) to

a subset A � 
. We denote the probability of an event E given this restrition by

P (E j A); we speak of \the probability of E given A." Clearly this `onditional'

probability is greater than the probability without the restrition, P (E) (unless of

ourse A

�

, the omplement of A, is empty). The probability must be renormalized

suh that the probability that the ondition is ful�lled is unity. The onditional

probability should have the following properties:
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P (A j A) = 1 renormalization

P (A

2

j A

1

) = P (A

1

\ A

2

j A

1

)

While the probability hanges with the restrition,

ratios of probabilities must not:

P (A

1

\ A

2

j A

1

)

P (A

1

j A

1

)

=

P (A

1

\ A

2

)

P (A

1

)




A

2

A

1

These requirements are met by the de�nition, assuming P (A

1

) > 0,

P (A

2

j A

1

) �

P (A

1

\ A

2

)

P (A

1

)

(2.17)

If P (A

1

) = 0, P (A

2

j A

1

) makes no sense. Nevertheless, for ompleteness we de�ne

P (A

2

j A

1

) = 0 if P (A

1

) = 0.

It an be shown that the onditonal probability satis�es the axioms of proba-

bility.

It follows from the de�nition that

P (A

1

\ A

2

) = P (A

2

j A

1

)P (A

1

)

If P (A

2

j A

1

) is the same for all A

1

, i.e., A

1

and A

2

are independent, then

P (A

2

j A

1

) = P (A

2

)

and P (A

1

\ A

2

) = P (A

1

)P (A

2

)

2.2.2 More than one r.v.

Joint p.d.f.

If the outome is more than one r.v., say X

1

and X

2

, then the experiment is a

sampling of a joint p.d.f., f(x

1

; x

2

), suh that

P (x

1

< X

1

< x

1

+ dx

1

; x

2

< X

2

< x

2

+ dx

2

) = f(x

1

; x

2

) dx

1

dx

2

(2.18)

P (a < X

1

< b ;  < X

2

< d) =

Z

b

a

dx

1

Z

d



dx

2

f(x

1

; x

2

) (2.19)

Marginal p.d.f.

The marginal p.d.f. is the p.d.f. of just one of the r.v.'s; all dependene on the other

r.v.'s of the joint p.d.f. is integrated out:

f

1

(x

1

) =

Z

+1

�1

f(x

1

; x

2

) dx

2

(2.20)

f

2

(x

2

) =

Z

+1

�1

f(x

1

; x

2

) dx

1

(2.21)

Conditional p.d.f.



2.2. MORE ON PROBABILITY 17

-

6

X

1

X

2

x

1




Suppose that there are two r.v.'s, X

1

and X

2

, and

a spae of events 
.

Choosing a value x

1

ofX

1

restrits the possible

values of X

2

. Assuming f

1

(x

1

) > 0, then f(x

2

j

x

1

) is a p.d.f. of X

2

given X

1

= x

1

.

In the disrete ase, from the de�nition of on-

ditional probability (eq. 2.17), we have

f(x

2

j x

1

) � P (X

2

= x

2

j X

1

= x

1

) =

P (X

2

= x

2

\X

1

= x

1

)

P (X

1

= x

1

)

=

P (X

2

= x

2

; X

1

= x

1

)

P (X

1

= x

1

)

=

f(x

1

; x

2

)

f

1

(x

1

)

The ontinuous ase is, analogously,

f(x

2

j x

1

) =

f(x

1

; x

2

)

f

1

(x

1

)

(2.22)

Note that this onditional p.d.f. is a funtion of only one r.v., x

2

, sine x

1

is �xed.

Of ourse, a di�erent hoie of x

1

would give a di�erent funtion. A onditional

probability is then obviously alulated

P (a < X

2

< b j X

1

= x

1

) =

Z

b

a

f(x

2

j x

1

) dx

2

(2.23)

This may also be written P (a < X

2

< b j x

1

).

We an also ompute onditional expetations:

E [u (x

2

) j x

1

℄ =

Z

+1

�1

u(x

2

)f(x

2

j x

1

) dx

2

(2.24)

For example, the onditional mean, E [x

2

j x

1

℄,

or the onditional variane, E [(x

2

� E [x

2

j x

1

℄)

2

j x

1

℄.

The generalization to more than two variables is straightforward, e.g.,

f(x

2

; x

4

j x

1

; x

3

) =

f(x

1

; x

2

; x

3

; x

4

)

f

13

(x

1

; x

3

)

where f

13

(x

1

; x

3

) =

Z Z

f(x

1

; x

2

; x

3

; x

4

) dx

2

dx

4

2.2.3 Correlation

When an experiment results in more than one real number, i.e., when we are on-

erned with more than one r.v. and hene the p.d.f. is of more than one dimension,

the r.v.'s may not be independent. Here are some examples:
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� Let A =`It is Sunday', B =`It is raining'. The probability of rain on Sunday is

the same as the probability of rain on any other day. A and B are independent.

But if A =`It is Deember', the situation is di�erent. The probability of rain

in Deember is not the same as the probability of rain in all other months. A

and B are orrelated.

� If you spend 42 hours eah week at the university, the probability that at a

randomly hosen moment your head is at the university is

1

/

4

. Similarly, the

probability that your feet are at the university is

1

/

4

. The probability that

both your head and your feet are at the university is also

1

/

4

and not

1

/

16

; the

loations of your head and your feet are highly orrelated.

� Abram and Lot were standing at a road juntion. The probability that Lot

would take the left-hand road was

1

/

2

. The probability that Abram would take

the left-hand road was also

1

/

2

. But the probability that they both would take

the left-hand road was zero.

17

� The Fermi theory allows us to alulate the energy spetrum of the partiles

produed in �-deay, e.g., n! pe

�

�

e

, from whih we an alulate the prob-

ability that the proton will have more than, say

3

/

4

, of the available energy.

We an also alulate the probability that the eletron will have more than

3

/

4

of the available energy. But the probability that both the eletron and the

proton will have more than

3

/

4

of the available energy is zero. The energies

of the eletron and the proton are not independent. They are onstrained by

the law of energy onservation.

Given a two-dimensional p.d.f. (the generalization to more dimensions is straight-

forward), f(x; y), the mean and variane of X, �

X

and �

2

X

are given by

�

X

= E [X℄ =

Z

+1

�1

Z

+1

�1

xf(x; y) dxdy

�

2

X

= E

h

(X � �

X

)

2

i

A measure of the dependene of X on Y is given by the ovariane de�ned as

ov(X; Y ) � E [(X � �

X

)(Y � �

Y

)℄ (2.25)

= E [XY ℄� �

Y

E [X℄� �

X

E [Y ℄ + �

X

�

Y

= E [XY ℄� �

X

�

Y

(2.26)

From the ovariane we de�ne a dimensionless quantity, the orrelation oef-

�ient

�

XY

�

ov(X; Y )

�

X

�

Y

(2.27)

If �

X

= 0, thenX � �

X

and onsequently E [XY ℄ = �

X

E [Y ℄ = �

X

�

Y

, whih means

that ov(X; Y ) = 0. In this ase the above de�nition would give � indeterminate,

and we de�ne �

XY

= 0.
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It an be shown that �

2

� 1, the equality holding if and only if X and Y are

linearly related. The proof is left to the reader (exerise 7).

Note that while the mean and the standard deviation sale, the orrelation

oeÆient is sale invariant, e.g.,

�

2X

= 2�

X

and �

2X

= 2�

X

�

2X;Y

=

ov(2X; Y )

�

2X

�

Y

=

2 ov(X; Y )

2�

X

�

Y

The orrelation oeÆient �

XY

is a measure of how muh the variables X and Y

depend on eah other. It is most useful when the ontours of onstant probability

density, f(x; y) = k, are roughly elliptial, but not so useful when these ontours

have strange shapes:

-

6

X

Y

� > 0

-

6

X

Y

� < 0

-

6

X

Y

� � 0

In the last ase, even though X and Y are learly related, � � 0. This an be seen

as follows:

E [(X � �

X

) j y℄ =

Z

(x� �

X

)f(x j y) dx

=

Z

(x� �

X

)

f(x; y)

f

Y

(y)

dx

= 0 for all y

Thus, the mean value of X is independent of y. Then,

ov(X; Y ) = E [(X � �

X

) (Y � �

Y

)℄

=

Z

(y � �

Y

)

Z

(x� �

X

)f(x; y) dx

| {z }

=0

dy

= 0

Consequently, �

XY

= 0.
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However, if we hange variables, e.g.,

by rotating, �, i.e., �

X

0

Y

0

, will no longer

be 0.

-

6

X

0

Y

0

� > 0

Also in the elliptial ase, suh a hange in variables an make � = 0.

-

6

X

Y

� > 0

-

-

6

X

0

Y

0

� = 0

In fat, it is always possible (also in n dimensions) to remove the orrelation by a

hange of variables (f. setion 2.2.7).

The orrelation oeÆient, �, measures the average linear hange in the marginal

p.d.f. of one variable for a spei�ed hange in the other variable. This an be 0 even

when the variables learly depend on eah other. This ours when a hange in one

variable produes a hange in the marginal p.d.f. of the other variable but no hange

in its average, only in its shape. Thus zero orrelation does not imply independene.

2.2.4 Dependene and Independene

We know from the de�nitions of onditional and marginal p.d.f.'s that

f(x

1

; x

2

) = f(x

2

j x

1

)f

1

(x

1

) (2.28)

and f

2

(x

2

) =

Z

f(x

1

; x

2

) dx

1

Hene f

2

(x

2

) =

Z

f(x

2

j x

1

)f

1

(x

1

) dx

1

Now suppose that f(x

2

j x

1

) does not depend on x

1

, i.e., is the same for all x

1

.

Then

f

2

(x

2

) = f(x

2

j x

1

)

Z

f

1

(x

1

) dx

1

| {z }

=1; normalization

= f(x

2

j x

1

)

Substituting this in (2.28) gives

f(x

1

; x

2

) = f

1

(x

1

)f

2

(x

2

)
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The joint p.d.f. is then just the produt of the marginal p.d.f.'s. We take this as

the de�nition of independene:

r.v.'s X

1

and X

2

are independent � f(x

1

; x

2

) = f

1

(x

1

)f

2

(x

2

)

r.v.'s X

1

and X

2

are dependent � f(x

1

; x

2

) 6= f

1

(x

1

)f

2

(x

2

)

We an easily derive two theorems:

Theorem: X

1

and X

2

are independent r.v.'s with joint p.d.f. f(x

1

; x

2

) if and only

if f(x

1

; x

2

) = g(x

1

)h(x

2

) with g(x

1

) � 0 and h(x

2

) � 0 for all x

1

; x

2

2 
.

=) From the de�nition of independene, f an be written as the produt of

the marginal p.d.f.'s, whih ful�ll the requirement of being positive for

all x

1

; x

2

2 
.

(= Assume f(x

1

; x

2

) = g(x

1

)h(x

2

) with g and h positive. Then the marginal

distributions are

f

1

(x

1

) =

Z

g(x

1

) h(x

2

) dx

2

= g(x

1

)

Z

h(x

2

) dx

2

=  g(x

1

)

and f

2

(x

2

) =

Z

g(x

1

) h(x

2

) dx

1

= h(x

2

)

Z

g(x

1

) dx

1

= d h(x

2

)

Hene, f(x

1

; x

2

) = g h =

1

d

f

1

(x

1

)f

2

(x

2

)

And, sine f

1

and f

2

are normalized to 1, d = 1. Q.E.D.

Note that g and h do not have to be the marginal p.d.f.'s; the only requirement

is that their produt equal the produt of the marginals.

Theorem: If X

1

and X

2

are independent r.v.'s with marginal p.d.f.'s f

1

(x

1

) and

f

2

(x

2

), then for funtions u(x

1

) and v(x

2

), assuming all E's exist,

E [u (x

1

) v (x

2

)℄ = E [u (x

1

)℄E [v (x

2

)℄

=) From the de�nition of expetation, and sine X

1

and X

2

are independent,

E [u (x

1

) v (x

2

)℄ =

Z Z

u(x

1

) v(x

2

) f(x

1

; x

2

) dx

1

dx

2

=

Z

u(x

1

) f

1

(x

1

) dx

1

Z

v(x

2

) f

2

(x

2

) dx

2

=

Z Z

u(x

1

) f(x

1

)f(x

2

)

| {z }

=f(x

1

;x

2

)

dx

1

dx

2

Z Z

v(x

2

) f(x

2

)f(x

1

)

| {z }

=f(x

1

;x

2

)

dx

2

dx

1

= E [u(x

1

)℄E [v(x

2

)℄

A onsequene of this last theorem is that X

1

, X

2

independent implies

ov(x

1

; x

2

) � E [(x

1

� �

1

) (x

2

� �

2

)℄ = E [x

1

� �

1

℄E [x

2

� �

2

℄ = 0

But the onverse is not true.
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2.2.5 Charateristi Funtion

So far we have only onsidered real r.v.'s. But from two real r.v.'s we an onstrut

a omplex r.v., Z = X + {Y with expetation E [Z℄ = E [X℄ + {E [Y ℄

The harateristi funtion of the p.d.f. f(x) is de�ned as the expetation of the

omplex quantity e

{tx

, t real:

�(t) = E

h

e

{tx

i

=

(

R

+1

�1

e

{tx

f(x) dx (X ontinuous)

P

k

e

{tx

k

f(x

k

) (X disrete)

(2.29)

For X ontinuous, �(t) is the Fourier integral of f(x).

The harateristi funtion ompletely determines the p.d.f., sine by inverting

the Fourier transformation we regain f(x):

f(x) =

1

2�

Z

+1

�1

�(t)e

�{xt

dt (2.30)

From the de�nition, it is lear that �(0) = 1 and j�(t)j � 1.

The umulative distribution funtion, or indeed the probability for any interval

[x

min

; x℄, an also be found from �(t):

F (x) =

Z

x

x

min

f(x) dx =

Z

x

x

min

1

2�

Z

+1

�1

�(t)e

�{xt

dt dx

=

1

2�

Z

+1

�1

�(t)

Z

x

x

min

e

�{xt

dx dt

=

1

2�

Z

+1

�1

�(t)

�

1

�{t

�

�

e

�{xt

� e

�{x

min

t

�

dt

=

{

2�

Z

+1

�1

e

�{xt

� e

�{x

min

t

t

�(t) dt

In the disrete ase, f(x

k

) is given by the di�erene in the probability of adjaent

values of x,

f(x

k

) = F (x

k

)� F (x

k�1

)

=

{

2�

Z

+1

�1

e

�{tx

k

� e

�{tx

k�1

t

�(t) dt

The harateristi funtion is partiularly useful in alulating moments. Dif-

ferentiating �(t) with respet to t and evaluating the result at t = 0 gives

d

q

�(t)

dt

q

�

�

�

�

�

t=0

=

Z

+1

�1

({x)

q

e

0

f(x) dx = {

q

E [x

q

℄

The harateristi funtion an also be written in terms of the moments by

means of a Taylor expansion.

�(t) = E

h

e

{tx

i

= E

"

1

X

r=0

({tx)

r

r!

#

=

1

X

r=0

({t)

r

r!

E [x

r

℄ (2.31)
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Some authors prefer, espeially for disrete r.v.'s, to use the probability gener-

ating funtion instead of the harateristi funtion. It is in fat the same thing,

just replaing e

{t

by z:

G(z) = E [z

x

℄ =

(

R

+1

�1

z

x

f(x) dx

P

k

z

x

k

f(x

k

)

The moments are then found by di�erentiating with respet to z and evaluating at

z = 1,

G

0

(1) =

dG(z)

dz

�

�

�

z=1

=

R

+1

�1

xz

x�1

f(x) dx

�

�

�

z=1

= E [x℄

G

00

(1) =

d

2

G(z)

dz

2

�

�

�

z=1

=

R

+1

�1

x(x� 1)z

x�2

f(x) dx

�

�

�

z=1

= E [x(x� 1)℄ = E [x

2

℄� E [x℄

Thus the variane is given by

V [x℄ = E

h

x

2

i

� (E [x℄)

2

= G

00

(1) +G

0

(1)� [G

0

(1)℄

2

Another appliation of the harateristi funtion is to �nd the p.d.f. of sums

of independent r.v.'s. Let x and y be r.v.'s. Then w = x + y is also an r.v. The

harateristi funtion of w is

�

w

(t) = E

h

e

{tw

i

= E

h

e

{t(x+y)

i

= E

h

e

{tx

e

{ty

i

If x and y are independent, this beomes

�

w

(t) = E

h

e

{tx

i

E

h

e

{ty

i

= �

x

(t)�

y

(t) (2.32)

Thus the harateristi funtion of the sum of independent r.v.'s is just the produt

of the individual harateristi funtions.

2.2.6 Transformation of variables

We will treat the two-dimensional ase. You an easily generalize to N dimensions.

Continuous p.d.f.

Given r.v.'s X

1

, X

2

from a p.d.f. f(x

1

; x

2

) de�ned on a set A, we transform (X

1

; X

2

)

to (Y

1

; Y

2

). Under this transformation the set A maps onto the set B.

-

6

a

A

X

1

X

2

-

-

6

b

B

Y

1

Y

2
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Let a � A be a small subset whih the transformation maps onto b � B, i.e.,

(X

1

; X

2

) 2 a! (Y

1

; Y

2

) 2 b suh that P (a) = P (b)

Then P [(Y

1

; Y

2

) 2 b℄ = P [(X

1

; X

2

) 2 a℄ =

Z

a

Z

f(x

1

; x

2

) dx

1

dx

2

The transformation is given by

y

1

= u

1

(x

1

; x

2

)

y

2

= u

2

(x

1

; x

2

)

The transformation must be one-to-one. Then a unique inverse transformation

exists:

x

1

= w

1

(y

1

; y

2

)

x

2

= w

2

(y

1

; y

2

)

(Atually the ondition of one{to{one an be relaxed in some ases.) Assume also

that all �rst derivatives of w

1

and w

2

exist. Then

P (a) = P (b)

Z

a

Z

f(x

1

; x

2

) dx

1

dx

2

=

Z

b

Z

f (w

1

(y

1

; y

2

); w

2

(y

1

; y

2

)) jJ j dy

1

dy

2

where J is the Jaobian determinant (assumed known from alulus) and the abso-

lute value is taken to ensure that the probability is positive,

J = J

 

w

1

; w

2

y

1

; y

2

!

=

�

�

�

�

�

�

�w

1

�y

1

�w

2

�y

1

�w

1

�y

2

�w

2

�y

2

�

�

�

�

�

�

(2.33)

Hene the p.d.f. in (Y

1

; Y

2

) is the p.d.f. in (X

1

; X

2

) times the Jaobian:

g(y

1

; y

2

) = f (w

1

(y

1

; y

2

) ; w

2

(y

1

; y

2

)) jJ j (2.34)

Disrete p.d.f.

This is atually easier, sine we an take the subsets a and b to ontain just one

point. Then

P (b) = P (Y

1

= y

1

; Y

2

= y

2

) = P (a) = P (X

1

= x

1

= w

1

(y

1

; y

2

); X

2

= w

2

(y

1

; y

2

))

g(y

1

; y

2

) = f(w

1

(y

1

; y

2

) ; w

2

(y

1

; y

2

))

Note that there is no Jaobian in the disrete ase.
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2.2.7 Multidimensional p.d.f. { matrix notation

In this setion we present the vetor notation we will use for multidimensional

p.d.f.'s. An n-dimensional random variable, i.e., the olletion of the n r.v.'s

x

1

; x

2

; : : : ; x

n

is denoted by an n-dimensional olumn vetor and its transpose by a

row vetor:

x =

0

B

B

B

�

x

1

x

2

.

.

.

x

n

1

C

C

C

A

x

T

= (x

1

x

2

: : : x

n

) (2.35)

If the r.v. x is distributed aording to the p.d.f. f(x), the .d.f. is

F (x) =

Z

x

1

�1

: : :

Z

x

n

�1

f(x) dx ; dx = dx

1

dx

2

: : : dx

n

The p.d.f. and the .d.f. are related by

f(x) =

�

n

�x

1

�x

2

: : : �x

n

F (x)

The moments about the origin of order l

1

; l

2

; : : : ; l

n

are

�

l

1

;l

2

;:::;l

n

= E

h

x

l

1

1

; x

l

2

2

; : : : ; x

l

n

n

i

=

Z

1

�1

: : :

Z

1

�1

x

l

1

1

x

l

2

2

� � �x

l

n

n

f(x) dx

The mean of a partiular r.v., e.g., x

2

, is

�

2

= �

010:::0

These means an be written as a vetor, the mean of x:

� =

0

B

B

B

B

�

�

1

�

2

.

.

.

�

n

1

C

C

C

C

A

Moments about the mean are

�

l

1

;l

2

;:::;l

n

= E

h

(x

1

� �

1

)

l

1

(x

2

� �

2

)

l

2

: : : (x

n

� �

n

)

l

n

i

The varianes are, e.g.,

�

2

1

= �

2

(x

1

) = �

200:::00

= E

h

(x

1

� �

1

)

2

i

and the ovarianes

�

ij

= ov(x

i

; x

j

) = E [(x

i

� �

i

)(x

j

� �

j

)℄ ; i 6= j

e.g., ov(x

1

; x

2

) = �

1100:::00
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The varianes and ovarianes may be written as a matrix, alled the ovariane

(or variane) matrix:

V = E

h

(x� �)(x� �)

T

i

=

0

B

B

B

�

�

11

�

12

: : : �

1n

�

21

�

22

: : : �

2n

.

.

.

.

.

.

.

.

.

.

.

.

�

n1

�

n2

: : : �

nn

1

C

C

C

A

(2.36)

=

0

B

B

B

B

�

�

2

1

�

12

�

1

�

2

: : :

�

12

�

1

�

2

�

2

2

: : :

.

.

.

.

.

.

.

.

.

�

1n

�

1

�

n

�

2n

�

2

�

n

: : :

1

C

C

C

C

A

(2.37)

where �

ij

is the orrelation oeÆient for r.v.'s x

i

and x

j

:

�

ij

�

�

ij

�

i

�

j

=

ov(x

i

; x

j

)

q

�

2

i

�

2

j

(2.38)

The ovariane matrix is learly symmetri (�

ji

= �

ij

). As is well known in

linear algebra, it is always possible to �nd a unitary transformation, U , of the r.v.

x to the r.v. y = U x suh that the ovariane matrix of y, V

h

y

i

= U V [x℄U

T

, is

diagonal, whih means that the y

i

are unorrelated.

2.3 Bayes' theorem

A \ B = B \ A. Hene, P (A \ B) = P (B \ A). From the de�nition of onditional

probability, eq. (2.17), P (A j B) � P (A \B)=P (B), it then follows that

P (A j B)P (B) = P (B j A)P (A) (2.39)

This simple theorem

�

of Rev. Thomas Bayes

18

is quite innouous. However it

has far-reahing onsequenes in one interpretation of probability, as we shall see

in the next setion.

\When I use a word," Humpty Dumpty said in a

rather sornful tone, \it means just what I

hoose it to mean|neither more nor less."

|Lewis Carroll, \Through the Looking Glass"

�

Sometimes alled the hain rule of probability, this theorem was �rst formulated by Rev. Bayes

around 1759. The exat date is not known; the paper was published posthumously by his good

friend Rihard Prie in 1763. Bayes' formulation was only for P (A) uniform. The theorem was

formulated in its present form by Laplae,

19

who was apparently unaware of Bayes' work. Laplae
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2.4 Probability|What is it?, revisited

We have used mathematial probability, whih is largely due to Kolmogorov, to

derive various properties of probability. In our minds we have so far an idea of what

probability means, whih we refer to as the frequeny approah. In this setion we

shall �rst review these two topis and then disuss another interpretation of the

meaning of probability, whih we shall all subjetive probability.

2.4.1 Mathematial probability (Kolmogorov)

In this approah

21

we began with three axioms, from whih we an derive everything.

We an alulate the probability of any ompliated event for whih we know the

a priori probabilities of its omponents. But this is simply mathematis. What

probability really means requires a onnetion to the real world. As Bayes wrote,

22

It is not the business of the Mathematiian to dispute whether quantities

do in fat ever vary in the manner that is supposed, but only whether

the notion of their doing so be intelligible; whih being allowed, he has

the right to take it for granted, and then to see what dedutions he

an make from that supposition... He is not inquiring how things are in

matter of fat, but supposing things to be in a ertain way, what are the

onsequenes to be dedued from them; and all that is to be demanded

of him is, that his suppositions be intelligible, and his inferenes just

from the suppositions he makes.

Bertrand Russel put it somewhat more suintly:

Mathematis is the only siene where one never knows what one is

talking about nor whether what is said is true.

2.4.2 Empirial or Frequeny interpretation (von Mises)

In this approah, largely due to von Mises,

23

probability is viewed as the limit of the

frequeny of a result of an experiment or observation when the number of idential

experiments is very large, i.e.,

P (x

i

) = lim

N!1

N

i

N

(2.40)

There are two shortomings to this approah:

� P (x

i

) is not just a property of the experiment. It also depends on the \olle-

went on to apply

20

it to problems in elestial mehanis, medial statistis and even, aording to

some aounts, to jurisprudene.
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tive" or \ensemble", i.e., on the N repetitions of the experiment. For example,

if I take a resistor out of a box of resistors, the probability that I measure the

resistane of the resistor as 1 ohm depends not only on how the resistor was

made, but also on how all the other resistors in the box were made.

� The experiment must be repeatable, under idential onditions, but with dif-

ferent outomes possible. This is a great restrition on the number of situa-

tions in whih we an use the onept of probability. For example, what is

the probability that it will rain tomorrow? Suh a question is meaningless for

the frequentists, sine the experiment annot be repeated!

2.4.3 Subjetive (Bayesian) probability

This approah attempts to extend the notion of probability to the areas where the

experiment of the frequentists annot be repeated. Probability here is a subjetive

\degree of belief" whih an be modi�ed by observations. This was, in fat, the

interpretation of suh pioneers in probability as Bayes and Laplae.

This approah takes Bayes' theorem (2.39), whih we repeat here,

P (A j B)P (B) = P (B j A)P (A)

and interprets A as a theory or hypothesis and B as a result or observation. P (A)

is then the probability that A is true, or, in other words, our \belief" in the theory.

Then Bayes' theorem beomes

P (theory j result)P (result) = P (result j theory)P (theory)

Then

P (theory j result) =

P (result j theory)

P (result)

P (theory)

Here, P (theory) is our \belief" in the theory before doing the experiment, P (result j

theory) is the probability of getting the result if the theory is true, P (result) is the

probability of getting the result irrespetive of whether the theory is true or not,

and P (theory j result) is our belief in the theory after having obtained the result.

This seems to make sense. We see that if the theory predits the result with

high probability, i.e., P (result j theory) big, then P (theory j result), i.e., your belief

in the theory after the result, will be higher than it was before, P (theory), and vie

versa. However, if the result is likely even if the theory is not true, then your belief

in the theory will not inrease by very muh sine then

P (resultjtheory)

P (result)

is not muh

greater than 1.

Suppose we want to determine some parameter of nature, �, by doing an ex-

periment whih has outome Z. Further, suppose we know the onditional p.d.f. to

get Z given �: f(z j �). Our prior, i.e., before we do the experiment, belief about

� is given by P

prior

(�). Now the probability of z, P (z), is just the marginal p.d.f.:
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f

1

(z) =

P

�

0

f(z j �

0

)P

prior

(�

0

). Then by Bayes' theorem,

P

posterior

(� j z) =

f(z j �)

f

1

(z)

P

prior

(�) (2.41)

Or, if � is a ontinuous variable, whih in physis is most often the ase,

f

posterior

(� j z) =

f(z j �)

f

1

(z)

f

prior

(�) (2.42)

where f

1

(z) =

R

f(z j �

0

) f

prior

(�

0

) d�

0

.

Given P

prior

(�) this is all OK. The problem here is: What is P

prior

(�)? By its

nature this is not known. Guessing the prior probability is learly subjetive and

unsienti�. The usual presription is

Bayes' Postulate: If ompletely ignorant about P

prior

(�), take all values of � as

equiprobable.

There are objetions to this postulate:

� If we are ompletely ignorant about P (�), how do we know P

prior

(�) is a

onstant?

� A di�erent hoie of P

prior

(�) would give a di�erent P

posterior

.

� If we are ignorant about P (�), we are also ignorant about P (�

2

) or P (

p

�)

or P (1=�). Taking any of these as onstant would imply a di�erent P

prior

(�),

giving a di�erent posterior probability.

These objetions are usually answered by the assertion (supported by experiene)

that P

posterior

usually onverges to about the same value after several experiments

irrespetive of the initial hoie of P

prior

.

2.4.4 Are we frequentists or Bayesians?

First we note that it is in the sense of frequenies that the word `probability' is used

in quantum mehanis and statistial physis. Turning to experimental results,

in the physial sienes, most experiments are, in priniple, repeatable and the

problem an be stated to speify the \olletive". So the frequentist interpretation

is usually OK for us. Given the objetions we have seen in the Bayesian approah,

partiularly that of subjetivity, most physiists today, like mathematiians starting

in the mid-nineteenth entury, would laim to be frequentists.

However in interpreting experimental results we often sound like Bayesians. For

example, you measure the mass of the eletron to be 520 � 10 keV=

2

, i.e., you

measured 520 keV=

2

with an apparatus with a resolution of 10 keV=

2

. You might

then say \The mass of the eletron is probably lose to 520 keV=

2

." Or you might

say \The mass of the eletron is between 510 and 530 keV=

2

with 68% probability.
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But this is not the frequentist's probability|the experiment has not been repeated

an in�nite or even a large number of times. It sounds muh more like a Bayesian

probability: With a resolution, or `error', of � = 10 keV=

2

, the probability that we

will measure a mass m when the true value is m

e

is

P (m j m

e

) / e

�(m�m

e

)

2

=2�

2

Then by Bayes' theorem, the probability that the true mass has the value m

e

after

we have measured a value m is

P (m

e

j m) =

P (m j m

e

)

P (m)

P

prior

(m

e

)

/ P (m j m

e

) assuming P

prior

(m

e

) = onst:

/ e

�(m�m

e

)

2

=2�

2

In a frequentist interpretation of probability, the statement that the eletron

has a ertain mass with a ertain probability is utter nonsense. The eletron has

a de�nite mass: The probability that it has that mass is 1; the probability that it

has some other value is 0. Our only problem is that we do not know what the value

is. We an, nevertheless, make the statement \The mass of the eletron is between

510 and 530 keV=

2

with 68% on�dene." Note that this di�ers from the Bayesian

statement above by just one word. This will be disussed further in the setions

on maximum likelihood (set. 8.2.4) and on�dene intervals (set. 9), where what

exatly we mean by the word on�dene will be explained.

�

\That's a great deal to make one word mean,"

Alie said in a thoughtful tone.

\When I make a word do a lot of work like that,"

said Humpty Dumpty, \I always pay it extra."

|Lewis Carroll, \Through the Looking Glass"

�

Fisher

24

, introduing his presription for on�dene intervals, had this sathing omment on

Bayesian probability (referred to as inverse probability):

I know only one ase in mathematis of a dotrine whih has been aepted and

developed by the most eminent men of their time, and is now perhaps aepted by

men now living, whih at the same time has appeared to a suession of sound writers

to be fundamentally false and devoid of foundation. Yet that is quite exatly the

position in respet of inverse probability. Bayes, who seems to have �rst attempted

to apply the notion of probability, not only to e�ets in relation to their auses but

also to auses in relation to their e�ets, invented a theory, and evidently doubted its

soundness, for he did not publish it during his life. It was posthumously published by

Prie, who seems to have felt no doubt of its soundness. It and its appliations must

have made great headway during the next 20 years, for Laplae takes for granted in a

highly generalised form what Bayes tentatively wished to postulate in a speial ase.



Chapter 3

Some speial distributions

We now examine some distributions whih are frequently enountered in physis

and/or statistis. We begin with disrete distributions.

3.1 Bernoulli trials

A Bernoulli trial is an experiment with two possible outomes, e.g., the toss of a

oin. The random variable is the outome of the experiment, k:

outome probability

`suess', k = 1 p

`failure', k = 0 q = 1� p

The p.d.f. is

f(k; p) = p

k

q

1�k

(3.1)

Note that we use a semiolon to separate the r.v. k from the parameter of the

distribution, p. This p.d.f. results in the moments and entral moments:

E [k

m

℄ = 1 � p + 0 � (1� p) = p

E [(k � �)

m

℄ = (1� p)

m

p

| {z }

k=1

+ (0� p)

m

(1� p)

| {z }

k=0

In partiular,

� = p

V [k℄ = E

h

k

2

i

� (E [k℄)

2

= p� p

2

= p(1� p)

31
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3.2 Binomial distribution

The binomial distribution gives the probability of k suesses (ones) in n inde-

pendent Bernoulli trials eah having a probability p of suess. We denote this

distribution by B(k;n; p). The probability of k suesses followed by n� k failures

is p

k

q

n�k

. But the order of the suesses and failures is unimportant. There are

�

n

k

�

=

n!

k!(n�k)!

di�erent permutations. Therefore the p.d.f. is given by

B(k;n; p) =

 

n

k

!

p

k

(1� p)

n�k

(3.2)

It has the following properties:

� = E [k℄ = np (mean)

�

2

= V [k℄ = np(1� p) (variane)



1

=

1�2p

p

np(1�p)

(skewness)



2

=

1�6p(1�p)

np(1�p)

(kurtosis)

�(t) = [pe

{t

+ (1� p)℄

n

(harateristi funtion)

We will derive the �rst of these properties and leave the rest as exerises.

� = E [k℄ =

n

X

k=0

kB(k;n; p) =

n

X

k=0

k

 

n

k

!

p

k

(1� p)

n�k

=

n

X

k=0

k

n!

k!(n� k)!

p

k

(1� p)

n�k

= np

n

X

k=1

k

(n� 1)!

k(k � 1)!(n� k)!

p

k�1

(1� p)

n�k

k = 0 term is 0

= np

n

0

X

k

0

=0

n

0

!

k

0

!(n

0

� k

0

)!

p

k

0

(1� p)

n

0

�k

0

| {z }

=[p+(1�p)℄

n

0

=1

with n

0

= n� 1; k

0

= k � 1

= np

Many distributions have a reprodutive property, i.e., the p.d.f. of the sum of

two or more independent r.v.'s, eah distributed aording to the same p.d.f., is the

same p.d.f. as for the individual r.v.'s although (usually) with di�erent parameters.

Let X, Y be independent r.v.'s both distributed aording to a binomial p.d.f.

with parameter p. Thus

f(x; y) = B(x;n

x

; p)B(y;n

y

; p) =

 

n

x

x

!

p

x

(1� p)

n

x

�x

 

n

y

y

!

p

y

(1� p)

n

y

�y

What is then the p.d.f. of the r.v. X+Y ? We hange variables and, for onveniene,

introdue new parameters:

new variables Z

1

= X + Y Z

2

= Y

inverse transformation X = Z

1

� Z

2

Y = Z

2

new parameters n

z

1

= n

x

+ n

y

n

z

2

= n

y
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The p.d.f. for the new variables is then

g(z

1

; z

2

) = f(z

1

� z

2

; z

2

)

=

 

n

z

1

� n

z

2

z

1

� z

2

! 

n

z

2

z

2

!

p

z

1

(1� p)

n

z

1

�z

1

The p.d.f. for Z

1

= X + Y is the marginal of this. Hene we must sum over z

2

.

g

1

(z

1

) =

X

z

2

g(z

1

; z

2

) = p

z

1

(1� p)

n

z

1

�z

1

X

z

2

 

n

z

1

� n

z

2

z

1

� z

2

! 

n

z

2

z

2

!

For normalization the sum must be just

�

n

z

1

z

1

�

. Thus g

1

is also a binomial p.d.f.:

g

1

(x + y) = B(z

1

;n

z

1

; p) = B(x + y;n

x

+ n

y

; p)

3.3 Multinomial distribution

This is the generalization of the binomial distribution to more than two outomes.

Let there be m di�erent outomes, with probabilities p

i

. Consider n experiments

and let k

i

denote the number of experiments having outome i. The p.d.f. is then

M(k

1

; k

2

; : : : ; k

m

; p

1

; p

2

; : : : ; p

m

; n) =

n!

k

1

!k

2

! : : : k

m

!

p

k

1

1

p

k

2

2

: : : p

k

m

m

(3.3)

subjet to the onditions

m

X

i=1

p

i

= 1 and

m

X

i=1

k

i

= n

We an write the multinomial p.d.f. in a more ondensed form:

M(k; p; n) = n!

m

Y

i=1

p

k

i

i

k

i

!

(3.4)

An example of appliation of this p.d.f. is a histogram of m bins with a prob-

ability of p

i

that the outome of an experiment will be in the i

th

bin. Then for n

experiments, the probability that the numbers of entries in the bins will be given

by the k

i

is given by the multinomial p.d.f.

To alulate expetation values we make use of the binomial p.d.f.: For a given

bin, either an outome is in it (probability p

i

) or not (probability 1� p

i

=

P

j 6=i

p

j

).

This is just the ase of the binomial p.d.f. In other words, the marginal p.d.f. of

the multinomial is the binomial. Hene,

�

i

= E [k

i

℄ = np

i

�

2

i

= V [k

i

℄ = np

i

(1� p

i

)
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Further, ov(k

i

; k

j

) = �np

i

p

j

i 6= j

The orrelation oeÆient is then

�

ij

=

ov(k

i

; k

j

)

�

i

�

j

= �

s

p

i

1� p

i

p

j

1� p

j

The orrelation omes about beause n is �xed:

P

k

i

= n. The k

i

are thus not

independent. If n is not �xed, i.e., n is a r.v., the bin ontents are not orrelated.

But then we do not have the multinomial p.d.f. but the Poisson p.d.f. for eah bin.

The harateristi funtion of the multinomial p.d.f. is

�(t

2

; t

3

; : : : ; t

m

) =

�

p

1

+ p

2

e

{t

2

+ p

3

e

{t

3

+ : : :+ p

m

e

{t

m

�

n

3.4 Poisson distribution

This p.d.f. applies to the situation where we detet events but do not know the

number of trials. An example is a radioative soure where we detet the deays

but do not detet the non-deays. The events are ounted as a funtion of some

parameter x, e.g., the time of a deay. The probability of an event in an interval

�x is assumed proportional to �x.

Now make �x so small that the probability of more than one event in the interval

�x is negligible. Consider n suh intervals. Let � be the probability of an event

in the total interval n�x. Assume � 6= �(x). Then the probability of an event in

�x is p = �=n. The probability of r events in the total interval, i.e., r of the n

subintervals ontain one event, is given by the binomial p.d.f.

P (r;�) = B

 

r;n;

�

n

!

=

n!

r!(n� r)!

 

�

n

!

r

 

1�

�

n

!

n�r

Now

n!

(n�r)!

= n(n� 1)(n� 2) : : : (n� r + 1) r terms

� n

r

sine n >> r

and

�

1�

�

n

�

n�r

�

�

1�

�

n

�

n

�!

n!1

e

��

Hene, we arrive at the expression for the Poisson p.d.f.:

P (r;�) =

e

��

�

r

r!

We an hek that P (r;�) is properly normalized:

1

X

r=0

P (r;�) = e

��

1

X

r=0

�

r

r!

= e

��

e

�

= 1
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The mean is

� = E [r℄ =

1

X

r=0

re

��

�

r

r!

= �e

��

1

X

r=1

�

r�1

(r � 1)!

= �e

��

1

X

r

0

=0

�

r

0

r

0

!

r

0

= r � 1

= �

1

X

r

0

=0

P (r

0

;�)

= �

Hene the Poisson p.d.f. is usually written

P (r;�) =

e

��

�

r

r!

(3.5)

It gives the probability of getting r events if the expeted number (mean) is �.

Further, you an easily show that the variane is equal to the mean:

�

2

r

= V [r℄ = � (3.6)

Other properties:



1

=

E

[

(r��)

3

℄

�

3

=

�

�

3=2

=

1

p

�

(skewness)



2

=

E

[

(r��)

4

℄

�

4

=

3�

2

+�

�

2

� 3 =

1

�

(kurtosis)

�(t) =

P

1

r=0

e

{tr

P (r;�) =

P

1

r=0

e

{tr

�

r

r!

e

��

= e

��

P

1

r=0

(�e

{t

)

r

r!

= e

��

exp (�e

{t

)

�(t) = exp [� (e

{t

� 1)℄ (harateristi funtion)

From the skewness we see that the p.d.f. beomes more symmetri as � inreases.

When alulating a series of Poisson probabilities, one an make use of the

reurrene formula P (r + 1) =

�

r+1

P (r).

Reprodutive property

The Poisson p.d.f. has a reprodutive property: For independent r.v.'s X and Y ,

both Poisson distributed, the joint p.d.f. is

f(x; y) =

�

x

x

�

y

y

e

��

x

e

��

y

x!y!

x; y = 0; 1; 2; 3; : : :

To �nd the p.d.f. of X + Y we hange variables

new variables Z

1

= X + Y Z

2

= Y

inverse transformation X = Z

1

� Z

2

Y = Z

2
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The joint p.d.f. of the new variables is then

g(z

1

; z

2

) =

�

z

1

�z

2

x

�

z

2

y

e

��

x

e

��

y

(z

1

� z

2

)!z

2

!

The marginal p.d.f. for z

1

is (using the fat that 0 � z

2

� z

1

)

g

1

(z

1

) =

z

1

X

z

2

=0

g(z

1

; z

2

) =

e

��

x

��

y

z

1

!

z

1

X

z

2

=0

z

1

!

(z

1

� z

2

)!z

2

!

�

z

1

�z

2

x

�

z

2

y

| {z }

=(�

x

+�

y

)

z

1

(binomial theorem)

=

(�

x

+ �

y

)

z

1

e

�(�

x

+�

y

)

z

1

!

whih has the form of a Poisson p.d.f. Q.E.D. We rewrite it

g(x+ y) =

(�

x

+ �

y

)

x+y

e

�(�

x

+�

y

)

(x+ y)!

The p.d.f. of the sum of two Poisson distributed random variables is also Poisson

with � equal to the sum of the �'s of the individual Poissons. This an also be

easily shown using the harateristi funtion (exerise 12).

Examples

The Poisson p.d.f. is appliable when

� the events are independent, and

� the event rate is onstant (= �).

We give a number of examples:

� Thus the number of raisins per unit volume in raisin bread should be Poisson

distributed. The baker has mixed the dough thoroughly so that the raisins do

not stik together (independent) and are evenly distributed (onstant event

rate).

� However, the number of zebras per unit area is not Poisson distributed (even

in those parts of the world where there are wild zebras), sine zebras live in

herds and are thus not independently distributed.

� A lassi example of Poisson statistis is the distribution of the number of

Prussian avalry soldiers kiked to death by horses.

25

In 10 di�erent avalry

orps over 20 years there were 122 soldiers kiked to death by horses. The

average is thus k = 122=200 = 0:610 deaths/orps/year.
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Assuming that the death rate is onstant over the 20 year period and inde-

pendent of orps and that the deaths are independent (not all aused by one

killer horse) then the deaths should be Poisson distributed: the probability of

k deaths in one partiular orps in one year is P (k;�). Sine the mean of P

is �, we take the experimental average as an `estimate' of �. The distribution

should then be P (k; 0:61) and we should expet 200� P (k; 0:61) ourrenes

of k deaths in one year in one orps. The data:

number of deaths in atual number of times Poisson

1 orps in 1 year 1 orps had k deaths predition

k in 1 year 200� P (k; 0:610)

0 109 108.67

1 65 66.29

2 22 20.22

3 3 4.11

4 1 0.63

5 0 0.08

200 200.00

The `experimental' distribution agrees very well with the Poisson p.d.f. The

reader an verify that the experimental variane, estimated by

1

N

P

(k

i

� k)

2

,

is 0.608, very lose to the mean (0.610) as expeted for a Poisson distribution.

� The number of entries in a given bin of a histogram when the (independent)

data are olleted over a �xed time interval, i.e., when the total number of

entries in the histogram is not �xed.

However, if the rate of the basi proess is not onstant, the distribution may not

be Poisson, e.g.,

� The radioative deay over a period of time signi�ant ompared with the

lifetime of the soure.

� The radioative deay of a small amount of material.

� The number of interations produed by a beam onsisting of a small number

of partiles inident on a thik target.

In the �rst two examples the event rate dereases with time, in the third with

position. In the last two there is the further restrition that the number of events is

signi�antly restrited, as it an not exeed the number of atoms or beam partiles,

while for the Poisson distribution the number extends to in�nity.

� The number of people who die eah year while operating a omputer is also
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not Poisson distributed. Although the probability of dying while operating

a omputer may be onstant, the number of people operating omputers in-

reases eah year. The event rate is thus not onstant.

The Poisson p.d.f. requires that the events be independent. Consider the ase

of a ounter with a dead time of 1 �se. This means that if a seond partile

passes through the ounter within 1 �se after one whih was reorded, the ounter

is inapable of reording the seond partile. Thus the detetion of a partile is

not independent of the detetion of other partiles. If the partile ux is low, the

hane of a seond partile within the dead time is so small that it an be negleted.

However, if the ux is high it annot be. No matter how high the ux, the ounter

annot ount more than 10

6

partiles per seond. In high uxes, the number of

partiles deteted in some time interval will not be Poisson distributed.

Radioative deays { Poisson approximation of a Binomial

Let us examine the ase of radioative deays more losely. Consider a sample of

n radioative atoms. In a time interval T some will deay, others will not. There

are thus two possibilities between whih the n atoms are divided. The appropriate

p.d.f. is therefore the binomial. The probability that r atoms deay in time T is

thus

f(r) = B(r;n; p) =

n!

r!(n� r)!

p

r

(1� p)

n�r

(3.7)

where p is the probability for one atom to deay in time T . Of ourse, p depends

on the length of the time interval. In the following time interval n will be less but

the value of p will remain the same. But if n is large and p small, then n >> r and

the hange in n an be negleted. Then

n!

(n� r)!

= n(n� 1)(n� 2) � � � (n� r + 1) r terms

� n

r

Also,

(1� p)

n�r

= 1� p(n� r) +

p

2

2!

(n� r)(n� r � 1) + : : :

� 1� p(n� r) +

p

2

2!

(n� r)

2

+ : : :

= e

�p(n�r)

� e

�pn

Substituting these approximations in (3.7) yields

f(r) = B(r;n; p) �

(np)

r

r!

e

�np

= P (r;np)

whih is a Poisson p.d.f. with � = np. This derivation is in fat only slightly di�erent

from our previous one; the approximations involved here are the same.
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3.5 Exponential and Gamma distributions

Radioative deays (again): As disussed in the previous setion, the probability

of r deays in time dt is given by the binomial p.d.f.:

P (r) =

n!

r!(n� r)!

p

r

(1� p)

n�r

where n is the number of undeayed atoms at the start of the interval. The proba-

bility that one atom deays is p, whih of ourse depends on the length of the time

interval, dt. Now r is just the urrent value of �

dn

dt

, i.e., the number of atoms

whih deay in dt equals the hange in the number of undeayed atoms. Therefore,

E

"

dn

dt

#

= �E [r℄ = �np (3.8)

Interhanging the order of the di�erentiation and the integration of the expetation

operator yields

dE [n℄

dt

= �np

Identifying the atual number with its expetation,

dn

dt

= �np

n = n

0

e

�pt

(3.9)

Thus the number of undeayed atoms falls exponentially. From this it follows that

the p.d.f. for the distribution of individual deay times (lifetimes) is exponential:

Exponential p.d.f.: Let f(t) be the p.d.f. for an individual atom to deay at

time t. The probability that it deays before time t is then F (t) =

R

t

0

f(t) dt. The

expeted number of deays in time t is

E [n

0

� n℄ = n

0

F (t) = n

0

Z

t

0

f(t) dt

Substituting for E [n℄ from equation 3.9 and di�erentiating results in the exponential

p.d.f.:

f(t; t

0

) =

1

t

0

e

�t=t

0

(3.10)

whih gives, e.g., the probability that an individual atom will deay in time t. Note

that this is a ontinuous p.d.f.

Properties:

� = E [t℄ = t

0



1

= 2

�

2

= V [t℄ = t

2

0



2

= 6

�(x) = [1� {xt

0

℄

�1
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Sine we ould start timing at any point, in partiular at the time of the �rst

event, f(t) is the p.d.f. for the time of the seond event. Thus the p.d.f. of the time

interval between deays is also exponential. This is the speial ase of k = 1 of the

following situation:

Let us �nd the distribution of the time t for k atoms to deay. The r.v. T =

P

k

1

t

i

is the sum of the time intervals between k suessive atoms. The t

i

are independent.

The .d.f. for t is then just the probability that more than k atoms deay in time t:

F (t) = P (T � t) = 1� P (T > t)

Sine the deays are Poisson distributed, the probability of m deays in the interval

t is

P (m) =

(�t)

m

e

��t

m!

where � = 1=t

0

, and t

0

is the mean lifetime of an atom. The probability of < k

deays is then

P (T > t) =

k�1

X

m=0

(�t)

m

e

��t

m!

=

Z

1

�t

z

k�1

e

�z

(k � 1)!

dz

(The replaement of the sum by the integral an be found in any good book of

integrals.) Substituting the gamma funtion, �(k) = (k � 1)!, the .d.f. beomes

F (t) = 1�

Z

�t

0

z

k�1

e

�z

�(k)

dz

Changing variables, y = z=�,

F (t) =

Z

t

0

�

k

y

k�1

e

��y

�(k)

dy

The p.d.f. is then

f(t; k; �) =

dF

dt

=

�

k

t

k�1

e

��t

�(k)

, t > 0; (3.11)

whih is alled the gamma distribution. Some properties of this p.d.f. are

� = E [t℄ = k=� 

1

= 2=

p

k

�

2

= V [t℄ = k=�

2



2

= 6=k

�(x) =

h

1�

{x

�

i

�k

Note that the exponential distribution, f(t; 1; �) = �e

��t

, is the speial ase of the

gamma distribution for k = 1. The exponential distribution is also a speial ase

of the Weibull distribution (setion 3.17).

Although in the above derivation k is an integer, the gamma distribution is, in

fat, more general: k does not have to be an integer. For � =

1

2

and k =

n

2

, the

gamma distribution redues to the �

2

(n) distribution (setion 3.12).
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3.6 Uniform distribution

The uniform distribution (also known as the retangular distribution),

f(x; a; b) =

1

b� a

, a � x � b and f(x) = 0 , elsewhere (3.12)

is the p.d.f. of a r.v. distributed uniformly between a and b.

Properties:

� = E [t℄ =

R

b

a

x

b�a

dx =

b+a

2

mean

�

2

= V [x℄ =

R

b

a

x

2

b�a

dx� �

2

=

(b�a)

2

12

variane



1

=

E

[

(x��)

3

℄

�

3

= 0 skewness



2

=

E

[

(x��)

4

℄

�

4

� 3 = �1:2 kurtosis

�(t) =

sinh

[

1

2

{t(b�a)

℄

{t(b�a)

+

1

2

{t(b + a) harateristi funtion

Round-o� errors in arithmeti alulations are uniformly distributed.

3.7 Gaussian or Normal distribution

This is probably the best known and most used p.d.f.

N(x;�; �

2

) =

1

p

2��

2

e

�(x��)

2

=2�

2

(3.13)

Some books use the notation N(x;�; �). The Gaussian distribution is symmetri

about �, and � is a measure of its width.

We name this distribution after Gau�, but in fat many people disovered it

and investigated its properties independently. The Frenh name it after Laplae,

who had noted

26

its main properties when Gau� was only six years old. The �rst

known referene to it, before Laplae was born, is by the Englishman A. de Moivre

in 1733,

27

who, however, did not realize its importane and made no use of it. Its

importane in probability and statistis (f. setion 8.5) awaited Gau�

28

(1809).

The origin of the name `normal' is unlear. It ertainly does not mean that

other distributions are abnormal.

Properties: (The �rst two justify the notation used for the two parameters of the

Gaussian.)

� = E [x℄ = � mean

�

2

= V [x℄ = �

2

variane



1

= 

2

= 0 skewness and kurtosis

E [(x� �)

n

℄ =

(

0; n odd

(n� 1)!!�

n

=

n!�

n

2

n=2

(

n

2

)!

; n even

entral moments

where a!! � 1 � 3 � 5 � � �a

�(t) = exp

h

{t��

1

2

t

2

�

2

i

harateristi funtion
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When using the Gaussian, it is usually onvenient to shift the origin, x! x

0

=

x� � to obtain

N(x

0

; 0; �

2

) =

1

p

2��

2

e

�x

02

=2�

2

(3.14)

We an also hange the sale, x ! z = (x � �)=�, de�ning a `standard' variable,

i.e., a variable with � = 0 and � = 1. Then we obtain the unit Gaussian (also

alled the unit Normal or standard Normal) p.d.f.:

N(z; 0; 1) =

1

p

2�

e

�z

2

=2

(3.15)

whih has the umulative distribution (.d.f.)

erf(z) �

1

p

2�

Z

z

�1

e

�x

2

=2

dx (3.16)

whih is alled the error funtion or normal probability integral. The .d.f. of

N(x;�; �

2

) is then erf

�

x��

�

�

.

Some authors use the following de�nition of the error funtion instead of equa-

tion 3.16:

�(z) �

2

p

�

Z

z

0

e

�t

2

dt (3.17)

It is this de�nition whih is used by the FORTRAN library funtion ERF(Z). Our

de�nition (3.16) is related to this de�nition by

erf(z) =

1

2

+

1

2

�

 

z

p

2

!

(3.18)

The Gaussian as limiting ase

The Gaussian distribution is so important beause it is a limiting ase of nearly all

ommonly used p.d.f.'s. This is a onsequene of the Central Limit Theorem, whih

we will disuss shortly (f. hapter 5). This relationship is shown for a number of

distributions in the following �gure:
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�
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(N)
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�
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�

�

�

�

�

�

�

�

�

�

�*
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dimension m

-

N !1

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

�

�

�

�

�

�

�

�
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�

�

�

�

�*

m = 2

Normal

N(x;�; �

2

)

�

N !1
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-
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p! 0

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

N !1

Poisson

P (k;�)

�

�

�

�

�

�

�

�

��

�

�

�

��

�!1

Student's t

f(t;N)

F -distribution

f(F ; �

1

; �

2

)

�

�

2

!1

N = �

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

�

1

= 1

N = �

2

H

H

H

H

H

H

H

H

H

H

H

H

H

HY

�

2

!1

�

1

!1

limit

exat

Reprodutive property

Sine the Poisson p.d.f. has the reprodutive property and sine the Gaussian p.d.f.

is a limit of the Poisson, it should not surprise us that the Gaussian is also re-

produtive: If X and Y are two independent r.v.'s distributed as N(x;�

x

; �

2

x

) and

N(y;�

y

; �

2

y

) then Z = X + Y is distributed as N(z;�

z

; �

2

z

) with �

z

= �

x

+ �

y

and

�

2

z

= �

2

x

+ �

2

y

. The proof is left as an exerise (exerise 19).

3.8 Log-Normal distribution

If an r.v., y, is normally distributed with mean � and variane �

2

, then the r.v.,

x = e

y

, is distributed as

f(x;�; �

2

) =

1

p

2��

2

1

x

exp

 

�

1

2

(log x� �)

2

�

2

!

(3.19)

As with the normal p.d.f., some authors onsider �, rather than �

2

, as the parameter

of the p.d.f.

Properties:

E [x℄ = exp

�

�+

1

2

�

2

�

mean

V [x℄ = exp (2�+ �

2

) [exp (�

2

)� 1℄ variane

Note that the parameters � and �

2

are not the mean and variane of the p.d.f.

of x, but rather the parameters of the orresponding normal p.d.f. of y = log x,

N(y;�; �

2

).
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3.9 Multivariate Gaussian or Normal distribution

Consider n random variables x

i

with expetations (means) �

i

, whih we write as

vetors:

x =

0

B

B

B

�

x

1

x

2

.

.

.

x

n

1

C

C

C

A

� =

0

B

B

B

B

�

�

1

�

2

.

.

.

�

n

1

C

C

C

C

A

The Gaussian is an exponential of a quadrati form in (x� �). In generalizing

the Gaussian to more than one dimension, we replae (x� �) by the most general

n-dimensional quadrati form whih is symmetri about the point �,

�

1

2

(x� �)

T

A (x� �)

We have written the �

1

2

expliitly in order that A =

1

�

2

in the one-dimensional

ase. Sine we have onstruted this to be symmetri about �, we must have that

E [x℄ = �. Hene, E

h

x� �

i

= 0, and

Z

+1

�1

(x� �) exp

�

�

1

2

(x� �)

T

A (x� �)

�

dx = 0

By di�erentiating this with respet to � we get (1 is the unit matrix)

Z

+1

�1

h

1� (x� �)(x� �)

T

A

i

exp

�

�

1

2

(x� �)

T

A (x� �)

�

dx = 0

Therefore,

E

h

1� (x� �)(x� �)

T

A

i

= 0

E

h

(x� �)(x� �)

T

i

A = 1

This expetation is just the de�nition of the ovariane matrix, V (equation 2.36).

Hene V A = 1 or

A = V

�1

If the orrelations between all the x

i

, are zero, i.e., if all �

ij

; i 6= j, are zero, then

V is diagonal with V

ii

= �

2

i

. Then A is also diagonal with A

ii

=

1

�

2

i

and

exp

�

�

1

2

(x� �)

T

A(x� �)

�

= exp

"

�

1

2

 

(x

1

� �

1

)

2

�

2

1

+

(x

2

� �

2

)

2

�

2

2

+ : : :

!#

= exp

"

�

(x

1

� �

1

)

2

2�

2

1

#

exp

"

�

(x

2

� �

2

)

2

2�

2

2

#

� � �

The p.d.f. is thus just the produt of n 1-dimensional Gaussians. Thus all �

ij

= 0

implies that x

i

and x

j

are independent. As we have seen (set. 2.2.4), this is not

true of all p.d.f.'s.
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It remains to determine the normalization. The result is

N

�

x;�; V

�

=

1

(2�)

n=2

jV j

1=2

exp

�

�

1

2

(x� �)

T

V

�1

(x� �)

�

(3.20)

where jV j is the determinant of V . This assumes that V is non-singular, i.e.,

jV j 6= 0. If V is singular, that means that two of the x

i

are ompletely orrelated,

i.e., j�

ij

j = 1. In that ase we an replae x

j

by a funtion of x

i

thus reduing the

dimension by one.

Comparison of equations 3.13 and 3.20 shows that an n-dimensional Gaussian

may be obtained from a 1-dimensional Gaussian by the following substitutions:

x ! x � ! �

�

2

! V �

�2

! V

�1

� ! jV j

1=2

1

p

2�

!

1

(2�)

n=2

These same substitutions are appliable for many (not all) ases of generalization

from 1 to n dimensions, as we might expet sine the Gaussian p.d.f. is so often a

limiting ase.

Multivariate Normal - summary:

p.d.f. N

�

x;�; V

�

=

1

(2�)

n=2

j

V

j

1=2

exp

h

�

1

2

(x� �)

T

V

�1

(x� �)

i

(3.20)

mean E [x℄ = �

ovariane ov(x) = V

V [x

i

℄ = V

ii

ov(x

i

; x

j

) = V

ij

harateristi

funtion �(t) = exp

h

{t��

1

2

t

T

V t

i

Other interesting properties:

� Contours of onstant probability density are given by

(x� �)

T

V

�1

(x� �) = C , a onstant

� Any setion through the distribution, e.g., at x

i

= onst., gives again a mul-

tivariate normal p.d.f. It has dimension n � 1. For the ase x

i

= onst., the

ovariane matrix V

n�1

is obtained by removing the i

th

row and olumn from

V

�1

and inverting the resulting submatrix.

� Any projetion onto a lower spae gives a marginal p.d.f. whih is a multi-

variate normal p.d.f. with ovariane matrix obtained by deleting appropriate

rows and olumns of V . In partiular, the marginal distribution of x

i

is

f

i

(x

i

) = N(x

i

;�

i

; �

2

i

)
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� A set of variables, eah of whih is a linear funtion of a set of normally

distributed variables, has itself a multivariate normal p.d.f.

We will now examine a speial ase of the multivariate normal p.d.f., that for two

dimensions.

3.10 Binormal or Bivariate Normal p.d.f.

This is the multivariate normal p.d.f. for 2 dimensions. Using (x; y) instead of

(x

1

; x

2

), we have

V =

�

�

2

x

��

x

�

y

��

x

�

y

�

2

y

�

V

�1

=

1

�

2

x

�

2

y

(1� �

2

)

�

�

2

y

���

x

�

y

���

x

�

y

�

2

x

�

f(x; y) =

1

2��

x

�

y

p

1� �

2

e

�

1

2

G

where G =

1

(1� �

2

)

2

4

�

x� �

x

�

x

�

2

� 2�

�

x� �

x

�

x

�

 

y � �

y

�

y

!

+

 

y � �

y

�

y

!

2

3

5

Contours of onstant probability density are given by setting the exponent equal to

a onstant. These are ellipses, alled ovariane ellipses.

-

x

6

y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

�

�

x

� �

x

�

x

�

x

+ �

x

�

y

� �

y

�

y

�

y

+ �

y

For G = 1, the extreme values of the

ellipse are at �

x

� �

x

and �

y

� �

y

. The

larger the orrelation, the thinner is the

ellipse, approahing 0 as j�j ! 1. (Of

ourse in the limit of � = �1, G is in�nite

and we really have just 1 dimension.)

The orientation of the major axis of

the ellipse is given by

tan 2� =

2��

x

�

y

�

2

x

� �

2

y

Note that � = �45

Æ

only if �

2

x

= �

2

y

� = 0 if � = 0

In alulating � by taking the artangent of the above equation, one must be

areful of quadrants. If the artangent funtion is de�ned to lie between �

�

2

and

�

2

, then � is the angle of the major axis if �

x

> �

y

; otherwise it is the angle

of the minor axis. It is therefore more onvenient to use an artangent funtion

de�ned between �� and � suh as the ATAN2(y,x) of some languages: 2� =

ATAN2(2��

x

�

y

; �

2

x

� �

2

y

).
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In the one-dimensional Gaussian the probability that x is within k standard

deviations of � is given by

P (�� k� � x � �+ k�) =

Z

�+k�

��k�

N(x;�; �

2

) dx (3.21)

whih is an integral over the interval of x where G � k. In two dimensions this

generalizes to the probability that (x; y) is within the ellipse orresponding to k

standard deviations, whih is given

�

by

P (G � k) =

1

2��

x

�

y

p

1� �

2

Z

G � k

Z

e

�

1

2

G

dx dy (3.22)

Some values:

2-dimensional 1-dimensional 2� 1-dimensional

P (G � k) k P (G � k) = P (�

x

� k� � x � �

x

+ k�)

P (�� k� � x � �+ k�) P (�

y

� k� � y � �

y

+ k�)

0.3934693 1 0.6826895 0.466065

0.6321206 2 0.9544997 0.911070

0.7768698 3 0.9973002 0.994608

0.8646647 4 0.9999367 0.999873

0.9179150 5 0.9999994 0.999999

0.9502129 6

Note that the 2-dimensional probability for a given k is muh less than the or-

responding 1-dimensional probability. This is easily understood: the produt of

the two 1-dimensional probabilities is the probability that (x; y) is in the retangle

de�ned by �

x

� k�

x

� x � �

x

+ k�

x

and �

y

� k�

y

� y � �

y

+ k�

y

. The ellipse is

entirely within this retangle and hene the probability of being within the ellipse

is less than the probability of being within the retangle.

-

x
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�
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�
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�
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�

�

u

A

A

A

A

A
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A

A

A

v

�

v

�

u

A

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

Sine the ovariane matrix is symmet-

ri, there exists a unitary transformation

whih diagonalizes it. In two dimensions

this is the rotation matrix U ,

U =

�

os � � sin �

sin � os �

�

This matrix transforms (x; y) to (u; v):

�

u

v

�

= U

�

x

y

�

�

We will see in set. 3.12 that G is a so-alled �

2

r.v. P (G � k) an therefore also be found from

the .d.f. of the �

2

distribution, tables of whih, as well as omputer routines, are readily available.
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The new ovariane matrix is U V U

T

. Sine

the transformation is unitary, areas are preserved (Jaobian jJ j = 1). Hene,

P [(x; y) inside ellipse℄ = P [(u; v) inside ellipse℄

The standard deviations of u; v are then found from the transformed ovariane

matrix. After some algebra we �nd

�

2

u

=

�

2

x

os

2

� � �

2

y

sin

2

�

os

2

� � sin

2

�

(3.23a)

�

2

v

=

�

2

y

os

2

� � �

2

x

sin

2

�

os

2

� � sin

2

�

(3.23b)

or

�

2

u

=

�

2

x

�

2

y

(1� �

2

)

�

2

y

os

2

� � ��

x

�

y

sin 2� + �

2

x

sin

2

�

(3.24a)

�

2

v

=

�

2

x

�

2

y

(1� �

2

)

�

2

x

os

2

� + ��

x

�

y

sin 2� + �

2

y

sin

2

�

(3.24b)

Or starting from the unorrelated (diagonalized) variables (u,v), a rotation by � to

the new variables x; y will give

�

2

x

= �

2

u

os

2

� + �

2

v

sin

2

� (3.25a)

�

2

y

= �

2

v

os

2

� + �

2

u

sin

2

� (3.25b)

� = sin � os �

�

2

u

� �

2

v

�

x

�

y

(3.25)

Note that if � is fairly large, i.e., the ellipse is thin, just knowing �

x

and �

y

would give a very wrong impression of how lose a point (x; y) is to (�

x

; �

y

).

The properties stated at the end of the previous setion, regarding the ondi-

tional and marginal distributions of the multivariate normal p.d.f. an be easily

veri�ed for the bivariate normal. In partiular, the marginal p.d.f. is

f

x

(x) = N(x;�

x

; �

2

x

) (3.26)

and the onditional p.d.f. is

f(y jx) =

f(y; x)

f

x

(x)

=

1

q

2��

2

y

p

1� �

2

exp

(

�

1

2�

2

y

(1� �

2

)

�

y �

�

�

y

+ �

�

y

�

x

(x� �

x

)

��

2

)

= N

�

y;�

y

+ �

�

y

�

x

(x� �

x

) ; �

2

y

h

1� �

2

i

�

(3.27)
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3.11 Cauhy (Breit-Wigner or Lorentzian) p.d.f.

The Cauhy p.d.f. is

C(x;�; �) =

1

��

1

1 + (x� �)

2

=�

2

(3.28)

or in its `standard' form with � = 0 and � = 1,

C(x; 0; 1) =

1

�

1

1 + x

2

(3.29)

It looks something like a Gaussian, but with bigger tails.

-

6

�

�

�9

N

�

�

�=

C

x

f(x)

It is usually enountered in physis in a

slightly di�erent form as the Breit-Wigner

(or Lorentz) funtion whih gives the dis-

tribution of partiles of mass m due to a

resonane of mass M and width �:

f(m;M;�) =

1

2�

�

(m�M)

2

+ (

�

2

)

2

M is the mode and � the full width at half

maximum (FWHM) of the distribution.

The Cauhy p.d.f. is a pathologial distribution. Let us try to alulate the

mean:

E [x℄ =

1

��

Z

+1

�1

x

1 +

(x��)

2

�

2

dx =

1

��

Z

+1

�1

(x� �) + �

1 +

(x��)

2

�

2

dx

=

�

�

Z

+1

�1

z

1 + z

2

dz +

�

�

Z

+1

�1

1

1 + z

2

dz , z =

x��

�

=

�

2�

ln(1 + z

2

)

�

+1

�1

+

�

�

� = +1�1+ �

whih is indeterminate. The mean does not exist! However, noting that the p.d.f.

is symmetri about �, we an de�ne the mean as

lim

L!1

Z

�+L

��L

xC(x;�; �) dx = �

All higher moments are also divergent, and no suh trik will allow us to de�ne

them. In atual physial problems the distribution is trunated, e.g., by energy

onservation, and the resulting distribution is well-behaved.

The harateristi funtion of the Cauhy p.d.f. is

�(t) = e

��jtj+{�t

The reprodutive property of the Cauhy p.d.f. is rather unusual: x =

1

n

P

x

i

is

distributed aording to the idential Cauhy p.d.f. as are the x

i

. (The proof is left

as an exerise.)
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3.12 The �

2

p.d.f.

Let x be a vetor of n independent r.v.'s, x

i

, eah distributed normally with mean

�

i

and variane �

2

i

. Then the joint p.d.f. is

f(x;�; �) =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

i

�

i

�

2

#

= exp

"

�

1

2

n

X

i=1

�

x

i

� �

i

�

i

�

2

#

n

Y

i=1

1

p

2��

i

The variable �

2

is de�ned:

�

2

(n) =

n

X

i=1

�

x

i

� �

i

�

i

�

2

(3.30)

Being a funtion of r.v.'s, �

2

is itself a r.v. The �

2

has a parameter n, whih is

alled the number of degrees of freedom (d.o.f.), sine eah of the r.v.'s, x

i

, is free

to vary independently of the others. Note that �

2

is regarded as the variable, not

the square of a variable; one does not usually refer to � =

p

�

2

.

�

2

with 1 d.o.f.

For example, for n = 1, letting z = (x� �)=�, the p.d.f. for z is N(z; 0; 1) and the

probability that z � Z � z + dz is

f(z) dz =

1

p

2�

e

�

1

2

z

2

dz

Let Q = Z

2

. (We use Q here instead of �

2

to emphasize that this is the variable.)

This is not a one-to-one transformation; both +Z and �Z go into +Q.

-

6

0 z

f(z)

�jZj +jZj

-

-

6

q

f(q)f(q)

Q

The probability that Q is between q and q + dq is the sum of the probability that

Z is between z and z + dz around z =

p

q and the probability that Z is between z

and z � dz around z = �

p

q. Therefore, we must add the p.d.f. obtained from the

+Z ! q transformation to that obtained from the �Z ! q transformation. The
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Jaobians for these two transformations are (f. setion 2.2.6)

J

�

=

d(�z)

dq

= �

1

2

p

q

f(q) dq =

1

p

2�

e

�

1

2

q

(jJ

+

j+ jJ

�

j) dq =

1

p

2�

e

�

1

2

q

 

dq

2

p

q

+

dq

2

p

q

!

=

1

p

2�q

e

�

1

2

q

dq

Now Q was just �

2

. Hene the p.d.f. for �

2

with 1 d.o.f. is

�

2

(1) = f(�

2

; 1) =

1

p

2��

2

e

�

1

2

�

2

(3.31)

It may be onfusing to use the same symbol, �

2

, for both the r.v. and its p.d.f., but

that's life!

�

2

with 3 degrees of freedom

For n = 3, using standardized normal variables z

i

=

�

x

i

��

i

�

i

�

, let

R

2

= �

2

= z

2

1

+ z

2

2

+ z

2

3

The joint probability is then

g(z

1

; z

2

; z

3

) dz

1

dz

2

dz

3

=

1

(2�)

3=2

e

�R

2

=2

dz

1

dz

2

dz

3

Think ofR as the radius of a sphere in 3-dimensional spae. Then, learly, dz

1

dz

2

dz

3

=

R

2

dR d os � d�. To get the marginal p.d.f. for R, we integrate over os � and �,

whih gives a fator 4�. Hene, the probability that R is between R and R+ dR is

f(R) dR =

2

p

2�

R

2

e

�R

2

=2

dR

Now �

2

= R

2

. Hene, d�

2

= 2R dR and dR = d�

2

=2

p

�

2

. Hene,

f(�

2

; 3) d�

2

=

2

p

2�

�

2

e

��

2

=2

d�

2

2

p

�

2

�

2

(3) = f(�

2

; 3) =

(�

2

)

1=2

p

2�

e

��

2

=2

(3.32)

�

2

with n degrees of freedom

For n degrees of freedom, the p.d.f. of �

2

is

�

2

(n) = f(�

2

;n) =

(�

2

)

n

2

�1

e

��

2

=2

�(

n

2

) 2

n=2

(3.33)
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Properties:

mean � = E [�

2

(n)℄ = n

variane V [�

2

(n)℄ = �

2

�

2

(n)

= 2n

mode (max.) at �

2

(n) =

�

n� 2 n � 2

0 n � 2

skewness 

1

= 2

q

2

n

kurtosis 

2

= 12=n

harateristi funtion �(t) = (1� 2{t)

�n=2

Reprodutive property: Let �

2

i

be a set of variables whih are distributed as �

2

(n

i

).

Then

P

�

2

i

is distributed as �

2

(

P

n

i

). This is obvious from the de�nition of �

2

:

The variables �

2

1

and �

2

2

are, by de�nition,

�

2

1

(n

1

) =

n

1

X

i=1

z

2

i

and �

2

2

(n

2

) =

n

1

+n

2

X

i=n

1

+1

z

2

i

Hene, their sum is

�

2

n

1

+n

2

= �

2

n

1

+ �

2

n

2

=

n

1

+n

2

X

i=1

z

2

i

whih from the de�nition is a �

2

of (n

1

+ n

2

) degrees of freedom.

Sine the expetation of a �

2

(n) is n, the expetation of �

2

(n)=n is 1. The

quantity �

2

(n)=n is alled a \redued �

2

".

Asymptotially (for large n), the �

2

p.d.f. approahes the normal distribution

with mean n and variane 2n:

f(�

2

;n) = �

2

(n) �! N(�

2

;n; 2n) (3.34)

A faster onvergene ours for the variable

p

2�

2

:

f(

q

2�

2

;n) = �

2

(�

2

;n)

q

2�

2

�! N(

q

2�

2

;

p

2n� 1; 1) (3.35)

This approximation is good for n greater than about 30.

General de�nition of �

2

If the n Gaussian variables are not independent, we an hange variables suh that

the ovariane matrix is diagonalized. Sine this is a unitary transformation, it

does not hange the ovariane ellipse G = k. In the diagonal ase G � �

2

. Hene,

�

2

= G also in the orrelated ase. Thus we an take

�

2

= (x� �)

T

V

�1

(x� �) (3.36)

as the general de�nition of the random variable �

2

.



3.13. STUDENT'S T DISTRIBUTION 53

3.13 Student's t distribution

Consider an r.v., x, normally distributed with mean � and standard deviation �.

Then z =

x��

�

is normally distributed with mean 0 and standard deviation 1. In

the normal p.d.f., the mean determines the origin and the standard deviation the

sale. By transforming to the standard variable z, both dependenes are removed.

In analyzing data we may not know the � of the p.d.f. We may then remove the

sale dependene by using the sample standard deviation, �̂, instead of the parent

standard deviation. We may also not know the parent mean and will use the sample

mean, �x, instead. For N independent x

i

(f. equations 8.3, 8.7),

�̂

2

=

1

N

N

X

i=1

(x

i

� �)

2

; using � (3.37a)

�̂

2

=

1

N � 1

N

X

i=1

(x

i

� �x)

2

; using �x =

1

N

P

x

i

(3.37b)

In either ase, n�̂

2

=�

2

is a �

2

(n), i.e., is distributed aording to the �

2

distribution

for n = N � k degrees of freedom, where k is 0 if � is used and is 1 if �x is used,

sine in the latter ase only N � 1 of the terms in the sum are independent. This

is disussed in more detail in setion 8.2.1.

We now seek the p.d.f. for the r.v.

t =

x� �

�̂

=

(x� �)=�

q

(n�̂

2

=�

2

)=n

=

z

q

�

2

=n

(3.38)

Now z is a standard normal r.v. and �

2

is a �

2

(n). A Student's t r.v. is thus the

ratio of a standard normal r.v. to the square root of a redued �

2

r.v. The joint

p.d.f. for z and �

2

is then (equation 3.33)

f(z; �

2

;n) dz d�

2

= N(z; 0; 1)�

2

(�

2

;n) dz d�

2

=

e

�z

2

=2

p

2�

(�

2

)

n

2

�1

e

��

2

=2

�(

n

2

) 2

n=2

dz d�

2

where we have assumed that z and �

2

are independent. This is ertainly so if the

x has not been used in determining �̂, and asymptotially so if n is large. Making

a hange of variable, we transform this distribution to one for t and �

2

:

f(t; �

2

;n) dt d�

2

=

1

p

2�n�(

n

2

) 2

n=2

(�

2

)

n�1

2

e

�

�

2

2

(1+

t

2

n

)

dt d�

2

Integrating this over all �

2

, we arrive �nally at the p.d.f. for t, alled Student's

t distribution,

t(n) = f(t;n) =

1

p

�n

�(

n+1

2

)

�(

n

2

)

1

(1 +

t

2

n

)

(n+1)=2

(3.39)
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Properties:

mean � = E [t℄ = 0 ; n > 1

variane V [t℄ = �

2

t

=

n

n�2

; n > 2

skewness 

1

= 0

kurtosis 

2

=

6

n�4

; n > 4

moments �

r

=

8

>

>

<

>

>

:

n

2r

�

(

r+1

2

)

�

(

n�r

2

)

�(

1

2

)�(

n

2

)

; r even and r < n

0 ; r odd and r � n

does not exist ; otherwise.

t(t;n)

t

n =1

-

n = 5

-

n = 2

-

n = 10

�

n = 3

�

n = 1

�

0

0.05
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0.2

0.25

0.3

0.35

0.4
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Student's t distribution is thus

the p.d.f. of a r.v., t, whih is the

ratio of a standard normal vari-

able and the square root of a nor-

malized �

2

r.v., i.e.,

q

�

2

(n)=n,

of n degrees of freedom. It was

disovered

29

by W. S. Gossett, a

hemist working for the Guinness

brewery in Dublin, who in his

spare time wrote artiles on statis-

tis under the pseudonym

�

\Stu-

dent". The number of degrees

of freedom, n, is not required to

be an integer. The t-distribution

with non-integral n > 0 is useful

in ertain appliations, whih is,

however, beyond the sope of this

ourse.

Student's t distribution is

symmetri about t = 0. It approahes the standard normal distribution as the

number of degrees of freedom, n, approahes in�nity. For n = 1 it is idential to

the standard Cauhy p.d.f. As n ! 1, it approahes the standard normal distri-

bution. It thus has larger tails and a larger variane than the Gaussian, but not so

large as the Cauhy distribution.

We have onstruted t from a single observation, x. In a similar way, a r.v. t an

be onstruted for the mean of a number of r.v.'s eah distributed normally with

mean � and standard deviation �. We know from the reprodutive property of the

normal p.d.f. that �x is also normally distributed with mean � but with a standard

deviation of �=

p

N . Thus z =

�x��

�

p

N is a standard normal r.v. and hene

t =

�x� �

�̂

p

N (3.40)

�

In order to prevent ompetitors from learning about proedures at Guinness, it was the poliy

of Guinness that artiles by its employees be published under a pseudonym.
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is distributed as Student's t with n degrees of freedom. It an be shown

3

that �x

and �̂

2

are independent.

3.14 The F -distribution

Consider two random variables, �

2

1

and �

2

2

, distributed as �

2

with �

1

and �

2

degrees

of freedom, respetively. We de�ne a new r.v., F , as the ratio of the two redued

�

2

:

F =

�

2

1

=�

1

�

2

2

=�

2

(3.41)

The p.d.f. of F may be derived by a method similar to that used for Student's t

distribution: Start with the joint p.d.f. of the independent variables �

2

1

, �

2

2

; make

a hange of variables to F , v = �

2

2

; and integrate out the v dependene. The result

is

2

f(F ; �

1

; �

2

) =

q

�

�

1

1

�

�

2

2

�(

�

1

+�

2

2

)

�(

�

1

2

)�(

�

2

2

)

F

�

1

2

�1

(�

2

+ �

1

F )

�

1

+�

2

2

(3.42)

This distribution is known by many names: Fisher-Snedeor distribution, Fisher

distribution, Snedeor distribution, variane ratio distribution, and F -distribution.

We ould, of ourse, have written equation 3.41 with the ratio the other way

around. By onvention, one usually puts the larger value on top so that F � 1.

Properties:

mean � = E [F ℄ =

�

2

�

2

��

1

; �

2

> 2

variane V [F ℄ =

2�

2

2

(�

1

+�

2

�2)

�

1

(�

2

�2)

2

(�

2

�4)

; �

2

> 4

The distribution is positively skew and tends to mormality as �

1

; �

2

�! 1, but

only slowly (�

1

; �

2

> 50).

The p.d.f. for Z =

1

2

lnF has a muh faster approah to a Gaussian with a mean

of

1

2

(

1

�

2

�

1

�

1

) and variane

1

2

(

1

�

2

+

1

�

1

).

The F -distribution is useful in various hypothesis tests (f. setions 10.4.3 and

10.7.4). However, for the tests it may be more onvenient to use

U =

�

1

F

�

2

+ �

1

F

(3.43)

whih is a monotoni funtion of F and has a beta distribution (f. setion 3.15).

3.15 Beta distribution

This is a basi distribution for random variables bounded on both sides. Without

loss of generality the bounds are here taken as 0 � x � 1. It has two parameters

(not neessarily integers): n;m > 0. The p.d.f. is

f(x;n;m) =

�(n+m)

�(n)�(m)

x

m�1

(1� x)

n�1

; 0 � x � 1 (3.44)
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= 0 ; otherwise

Properties:

mean � = E [x℄ =

m

m+n

variane V [x℄ =

mn

(m+n)

2

(m+n+1)

For m = n = 1 this beomes the uniform p.d.f.

Do not onfuse the beta distribution with the beta funtion,

�(y; z) =

�(y)�(z)

�(y + z)

=

Z

1

0

x

y�1

(1� x)

z�1

dx ; real y; z > 0

to whih it is related, and from whih the normalization of the p.d.f. is easily derived.

3.16 Double exponential (Laplae) distribution

This distribution is symmetri about the mean. Its tails fall o� less sharply than

the Gaussian, but faster than the Cauhy distribution. Note that its �rst derivative

is disontinuous at x = �.

f(x;�; �) =

�

2

exp (��jx� �j) (3.45)

Properties:

mean � = E [x℄ = �

variane V [x℄ = 2=�

2

skewness 

1

= 0

kurtosis 

2

= 3

harateristi funtion �(t) = {t�+

�

2

�

2

+t

2

It an also be written

f(x;�; �

2

) =

1

p

2�

2

exp

 

�

p

2

jx� �j

�

!

(3.46)

3.17 Weibull distribution

Originally invented to desribe failure rates in ageing lightbulbs, it desribes a wide

variety of omplex phenomena.

f(t;�; �) = ��(�t)

��1

e

�(�t)

�

real t � 0 and �; � > 0 (3.47)

Properties:

mean � = E [x℄ =

1

�

�

�

1

�

+ 1

�

variane V [x℄ =

1

�

2

�

�

�

2

�

+ 1

�

�

h

�

�

1

�

+ 1

�i

2

�

The exponential distribution (equation 3.10) is a speial ase (� = 1), when the

probability of failure at time t is independent of t.



Chapter 4

Real p.d.f.'s

There are, of ourse, many other distributions whih we have not disussed in the

previous setion. We may introdue a few more later when needed. Now let us turn

to some ompliatons whih we will enounter in trying to use these distributions.

4.1 Compliations in real life

So far we have treated probability and handled some ideal p.d.f.'s. Given the

p.d.f. for the physial proess we want to study, we an, in priniple, alulate the

probability of a given experimental result. There are, however, some ompliations:

� In real life the p.d.f. is quite likely not one of the ideal distributions we have

studied. It may be diÆult to alulate. Or it may not even be known.

� The range of variables is never the �1 to +1 we have so blithely assumed.

Either it is limited by physis, e.g., onservation of energy, or by our appara-

tus, e.g., a given radio telesope only works in a ertain range of frequenies,

in whih ase we must use the onditional p.d.f., f(xjx

min

� x � x

max

).

While trunation is usually a ompliation, making the p.d.f. more diÆult

to alulate (e.g., we must renormalize, whih frequently an only be done

by numerial integration), oasionally it is welome, e.g., the Cauhy p.d.f.

beomes well-behaved if trunated at �� a:

C(x;� = 0; � = 1) =

1

�

1

1 + x

2

�!

C(x; 0; 1)

R

+a

�a

C(x; 0; 1) dx

=

1

2 artan a

�

1

1 + x

2

whih has a �nite variane (reall that the Cauhy p.d.f. did not):

V [x℄ =

1

artan a

Z

+a

�a

x

2

1 + x

2

dx =

a

artan a

� 1
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� The physial p.d.f. may be modi�ed by the response of the detetor. This

response must then be onvoluted with the physial p.d.f. to obtain the p.d.f.

whih is atually sampled.

\Now we see in a mirror dimly ...

Now I know in part ..."

|1 Corinthians 13:12

4.2 Convolution

Experimentally we often measure the sum of two (or more) r.v.'s. For example,

in the deay n ! pe

�

�

e

we want to measure the energy of the eletron, whih is

distributed aording to a p.d.f. given by the theory of weak interations, f

1

(E

1

).

But we measure this energy with some apparatus, whih has a ertain resolution.

Thus we do not reord the atual energy E

1

of the eletron but E

1

+ Æ, where Æ

is distributed aording to the resolution funtion (p.d.f.) of the apparatus, f

2

(Æ).

What is then the p.d.f., f(E), of the quantity we reord, i.e., E = E

1

+ Æ? This

f(E) is alled the (Fourier) onvolution of f

1

and f

2

.

Assume E

1

and Æ to be independent. This may seem reasonable sine E

1

is from

the physial proess (n deay) and Æ is something extra added by the apparatus,

whih has nothing at all to do with the deay itself. Then the joint p.d.f. is

f

12

(E

1

; Æ) = f

1

(E

1

) f

2

(Æ)

The .d.f. of E = E

1

+ Æ is then

F (E) =

Z

E

1

+ Æ � E

Z

f

1

(E

1

)f

2

(Æ) dE

1

dÆ

=

Z

+1

�1

dE

1

f

1

(E

1

)

Z

E�E

1

�1

dÆ f

2

(Æ)

=

Z

+1

�1

dE

1

f

1

(E

1

)F

2

(E � E

1

)

or =

Z

+1

�1

dÆ f

2

(Æ)F

1

(E � Æ)

The p.d.f. an then be alulated from the .d.f.:

f(E) =

dF (E)

dE

=

Z

+1

�1

f

1

(E

1

)f

2

(E � E

1

) dE

1

or =

Z

+1

�1

f

2

(Æ)f

1

(E � Æ) dÆ
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The harateristi funtion is partiularly useful in evaluating onvolutions:

�

f

(t) =

Z

e

{tE

f(E) dE

=

Z

e

{tE

Z

f

1

(E

1

)f

2

(E � E

1

) dE

1

dE

=

Z Z

e

{tE

1

f

1

(E

1

)e

{t(E�E

1

)

f

2

(E � E

1

) dE

1

dE

sine E = E

1

+ (E � E

1

)

= �

f

1

(t) �

f

2

(t) (4.1)

Thus, assuming that the r.v.'s are independent, the harateristi funtion of a

onvolution is just the produt of the individual harateristi funtions. (This

probably looks rather familiar. We have already seen it in onnetion with the

reprodutive property of distributions; in that ase f

1

and f

2

were the same p.d.f.)

Reall that the harateristi funtion is a Fourier transform. Hene, a onvolution,

E = E

1

+ Æ, where Æ is independent of E, is known as a Fourier onvolution.

Another type of onvolution, alled the Mellin onvolution, involves the produt

of two random variables, e.g., E = E

1

R

1

. As we shall see, the Fourier onvolution

is easily evaluated using the harateristi funtion, whih is essentially a Fourier

transform of the p.d.f. Similarly, the Mellin onvolution an be solved using the

Mellin transformation, but we shall not over that here.

In the above example we have assumed a detetor response independent of what

is being measured. In pratie, the distortion of the input signal usually depends

on the signal itself. This an our in two ways:

1. Detetion eÆieny. The hane of deteting an event with our apparatus

may depend on the properties of the event itself. For example, we want to

measure the frequeny distribution of eletromagneti radiation inident on

the earth. But some of this radiation is absorbed by the atmosphere. Let

f(x) be the p.d.f. for the frequeny, x, of inident radiation and let e(x) be

the probability that we will detet a photon of frequeny x inident on the

earth. Both f and e may depend on other parameters, y, e.g., the diretion

in spae in whih we look. The p.d.f. of the frequeny of the photons whih

we detet is

g(x) =

R

f(x; y)e(x; y) dy

R R

f(x; y)e(x; y) dxdy

2. Resolution. To ontinue with the above example, suppose the detetor reords

frequeny x

0

when a photon of frequeny x is inident. Let r(x

0

; x) be the p.d.f.

that this will our. Then

g(x

0

) =

Z

r(x

0

; x)f(x) dx

In the ase that r is just a funtion of x � x

0

we get the simple onvolution

handled above. Note that resolution e�ets an lead to values of x

0

whih lie
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outside the physial range of x, e.g., an energy of a partile whih is larger

than the maximum energy allowed by energy onservation. The Central Limit

Theorem (hapter 5) will tell us that the detetor response, or resolution

funtion, is usually normally distributed for a given input to the detetor:

r(x

0

; x) =

1

p

2��

exp

"

�

1

2

(x

0

� x)

2

�

2

#

= N(x

0

; x; �

2

) if � is onstant

However in pratie � often depends on x, in whih ase r(x

0

; x) may still have

the above form, but is not really a Gaussian.

If the resolution funtion is Gaussian and if the physial p.d.f., f(x), is also

Gaussian, f(x) = N(x;�; �

2

), then you an show, by using the reprodutive

property of the Gaussian (exerise 19) or by evaluating the onvolution using

the harateristi funtion (equation 4.1), that the p.d.f. for x

0

is also normal:

g(x

0

) =

Z

+1

�1

f(x) r(x

0

; x) dx = N

�

x

0

;�; �

2

+ �

2

�



Chapter 5

Central Limit Theorem

5.1 The Theorem

This is a very important theorem; you ould all it the `entral' theorem of statistis.

It states:

Given n independent variables, x

i

, distributed aording to p.d.f.'s, f

i

, having

mean �

i

and variane V

i

= �

2

i

, then the p.d.f. for the sum of the x

i

, S �

P

x

i

, has

expetation (mean) E [S℄ =

P

�

i

and variane V [S℄ =

P

V

i

=

P

�

2

i

and approahes

the normal p.d.f. N (S;

P

�

i

;

P

�

2

i

) as n!1:

lim

n!1

f(S)! N

 

S;

n

X

i=1

�

i

;

n

X

i=1

�

2

i

!

; S =

n

X

i=1

x

i

(5.1)

It must be emphasized that the mean and variane must exist.

It is left as an exerise to show that

�

S

=

X

�

i

(5.2)

and �

2

S

= V [S℄ =

X

V

i

=

X

�

2

i

(5.3)

Proving the C.L.T. in the general ase is a bit too diÆult for us. We will only

demonstrate it for the restrited ase where all the p.d.f's are the same, f

i

= f .

Without loss of generality we an let � = 0. Then �

2

= E [x

2

℄. We also assume not

only that the mean and variane of f are �nite, but also that the expetations of

higher powers of x are �nite suh that we an expand the harateristi funtion

of f (equation 2.31):

�

x

(t) = E

h

e

{tx

i

= 1 +

({t)

2

2

�

2

+

({t)

3

3!

E

h

x

3

i

+ : : :

= 1�

�

2

t

2

2

+ : : :

Let u =

x

�

p

n

. The p.d.f. for u has variane

1

=

n

. Then

�

u

(t) = E

h

e

{tu

i

= 1�

t

2

2n

+ : : :
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Now reall that the harateristi funtion of a sum of independent r.v.'s is the

produt of the individual harateristi funtions. Therefore, the harateristi

funtion of S

u

=

P

u

i

is

�

S

u

(t) = [�

u

(t)℄

n

=

"

1�

t

2

2n

+ : : :

#

n

whih in the limit n!1 is just an exponential:

�

S

u

(t) = exp

 

�

t

2

2

!

But this is just the harateristi funtion of the standard normal N(S

u

; 0; 1). Sine

S

u

=

P

u

i

=

1

�

p

n

S, the p.d.f. for

P

x

i

is the normal p.d.f. N(S;n�; n�

2

).

A orallary of the C.L.T.: Under the onditions of the C.L.T., the p.d.f. of S=n

approahes the normal p.d.f. as n!1:

lim

n!1

f

�

S

n

�

= N

 

S

n

;

P

�

i

n

;

P

�

2

i

n

2

!

; S =

n

X

i=1

x

i

(5.4)

or in the ase that all the f

i

are the same:

lim

n!1

f

�

S

n

�

= N

 

S

n

;�;

�

2

n

!

; S =

n

X

i=1

x

i

(5.5)

5.2 Impliations for measurements

The C.L.T. shows why the Gaussian p.d.f. is so important. Most of what we measure

is in fat the sum of many r.v.'s. For example, you measure the length of a table with

a ruler. The length you measure depends on a lot of small e�ets: optial parallax,

alibration of the ruler, temperature, your shaking hand, et. A digital meter has

eletroni noise at various plaes in its iruitry. Thus, what you measure is not

only what you want to measure, but added to it a large number of (hopefully) small

ontributions. If this number of small ontributions is large the C.L.T. tells us that

their total sum is Gaussian distributed. This is often the ase and is the reason

resolution funtions are usually Gaussian. But if there are only a few ontributions,

or if a few of the ontributions are muh larger than the rest, the C.L.T. is not

appliable, and the sum is not neessarily Gaussian.

Consider the passage of partiles, e.g., an � partile, through matter. Usually the

� undergoes a large number of small-angle satters produing a small net deetion.

This net deetion is Gaussian distributed sine it results from a large number of

individual satters. However oasionally there is a large-angle sattering; usually

not, but sometimes 1 and very rarely 2. The distribution of the sattering angle �

when there has been one or more large-angle satters will not be Gaussian, sine
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1 or 2 is not a large number. Instead, the p.d.f. for � will be the onvolution of

the Gaussian for the net deetion from many small-angle satters with the atual

p.d.f. for the large-angle satters. It will look something like:

-

6

�

Adding this to the Gaussian p.d.f. for the muh more likely ase of no large-angle

satters will give a p.d.f. whih looks almost like a Gaussian, but with larger tails:

-

6

�

Nearly Gaussian.

Many small-angle,

no large-angle satters.

Z

Z

Z~

Long tails. Many small-angle

satterings giving Gaussian tails.

Plus some large-angle

satterings giving a

non-Gaussian p.d.f.

�

�

�

�

�

��

This illustrates that the further you go from the mean, the worse the Gaussian

approximation is likely to be.

The C.L.T. also shows the e�et of repeated measurements of a quantity. For

example, we measure the length of a table with a ruler. The variane of the p.d.f.

for 1 measurement is �

2

; the variane of the p.d.f. for an average of n measurements

is

�

2

n

. Thus � is redued by

p

n.

If a r.v. is the produt of many fators, then its logarithm is a sum of equally

many terms. Assuming that the CLT holds for these terms, then the r.v. is asymp-

totially distributed as the log-normal distribution.

\You an . . . never foretell what any one man

will do, but you an say with preision what an

average number will be up to. Individuals vary,

but perentages remain onstant."

|Arthur Conan Doyle: Sherlok Holmes in

\The Sign of Four"
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Chapter 6

Monte Carlo

The termMonte Carlo is used for alulational tehniques whih make use of random

numbers. These tehniques represent the solution of a problem as a parameter of

a hypothetial population, and use a random sequene of numbers to onstrut a

sample of the population, from whih statistial estimates of the parameter are

obtained.

The Monte Carlo solution of a problem thus onsists of three parts:

1. hoie of the p.d.f. whih desribes the hypothetial population;

2. generation of a random sample of the hypothetial population using a random

sequene of numbers; and

3. statistial estimation of the parameter in question from the random sample.

It is no aident that these three steps orrespond to the three parts of these letures.

P.d.f.'s have been overed in part I; this part will over the generation of a Monte

Carlo sample aording to a given p.d.f.; and part III will treat statistial estimation,

whih is done in the same way for Monte Carlo as for real samples.

If the solution of a problem is the number F , the Monte Carlo estimate of F

will depend on, among other things, the random numbers used in the alulation.

The introdution of randomness into an otherwise well-de�ned problem may seem

rather strange, but we shall see that the results an be very good.

After a short treatment of random numbers (setion 6.1) we will treat a ommon

appliation of the Monte Carlo method, namely integration (setion 6.2) for whih

the statistial estimation is partiularly simple. Then, in setion 6.3 we will treat

methods to generate a Monte Carlo sample whih an then be used with any of the

statistial methods of part III.

6.1 Random number generators

Random number generators may be lassi�ed as true random number generators or

as pseudo-random number generators.

67
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6.1.1 True random number generators

True random number generators must be based on random physial proesses, e.g.,

� the potential aross a resistor, whih arises from thermal noise.

� the time between the arrival of two osmi rays.

� the number of radioative deays in a �xed time interval.

An example of how we ould use this last possibility is to turn on a ounter for

a �xed time interval, long enough that the average number of deays is large. If

the number of deteted deays is odd, we reord a 1; if it is even, we reord a 0.

We repeat this the number of times neessary to make up the fration part of our

omputer's word (assuming a binary omputer). We then have a random number

between 0 and 1.

Unfortunately, this proedure does not produe a uniform distribution if the

probability of an odd number of deays is not equal to that of an even number. To

remove this bias we ould take pairs of bits: If both bits are the same, we rejet

both bits; if they are di�erent, we aept the seond one. The probability that we

end up with a 1 is then the probability that we �rst get a zero and seond a one;

the probability that we end up with a zero is the probability that we �rst get a

one and seond a zero. Assuming no orrelation between suessive trials, these

probabilities are equal and we have ahieved our goal.

The main problem with suh generators is that they are very slow. Not wanting

to have too dangerous a soure, i.e., not too muh more than the natural bakground

(osmi rays are about 200 m

�2

s

�1

), nor too large a detetor, it is lear that we will

have ounting times of the order of milliseonds. For a 24-bit fration, that means

24 ounting intervals per real random number, or 96 intervals if we remove the bias.

Thus we an easily spend of the order of 1 seond to generate 1 random number!

They are also not, by their very nature, reproduible, whih an be a problem

when debugging a program.

6.1.2 Pseudo-random number generators

A pseudo-random number generator produes a sequene of numbers alulated

by a stritly mathematial proedure, whih nonetheless appears random by some

statistial tests. Sine the sequene is not really random, there will ertainly exist

some other statistial test for whih it will fail to appear random.

Several algorithms have been used to produe pseudo-random generators,

30

de-

sriptions of whih are beyond the sope of this ourse. In FORTRAN77, generators

have usually been introdued as funtions with names suh as RAN. The statement X

= RAN(0) assigns the next number in the random number sequene to the variable

X. The argument of the funtion is a dummy argument whih is not used. The

generation proeeds from a `seed', eah number in the sequene ating as the seed
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for the next. Usually there is a provision allowing the user to set the seed at the

start of his program and to �nd out what the seed is at the end. This feature allows

a new run to be made starting where the previous run left o�. In FORTRAN90 this

is standardized by providing an intrinsi subroutine, random number(h), whih �lls

the real variable (or array) h with pseudo-random numbers in the interval [0; 1).

A subroutine random seed is also provided to input a seed or to inquire what the

seed is at any point in the alulation. However, no requirements are made on the

quality of the generated sequene, whih will therefore depend on the ompiler used.

In ritial appliations one may therefore prefer to use some other generator.

Reently, new methods have been developed resulting in pseudo-random number

generators far better than the old ones.

31

In partiular the short periods, i.e., that

the sequene repeats itself, of the old generators has been greatly lengthened. For

example the generator RANMAR has a period of the order of 10

43

. The new generators

are generally written as subroutines returning an array of random numbers rather

than as a funtion, sine the time to all a subroutine or invoke a funtion is of the

same order as the time to generate one number, e.g., CALL RANMAR (RVEC,90) to

obtain the next 90 numbers in the sequene in the array RVEC, whih of ourse must

have a dimension of at least 90.

Some pseudo-random number generators generate numbers in the losed interval

[0; 1℄ rather than the open interval. Although it ours very infrequently (one in

2

24

on a 32-bit omputer), the ourene of an exat 0 an be partiularly annoying

if you happen to divide by it. The open interval is therefore reommended.

Any one who onsiders arithmetial methods of produing

random digits is, of ourse, in a state of sin.

| John von Neumann

6.2 Monte Carlo integration

Muh of this setion has been taken from James

30

and Lyons

8

.

We want to evaluate the integral

I =

Z

b

a

y(x) dx (6.1)

We will disuss several Monte Carlo methods to do so.

6.2.1 Crude Monte Carlo

A trivial (ertainly not the best) numerial method is to divide the interval (a; b)

into n subintervals and add up the areas of eah subinterval using the value of y at

the middle of the interval:

I =

b� a

n

n

X

i=1

y(x

i

) ; x

i

= a+

�

i�

1

2

�

b� a

n
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An obvious Monte Carlo method, alled rude Monte Carlo, is to do the same

sum, but with

x

i

= a+ r

i

(b� a)

where the r

i

are random numbers uniformly distributed on the interval (0; 1).

More formally, the expetation of the funtion y(x) given a p.d.f. f(x) whih is

non-zero in (a; b) is given by

�

y

= E [y℄ =

Z

b

a

y(x)f(x) dx

Sine the available pseudorandom number generators sample a uniform distribution,

we take f(x) to be the uniform p.d.f. f(x) = 1=(b� a), a � x � b. Then

�

y

= E [y℄ =

1

b� a

Z

b

a

y(x) dx =

I

b� a

�

2

y

= V [y℄ =

1

b� a

Z

b

a

(y � �

y

)

2

dx =

1

b� a

Z

b

a

y

2

dx� �

2

y

Let us emphasize that �

y

and �

2

y

are the expetation and variane of the funtion

y(x) for a uniform p.d.f. Do not onfuse them with the mean and variane of a

p.d.f.|y(x) is not a p.d.f.

Let y

i

= y(x

i

) where the x

i

are distributed aording to f(x), i.e., uniformly.

Then, by the C.L.T., the average of the n values y

i

approahes the normal distri-

bution for large n:

N

 

P

y

i

n

;�

y

;

�

2

y

n

!

= N

 

P

y

i

n

;

I

b� a

;

�

2

y

n

!

We shall see in statistis (set. 8.3) that an expetation value, e.g., E [y℄, an be

estimated by the sample mean of the quantity, �y =

P

y

i

=n.

Thus by generating n values x

i

distributed uniformly in (a; b) and alulating

the sample mean, we determine the value of I=(b� a) to an unertainty �

y

=

p

n:

I =

b� a

n

n

X

i=1

y(x

i

) � (b� a)

�

y

p

n

(6.2)

In pratie, if we do not know

R

y dx, it is unlikely that we know

R

y

2

dx, whih

is neessary to alulate �

y

. However, we shall see that this too an be estimated

from the Monte Carlo points (eq. 8.7):



�

2

=

1

n� 1

n

X

i=1

(y

i

� �y)

2

Sine n is large, we an replae n� 1 by n. Multiplying out the sum we then get



�

2

= (y

2

� �y

2

)
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Hene the integral is estimated by

I =

Z

b

a

y(x) dx = (b� a)

 

�y �

1

p

n

q

y

2

� �y

2

!

(6.3)

Generalizing to more than one dimension is straightforward: Points are gen-

erated uniformly in the region of integration. The Monte Carlo estimate of the

integral is still given by equation 6.3 if the length of the interval, (b�a), is replaed

by the volume of the region of integration.

6.2.2 Hit or Miss Monte Carlo

Another method to evaluate the integral

(6.1) is by hit or miss Monte Carlo. In this

method two random numbers are required

per evaluation of y(x). Let R[x; y℄ be a

random number uniformly distributed on

(x; y). Then generate a point in the retan-

gle de�ned by the minimum and maximum

values of y and the limits of integration, a

and b:

x

i

= R[a; b℄

y

i

= R[y

min

; y

max

℄

-

y(x)

y

max

y

min

6

xa b

If you do not know y

min

and y

max

, you must guess `safe' values. The generated point

is alled a

`hit' if y

i

< y(x

i

)

`miss' if y

i

> y(x

i

)

Then an estimate of I is given by the fration of points whih are hits:

I =

n

hits

n

(b� a)(y

max

� y

min

) + y

min

(b� a)

Sine hit or miss is a binomial situation, the number of hits follows the binomial

p.d.f. with expetation E [n

hits

℄ = np and variane V [n

hits

℄ = np(1� p), where p is

the probability of a hit. V [I℄ is trivially related to V [n

hits

℄:

V [I℄ =

1

n

2

V (n

hits

)(b� a)

2

(y

max

� y

min

)

2

=

1

n

p(1� p)(b� a)

2

(y

max

� y

min

)

2

The probability p, of a hit an be estimated from the result: p̂ = n

hits

=n. Thus

I =

n

hits

n

(b� a)(y

max

� y

min

) + y

min

(b� a)

�

p

n

hits

n

s

�

1�

n

hits

n

�

(b� a) (y

max

� y

min

) (6.4)
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Here too, the generalization to more than one dimension is straightforward:

Points are generated uniformly in the region of integration and the funtion value

is tested for a hit. The integral is then given by equation 6.4 with (b� a) replaed

by the volume of the region in whih points were generated.

6.2.3 Bu�on's needle, a hit or miss example

An early (1777) appliation of the Monte Carlo tehnique was to estimate the value

of �. This alulation, known as Bu�on's needle,

32

proeeds as follows: Parallel lines

separated by distane d are drawn on the oor. A needle of length d is dropped on

the oor suh that its position (distane of the enter of the needle to the nearest

line) and its orientation (angle, �, between the needle and a perpendiular to the

lines) are both distributed uniformly. If the needle lies aross a line we have a hit,

otherwise a miss.

For a given �, the hane of a hit is given by the onditional p.d.f.

f(hitj�) =

projeted length of needle on a perpendiular

distane between lines

=

d os �

d

= os �

The hane of a hit irrespetive of � is then

p =

Z

�=2

0

f(hitj�)f(�) d� =

Z

�=2

0

os �

1

�

2

� 0

| {z }

f(�)

d� =

2

�

Thus an estimate of 2=� is given by the estimator of p, namely p̂ = n

hits

=n and an

estimate of � by 2n=n

hits

.

6.2.4 Auray of Monte Carlo integration

The unertainty of the Monte Carlo integration dereases, for both rude and hit

or miss Monte Carlo, with the number of points, n, as n

�1=2

. However rude Monte

Carlo is usually more aurate than the hit or miss method. For example, take the

integral involved in Bu�on's needle. In rude Monte Carlo,

�

y

= E [y℄ =

I

b� a

=

2

�

Z

�=2

0

os � d� =

2

�

V [y℄ =

1

b� a

Z

�=2

0

os

2

� d� � �

2

y

=

1

2

�

�

2

�

�

2

= 0:0947

The unertainty of the estimation of I is then

p

0:0947=

p

n = 0:308=

p

n.

On the other hand, hit or miss yields, using p = 2=�:

V [I℄ =

1

n

p(1� p)

�

�

2

�

2

=

0:571

n
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The unertainty of the estimation of I is then

p

0:571=

p

n = 0:756=

p

n, whih is

onsiderably larger (more than a fator 2) than for rude Monte Carlo.

The unertainty of Monte Carlo integration is ompared with that of numerial

methods in the following table:

unertainty in I alulated from n points

method 1 dimension d dimensions

Monte Carlo n

�1=2

n

�1=2

trapezoidal rule n

�2

n

�2=d

Simpson's rule n

�4

n

�4=d

m-point Gauss rule n

�(2m�1)

n

�(2m�1)=d

Thus we see that Monte Carlo integration onverges muh more slowly than

other methods, partiularly for low numbers of dimensions. Only for greater than

8 dimensions does Monte Carlo onverge faster than Simpson's rule, and there is

always a Gauss rule whih onverges faster than Monte Carlo.

However, there are other onsiderations besides rate of onvergene: The �rst is

the question of feasibility. For example, in 38 dimensions a 10-point Gauss method

onverges at the same rate as Monte Carlo. However, in the Gauss method, the

number of points is �xed, n = m

d

, whih in our example is 10

38

. The evaluation

of even a very simple funtion requires on the order of miroseonds on a fast

omputer. So 10

38

is learly not feasible. (10

32

se: � � � 10

24

years, while the age

of the universe is only of order 12 Gyr.)

Another problem with numerial methods is the boundary of integration. If the

boundary is ompliated, numerial methods beome very diÆult. This is, how-

ever, easily handled in Monte Carlo. One simply takes the smallest hyperretangle

that will surround the region of integration and integrates over the hyperretangle,

throwing away the points that fall outside the region of integration. This leads to

some ineÆieny, but is straightforward. This is one of the hief advantages of the

Monte Carlo tehnique. An example is given by phase spae integrals in partile

physis. Consider the deay n ! pe

�

�

e

, the neutron at rest. Calulations for this

deay involve 9 variables, p

x

; p

y

; p

z

for eah of the 3 �nal-state partiles. However

these variables are not independent, being onstrained by energy and momentum

onservation,

P

p

x

=

P

p

y

=

P

p

z

= 0, and

P

E = m

n



2

, where the energy of a

partile is given by, E =

q

m

2



4

+ p

2

x



2

+ p

2

y



2

+ p

2

z



2

. This ompliated boundary

makes an integration by numerial methods diÆult; it beomes pratially im-

possible for more than a few partiles. However Monte Carlo integration is quite

simple: one generates points uniformly in the integration variables, alulates the

energy and momentum omponents for eah partile and tests whether momentum

and energy are onserved. If not, the point is simply rejeted.

Another pratial issue might be termed the growth rate. Suppose you have

performed an integration and then deide that it is not aurate enough. With
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Monte Carlo you just have to generate some more points (starting your random

number generator where you left o� the previous time). However, with the Gauss

rule, you have to go to a higher order m. All the previous points are then useless

and you have to start over.

6.2.5 A rude example in 2 dimensions

One of the advantages of Monte Carlo is the ease

with whih irregular integration regions an be

handled. Consider a two-dimensional integral

over a triangular region:

I =

Z

b

a

dx

Z

x

a

dy g(x; y)

We give �ve ways of estimating this integral us-

ing rude Monte Carlo:

-

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

y(x)

a

b

xa b

1. The obvious way:

(a) Choose x

i

= R[a; b℄.

(b) Choose y

i

= R[a; x

i

℄.

() Sum the g(x

i

; y

i

): I =

(b�a)

2

2n

P

n

i=1

g(x

i

; y

i

)

This method, although obvious, is inorret. This is beause the points

(x

i

; y

i

) are not uniformly distributed over the region of integration. There

are (approximately) the same number of points for a < x < (a + b)=2 as for

(a+ b)=2 < x < b, while the areas di�er by a fator 3.

2. Rejetion method:

(a) Choose x

i

= R[a; b℄ and y

i

= R[a; b℄.

(b) De�ne a new funtion z(x; y) whih is de�ned on the entire region for

whih points are generated, but whih has the same integral as g:

z

i

=

�

0; if y

i

> x

i

,

g(x

i

; y

i

); if y

i

< x

i

.

Or, equivalently, rejet the point if it does not lie in the region of inte-

gration, i.e., if y

i

> x

i

.

() Then sum the z

i

:

I =

(b� a)

2

n

n

X

i=1

z

i
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3. Rejetion method (area of region of integration known): The above rejetion

method results in a perhaps needlessly large error sine we are using Monte

Carlo to estimate the integral of z, even where we know that z = 0. Another

way of looking at it is that we are using Monte Carlo to estimate what fration,

f

a

, of the area of point generation is taken up by the area of integration.

Hene, if we know this fration we an remove this ontribution to the error

by simply rejeting the points not in the area of integration. We proeed as

follows:

(a) Choose x

i

= R[a; b℄ and y

i

= R[a; b℄.

(b) Rejet the point if it does not lie in the region of integration, i.e., if

y

i

> x

i

.

() Then sum the g(x

i

; y

i

) replaing the area of point generation by the area

of the region of integration, f

a

(b � a)

2

. In this example we know that

f

a

=

1

2

. The result is then

I =

1

2

(b� a)

2

n

0

n

0

X

i=1

g(x

i

; y

i

)

where n

0

is the number of generated points lying in the region of inte-

gration.

Both rejetion methods are orret, but ineÆient|both use only half of the

points. Sometimes this ineÆieny an be overome by a trik:

4. Folding method (a trik):

(a) Choose u

i

= R[a; b℄ and v

i

= R[a; b℄.

(b) Let x

i

= max(u

i

; v

i

) and y

i

= min(u

i

; v

i

).

() Then sum the g

i

:

I =

(b� a)

2

2n

n

X

i=1

g(x

i

; y

i

)

This is equivalent to generating points uniformly over the whole square and

then folding the square about the diagonal so that all the points fall in the

triangular region of integration. The density of points remains uniform.

5. Weighting method. We generate points as in the \obvious", but wrong,

method:

(a) Choose x

i

= R[a; b℄.

(b) Choose y

i

= R[a; x

i

℄.

() But we make a weighted sum, the weight orreting for the unequal
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density of points (density �

1

(x�a)

):

I =

b� a

n

n

X

i=1

(x

i

� a) g(x

i

; y

i

) (6.5)

The derivation of this formula is left as an exerise (27).

This method is, in fat, an appliation of the tehnique of importane sampling

(f. setion 6.2.6) It may, or may not, be more eÆient than folding, depending

on the funtion g. In partiular, it will be more eÆient when the variane of

(x� a)g is smaller than that of g.

6.2.6 Variane reduing tehniques

As we have seen, Monte Carlo integration onverges rather slowly with n ompared

to the better numerial tehniques. There are, however, several methods of reduing

the variane of the Monte Carlo estimation:

Strati�ation

In this approah we split the region of integration into two or more subregions.

Then the integral is just the sum of the integrals over the subregions, e.g., for two

subregions,

I =

Z

b

a

y(x) dx =

Z



a

y(x) dx+

Z

b



y(x) dx

The variane of I is just the sum of the varianes of the subregions. A good hoie

of subregions and number of points in eah region an result in a dramati derease

in V [I℄. However, to make a good hoie requires knowledge of the funtion. A

poor hoie an inrease the variane.

Some improvement an always be ahieved by simply splitting the region into

subregions of equal size and generating the same number of points for eah subre-

gion. We illustrate this, using rude Monte Carlo, for the ase of two subregions:

For the entire region the variane is (from equation 6.2)

V

1

(I) =

(b� a)

2

n

�

2

y

=

(b� a)

2

n

2

4

1

b� a

Z

b

a

y

2

dx�

 

1

b� a

Z

b

a

y dx

!

2

3

5

For two equal regions, the variane is the sum of the varianes of the two regions:

V

2

(I) =

[(b� a)=2℄

2

n=2

("

2

b� a

Z



a

y

2

dx�

�

2

b� a

Z



a

y dx

�

2

#

+

2

4

2

b� a

Z

b



y

2

dx�

 

2

b� a

Z

b



y dx

!

2

3

5

9

=

;

=

(b� a)

2

2n

8

<

:

2

b� a

Z

b

a

y

2

dx�

4

(b� a)

2

2

4

�

Z



a

y dx

�

2

+

 

Z

b



y dx

!

2

3

5

9

=

;
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The improvement in variane is given by

V

1

(I)� V

2

(I) = �

1

n

 

Z

b

a

y dx

!

2

+

2

n

2

4

�

Z



a

y dx

�

2

+

 

Z

b



y dx

!

2

3

5

Substituting A =

Z



a

y dx and B =

Z

b



y dx

V

1

(I)� V

2

(I) =

1

n

h

� (A+B)

2

+ 2

�

A

2

+B

2

�i

=

1

n

(A�B)

2

� 0

Thus some improvement in the variane is attained, although it may be arbitrarily

small. This improvement an be qualitatively understood as due to an inreased

uniformity of the distribution of points.

Importane Sampling

We have seen that (in rude Monte Carlo) the variane of the estimate of the integral

is proportional to the variane of the funtion being integrated (eq. 6.2). Thus the

less variation in y, i.e., the more onstant y(x) is, the more aurate the integral.

We an e�etively ahieve this by generating more points in regions of large y and

ompensating for the higher density of points by reduing the value of y (i.e., giving

a smaller weight) aordingly. This was also the motivation for strati�ation.

In importane sampling we hange variable in order to have an integral with

smaller variane:

I =

Z

b

a

y(x) dx =

Z

b

a

y(x)

g(x)

g(x) dx =

Z

G(b)

G(a)

y(x)

g(x)

dG(x)

where G(x) =

Z

x

a

g(x) dx

Thus we must �nd a funtion g(x) suh that

� g(x) is a p.d.f., i.e., everywhere positive and normalized suh that G(b) = 1.

� G(x) is known analytially.

� Either G(x) an be inverted (solved for x) or a random number generator is

available whih generates points (x) aording to g(x).

� The ratio y(x)=g(x) is as nearly onstant as possible and in any ase more

onstant than y(x), i.e., �

y=g

< �

y

.

We then hoose values of G randomly between 0 and 1; for eah G solve for x; and

sum y(x)=g(x). The weighting method of setion 6.2.5 was really an appliation of

importane sampling.
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Although importane sampling is a useful tehnique, it su�ers in pratie from

a number of drawbaks:

� The lass of funtions g whih are integrable and for whih the integral an

be inverted analytially is small|essentially only the trigonometri funtions,

exponentials, and polynomials. The inversion ould in priniple be done nu-

merially, but this introdues inauraies whih may be larger that the gain

made in reduing the variane.

� It is very diÆult in more than one dimension. In pratie one usually uses a

g whih is a produt of one-dimensional funtions.

� It an be unstable. If g beomes small in a region, y=g beomes very big and

hene the variane also. It is therefore dangerous to use a funtion g whih is

0 in some region or whih approahes 0 rapidly.

� Clearly y(x) must be rather well known in order to hoose a good funtion g.

On the other hand, an advantage of this method is that singularities in y(x) an be

removed by hoosing a g(x) having the same singularities.

Control Variates

This is similar to importane sampling exept that instead of dividing by g(x), we

subtrat it:

I =

Z

y(x) dx =

Z

[y(x)� g(x)℄ dx +

Z

g(x) dx

Here,

R

g(x) dx must be known, and g is hosen suh that y � g has a smaller

variane than y. This method does not risk the instability of importane sampling.

Nor is it neessary to invert the integral of g(x).

Antitheti Variates

So far, we have always used Monte Carlo points whih are independent. Here we

deliberately introdue a orrelation. Reall that the variane of the sum of two

funtions is

V [y

1

(x) + y

2

(x)℄ = V [y

1

(x)℄ + V [y

2

(x)℄ + 2 ov[y

1

(x); y

2

(x)℄

Thus, if we an write

I =

Z

b

a

y dx =

Z

b

a

(y

1

+ y

2

) dx

suh that y

1

and y

2

have a large negative orrelation, we an redue the variane of

I. Clearly, we must understand the funtion y(x) in order to do this. It is diÆult

to give general methods, but we will illustrate it with an example:

Suppose that we know that y(x) is a monotonially inreasing funtion of x.
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Then let y

1

=

1

2

y(x) and y

2

=

1

2

y (b� (x� a)). Clearly the integral of (y

1

+ y

2

) is

just the integral of y. However, sine y is monotonially inreasing, y

1

and y

2

are

negatively orrelated; when y

1

is small, y

2

is large and vie versa. If this negative

orrelation is large enough, V [y

1

+ y

2

℄ < V [y℄.

6.3 Monte Carlo simulation

Referenes for this setion are James

30

and Lyons.

8

For further details and additional

topis onsult Rubinstein.

33

Monte Carlo problems are usually lassi�ed as either integration or simulation.

We shall be onerned with simulating experiments in physis. This begins with

a theory or hypothesis about the physial proess, i.e., with the assumption of

an underlying p.d.f., g(x

0

), whih may then be modi�ed by the response funtion,

r(x; x

0

), of the experimental apparatus. The expeted p.d.f. of the observations is

then given by

f(x) =

Z

g(x

0

) r(x; x

0

) dx

0

The purpose of the simulation is to produe a set of n simulated or `fake' data

points distributed aording to f(x). These an be ompared with the real data to

test the hypothesis. They an also be used in the planning stage of the experiment

to help in its design, e.g., to ompare the use of di�erent apparatus, and to test

software to be used in the analysis of the experiment.

Sine these fake points are distributed aording to f(x), they are in fat just

the points generated for the Monte Carlo integration of

R

f(x) dx. Simulation is

thus, formally at least, equivalent to integration. The purpose is, however, usually

di�erent. This means that often a di�erent Monte Carlo method will be preferred

for simulation than for integration.

Although we will ontinue to use the term p.d.f. for f(x), for the purposes

of simulation the normalization is unimportant (at least if we are areful). It is,

however, essential that the funtion not be negative.

The p.d.f. that we wish to simulate, f(x), an be extremely ompliated. The

underlying physial p.d.f., g(x

0

), may itself involve integrals whih will be evaluated

by Monte Carlo in the ourse of the simulation, and the detetor desription may

onsist of various stages, eah depending on the previous one.

Monte Carlo simulation of suh omplex proesses breaks them down into a

series of steps. At eah step a partiular outome is hosen from a set of possi-

ble outomes aording to a given p.d.f., f(x). In other words, the outome of

the step is a (pseudo-)random number generated aording to f(x). But random

number generators generally produe uniformly distributed numbers. We therefore

must transform the uniformly distributed random numbers into random numbers

distributed aording to the desired p.d.f. There are three basi methods to do this:
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6.3.1 Weighted events

This method is analogous to that of rude Monte Carlo for integration. For a p.d.f.,

f(x), de�ned on the interval (a; b), points are generated uniformly in x and given

a weight, w. An event then onsists of the values x

i

and w

i

= f(x

i

)(b � a). The

integral of f(x) over any subinterval of (a; b), e.g., (; d) with a �  < d � b, is then

given by the sum of the weights of the events in that interval:

Z

d



f(x) dx =

1

n

X

<x<d

w

i

In partiular, a weighted histogram of the x

i

( and d are then the various bin

limits), represents the p.d.f. and an be diretly ompared with the data.

We have seen that integration by rude Monte Carlo gives a smaller variane

than the hit-or-miss method, and is therefore generally preferable. However in sim-

ulation it is usually deemed preferable not to have weighted events. One prefers to

have the Monte Carlo events as muh as possible like the real events. In partiular,

it is usually desirable that the Monte Carlo sample behave statistially like the real

event sample, e.g., the variane of the average of nMonte Carlo points should result

in the same variane as that of the average of n real points. This is not the ase

with weighted events. The density of Monte Carlo points where f(x) is small is

the same as where f(x) is large, whereas in the real data the density of points is

proportional to f(x).

6.3.2 Rejetion method

This method is analogous to the hit-or-miss

method of Monte Carlo integration. As in

hit-or-miss Monte Carlo, we generate points

uniformly in x and in f(x)

x

i

= R[a; b℄

r

i

= R[0; f

max

℄

where f

max

is the maximum value of f(x) in

(a; b). Points for whih f(x

i

) < r

i

are then

rejeted.

-

x

0

f(x)

f

max

6

a bd

The integral over a subinterval (; d) is then

Z

d



f(x) dx =

n

<x<d

n

(b� a)f

max

In hit-or-miss Monte Carlo we also introdued an f

min

. Sine we knew the

integral

R

b

a

f

min

dx, it was not neessary to evaluate it by Monte Carlo. It was
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therefore better (more eÆient) to use all the Monte Carlo points to evaluate

R

b

a

(f�

f

min

) dx. But here we want to generate all the events for f , not just for (f � f

min

).

The diÆulty with this method lies in knowing f

max

. If we do not know it, then

we must guess a `safe' value, i.e., a value whih we are sure is larger than f

max

. If

we hoose f

max

too safe, the method beomes ineÆient. This method an be made

more eÆient by hoosing di�erent values of f

max

in di�erent regions.

This method is the easiest method to use for ompliated funtions in many

dimensions.

6.3.3 Inverse transformation method

Continuous p.d.f.

This is like importane sampling with g(x) = f(x). The resulting integrand is just

the uniform distribution. We transform from f(x) to F :

f(x) dx = dF

where F (x) is just the .d.f. of f(x),

F (x) =

Z

x

a

f(x) dx

Instead of generating points uniform in x, we generate points uniformly distributed

in F between F (a) and F (b), whih are 0 and 1, respetively, if f(x) is a p.d.f.

normalized on (a; b):

u

i

= R [F (a); F (b)℄

and alulate the orresponding value of x,

x

i

= F

�1

(u

i

)

-

0

F (x)

1

u

6

xa

x = F

�1

(u)

The x

i

are then distributed as f(x). To see this, reall the results on hanging vari-

ables (set. 2.2.6): For a transformation u! x = v(u) with inverse transformation

u = w(x), the p.d.f. for x is given by the p.d.f. for u, g(u), times the Jaobian, i.e.,

p.d.f. for x = g(u)

�

�

�

�

�

�u

�x

�

�

�

�

�

= g (w(x))

�

�

�

�

�

�w(x)

�x

�

�

�

�

�
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Here, u = F (x), x = F

�1

(u) and u is distributed uniformly, i.e., g(u) = 1. The

p.d.f. for x is then

�

�

�

�

�

�u

�x

�

�

�

�

�

=

�

�

�

�

�

�F (x)

�x

�

�

�

�

�

= f(x)

Hene, if g(u) is a uniform distribution, the p.d.f. for x is f(x), as desired.

The diÆulties with this method are integrating f(x) to obtain F (x) and in-

verting F (x) to obtain F

�1

(u). But if this an be done, this is usually the best

method.

If F is not one-to-one, we de�ne

x = F

�1

min

(u) = min(x for whih F (x) � u)

F (x)

xa

0

x = F

�1

min

(u)

-

6

u

Disrete p.d.f.

For a disrete p.d.f., we an always use this method, sine the .d.f. is always easily

alulated. The probability of X = x

k

is P (X = x

k

) = f(x

k

). Then the .d.f. is

F

k

= P (X � x

k

) =

k

X

i=1

f(x

k

)

Taking u uniformly distributed between 0 and 1,

P (F

k�1

< u � F

k

) =

Z

F

k

F

k�1

du

= F

k

� F

k�1

= f(x

k

)

Thus, to generate a point, we

1. generate u

i

= R[0; 1℄

2. �nd the value of k suh that

F

k�1

< u

i

� F

k

Then x

k

is the desired value of x.

F (x)

xa

0

-

6

F

k�1

x

k�1

F

k

x

k

1

Step 2 of this proedure an involve a lot of steps. You an usually save omputer

time by starting the omparison somewhere in the middle of the x-range, say at the

mean or mode, and then working up or down in x depending on u and F

k

.
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This is of interest not only for situations with a disrete p.d.f., but also for

ases where the p.d.f. is ontinuous, but not known analytially. The resolution

funtion of an apparatus is often determined experimentally and the resulting p.d.f.

expressed as a histogram.

6.3.4 Composite method

It may be advantageous to deompose the desired p.d.f. into a sum of p.d.f.'s whih

are easier to generate:

f(x) =

X

f

k

(x) (6.6)

Let

�

k

=

R

b

a

f

k

(x) dx

P

j

R

b

a

f

j

(x) dx

(6.7)

Then

P

�

i

= 1, and �

k

is the fration of the points to be generated aording to

f

k

.

In generating the points, we regard the index k as a disrete r.v. with probability

�

k

. We �rst generate u = R[0; 1℄ and use it to selet k. Then we generate a value

x

i

aording to f

k

(x) using one of the previous methods.

You might ask why not skip the �rst step and just generate exatly �

k

n points

aording to f

k

for eah k, where n is the total number of points. This was a method

(strati�ation) to improve the variane in Monte Carlo integration. The answer is

that the variane of the Monte Carlo sample would then be di�erent from that of

a sample of n real events, while the purpose of simulation is usually to obtain a

Monte Carlo sample having the same statistial properties as real events.

6.3.5 Example

As an example of the above methods, we take the p.d.f.

f(x) = 1 + x

2

in the region (�1; 1). This ould be an angular distribution with x = os �. We

note that f(x) is not normalized. We ould, of ourse, normalize it, but hoose not

to do so. For as we shall see, for the purpose of generating events the normalization

is not neessary.

Weighted events

This is ompletely trivial. We generate x

i

= R[�1; 1℄ and assign weight w

i

= 1+x

2

i

.

Rejetion method
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2

1

0

�1

0

+1

We have f

max

= 2, a = �1, b = +1. There-

fore, we generate

x

i

= R[�1;+1℄ = 2R[0; 1℄� 1

r

i

= R[0; 2℄ = 2R[0; 1℄

and rejet the point if r

i

> 1 + x

2

i

.

Note that the eÆieny of the genera-

tion is

R

1

�1

(1+x

2

) dx

(b�a)f

max

=

2

3

, i.e.,

1

/

3

of the points are rejeted.

Inverse transformation method

We have

F (x) =

Z

x

�1

(1 + x

2

) dx = x +

x

3

3

#

x

�1

= x+

x

3

3

+

4

3

Hene F (�1) = 0 and F (1) = 8=3. Therefore generate u = R[0; 1℄. Then

8

3

u

is uniformly distributed on [F (�1); F (+1)℄. The orresponding value of x is the

solution of

8

3

u = F (x) = x +

x

3

3

+

4

3

The solution is

x

i

= A+B, where A = (4u� 2 + s)

1=3

B = (4u� 2� s)

1=3

; s =

q

1 + 4(1� 2u)

2

Note that this requires alulating one square root and two ube roots per point.

Composite method

We write f(x) as the sum of simpler funtions. In this ase an obvious hoie is

f(x) = f

a

(x) + f

b

(x) with f

a

(x) = 1 and f

b

(x) = x

2

The integrals of these funtions are

A

a

=

Z

+1

�1

f

a

(x) dx = 2 and A

b

=

Z

+1

�1

f

b

(x) dx =

x

3

3

#

+1

�1

=

2

3

Hene we want to generate from f

a

with probability

2

2+

2

3

=

3

4

and from f

b

with

probability

1

4

.

The �rst step is therefore to generate v = R[0; 1℄

� If v �

3

4

we generate from f

a

:

u

i

= R[0; 1℄

x

i

= 2u

i

� 1
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� If v >

3

4

we generate from f

b

:

1. either by the rejetion method:

x

i

= 2R[0; 1℄� 1

r

i

= R[0; f

bmax

℄ = R[0; 1℄

repeating until we �nd a point for whih r

i

� x

2

i

.

Note that the eÆieny is

R

1

�1

x

2

dx

(b�a)f

bmax

=

1

3

for the points generated here

(

1

/

4

of the points). But it was 1 for the points distributed aording to

f

a

. The net eÆieny is thus

1

3

�

1

4

+ 1 �

3

4

=

5

6

, a small improvement over

the

2

/

3

of the simple rejetion method.

2. or by the inverse transformation method:

F

b

(x) =

Z

x

�1

x

2

dx =

x

3

3

#

x

�1

=

x

3

3

+

1

3

F

b

(�1) = 0 F

b

(1) =

2

3

We generate u

i

= R[0; 1℄. Then x

i

is the solution of

2

3

u

i

=

x

3

i

3

+

1

3

Hene, x

i

= (2u

i

� 1)

1=3

Note that we only have to alulate one ube root; and that only for

1

/

4

of the events. This is � 12 times faster that the simple inverse trans-

formation method (assuming that square and ube roots take about the

same time).

In this example, the omposite rejetion method turned out to be the fastest

with the simple rejetion method only slightly slower. The omposite inverse trans-

formation method was muh faster than the simple inverse transformation method,

but still muh slower than the rejetion method. These results should not be re-

garded as general. Whih method is faster depends on the funtion f .

6.3.6 Gaussian generator

The Gaussian distribution is one of the most important in physis and statistis.

Many methods have been proposed to generate normally distributed points.

Using the Central Limit Theorem

By the C.L.T., the average of a large number of r.v.'s distributed aording to almost

any p.d.f. will be normally distributed. In partiular, for n r.v.'s, u

i

, distributed

uniformly between 0 and 1, the quantity, g,

g =

P

n

i=1

u

i

�

n

2

q

n

12
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is approximately distributed as N(g; 0; 1) for large n. Proof of this is left to the

reader (exerise 26).

While simple to program, this generator is not partiularly fast and has the

feature that the tails are trunated at �n�, whih is usually undesirable. If the

absene of long tails is tolerable, this method is usually satisfatory for as few as

n = 12, where g redues to

g

+

=

12

X

i�1

u

i

� 6

Another disadvantage of this method is that it puts severe requirements on the or-

relations between suessive points of the random number generator, in partiular

on orrelations within groups of n suessive values of u

i

.

A word of aution is perhaps appropriate for lever students who have undoubt-

edly notied that instead of summing 12 u

i

and subtrating 6, we ould have used

g

�

=

6

X

i=1

u

i

�

12

X

i=7

u

i

So far, so good. But if you try to save omputer time by generating both g

+

and

g

�

with the same 12 values of u

i

, you are in trouble: g

+

and g

�

are then highly

orrelated.

A transformation method

Sine the Gaussian p.d.f. annot be integrated in terms of the usually available fun-

tions, it is not straightforward to �nd a transformation from uniformly to Gaussian

distributed variables. There is, however, a lever method, whih we give without

proof, to transform two independent variables, u

1

and u

2

, uniformly distributed on

(0,1) to two independent variables, g

1

and g

2

, whih are normally distributed with

� = 0 and �

2

= 1:

g

1

= os(2�u

2

)

q

�2 lnu

1

g

2

= sin(2�u

2

)

q

�2 lnu

1

This method is exat, but its speed an be improved upon by e�etively gener-

ating the sine and osine by a rejetion method:

1. Generate uniform random numbers u

1

and u

2

on (0,1)

2. Calulate r

2

= (2u

1

� 1)

2

+ (2u

2

� 1)

2

.

3. If r

2

> 1, then rejet u

1

and u

2

and go bak to step 1.
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4. Otherwise,

g

1

= (2u

1

� 1)

s

�2 ln r

2

r

2

g

2

= (2u

2

� 1)

s

�2 ln r

2

r

2

This saves the time of evaluating a sine and a osine at the slight expense of rejeting

about 21% of the uniformly generated points.
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Chapter 7

Statistis|What is it/are they?

So far, we have onsidered probability theory. One we have deided whih p.d.f. is

appropriate to the problem, we an make diret alulations of the probability of any

set of outomes. Apart from possible unertainty about whih p.d.f. is appropriate,

this is a straight-forward and mathematially well de�ned proedure.

The problem we now address is the inverse of this. We have a set of data

whih have been sampled from some parent p.d.f. We wish to infer from the data

something about the parent p.d.f. Note that here we are assuming that the data

are independent, i.e., that the value of a partiular datum does not depend on

the values of other data, and that all of the data sample the same p.d.f. The

statistiian speaks of a sample of independent identially distributed iid random

variables. Usually this will be the ase, and some of our methods will depend on

this.

The study of alulations using probability is sometimes alled diret probability.

Statistial inferene is sometimes alled inverse probability, partiularly in the ase

of Bayesian methods.

We may think we know what the p.d.f. is apart from one or more parameters,

e.g., we think it is a Gaussian but want to determine its mean and standard devia-

tion. This is alled parameter estimation. It is also alled �tting sine we want to

determine the value of the parameter suh that the p.d.f. best `�ts' the data.

On the other hand, we may think we know the p.d.f. and want to know whether

we are right. This is alled hypothesis testing. Usually both parameter estimation

and hypothesis testing are involved, sine it makes little sense to try to determine the

parameters of an inorret p.d.f. And frequently an hypothesis to be tested involves

some unknown parameter. Nevertheless, we will �rst treat these as separate topis.

A third topi is deision theory or lassi�ation.

For all of these topis we shall use statistial methods (or \statistis"), so-alled

�

It is perhaps interesting to note that the stat in statistis is the same as in state. Statists

(advoates of statism, eonomi ontrol and planning by a highly entralized state), olleted data

to better enable the state to run the eonomy. Suh data, and quantities alulated from them,

ame to be alled statistis.
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beause they, statistial methods, make (it, statistis, makes) use of one or more

statistis.

�

A de�nition: A statisti is any funtion of the observations in a sample,

whih does not depend on any of the unknown harateristis of the population

(parent p.d.f.). An example of a statisti is the sample mean, �x =

P

x

i

=n. Eah

observation, x

i

, is, in fat, itself a statisti. In other words, if you an alulate it

from the data plus known quantities, it is a statisti. \Statistis" is the branh of

applied mathematis whih deals with statistis as just de�ned. Whether the word

statistis is singular or plural, thus depends on whih meaning you intend.

We have seen in setion 2.4 that there are two ommon interpretations of prob-

ability, whih we have alled frequentist and Bayesian. They give rise to two ap-

proahes to statistial inferene, usually alled lassial or frequentist statistis (or

inferene) and Bayesian inferene. The word lassial is something of a misnomer,

sine the Bayesian interpretation is older (Bayes, Laplae). However, in the seond

half of the 19

th

entury siene beame more quantitative and objetive, even in

suh �elds as biology (Darwin, evolution, heredity, Galton). This gave rise to the

frequentist interpretation and the development of frequentist statistis. By about

1935 frequentist statistis, whih ame to be known as lassial statistis, had om-

pletely replaed Bayesian thinking. Sine around 1960, however, Bayesian inferene

has been making a omebak.

Probably most physiists would profess to being frequentists, and reeting this,

as well as my own personal bias, the emphasis in the rest of this ourse will be on

lassial statistis. However, there are situations where lassial statistis is very

diÆult, or even impossible, to use and where Bayesian statistis is omparatively

simple to apply. So, intermixed with lassial statistis you will �nd some Bayesian

methods. This is rather unonventional; most books are �rmly in one of the two

amps, and disussions between frequentists and Bayesians often take on aspets of

holy war. It also runs the risk of onfusing the student|it is important to know

whih you are doing.

To understand God's thoughts we must study statistis,

for these are the measure of His purpose.

|Florene Nightingale



Chapter 8

Parameter estimation

8.1 Introdution

In everyday speeh, \estimation" means a rough and impreise proedure leading

to a rough and impreise result. You estimate when you annot measure exatly.

This last sentene is also true in statistis, but only beause you an never measure

anything exatly; there is always some unertainty. In statistis, estimation is a

preise proedure leading to a result whih may be impreise, but the extent of the

preision is, in priniple, known. Estimation in statistis has nothing to do with

approximation.

The goal of parameter estimation is then to make some sort of statement like

� = a � b where a is, on the basis of the data, the `best' (in some sense) value

of the parameter � and where it is `highly probable' that the true value of � lies

somewhere between a � b and a + b. We often all b the estimated error on a. If

we make a plot, this is represented by a point at � = a with a bar running through

it from a � b to a + b, the `error bar'. It is usually assumed that the estimate of

� is normally distributed, i.e., that the values of a obtained from many idential

experiments would form a normal distribution entered about the true value of �

with standard deviation equal to b. The meaning of � = a � b is then that a is,

in some sense (to be disussed more fully later), the most likely value of � and

that in any ase there is, again in some sense, a

R

a+b

a�b

N(x; a; b

2

) = 68:3% hane

that the true value of � lies in the interval (a� b; a + b).

y

This is a speial ase of

a 68.3% `on�dene interval' (f. hapter 9), i.e., an interval within whih we are

68.3% on�dent that the true value lies. We shall see that error bars, or on�dene

intervals may be diÆult to estimate. Just as our estimate of � has an `error', so

too does our estimate of this `error'.

Suppose now that we have a set of numbers x

i

whih are the result of our

experiment. This ould, e.g., be n measurements of some quantity. Let � be the

y

Note that this is di�erent from what an engineer usually means by a� b, namely that b is the

tolerane on a, i.e., that the true value is guaranteed to be within (a� b; a+ b).
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true value of that quantity. The x

i

are lustered about � in some way that depends

on the measuring proess. We often assume that they are distributed normally

about the true value with a width given by the auray of the measurement.

It is worth noting the distintion many authors, e.g., Bevington

10

, make be-

tween the words auray and preision, whih in normal usage are synonymous.

Auray refers to how lose a result is to the true value, whereas preision refers

to how reproduible the measurements are. Thus, a poorly alibrated apparatus

may result in measurements of high preision but poor auray. Other authors,

e.g., Eadie et al.,

4

and James

5

prefer to avoid these terms altogether sine neither

term is well de�ned, and to speak only of the variane of the estimates.

Similarly, a distintion is sometimes

�

made between error, the di�erene be-

tween the estimate and the true value, and the unertainty, the square root of the

variane of the estimate. Thus aurate means small error and preise means small

unertainty. However, the use of the word `error' to mean unertainty is deeply

ingrained, and we (like most books) will not make the distintion. Note that with

the above distintion, the auray and the error are usually unknown, sine the

true value is usually unknown.

So, we wish to estimate �. To do this we need an estimator whih is a funtion

of the measurements.

As stated in hapter 7, a statisti is, by de�nition, any funtion of the obser-

vations in a sample, �(x

i

), whih does not depend on any of the unknown hara-

teristis of the population (parent p.d.f.). An example of a statisti is the sample

mean, �x =

P

x

i

=n. In other words, if you an alulate it from the data plus known

quantities, it is a statisti.

Sine a statisti is alulated from random variables, it is itself a r.v., but a

r.v. whose value depends on the partiular sample, or set of data. Like all random

variables, it is distributed aording to some p.d.f. Sine the value of the statisti

depends on the sample, its p.d.f. is sometimes referred to as the sampling distri-

bution or sampling p.d.f. in order to distinguish it from the population or parent

p.d.f.

An estimator is (de�nition) a statisti, the value of whih we will give as our

determination of some onstant, �, whih is a property of the parent population

or parent p.d.f. We will generally denote an estimator of a variable by adding a

irumex (̂ ) to the symbol of the variable. Thus

^

� is an estimator of �.

There are in general numerous estimators that one an onstrut for any �. Here

are several estimators of the mean, �, of the parent p.d.f., assuming nmeasurements,

x

i

:

1. �̂ = �x =

1

n

P

n

i=1

x

i

The sample mean. This is probably the most

often used estimator of the mean, but it an be

sensitive to mismeasured data.

�

This is reommended by the International Standards Organization

34

.
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2. �̂ =

1

10

P

10

i=1

x

i

The sample mean of the �rst 10 points, ignoring

the rest.

3. �̂ =

1

n�1

P

n

i=1

x

i

n=(n� 1) times the sample mean.

4. �̂ = 5 Throw away all the data and give the estimate

as 5.

5. �̂ =

n

q

Q

n

i=1

x

i

6. Make a histogram of the x

i

and take �̂ as the

midpoint of the bin ontaining the most events,

i.e., a sort of sample mode. Note that the value

will depend on the bin size.

7. �̂ = [min(x

i

) + max(x

i

)℄ =2 The midrange, i.e., the average of the smallest

and the largest x

i

. This is very sensitive to the

tails of the distribution but may be the best es-

timator if the p.d.f. is nearly uniform.

8. �̂ =

2

n

P

n=2

i=1

x

2i

The sample mean of the even numbered points,

ignoring the odd numbered points.

9. �̂ = ��

trimmed

Disard the smallest and largest y% (e.g., 10%)

of the data and then average. This is relatively

insensitive to the tails of the distribution, but

has a larger variane than the sample mean if

there are no problems in the tails.

10. �̂ = sample median This is less sensitive to statistial utuations in

the tails, but it has a larger variane than the

sample mean if the p.d.f. is a Gaussian.

Eah of these is, by our de�nition, an estimator. Yet some are ertainly better

than others. However, whih is `best' depends on the p.d.f. Whih is `best' may

also depend on the use we want to make of it. How do we hoose whih estimator

to use? In general we shall prefer an estimator whih is `unbiased', `onsistent', and

`eÆient'. We will disuss these and other properties of estimators in the following

setion. In sueeding setions we will treat three general methods of onstruting,

or hoosing, estimators.

Nothing is easier than to invent

methods of estimation.

|R. A. Fisher
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8.2 Properties of estimators

8.2.1 Bias

Sine a statisti is a funtion of r.v.'s, it is itself a r.v. Therefore, it is distributed

aording to some p.d.f., and we an speak of its expetation value, E

h

^

�

i

. For an

estimator, making use of n observations, the bias b

n

is de�ned as the di�erene

between the expetation of the estimator and the true value of the parameter:

b

n

(

^

�) = E

h

^

�

i

� � = E

h

^

� � �

i

(8.1)

An estimator is unbiased if, for all n and �, b

n

(

^

�) = 0, i.e., if E

h

^

�

i

= �. We

inlude n in this de�nition sine we shall see that some estimators are unbiased

only asymptotially, i.e., only for n!1.

Mean In general, the sample mean, no. 1 in our list above, is an unbiased esti-

mator of the parent (true) mean:

E [�̂℄ = E [�x℄ = E

�

1

n

X

x

i

�

=

1

n

X

E [x

i

℄ =

1

n

nE [x℄ = E [x℄ = � (8.2)

On the other hand, the third estimator in our list is biased:

E [�̂℄ = E

�

1

n� 1

X

x

i

�

=

n

n� 1

�

although the bias,

b

n

(�̂) =

n

n� 1

�� � =

�

n� 1

! 0 , for large n.

This estimator is thus asymptotially unbiased.

If we know the bias, we an onstrut a new estimator by orreting the old

one for its bias. For example, from no. 3 and its bias we onstrut no. 1 simply by

multiplying no. 3 by (n� 1)=n.

Lak of bias is a reason to prefer no. 1 to no. 3. However, nos. 2 and 8 are also

unbiased. The trimmed mean (no. 9) is unbiased if the parent p.d.f. is symmetri

about its mean. The sample median (no. 10) is also unbiased if the parent median

equals the parent mean. Similarly, nos. 6 and 7 will be unbiased for ertain p.d.f.'s.

Variane Now suppose we want to estimate the variane of the parent p.d.f.

Assume that we know the true mean, �. Usually this is not the ase, but ould be,

e.g., if we know that the p.d.f. is symmetri about some value. Then following our

above experiene with the sample mean, we might expet the sample variane,

s

2

1

=

1

n

n

X

i=1

(x

i

� �)

2

(8.3)
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to be a good estimator of the parent variane, �

2

. (N.b., do not onfuse the standard

deviation, �, of the parent p.d.f. with the `error' on �̂.) Assume that the parent

variane, �

2

, is �nite (exists). Then

E

h

s

2

1

i

=

1

n

E

h

X

(x

i

� �)

2

i

=

1

n

E

h

X

�

x

2

i

� 2x

i

�+ �

2

�i

=

1

n

E

h

X

x

2

i

� 2�

X

x

i

+

X

�

2

i

=

1

n

h

E

h

X

x

2

i

i

� 2�E

h

X

x

i

i

+ n�

2

i

=

1

n

h

nE

h

x

2

i

� 2n�E [x℄ + n�

2

i

= E

h

x

2

i

� 2�

2

+ �

2

= �

2

+ �

2

� 2�

2

+ �

2

, sine �

2

= E [x

2

℄� �

2

= �

2

Thus



�

2

= s

2

1

is an unbiased estimator of the variane of the parent p.d.f., �

2

, if �

is known.

But usually � is not known. We therefore try using our estimate of �, �̂ = �x,

instead of �:

s

2

x

=

1

n

X

(x

i

� �x)

2

=

1

n

X

x

2

i

� �x

2

= x

2

� �x

2

(8.4)

This has the expetation,

E

h

s

2

x

i

= E

"

P

x

2

i

n

�

�

P

x

i

n

�

2

#

=

1

n

�

E

h

X

x

2

i

i

�

1

n

E

�

�

X

x

i

�

2

��

(8.5)

The x

i

are independent. Hene E [

P

x

2

i

℄ = nE [x

2

℄. Also,

�

2

= E

h

x

2

i

� �

2

and V

h

X

x

i

i

= E

h

(

X

x

i

)

2

i

�

�

E

h

X

x

i

i�

2

Substituting in (8.5), gives

E

h

s

2

x

i

=

1

n

�

n

�

�

2

+ �

2

�

�

1

n

�

V

h

X

x

i

i

+

�

E

h

X

x

i

i�

2

��

Using V

h

X

x

i

i

=

X

V [x

i

℄ = nV [x℄ = n�

2

and E

h

X

x

i

i

= nE [x℄ = n�

we �nd

E

h

s

2

x

i

=

1

n

�

n�

2

+ n�

2

�

1

n

�

n�

2

+ (n�)

2

�

�

=

1

n

(n� 1) �

2

(8.6)
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Thus s

2

x

is a biased estimator of �

2

. The reason

is that, not knowing �, we used our estimate of

the mean, �̂ = �x, the sample mean. The spread

of the data about the sample mean is learly

less than its spread about the true mean. Sine

the variane is the spread about the true mean,

s

2

x

underestimates the true variane.

-

�x � x

This bias is easily removed. An unbiased estimator for the parent variane when

the parent mean is unknown is

s

2

=

n

n� 1

s

2

x

=

n

n� 1

�

x

2

� �x

2

�

=

1

n� 1

X

(x

i

� �x)

2

(8.7)

Note that the above alulations did not depend at all on what the parent p.d.f.

was, not even on the C.L.T.

If the p.d.f. is Gaussian or if n is large enough that the C.L.T. applies, let

z

i

=

x

i

� �x

�

Then

X

z

2

i

=

1

�

2

X

(x

i

� �x)

2

is distributed as �

2

(setion 3.12). There is one relationship among the z

i

's:

X

z

i

=

1

�

X

(x

i

� �x) =

1

�

�

X

x

i

� n�x

�

= 0

whih follows from the de�nition of �x. Hene, the p.d.f. for

P

z

2

i

is a �

2

of n � 1

degrees of freedom. Reall that E [�

2

(n� 1)℄ = n�1. This is another way of seeing

that

E

h

s

2

i

= E

"

�

2

n� 1

X

z

2

i

#

= E

"

�

2

n� 1

�

2

#

= �

2

1

n� 1

E

h

�

2

i

= �

2

i.e., that



�

2

= s

2

is an unbiased estimator of �

2

when � is unknown.

This use of �

2

is of more than passing interest: In general, if we have n mea-

surements, x

i

, of a quantity, with k � n relationships (onstraints) among them,

then the �

2

onstruted from the

P

x

2

i

will have n� k degrees of freedom.

The (n�1) instead of n in s

2

also makes sense in the limit n = 1. With only one

measurement of x, you have an estimate �̂ = x of �, but no estimate of the width

of the distribution. This is onsistent with s

2

=

1

1�1

(x � �̂)

2

=

0

0

= indeterminate.

However, if � is known you do not have to use the measurement to estimate �; you

an use it instead to estimate �

2

. Hene s

1

ontains n instead of (n� 1).
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8.2.2 Consisteny

If we take more data, we should expet a better (more aurate) estimate of the

parameters. An estimator whih onverges to the true value with inreasing n is

termed onsistent.

De�nition: An estimator,

^

�, of � is onsistent if for any � > 0 (no matter how small),

lim

n!1

P (j

^

� � �j � �) = 0 (8.8)

This is rather analogous to the de�nition of onvergene of a series exept that

here it is the probability of the deviation from the true value whih approahes 0

rather than the deviation itself. This is therefore sometimes alled onvergene in

probability.

If

^

� is an average of data whih are distributed aording to a p.d.f. for whih

the C.L.T. applies, then

^

� is a onsistent estimator, sine the width of the p.d.f.,

N(�x;�;

�

2

n

) approahes 0 for n!1.

In our list of estimators of the mean no. 2 is learly inonsistent. Nos. 1, 3,

and 8 are obviously onsistent if the C.L.T. applies. No. 10 is onsistent only if the

mean and median of the parent p.d.f. are equal. Likewise, the onsisteny of nos.

6, 7 and 9 depends on the p.d.f.

The usual example of an inonsistent estimator is the sample mean for the

Cauhy p.d.f., whih, as we have seen, does not have a �nite variane. The C.L.T.

does not then apply, and in fat �x is distributed just like x. Thus, �x does not

onverge to anything! This illustrates the fat that an unbiased estimator is not

neessarily onsistent.

8.2.3 Variane of an estimator, eÆieny

An estimator is alled eÆient if it has a small variane, in partiular if it has the

smallest possible variane (see the following setion).

Repetition of an experiment generally results in a di�erent value of our (onsis-

tent) estimator. If the variane of the sampling p.d.f. of the estimator, whih, for

onveniene, we will all the variane of the estimator, is small, these values will

luster losely about the true value, or, if the estimator is biased, about the biased

(i.e., wrong) value. We will see that in general the variane of an estimator depends

on the parent p.d.f., in partiular, on the variane (�

2

) of the parent p.d.f.

For example, onsider the variane of the sample mean. As we have seen (hap-

ter 5 and exerise 23),

V

�

�x =

1

n

X

x

i

�

=

1

n

2

X

V [x

i

℄ =

1

n

2

nV [x℄ =

�

2

n

(8.9)

Now onsider the sample variane, whih was de�ned in equation 8.7. Assuming

that the x

i

follow a normal p.d.f. (or that n is large and the C.L.T. applies), the
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sample variane has variane

V

h

s

2

i

= V

"

1

n� 1

�

2

X

(x

i

� �x)

2

�

2

#

=

"

�

2

n� 1

#

2

V

h

X

z

2

i

i

where z

i

=

x

i

��x

�

. As we have seen (setion 8.2.1),

P

n

i=1

z

2

i

is distributed as �

2

(n�1).

Thus,

V

h

X

z

2

i

i

= V

h

�

2

(n� 1)

i

= 2(n� 1)

Hene,

V

h

s

2

i

=

2(�

2

)

2

n� 1

(8.10)

We see that the expressions for the variane of �x and s

2

both ontain �

2

, the

variane of the parent p.d.f., whih we may not know. (If we do know it we ertainly

will not be interested in estimating it.) The usual proedure is to use instead our

estimate of �

2

, s

2

. Then the estimated varianes of our estimates are

b

V [�x℄ =

s

2

n

,

b

V

h

s

2

i

=

2(s

2

)

2

n� 1

(8.11)

Sometimes you do know �

2

. We give two examples: (1) You average many mea-

surements of a quantity, e.g., the length of a table. The p.d.f. is then a onvolution

of a Æ-funtion about the true length with a resolution funtion for the measuring

apparatus, whih is just a Gaussian entered about the true length with � equal to

the resolution. But you have alibrated the measuring apparatus by measuring a

standard length a great many times. From this alibration you know �

2

. So you

only need to estimate �. (2) You are designing an experiment and you want to know

how many measurements you need to make in order to attain a given auray. You

then make reasonable assumptions about the p.d.f. and alulate what V will be

for the di�erent assumptions about �, �

2

, and n.

To summarize, assuming that we do not know � or �

2

, they are estimated by

�̂ = �x�

q

V [�x℄ and



�

2

= s

2

�

q

V [s

2

℄ (8.12a)

= �x�

s

s

2

n

= s

2

�

s

2

n� 1

s

2

(8.12b)

Note that the `error' on �̂ has itself an error. By `error propagation', whih will

be overed in setion 8.3.6,

V [s

2

℄ =

�

ds

2

ds

�

2

V [s℄ = (2s)

2

V [s℄

Hene, V [s℄ =

1

4s

2

V [s

2

℄ =

1

4s

2

2(s

2

)

2

n�1

=

s

2

2(n�1)

and

q

V [s℄ =

p

s

2

p

2(n�1)



8.2. PROPERTIES OF ESTIMATORS 101

The error on the error on �̂ is then (with Æ indiating `error')

Æ(Æ�̂) =

q

V [Æ�̂℄ =

v

u

u

u

t

V

2

4

s

s

2

n

3

5

=

s

1

n

V

h

p

s

2

i

=

p

s

2

q

2n(n� 1)

=

Æ�̂

q

2(n� 1)

Thus for n not too small, the error on the error on �̂ is negligible.

8.2.4 Interpretation of the Variane

We usually interpret V [q̂℄ = �

2

as the \square of the expeted error" of q̂ and we

write q = q̂�Æq where Æq = �. If the p.d.f. of q̂ is a Gaussian with variane �

2

, then

the hane, in some sense, that the true value of q, q

t

, is within q̂ � � � q

t

� q̂ + �

is

P (q̂ � � � q

t

� q̂ + �) =

Z

q̂+�

q̂��

N(q; q̂; �

2

) dq � 0:68

In exatly what sense this is so will be disussed in setion 9.

We ould have used some other quantity to indiate the `error', e.g., the average

of the absolute deviation jq̂ � qj, instead of

q

(q̂ � q)

2

. The variane is onventional

for a number of reasons:

� It is low order and hene easy to alulate.

� It is suÆient in the ase of a Gaussian, being one of the two parameters of

the Gaussian, and the Gaussian is, by the C.L.T., often the asymptoti limit

of the p.d.f.

� It is easily onverted to a on�dene interval in the Gaussian limit (f. hap-

ter 9).

When the p.d.f. of q̂ is non-Gaussian one must be areful. If the p.d.f. is skewed,

this an be indiated by stating asymmetri errors. But that is not foreseen in the

propagation of errors. Also, for a non-Gaussian P (q̂ � � � q

t

� q̂ + �) is usually

not 68%. Nor is the probability of being within, e.g., 2� the same in the non-

Gaussian ase as in the Gaussian ase. Nor do the errors even have to be symmetri.

The propagation of errors (f. setion 8.3.6) is usually the least trustworthy

when there is a dependene on 1=q. Going to higher orders in the expansion does

not neessarily help beause the resulting error, though perhaps more aurate, still

has the same problems resulting from skewness and the probability ontent of �2�.

These questions are often onveniently investigated by Monte Carlo methods. As

previously stated, the best ure for these problems is to rewrite the p.d.f. in terms

of the parameters you want to estimate.

We shall return to these questions when disussing on�dene intervals (hapter

9) and hypothesis testing (hapter 10).



102 CHAPTER 8. PARAMETER ESTIMATION

8.2.5 Information and Likelihood

The onepts `information' and `likelihood' will be useful in disussing the variane

of estimators. We introdue them now:

There are several di�erent de�nitions of information. They are named after

the person who introdued them. We will use that of R. A. Fisher, whih is then

referred to as the information of R. A. Fisher. However, sine we will only treat this

one de�nition of information, we will simply refer to it as information. But bear in

mind that the word an have other de�nitions. We will see that Fisher's de�nition

meets the following requirements, whih we �nd neessary for what we would like

the word `information' to mean:

1. The information should inrease if we make more observations.

2. Data, whih are irrelevant to the estimation of the parameters we wish to

estimate or to the hypothesis we wish to test, should ontain no information.

Of ourse the same data may ontain information for other parameters or

other tests.

3. The preision of the estimation or test should be greater if we have more

information.

Present-day, large-sale experiments usually produe a great amount of data of

whih only a small part is useful for a given measurement or test. The information

ontained in a datum an be used to deide whether to rejet it in order to redue

the amount of data to a manageable size. (It is diÆult to work with data on 100

magneti tapes; working with just one tape, or a small disk �le is muh easier.)

A good riterion for data redution is to rejet the maximum of data with the

minimum loss of information. This is usually a ompromise, although the rejetion

of some data may atually result in no loss of information.

Likelihood funtion: We observe a real random variable, X, sampled from a

p.d.f., f(x; �), where � is a parameter. The set of allowed values of X is denoted by




�

, the subsript emphasizing the possible dependene on the parameter. Both X

and � ould be sets of values X and �, not neessarily of the same dimension.

Consider a set of n independent observations of X, x

i

. The joint p.d.f. of the x

i

is, sine they are independent,

L(x; �) = L(x

1

; x

2

; : : : ; x

n

; �) =

n

Y

i=1

f(x

i

; �) (8.13)

The funtion L depends on both the measurements x

i

and on the parameters �.

However, after having done the experiment, the x

i

are �xed. Then L an be regarded

as a funtion of � only. L is alled the likelihood funtion. We also de�ne its

logarithm,

` � lnL(x

1

; : : : ; x

n

; �) =

n

X

i=1

ln f(x

i

; �) (8.14)
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Information: The information (of R. A. Fisher) given about a parameter � by

an observation of the r.v. x is de�ned as the expetation

I

x

(�) = E

2

4

 

� lnL(x; �)

��

!

2

3

5

= E

2

4

 

�`

��

!

2

3

5

(8.15)

=

Z




�

 

� lnL(x; �)

��

!

2

L(x; �) dx

In the ase where there are k parameters, the information is a k � k matrix:

h

I

x

(�)

i

ij

= E

"

� lnL(x; �)

��

i

� lnL(x; �)

��

j

#

=

Z




�

� lnL(x; �)

��

i

� lnL(x; �)

��

j

L(x; �) dx

This de�nition of information may seem rather arbitrary, but we shall see that

it satis�es the three requirements stated above.

Sore: Notation beomes more ompat by introduing the sore. We de�ne the

sore of one measurement as

S

1

�

�

��

ln f(x; �) (8.16)

Note that the sore, being a funtion of r.v.'s, is itself a r.v. The sore of the entire

sample is then de�ned to be the sum of the sores of eah observation:

S(x; �) �

n

X

i=1

S

1

(x

i

; �) (8.17)

Then

S(x; �) =

n

X

i=1

�

��

ln f(x

i

; �)

=

�

��

n

X

i=1

ln f(x

i

; �)

=

� lnL(x; �)

��

Summarizing,

S(x; �) =

� lnL(x; �)

��

=

n

X

i=1

S

1

(x

i

; �) =

�

��

n

X

i=1

ln f(x

i

; �) (8.18)

This result ombined with equation 8.15 shows that we an write the information

of the sample x on the parameter � as the expetation of the square of the sore:

I

x

(�) = E

h

(S(x; �))

2

i

(8.19)
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If 


�

is independent of �, we an show that the expetation of the sore is zero

and we an derive another relation between the information and the sore. Let us

assume that

1. 


�

is independent of �, and

2. L(x; �) is regular enough that we an interhange the order of

�

2

��

i

��

j

and

R

dx.

If ondition (1) holds, ondition (2) will also generally hold for distributions en-

ountered in physis. Now,

E [S

1

(x; �)℄ = E

"

�

��

ln f(x; �)

#

=

Z

"

�

��

ln f(x; �)

#

f(x; �) dx

=

Z

1

f(x; �)

"

�

��

f(x; �)

#

f(x; �) dx

=

Z

�

��

f(x; �) dx

Interhanging the order of integration and di�erentiation (assumption 2),

E [S

1

(x; �)℄ =

�

��

Z

f(x; �) dx =

�

��

1 = 0 (8.20)

sine f(x; �) is normalized for all values of �. Hene,

E [S(x; �)℄ =

X

E [S

1

(x

i

; �)℄ = 0 (8.21)

Using the fat that the variane of a quantity is given by V [a℄ = E [a

2

℄�(E [a℄)

2

,

we see from equations 8.19 and 8.21 that

I

x

(�) = V [S(x; �)℄ (8.22)

We have shown above (equation 8.19) that in general the information on � is

equal to the expetation of the square of the sore. Under the above two assumptions

you an show (exerise 31) that the information is also given by

I

x

(�) = �E

"

�S(x; �)

��

#

(8.23)

These results (equations 8.21 and 8.23) are very useful, but do not forget the as-

sumptions on whih they depend.
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Does I satisfy the requirements? We an now show that the information

inreases with the number of independent observations. For n observations,

I(�) = E

2

4

 

n

X

i=1

S

1

(x

i

; �)

!

2

3

5

= V

"

n

X

i

S

1

(x

i

; �)

#

+

(

E

"

n

X

i

S

1

(x

i

; �)

#)

2

where we have used the fat that V [a℄ = E [a

2

℄ � (E [a℄)

2

. The seond term is

zero under the assumptions that 


�

is independent of � and that the order of

di�erentiation and integration an be interhanged as in the previous paragraph

(eq. 8.21). However, let us now relax these assumptions.

Sine the x

i

are independent, the variane of the sum is just the sum of the

varianes. And sine all the x

i

are sampled from the same p.d.f., the variane is the

same for all i. A similar argument applies to the seond term. Hene,

I(�) = nV [S

1

(x; �)℄ + n

2

fE [S

1

(x; �℄g

2

(8.24)

Following the same steps for n = 1 gives the same expression with n = 1. Hene,

the information inreases with the number of observations, our �rst requirement for

information.

If the assumptions of the previous paragraph apply, the seond term in the above

equation is zero by equation 8.20. Then,

I(�) = n I

1

(�) (8.25)

and the information of n independent observations is just n times the information

of one observation. If the assumptions are not true, the seond term may not be

zero but will still be positive; hene I will still inrease with n.

For data whih are irrelevant for the estimation of �, the p.d.f. will not depend

on � and the sore will, from its de�nition (equations 8.16 and 8.17), be zero. This

implies that the information will also be zero, whih was our seond requirement

for information.

We now turn to the third requirement, the onnetion between the preision of

an estimator and the information.

8.2.6 Minimum Variane Bound

It turns out that there is a lower limit to the variane of an estimator under ertain

general onditions.

Rao-Cram�er inequality: Suppose that we have an estimator

^

� of � with bias

b

n

(

^

�) = E

h

^

�

i

� �, that the variane V

h

^

�

i

is �nite, and that the range of X does
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not depend on �. Then

E

h

^

� S(x; �)

i

=

Z

: : :

Z

^

�

"

�

��

lnL(x; �)

#

L(x; �) dx

1

: : : dx

n

=

Z

: : :

Z

^

�

"

1

L(x; �)

�

��

L(x; �)

#

L(x; �) dx

1

: : : dx

n

=

Z

: : :

Z

^

�

"

�

��

L(x; �)

#

dx

1

: : : dx

n

=

Z

: : :

Z

^

�

�

��

"

n

Y

i=1

f(x

i

; �) dx

i

#

=

Z

: : :

Z

�

��

"

^

�

n

Y

i=1

f(x

i

; �) dx

i

#

The last step follows beause

^

� is a statisti and therefore does not depend on �.

Assuming that we an interhange the order of di�erentiation and integration, we

�nd

E

h

^

� S(x; �)

i

=

�

��

Z

: : :

Z

^

�

n

Y

i=1

[f(x

i

; �) dx

i

℄

=

�

��

E

h

^

�

i

=

�

��

h

� + b

n

(

^

�))

i

= 1 +

�

��

b

n

(

^

�)

Both

^

� and S(x; �) are r.v.'s. Their ovariane is

ov

h

S(x; �);

^

�(x)

i

= E

h

S(x; �)

^

�(x)

i

� E [S(x; �)℄

| {z }

=0; eq. 8.21

E

h

^

�(x)

i

= 1 +

�

��

b

n

(

^

�)

Therefore, their orrelation oeÆient is

�

2

=

n

ov

h

S;

^

�

io

2

V [S℄ V

h

^

�

i

=

h

1 +

�

��

b

n

(

^

�)

i

2

I(�)V

h

^

�

i

Sine �

2

� 1, we have

�

2

(

^

�) = V

h

^

�

i

�

h

1 +

�

��

b

n

(

^

�)

i

2

I(�)

(8.26)

Thus, there is a lower bound on the variane of the estimator. For a given set

of data and hene a given amount of information, I(�), on �, we an never �nd an

estimator with a lower variane.
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The more information we have, the lower this bound is, in aordane with our

third requirement for information.

If the estimator is a onstant,

^

� = , then the bias is b = � � and the minimum

variane is 0, whih is not a very interesting bound sine the variane of a onstant

is always 0.

The inequality (8.26) is usually known as the Rao-Cram�er inequality or the

Frehet inequality. It was disovered independently by a number of people inluding

Rao,

35

Cram�er,

15

and Frehet. The �rst were Aitken and Silverstone.

36

Although we

have assumed that the range of X is independent of � and that we ould interhange

the order of di�erentiation and integration, the result (8.26) an be obtained with

somewhat more general assumptions.

11,13

In general, we prefer unbiased estimators. In that ase the inequality redues to

�

2

(

^

�) � 1=I(�). This is also the ase if the bias of the estimator does not depend

on the true value of �. For more than one parameter this result generalizes to

�

2

(

^

�

i

) �

h

I

�1

(�)

i

ii

(8.27)

the diagonal element of the inverse of the information matrix.

We de�ne the eÆieny of the estimator as

�(

^

�) =

�

2

min

(

^

�)

�

2

(

^

�)

� 1 (8.28)

whih, for unbiased estimators, is just

�(

^

�) =

1

�

2

(

^

�) I(�)

� 1 (8.29)

An estimator whose variane is equal to the minimum variane given by equa-

tion 8.26, i.e., has �(

^

�) = 1, is termed eÆient. It is not always possible to

onstrut an eÆient estimator.

Examples:

Gaussian with known mean. We have seen (setion 8.2.1) that



�

2

=

P

(x

i

�

�)

2

=n is an unbiased estimator of the variane of a Gaussian of known mean. It is

easy to show (exerise 32) that it is also an eÆient estimator.

Exponential. Consider n independent observations from an exponential p.d.f.,

f(x;�) =

1

�

e

�x=�

; � > 0

We wish to estimate �. We note that

ln f(x;�) = � ln��

x

�
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The sore of one observation is then

S

1

(x;�) =

�

��

 

� ln��

x

�

!

= �

1

�

+

x

�

2

The information of one observation is then, using equation 8.19 or 8.23, the latter

being appliable sine the range of X is independent of �,

I

1

(�) = E

h

(S

1

(x;�))

2

i

= �E

"

�S

1

(x;�)

��

#

= �E

"

1

�

2

�

2x

�

3

#

= �

1

�

2

+

2

�

2

=

1

�

2

And the total information of the sample is

I(�) = nI

1

(�) =

n

�

2

If �̂ is unbiased, its minimum variane is then 1=I = �

2

=n. We try the sample mean

as an estimator: �̂ = �x. We know (equation 8.2) that the sample mean is always

an unbiased estimator of the mean. The variane of the sample mean is

V [�x℄ =

1

n

V [x℄ =

1

n

�

E

h

x

2

i

� �

2

�

=

1

n

Z

1

0

x

2

1

�

e

�x=�

dx

| {z }

=2�

2

�

�

2

n

=

�

2

n

whih is just the minimum variane found above. Thus the sample mean is an

eÆient estimator of the mean of an exponential p.d.f.

Note that the sore is

S(x;�) =

n

X

i=1

S

1

(x

i

;�) = �

n

�

+

P

x

i

�

2

= �I(�) (�� �̂)

Thus the sore is a linear funtion of the estimator. This is not a oinidene, but

a general feature of unbiased eÆient estimators, as we show in the next setion.

8.2.7 EÆient estimators|the Exponential family

In this setion we shall show that an eÆient estimator an be found if and only if

the p.d.f. is a member of a quite general lass of funtions known as the exponential

family.

The minimum variane bound was found using

�

2

=

n

ov

h

S;

^

�

io

2

V

h

S

i

V

h

^

�

i

� 1
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The equality � = �1 orresponds to a linear relationship between the variables

(exerise 7), i.e., a straight line on a graph of S vs.

^

�. Thus, assuming that the

onditions of the minimum variane bound hold, an estimator

^

� an be eÆient if

and only if it is a linear funtion of S, with the possible exeption of regions where

the probability is zero.

Let A(�) and B(�) be funtions of �, but not of x, and A

0

, B

0

be their derivatives

with respet to �. Then we an write the linear relationship as

�

��

ln f(x; �) � S = A

0

(�)

^

�(x) +B

0

(�) (8.30)

Sine

^

� is a statisti and hene depends only on x, integration over � gives

ln f(x; �) = A(�)

^

�(x) +B(�) +K(x) (8.31)

where the integration onstant K may depend on x but not on �. Then, where the

required normalization is inluded in B and/or K,

f(x; �) = exp

h

A(�)

^

�(x) +B(�) +K(x)

i

(8.32)

Any p.d.f. of the above form is said to belong to the exponential family. What

we have shown is that an eÆient estimator an be found if and only if the p.d.f. is

of the exponential family where the estimator enters the exponent in the way shown

in equation 8.32.

Note that the eÆient estimator is not neessarily unique sine the produt A �

^

�

an often be fatored in more than one way. The estimator

^

� will be an unbiased

estimator for some quantity, although not neessarily for the quantity we want to

estimate. It may also not be an estimator whih we will be able to use. Let us now

alulate the expetation of

^

� and see for what quantity it is an unbiased estimator:

From equation 8.30,

^

� =

S(x; �)

A

0

(�)

�

B

0

(�)

A

0

(�)

Sine A

0

and B

0

do not depend on x, the expetation is then

E

h

^

�

i

=

1

A

0

(�)

E [S(x; �)℄�

B

0

(�)

A

0

(�)

Sine E [S(x; �)℄ = 0, we have

E

h

^

�

i

= �

�B(�)

��

�A(�)

��

(8.33)

This is the quantity for whih the

^

� in equation 8.32 is an unbiased, eÆient esti-

mator.
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If there are k parameters, �, equation 8.32 generalizes to

f(x; �) = exp

h

A(�) �

^

�(x) +B(�) +K(x)

i

(8.34)

The sore for the i

th

parameter is then

S(x; �

i

) =

�

��

i

ln f(x; �) =

X

j

^

�

j

(x)

�A

j

(�)

��

i

+

�B(�)

��

i

Taking the expetation, we arrive at the generalization of equation 8.33, whih is a

set of k equations:

E

h

^

�

i

i

= �

�B(�)

��

i

+

P

j 6=i

E

h

^

�

j

i

�A

j

(�)

��

i

�A

i

(�)

��

i

(8.35)

Examples:

Gaussian. As an example we take the normal p.d.f., N(x;�; �

2

), whih has

two parameters � =

�

�

�

2

�

. We write N(x;�; �

2

) in an exponential form:

N(x;�; �

2

) =

1

p

2�

p

�

2

exp

"

�

1

2

(x� �)

2

�

2

#

= exp

"

�

�

2

x�

1

2�

2

x

2

�

1

2

 

�

2

�

2

+ ln(2��

2

)

!#

For n independent observations the p.d.f. beomes

n

Y

i=1

N(x

i

;�; �

2

) = exp

"

n�

�

2

�x�

n

2�

2

x

2

�

n

2

 

�

2

�

2

+ ln(2��

2

)

!#

from whih we see that we an hoose (in equation 8.34)

A

1

(�) =

n�

�

2

^

�

1

(x) = �x

A

2

(�) = �

n

2�

2

^

�

2

(x) = x

2

B(�) = �

n

2

�

�

2

�

2

+ ln(2��

2

)

�

K(x) = 0

Then (from equation 8.35)

�A

1

��

=

n

�

2

�A

2

��

= 0

�B

��

= �n

�

�

2

Thus

^

�

1

= �x is an eÆient and unbiased estimator of

�

�n�=�

2

n=�

2

= �

�A

1

��

2

=

n�

�

4

�A

2

��

2

=

n

2�

4

�B

��

2

=

n�

2

2�

4

�

n

2�

2

Thus

^

�

2

= x

2

is an eÆient and unbiased estimator of

�

2

+ �

2

. Hene, x

2

� �

2

= (x� �)

2

is an eÆient and

unbiased estimator of �

2

. However, this is of use to us

only if we know �.
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Note the role of the number of observations n. The likelihood funtion, L, is

just the p.d.f. with eah term in the exponent replaed by a sum of n terms. Thus

L an be obtained from f by the replaements: x! �x, x

2

! x

2

, et. and A! nA,

B ! nB, and K ! nK. But �

�B=��

�A=��

is unhanged by these substitutions. Thus

we an work with f instead of L, just replaing any funtion of x by its average in

the expression for

^

�.

Binomial. Disrete p.d.f.'s an also belong to the exponential family. As an

example we take the binomial p.d.f.,

f(k;n; �) =

 

n

k

!

�

k

(1� �)

n�k

whih an be written

f(k;n; �) = exp

"

k ln

 

�

1� �

!

+ n ln(1� �) + ln

 

n

k

!#

With n �xed, there is just one parameter to estimate, �.

A(�) = ln

�

�

1��

�

^

�(k) = k

B(�) = n ln(1� �) K(k) = ln

�

n

k

�

The expetation of the estimator is

E

h

^

�

i

= �

�B=��

�A=��

= n�

Thus k is an eÆient, unbiased estimator of n�, or k=n is an eÆient, unbiased

estimator of �.

Whih estimator is the best? Returning to the list of 10 estimators for the

mean at the start of the setion, we an ask whih of the 10 is the best. Unfor-

tunately, there is no unique answer. In general we prefer unbiased, onsistent and

eÆient estimators. We an learly rejet nos. 2, 3, 4, 5 and 8. Nor is no. 6, the

sample mode, a good hoie, even when the parent mode equals the parent mean,

sine it uses so little of the information. However, whih of the others is `best'

depends on the parent p.d.f.

The sample mean is eÆient for a normal p.d.f. However, for a uniform p.d.f.

(f(x; a; b) =

1

b�a

) where the limits (a; b) are unknown, estimator no. 7,

1

2

x

min

+

1

2

x

max

, has a smaller variane that �x.

No. 10, the sample median, has a larger variane that the sample mean for

a Gaussian p.d.f., but for a `large-tailed Gaussian' it an be smaller. No. 9, the

trimmed sample mean, throws away information but may still be best, in partiular

if we think that points in the tails are largely due to mismeasurement.
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8.2.8 SuÆient statistis

A statisti T (x) is said to be suÆient for the parameter � if the onditional p.d.f. of

x, given T , f(xjT ), is independent of �. (T and � may of ourse be multidimensional

and of di�erent dimensions.) In other words, T is suÆient if T ontains all the

information on �.

Clearly, T = x is a suÆient statisti sine that is all the information we have|

on � or on anything else. But this doesn't help us very muh. The importane

of suÆieny is in data redution. If we have a suÆient statisti, T , of a smaller

dimension than the data, x, we an redue the amount of data. This an be of

enormous pratial advantage.

From n independent observations x

i

, one an onstrut m � n independent

statistis t; t

1

; t

2

; : : : ; t

m�1

(in an in�nite number of ways). From the de�nition of

marginal and onditional p.d.f.'s we an write the p.d.f. of these statistis as (f.

equation 2.28)

f(t; t

1

; t

2

; : : : ; t

m�1

; �) = g(t; �) h(t

1

; t

2

; : : : ; t

m�1

; �jt) (8.36)

where g(t; �) is the marginal p.d.f. of t and h is the onditional p.d.f. Now if

h is independent of �, then learly the t

1

; t

2

; : : : ; t

m�1

ontribute nothing to our

knowledge of �. If this is true for any set of t

i

and any m < n then t learly

ontains all the information on �. We therefore de�ne a suÆient statisti t as: t is

a suÆient statisti for � if for any hoie of t

1

; t

2

; : : : ; t

m�1

(whih are independent

of t),

f(t; t

1

; t

2

; : : : ; t

m�1

; �) = g(t; �) h(t

1

; t

2

; : : : ; t

m�1

jt) (8.37)

Now, what does this mean in terms of the likelihood? The likelihood funtion

is the p.d.f. for x and is thus related to the f of equation 8.37 by a oordinate

transformation. Starting from equation 8.37, let t

i

= x

i

for i = 1; 2; : : : ; n � 1.

Then

f(t; x

1

; x

2

; : : : ; x

n�1

; �) = g(t; �) h(x

1

; x

2

; : : : ; x

n�1

jt)

The p.d.f. in terms of x is then

L(x; �) = g(t; �) h(x

1

; x

2

; : : : ; x

n�1

jt)

�

�

�

�

�

J

 

x

1

; : : : ; x

n

x

1

; : : : ; x

n�1

; t

!

�

�

�

�

�

whih is, sine the Jaobian does not involve �, of the form

L(x; �) = g(t; �) k(x) (8.38)

Conversely, starting from equation 8.38, we make the transformation

t = t(x

1

; : : : ; x

n

)

t

i

= t

i

(x

1

; : : : ; x

n

) ; i < m

t

i

= x

i

; i = m; : : : ; n� 1
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L(x; �) dx then transforms to

g(t; �) k(x)

�

�

�

�

�

J

 

t; t

1

; : : : ; t

n�1

x

1

; : : : ; x

n

!

�

�

�

�

�

dt

n

Y

i=1

dt

i

whih we integrate over dt

m

: : : dt

n�1

to obtain the p.d.f. f(t; t

1

; : : : ; t

m�1

). Neither

k nor J depend on �. However, the integration limits for t

m

; : : : ; t

n�1

(x

m

; : : : ; x

n�1

)

ould depend on �. If not, it is lear that we obtain the form of equation 8.37. It

turns out

11,13

that this is also true even when the integration limits do depend on

�.

Thus equations 8.37 and 8.38 are equivalent. If we an �nd a statisti t suh that

the likelihood funtion an be written in the form of equation 8.38, t is a suÆient

statisti for �.

The suÆient statistis for � having the smallest dimension are alled minimal

suÆient statistis for �. One usually prefers a minimal suÆient statisti sine

that gives the greatest data redution.

We have seen that if we an write the p.d.f. in the exponential form of equa-

tion 8.34,

f(x; �) = exp

h

A(�) �

^

�(x) +B(�) +K(x)

i

then

^

� is an eÆient estimator. Suh a p.d.f. learly fatorizes like equation 8.38

with

g(

^

�; �) = exp

h

A(�) �

^

�(x) +B(�)

i

k(x) = exp [K(x)℄

Thus, if the range of x does not depend on �,

^

�(x) is not only an eÆient estimator

of �, but also a suÆient statisti for �. If the range of x depends on �, the

situation is more ompliated. The reader is referred to Kendall and Stuart

11,13

for

the onditions of suÆieny.

8.3 Substitution methods

Now that we know something about the properties of estimators, let us turn to

the problem of onstruting, or hoosing, an estimator. There are three general

methods of estimation, whih we will examine in turn. We begin with substitution

methods.

8.3.1 Frequeny substitution

This is the simplest method. It is useful when the parameter to be estimated is

a frequeny or the funtion of a frequeny. It onsists of simply estimating the

population (parent) frequeny by the experimentally observed (sample) frequeny.
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Suh estimators are also known as plug-in estimators, sine the data are simply

\plugged into" the parameter de�nition.

For example, if the underlying p.d.f. is a binomial, B(x;n; p) =

�

n

x

�

p

x

(1� p)

n�x

,

we would estimate p by p̂ = x=n. This is unbiased sine E [x℄ = np. It is also

eÆient sine B is a member of the exponential family of p.d.f.'s, as we saw in

setion 8.2.7. And we would estimate a funtion of p, g(p), by g(p̂) = g(x=n). This

method works well for large samples where the C.L.T. assures us that the di�erene

between E [x℄ and np is a small fration of np.

Advantages of this method are simpliity and the fat that the estimator is

usually onsistent. Disadvantages are that the estimator may be biased and that it

may not have minimum variane. However, if it is biased, we may be able to redue

the bias, or at least estimate its size by a series expansion:

Suppose that

^

� is an unbiased estimator of �. We wish to estimate some funtion

of �, g(�). Following the above presription, we use ĝ = g(

^

�). Then, expanding ĝ

about the true value of �, �

t

, assuming that the neessary derivatives exist,

ĝ = g(

^

�) = g(�

t

) + (

^

� � �

t

)

�g(�)

��

�

�

�

�

�

�=�

t

+

1

2

(

^

� � �

t

)

2

�

2

g(�)

��

2

�

�

�

�

�

�=�

t

+ : : :

Now we take the expetation. Sine

^

� is assumed unbiased, this gives simply,

E [ĝ℄ = g(�

t

) +

1

2

E

h

(

^

� � �

t

)

2

i

�

2

g(�)

��

2

�

�

�

�

�

�=�

t

+ : : :

Not knowing the true value �, we an not alulate E

h

(

^

� � �

t

)

2

i

. But we an

estimate it by V

h

^

�

i

. In the same spirit, we evaluate the derivative at � =

^

� instead

of at � = �

t

. Thus, to lowest order, there is a bias of approximately

1

2

V

h

^

�

i

�

2

g(�)

��

2

�

�

�

�=

^

�

.

In the ase of more than one parameter, �, this beomes

ĝ = g(

^

�) = g(�

t

) +

X

i

(

^

�

i

� �

ti

)

�g

��

i

�

�

�

�

�

�=�

t

+

1

2

X

i

X

j

(

^

�

i

� �

ti

)(

^

�

j

� �

tj

)

�

2

g

��

i

��

j

�

�

�

�

�

�=�

t

+ : : :

E [ĝ℄ = g(�

t

) +

1

2

X

i

X

j

V

ij

(

^

�)

�

2

g

��

i

��

j

�

�

�

�

�

�=

^

�

+ : : :

from whih we dedue that

ĝ

1

= ĝ �

1

2

X

i;j

V

ij

�

2

g

��

i

��

j

�

�

�

�

�

�=

^

�

(8.39)

has redued bias, provided that the orretion term is not large or rapidly varying.

If that is not true, it is not obvious that going to higher order terms in the expansion

would help, sine the problem may ome from using

^

� instead of the true value in

the expansion. In that ase more detailed investigation is needed, perhaps employ-

ing Monte Carlo tehniques to test the behavior of the estimators under di�erent

assumptions for �.
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8.3.2 Method of Moments

The method

This is another substitution method. To estimate a funtion q of the parameter �,

we write q(�) as a funtion of the moments of the p.d.f.:

q(�) = g(m

1

; m

2

; : : :)

where m

j

= E [x

j

℄. This an, of ourse, only be done if all the neessary moments

exist. We then estimate q(�) by replaing all the parent (population) moments, m

j

,

in g by the orresponding sample (experimental) moments. Thus,

q̂ = g(



m

1

;



m

2

; : : :) ;



m

j

= x

j

=

1

n

X

i

x

j

i

(8.40)

In this notation m

1

= �, the parent mean, and



m

1

= �x, the sample mean.

For example, to estimate the parent variane, V [x℄, we write the variane in

terms of the moments: V [x℄ = �

2

= m

2

�m

2

1

. We then estimate the moments by

the orresponding sample moments:



�

2

=



m

2

�



m

2

1

=

1

n

X

x

2

i

� �x

2

=

1

n

X

(x

i

� �x)

2

As we have previously seen (equation 8.6), this estimator, whih we have alled s

2

x

(equation 8.4), is biased. Thus the method of moments does not neessarily give

unbiased estimators.

As a seond example, take the Poisson p.d.f. For this p.d.f., the population mean

and the population variane are equal, � = V [x℄. Therefore, we ould estimate the

mean and the variane either

by

^

� =



m

1

= �x

or by

^

� =



m

2

�



m

2

1

=

1

n

P

(x

i

� �x)

2

Thus the method of moments does not neessarily provide a unique estimator.

Variane of sample moments

Of ourse, a moment estimator, like any estimator, is rather useless unless we

also estimate its unertainty. It an be easily shown (exerise 35) that in general,

assuming that the moments exist,

V [



m

k

℄ = V

�

1

n

X

x

k

i

�

=

1

n

�

m

2k

�m

2

k

�

(8.41)

ov [



m

j

;



m

k

℄ =

1

n

(m

j+k

�m

j

m

k

) (8.42)

We an estimate these varianes and ovarianes by replaing the moments by their

estimators and 1=n by 1=(n� 1) to remove the bias.
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By the C.L.T. the average tends to its expetation under the assumption that

the variane is �nite. Moments estimators, being averages, are therefore onsistent.

A word of aution is in order: If it is neessary to use higher order moments, you

should be autious. They are very sensitive to the tails of the distribution, whih

is the part of the distribution whih is usually the most a�eted by experimental

diÆulties.

8.3.3 Desriptive statistis

Moments provide a simple way to desribe the data without making any assumption

about the parent p.d.f. Sine the amount of data in present-day experiments is

usually far too large to publish, it is neessary to redue it to a reasonable volume,

but in suh a way that it remains useful.

In some ases we have a theory whih is in agreement with the data and it is

enough that the experimental data agree with the expetation. In other ases we

have no theory and the purpose of the experiment is to provide data whih an point

the way to a theory. The experimental moments of a distribution up to a ertain

(not too high) order provide a set of numbers with whih some future theory an

easily be ompared.

8.3.4 Generalized method of moments

Instead of the moments m

i

= E [x

i

℄, whih are moments of the funtions x

i

, we

an use moments of some other set of funtions, u

j

(x). These moments, E [u

j

℄, are

given by

E [u

j

℄ =

Z

u

j

(x)f(x; �) dx

Thus we have a number of equations for E [u

j

℄ in terms of �. We solve them for the

� in terms of the E [u

j

℄ and substitute the sample moments, �u

j

, for the expetations

to obtain our estimate of �. We will always need at least as many equations, and

hene at least as many funtions u

j

, as there are parameters to be estimated.

We take as an example the angular distribution of the deay of a vetor meson

into two pseudo-salar mesons. The angles � and � of the deay produts in the

rest system of the vetor meson are distributed as

f(os �; �) =

3

4�

�

1

2

(1� �

00

) +

1

2

(3�

00

� 1) os

2

� � �

1;�1

sin

2

� os 2�

�

p

2Re�

10

sin 2� os�

�

where the �'s are parameters to be estimated. The data onsist of measurements

of the angles, �

i

and �

i

, for n deays. From inspetion of the above expression for

f , we hoose three funtions to estimate the three parameters. The hoie is not

unique, but an obvious hoie is as follows. We then ompute the expetation of
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eah of the funtions:

funtion expetation

u

1

= os

2

� E [u

1

℄ =

1

5

(1 + 2�

00

)

u

2

= sin

2

� os 2� E [u

2

℄ = �

4

5

�

1;�1

u

3

= sin 2� os� E [u

3

℄ = �

4

5

p

2Re�

10

Replaing E [u

j

℄ by the sample mean �u

j

=

1

n

P

u

j

(os �

i

; �

i

) gives, e.g.,

�

4

5

p

2Re�̂

10

= �u

3

=

1

n

n

X

i=1

sin 2�

i

os�

i

whih we solve for Re�̂

10

.

This method is most elegant when the funtions u

j

form an orthonormal set.

Then

f(x) =

1

X

i=0

a

i

u

i

(x) and

Z

u

�

j

(x)u

k

(x) dx = Æ

jk

The expetations are then

E [u

�

k

(x)℄ =

Z

u

�

k

(x)f(x) dx = a

k

Thus the estimate of the oeÆient of the k

th

term is just the sample mean of the

(omplex onjugate of the) k

th

funtion,

â

k

= u

�

k

This estimator is unbiased and, by the C.L.T., asymptotially normally distributed

about a

k

.

8.3.5 Variane of moments

The variane of the k

th

sample moment, generalized or not, is

V

kk

� V [�u

k

℄ =

1

n

2

V

"

n

X

i=1

u

k

(x

i

)

#

=

1

n

V [u

k

(x)℄

=

1

n

E

�

�

u

k

(x)� E [u

k

(x)℄

�

2

�

(8.43)

whih redues to equation 8.41 for ordinary moments, u

k

(x) = m

k

= x

k

. This is

estimated by replaing the expetations by the sample means to give

b

V

kk

=

1

n

1

n� 1

n

X

i=1

�

u

k

(x

i

)� �u

k

(x)

�

2

=

1

n� 1

�

u

2

k

� �u

2

k

�

(8.44)
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where we have used

1

n�1

instead of

1

n

in order to have an unbiased estimate. The

general element of the ovariane matrix is estimated by

b

V

jk

[�u℄ =

1

n

1

n� 1

n

X

i=1

�

u

j

(x

i

)� �u

j

(x)

��

u

k

(x

i

)� �u

k

(x)

�

(8.45)

=

1

n� 1

(u

j

u

k

� �u

j

�u

k

) (8.46)

8.3.6 Transformation of the ovariane matrix under a hange

of parameters

Frequently it is not one of the moments that we want to estimate, but rather

some funtion of the moments, e.g., �̂

00

= (5�u

1

� 1)=2. We now examine how the

ovariane matrix for the �u

k

transforms under suh a hange of parameter. This

topi is usually known as propagation of errors. This is, of ourse, appliable to

funtions of any estimator, not just to moments.

We want to estimate � whih we write as a funtion of q, �(q). We �rst �nd

an estimate of q, q̂, and an estimate of its variane,

b

V [q̂℄. To avoid possible mis-

understanding, we denote the true (unknown) value of q by q

t

. The true value of

� is then �(q

t

). Our estimate of q, q̂, being a r.v., is of ourse distributed about

q

t

aording to some p.d.f. We wish to (approximately) evaluate the variane of

^

�

from the variane of q̂. We assume that q̂ is an unbiased estimator of q, whih is

true, at least asymptotially (C.L.T.), if q̂ is a moment.

We expand

^

� about the true value of q. Then

^

� = �(q̂) = �(q

t

) +

��

�q

�

�

�

�

�

q=q

t

(q̂ � q

t

) + : : :

and E

h

^

�

i

= �(q

t

) +

��

�q

�

�

�

�

�

q=q

t

E [(q̂ � q

t

)℄ + : : :

Sine q̂ is unbiased, E [(q̂ � q

t

)℄ = 0. Thus, to �rst order, E

h

^

�

i

= �(q

t

). Subtrating

the seond equation from the �rst gives, to �rst order,

^

� � E

h

^

�

i

=

��

�q

�

�

�

�

�

q=q

t

(q̂ � q

t

)

Hene,

V

h

^

�

i

� E

�

�

^

� � E

h

^

�

i�

2

�

=

 

��

�q

!

2

q=q

t

E

h

(q̂ � q

t

)

2

i

=

 

��

�q

!

2

q=q

t

V [q̂℄ (8.47)
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This an be estimated by substituting q̂ for q

t

and our estimate

b

V [q̂℄ for V [q̂℄:

b

V

h

^

�

i

=

 

��

�q

!

2

q=q̂

b

V [q̂℄ (8.48)

This tehnique works well only when seond and higher order terms are small and

when q̂ is unbiased.

We give a simple example, a fun-

tion linear in q. The result is

then, in fat, exat sine the se-

ond and higher order derivatives

are zero.

�(q) = A +Bq

��

�q

= B

V

h

^

�

i

= B

2

V [q̂℄ (8.49)

The general ase is similar to our treatment of hange of variables (setion

2.2.6). Indeed, it is in priniple better to transform the p.d.f. to a new p.d.f. in

terms of the parameter we want to estimate, e.g., f(x; q) ! g(x; �). In partiular

it is nie if we an transform to a p.d.f. having � as its mean (or other low order

moment), sine sample moments are unbiased estimators. However, in pratie

suh a transformation may be diÆult and it may be easier to estimate q than to

estimate � diretly.

6

-

q

�

E [q̂℄

�

1

dq

d�

f(q̂)

g(

^

�)

� = �(q)

Consider now the p.d.f.'s for the estima-

tors q̂ and

^

�. If the transformation � = �(q)

is non-linear, the shape of the p.d.f. g(

^

�) is

hanged from that of f(q̂) by the Jaobian

(j�q=��j in one dimension), as illustrated

in the �gure. In regions where d� < dq,

the probability piles up faster for � than

for q. Thus in the example the peak in

g(

^

�) ours below �

1

= g (E [q̂℄).

In partiular, if f(q̂) is normal, g(

^

�) is

not normal, exept for a linear transforma-

tion. This is a soure of bias, whih in the

�gure manifests itself as a long tail for g(

^

�) resulting in E

h

^

�

i

> �

1

.

Now let us treat the multidimensional ase, where q is of dimension n and � is

of dimension m. Note that m � n; otherwise not all �

i

will be independent and

there will be no unique solution. An example would be a p.d.f. for (x; y) for whih

we want only to estimate some parameter of the (marginal) distribution for r. In

this ase, n = 2 and m = 1.

We an then expand eah

^

�

i

about its true value in the same manner as for the

one-dimensional ase, exept that we now must introdue a sum over all parameters:

^

�

i

� �

i

(q̂) = �

i

(q

t

) +

n

X

k=1

��

i

�q

k

�

�

�

�

�

q=q

t

(q̂

k

� q

t k

) + : : :
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Assuming that q̂

i

is unbiased, its expetation is equal to the true value so that to

�rst order,

�

^

�

i

� E

h

^

�

i

i� �

^

�

j

� E

h

^

�

j

i�

=

n

X

k=1

n

X

l=1

��

i

�q

k

�

�

�

�

�

q=q

t

��

j

�q

l

�

�

�

�

�

q=q

t

(q̂

k

� q

t k

) (q̂

l

� q

t l

)

Taking expetations, and writing in matrix notation, we arrive at the generalization

of equation 8.47:

V

h

^

�

i

= D

T

(�)V

h

q̂

i

D(�) (8.50)

where,

D(�) =

0

B

B

B

B

B

�

��

1

�q

1

��

2

�q

1

: : :

��

m

�q

1

��

1

�q

2

��

2

�q

2

: : :

��

m

�q

2

.

.

.

.

.

.

.

.

.

.

.

.

��

1

�q

n

��

2

�q

n

: : :

��

m

�q

n

1

C

C

C

C

C

A

q=q

t

(8.51)

As in the one-dimensional ase we estimate this variane by replaing true values

by their estimates to arrive at the generalization of equation 8.48:

b

V

h

^

�

i

=



D

T

(�)

b

V

h

q̂

i



D(�) (8.52)

where,



D(�) =

0

B

B

B

B

B

�

��

1

�q

1

��

2

�q

1

: : :

��

m

�q

1

��

1

�q

2

��

2

�q

2

: : :

��

m

�q

2

.

.

.

.

.

.

.

.

.

.

.

.

��

1

�q

n

��

2

�q

n

: : :

��

m

�q

n

1

C

C

C

C

C

A

q=q̂

(8.53)

Warning: D is not symmetri.

8.4 Maximum Likelihood method

This method of parameter estimation is very general. It is often the simplest method

to use, partiularly in omplex ases, and maximum likelihood estimators have

ertain desirable properties.

8.4.1 Priniple of Maximum Likelihood

We have already met the likelihood funtion in setion 8.2.5. We repeat its de�-

nition here: The likelihood funtion is the joint p.d.f. for n measurements x given

parameters �:

L(x; �) = L(x

1

; x

2

; : : : ; x

n

; �) (8.54)
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If the x

i

are independent, this is just the produt of the p.d.f.'s for the individual

x

i

:

L(x; �) =

n

Y

i=1

f

i

(x

i

; �) (8.55)

where we have inluded a subsript i on f sine it is not neessary that all the x

i

have the same p.d.f.

In probability theory this p.d.f. expresses the probability that an experiment

idential to ours would result in the n observations x whih we observed. In prob-

ability theory we know � and the funtions f

i

, and we alulate the probability of

ertain results. In statistis this is turned around. We have done the experiment;

so we know a set of results, x. We (think we) know the p.d.f.'s, f

i

(x; �). We want

to estimate �.

We emphasize that L is not a p.d.f. for �; if it were we would use the expetation

value of � for

^

�. Instead we take eq. 8.54, replae � by

^

� and solve for

^

� under the

ondition that L is a maximum. In other words, our estimate,

^

�, of � is that value of

� whih would make our experimental results the most likely of all possible results.

This is the Priniple of Maximum Likelihood: The best estimate of a pa-

rameter � is that value whih maximizes the likelihood funtion. This an not be

proved without de�ning `best'. It an be shown that maximum likelihood (ml)

estimators have desirable properties. However, they are often biased. Whether the

ml estimator really is the `best' estimator depends on the situation.

It is usually more onvenient to work with

` = lnL (8.56)

sine the produt in eq. 8.55 beomes a sum in eq. 8.56. For independent x

i

this is

` =

n

X

i=1

`

i

, where `

i

= ln f

i

(x

i

; �) (8.57)

Sine L > 0, both L and ` have the same extrema, whih are found from

S

i

�

�`

��

i

=

1

L

�L

��

i

= 0 (8.58)

where S

i

is the sore funtion (setion 8.2.5)

6

-

�

`

largest

max.

H

H

Hj

loal

max.

?

�

�

�

�

�R

 physial range of � !

The maximum likelihood ondi-

tion (8.58) �nds an extremum whih

may be a minimum; so it is important

to hek. There may also be more

than one maximum, in whih ase

one usually takes the highest max-

imum. The maximum may also be

at a physial boundary, in whih ase
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eq. (8.58) may not �nd it. Usually

suh problems do not our for suÆ-

iently large samples. However, this

is not always the ase.

Note that for the purpose of �nding the maximum of L, it is not neessary

that L be normalized. Any fators not depending on � an be thrown away. This

inludes fators whih depend on x but not on �.

Example: n independent x

i

, eah distributed normally.

L =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

i

�

i

�

2

#

` =

n

X

i=1

"

�

1

2

ln(2�)� ln�

i

�

(x

i

� �

i

)

2

2�

2

i

#

Suppose that all the �

i

are the same, �

i

= �, but that the �

i

are di�erent, but

known. This is the ase if we make n measurements of the same quantity, eah

with a di�erent preision, e.g., using di�erent apparatus. The maximum likelihood

ondition (8.58) is then

�`

��

=

X

x

i

� �

�

2

i

=

X

x

i

�

2

i

�

X

�

�

2

i

= 0

The solution of this equation is the ml estimate of �:

�̂ =

P

(x

i

=�

2

i

)

P

(1=�

2

i

)

(8.59)

whih is a weighted average, eah x

i

weighted by

1

/

�

2

i

.

The expetation of �̂ is

E [�̂℄ = E

"

P

(x

i

=�

2

i

)

P

(1=�

2

i

)

#

=

P

(E [x

i

℄ =�

2

i

)

P

(1=�

2

i

)

=

P

(�=�

2

i

)

P

(1=�

2

i

)

=

�

P

(1=�

2

i

)

P

(1=�

2

i

)

= �

from whih we onlude that this estimate is unbiased. The variane of �̂ is

V [�̂℄ = E

h

�̂

2

i

�

�

E [�̂℄

�

2

= E

h

�̂

2

i

��

2

=

E

"

�

P

x

i

�

2

i

�

2

#

�

P

�

1

�

2

i

��

2

��

2

=

E

�

P

i

P

j

x

i

x

j

�

2

i

�

2

j

�

�

P

�

1

�

2

i

��

2

��

2

Sine the x

i

are independent,

E [x

i

x

j

℄ =

(

E [x

i

℄E [x

j

℄ = �

i

�

j

= �

2

if i 6= j

E [x

2

i

℄ = �

2

i

+ �

2

if i = j
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Therefore, having written the expetation of sums as the sum of expetations and

having split the double sum into two parts,

V [�̂℄ =

 

1

P

(1=�

2

i

)

!

2

0

�

X

i

�

2

i

+ �

2

�

4

i

+

X

i

X

j 6=i

�

2

�

2

i

�

2

j

1

A

� �

2

=

 

1

P

(1=�

2

i

)

!

2

0

�

X

i

1

�

2

i

+ �

2

X

i

1

�

4

i

+ �

2

X

i

X

j 6=i

1

�

2

i

�

2

j

1

A

� �

2

=

1

P

(1=�

2

i

)

+ �

2

0

�

P

i

1

�

4

i

+

P

i

P

j 6=i

1

�

2

i

�

2

j

(

P

(1=�

2

i

))

2

1

A

| {z }

=1

��

2

=

1

P

(1=�

2

i

)

(8.60)

It is urious that in this example V [�̂℄ does not depend on the x

i

, but only on the

�

i

. This is not true in general.

We have seen (setion 8.2.6) that the Rao-Cram�er inequality sets a lower limit

on the variane of an estimator. For an unbiased estimator the bound is 1=I, where

I is the information. For �,

I(�) = �E

"

�S(�)

��

#

= �E

"

�

2

`

��

2

#

= �E

"

�

��

 

X

x

i

�

2

i

�

X

�

�

2

i

!#

= �E

"

�

X

1

�

2

i

#

=

X

1

�

2

i

Thus V [�̂℄ = I

�1

(�); the variane of �̂ is the smallest possible. The ml estimator

is eÆient. This is in fat a general property of ml estimators: The ml estimator

is eÆient if an eÆient estimator exists. We will now demonstrate this.

Properties of maximum likelihood estimators

We have seen in setion 8.2.7 that an eÆient, unbiased estimator is linearly related

to the sore funtion. Assume that suh an estimator of � exists; all it T (x). Then

S(x; �) = C(�)T (x) +D(�) (8.61)

From the maximum likelihood ondition, S(x;

^

�) = 0, where

^

� is the ml estimator

of �. Hene the unbiased, eÆient estimator T (x) is related to the ml estimator

^

�

by

T (x) = �

D(

^

�)

C(

^

�)

(8.62)
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We have also seen in setion 8.2.6, equation 8.21, that E [S(x; �)℄ = 0 under

quite general onditions on f . Therefore, taking the expetation of equation 8.61,

E [S(x; �℄ = C(�)E [T (x)℄ +D(�) = 0

Hene,

E [T (x)℄ = �

D(�)

C(�)

(8.63)

This is true for any value of �; in partiular it is true for � =

^

�, i.e., if the true value

of � is equal to the ml estimate of �:

E

h

T (xj

^

�)

i

= �

D(

^

�)

C(

^

�)

= T (x) (8.64)

It may seem strange to write E

h

T (xj

^

�)

i

sine T (x) does not depend on the value of

�. However, the expetation operator does depend on the value of �. In fat, sine

T (x) is an unbiased estimator of �,

E [T (x)℄ =

Z

T (x) f(x; �) dx = � (8.65)

Hene,

E

h

T (xj

^

�)

i

=

^

�

Combining this with equation 8.64 gives

T (x) =

^

� (8.66)

Thus we have demonstrated that the ml estimator is eÆient and unbiased if an

eÆient, unbiased estimator exists.

If an unbiased, eÆient estimator exists, we an derive the following properties:

1. From equations 8.63 and 8.65,

D(�) = �� C(�)

Substituting this and equation 8.66 in equation 8.61 yields

S(x; �) = C(�)

h

^

� � �

i

(8.67)

2. Assuming that the estimator is eÆient means that the Rao-Cram�er inequal-

ity, equation 8.26, beomes an equality. Colleting equations 8.19, 8.23, and

8.26, results in the variane of an unbiased, eÆient estimator

^

� given by

V

h

^

�

i

=

1

I(�)

=

1

E [S

2

℄

= �

1

E

h

�S

��

i

= �

1

E

h

�

2

`

��

2

i
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From (8.67),

�S

��

= C

0

(�)

h

^

� � �

i

� C(�) (8.68)

Sine

^

� is unbiased, E

h

^

�

i

= �

t

, the true value of the parameter. Hene,

E

"

�S

��

#

= �C(�

t

)

and V

h

^

�

i

=

1

C(�

t

)

(8.69)

Hene, C(�

t

) > 0.

3. From equation 8.68, we also see that

�

2

`

��

2

�

�

�

�

�

�=

^

�

=

�S

��

�

�

�

�

�

�=

^

�

= �C(

^

�)

Sine C(�) > 0 in the region of the true value, this on�rms that the extremum

of `, whih we have used to determine

^

�, is in fat a maximum.

4. From equation 8.67 and the maximum likelihood ondition (equation 8.58),

we see that the ml estimator is the solution of

0 = S(x; �) = C(�)

�

^

� � �

�

Sine C(�) > 0 in the region of the true value, this equation an have only one

solution, namely

^

�. Hene, the maximum likelihood estimator

^

� is unique.

Let us return to the Gaussian example. But now assume not only that all �

i

= �

but also all �

i

= �. Unlike the previous example, we now assume that � is unknown.

The likelihood ondition gives

�`

��

!

�̂;�̂

=

X

 

x

i

� �̂

�̂

!

= 0

�`

��

!

�̂;�̂

=

X

 

�

1

�̂

+

(x

i

� �̂)

2

�̂

3

!

= 0

The �rst equation gives

�̂ =

1

n

X

x

i

= �x

Using this in the seond equation gives

�̂

2

=

1

n

X

(x

i

� �x)

2

whih, as we have previously seen (eq. 8.6), is a biased estimator of �

2

. This

illustrates an important, though often forgotten, feature of ml estimators: They

are often biased.

To summarize this setion: The ml estimator is eÆient and unbiased if suh

an estimator exists. Unfortunately, that is not always the ase.
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8.4.2 Asymptoti properties

Although, as we have seen in the previous setion, the maximum likelihood esti-

mator is eÆient and unbiased if an eÆient, unbiased estimator exists, in general

the ml estimator is neither unbiased nor eÆient. However, asymptotially, i.e.,

for a large number of independent measurements, it (usually) is both unbiased and

eÆient. To see this we expand the sore about

^

�:

S(x; �) =

�

��

X

ln f(x

i

; �) � S(x;

^

�) +

�S

��

�

�

�

�

�

^

�

�

� �

^

�

�

+ : : :

By the maximum likelihood priniple, S(x;

^

�) = 0. We assume that as n ! 1

higher order terms an be negleted. We are then left with

S(x; �) �

�S

��

�

�

�

�

�

^

�

�

� �

^

�

�

=

�

��

X

S

1

(x

i

; �)

�

�

�

�

�

^

�

�

� �

^

�

�

=

X

�S

1

(x

i

; �)

��

�

�

�

�

�

^

�

�

� �

^

�

�

Replaing the sum by n times the sample mean,

S(x; �) � n

�S

1

��

�

�

�

�

�

^

�

�

� �

^

�

�

= n

�

2

��

2

ln f(x

i

; �)

�

�

�

�

�

^

�

�

� �

^

�

�

Sine the sample mean approahes the expetation as n ! 1 provided only that

the variane is �nite (C.L.T.), asymptotially

S(x; �) � nE

"

�S

1

��

�

�

�

�

�

^

�

#

�

� �

^

�

�

= nE

"

�

2

��

2

ln f(x

i

; �)

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

��

X

S

1

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

2

��

2

X

ln f(x

i

; �)

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�S

��

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

2

`

��

2

�

�

�

�

�

^

�

#

�

� �

^

�

�

= �I(

^

�)

�

� �

^

�

�

(8.70)

the last step following from equation 8.23.

There are several onsequenes of equation 8.70:

� First we note that asymptotially, I(�) = I(

^

�):

I(�) = �E

"

�S

��

#

= E

h

I(

^

�)

i

= I(

^

�)

where the seond step follows from equation 8.70 and the last step follows

sine I(

^

�) is itself an expetation and the expetation of an expetation is

just the expetation itself.
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� The result, equation 8.70, that

^

� is linearly related to the sore funtion,

implies (setion 8.2.7) that

^

� is unbiased and eÆient. This is an important

asymptoti property of ml estimators.

� Further, we an integrate equation 8.70,

�

��

lnL = S(x; �) � �I(

^

�)(� �

^

�)

over � to �nd

` = lnL � �

I(

^

�)

2

�

^

� � �

�

2

+ ln k (8.71)

where the integration onstant, k, is just k = L(

^

�) = L

max

. Exponentiating,

L(�) � L

max

exp

�

�

1

2

I(

^

�)(

^

� � �)

2

�

/ N

�

�;

^

�; I

�1

(

^

�)

�

(8.72)

Thus, asymptotially, L is proportional to a Gaussian funtion of � with mean

^

� and variane 1=I(

^

�).

Instead of starting with equation 8.70, we ould use equation 8.67, whih ex-

presses the linear dependene of S on

^

� for any eÆient, unbiased estimator. Inte-

grating equation 8.67 leads to

L(�) = L

max

exp

�

�

1

2

C(�)(

^

� � �)

2

�

whih looks formally similar to equation 8.72 but is not, in fat, a Gaussian funtion

sine C depends on �. Only asymptotially must C(�) approah a onstant, C(�)!

I(

^

�). Nevertheless, C(�)may be onstant for �nite n, as we have seen in the example

of using �x to estimate � of a Gaussian (f. setion 8.2.7).

We emphasize again that, despite the form of equation 8.72, L is not a p.d.f.

for �. It is an experimentally observed funtion. Nevertheless, the priniple of

maximum likelihood tells us to take the maximum of L to determine

^

�, i.e., to

take

^

� equal to the mode of L. In this approximation the mode of L is equal to

the mean, whih is just

^

�. In other words the ml estimate is the same as what we

would �nd if we were to regard L as a p.d.f. for � and use the expetation (mean)

of L to estimate �.

Sine asymptotially the ml estimator is unbiased and eÆient, the Rao-Cram�er

bound is attained and V

h

^

�

i

= I

�1

(�). Thus the variane is also that whih we would

have found treating L as a p.d.f. for �.

We have shown that the ml estimator is, under suitable onditions, asymptot-

ially eÆient and unbiased. Let us now speify these onditions (without proof)

more preisely:
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1. The true value of � must not be at the

boundary of its allowed interval suh that

the maximum likelihood ondition would

not be satis�ed, i.e.,

�L

��

must be zero at the

maximum.

-

6

�

max

�

L

�L

��

6= 0

X

Xz

2. The p.d.f.'s de�ned by di�erent values of � must be distint, i.e., two values

of � must not give p.d.f.'s whose ratio is not a funtion of �. Otherwise there

would be no way to deide between them.

3. The �rst three derivatives of ` = lnL must exist in the neighborhood of

^

�.

4. The information, I(�) must be �nite and positive de�nite.

8.4.3 Change of parameters

It is important to understand the di�erene between a hange of parameters and a

hange of variable. L(x; �) is a p.d.f. for the random variable x. Under a hange

of variable, x �! y(x) and L(x; �) �! L

0

(y; �), the probability must be onserved.

Hene, L(x; �) dx = L

0

(y; �) dy. This requirement results (f. setion 2.2.6) in

L

0

(y; �) = L(w(y); �) jJ j

where w is the inverse of the transformation x �! y and J is the Jaobian of the

transformation.

However, for a hange of parameters, � �! g(�), the requirement that prob-

ability be onserved means that L(x; �) dx = L

0

(x; g) dx and onsequently that

L(x; �) = L

0

(x; g). Thus the value of L is unhanged by the transformation from

� to g(�) and L

0

is obtained from L simply be replaing � by h(g) where h is the

inverse of the transformation �! g. There is no Jaobian involved.

As in frequeny substitution, the ml estimator of a funtion, g, of the parameter

� is just that funtion for the ml estimator, i.e.,

ĝ(�) = g(

^

�)

This ours beause, assuming

��

�g

exists,

�L

�g

=

�L

��

��

�g

Then the maximum likelihood ondition for �,

�L

��

= 0, implies that

�L

�g

= 0, whih

is just the maximum likelihood ondition for g.
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-

6

�

g

��

�g

= 0

If

��

�g

is zero at some value of �, this an intro-

due additional solutions to the likelihood ondi-

tion for g. This will not usually happen if g is a

single-valued funtion of � unless there are points

of inetion.

Note that

^

� unbiased does not imply that

ĝ = g(

^

�) is unbiased and vie versa. Asymptoti-

ally, both

^

� and ĝ beome unbiased and eÆient

(previous setion), but they usually approah this at di�erent rates.

In the ase of more than one parameter, g(�), the above generalizes to

�L

�g

k

=

X

i

�L

��

i

��

i

�g

k

=

 

�L

��

!

T

 

��

�g

k

!

(8.73)

and the information matrix transforms as

I

jk

(g) =

 

�g

j

��

!

T

I(�)

 

�g

k

��

!

(8.74)

It is not neessary that � and g have the same dimensions.

8.4.4 Maximum Likelihood vs. Bayesian inferene

Reall Bayes' theorem (setion 2.3). Assume that the parameter �, whih we wish

to estimate, an have only disrete values, �

1

; �

2

; : : : ; �

k

. Applied to the estimation

of �, Bayes' theorem an be stated (f. setion 2.4.3)

P

posterior

(�

i

j x) =

P (x j �

i

)

P (x)

P

prior

(�

i

) (8.75)

and it would seem reasonable to hoose as our estimate of

^

� that value �

i

having

the largest P

posterior

, i.e., the mode of the posterior probability.

�

Sine P

posterior

is

normalized, i.e.,

P

i

P

posterior

(�

i

jx) = 1, we see that P (x) =

P

i

P (xj�

i

)P

prior

(�

i

) is

the onstant whih serves to normalize P

posterior

. We also see that P (xj�

i

) is just

the likelihood, L(x; �

i

), apart from normalization.

In the absene of prior knowledge (belief) of �, Bayes' postulate tells us to assume

all values equally likely, i.e., P

prior

(�

i

) =

1

k

. Then the right-hand side of equation 8.75

is exatly L(x; �

i

) (apart from normalization) and maximizing P

posterior

is the same

as maximizingL. Thus, Bayesian statistis leads to the same estimator as maximum

likelihood.

In the more usual ase of a ontinuous parameter, equation 8.75 must be rewrit-

�

The mode is not the only hoie. A Bayesian ould also hoose the mean or the median, or

some other property of the posterior probability distribution. Asymptotially, of ourse, P

posterior

will be Gaussian, in whih ase the mode, mean, and median are the same.
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ten in terms of probability densities:

f

posterior

(� j x) =

f(x j �)

R

f(x j �) f

prior

(�) d�

f

prior

(�) (8.76)

Assuming Bayes' postulate, f

prior

= onstant, and again Bayesian statistis is equiv-

alent to maximum likelihood.

But now what happens if we want to estimate the parameter g = g(�) rather

than �? Assume that the transformation g(�) is one-to-one. Then in the disrete

ase we just replae �

i

by g

i

= g(�

i

) in equation 8.75. Bayes' postulate again tells

us that P

prior

=

1

k

and the same maximum is found resulting in ĝ = g(

^

�). However

in the ontinuous ase, the hange of parameter (f. setions 2.2.6, 8.4.3) involves

a Jaobian, sine in Bayesian statistis f is a p.d.f. for �, or in other words, the ml

parameter is regarded as the variable of the p.d.f. Hene,

f

posterior

(g j x) = f

posterior

(� j x) jJ j

where J is the Jaobian of the transformation � ! g. But sine the likelihood

funtion is a p.d.f. for x, not for �, there is no Jaobian involved in rewriting L

using g instead of �, i.e., L(x; g(�)) = L(x; �). Thus, assuming Bayes' postulate

for g, f

prior

(g) = onstant, the value of g whih maximizes f

posterior

(g j x) is that

whih maximizes L(x; �)jJ j rather than L(x; �). Bayesian statistis and maximum

likelihood thus give di�erent estimates of g. To obtain the same result in ml, the

Bayesian would have to use f

prior

(g) = f

prior

(�)jJ j rather than the uniform f

prior

(g)

suggested by Bayes' postulate. In other words, Bayes' postulate an only be applied

to � or g, not simultaneously to both (exept when � and g are linearly related).

But how does one hoose whih?

�

This is one of the grounds whih would ause

most physiists to prefer maximum likelihood to Bayesian parameter estimation.

8.4.5 Variane of maximum likelihood estimators

We have seen that the variane of an eÆient estimator is given by the Rao-Cram�er

bound (equation 8.26). Assuming that

^

� is eÆient, substituting

^

� for � in this

equation gives an estimate of V

h

^

�

i

. If, in addition,

^

� is unbiased (or at least that

the bias does not depend on �), this just beomes V

h

^

�

i

= 1=I(

^

�). We reall that the

ml estimator is eÆient if an eÆient estimator exists, but that this is not always

the ase. Nor is the ml estimator always unbiased.

If the estimator is unbiased and eÆient

However, asymptotially the ml estimator is both unbiased and eÆient. Assuming

this to be the ase, and also assuming that the range of x does not depend on �,

we an estimate the variane as follows:

�

There are arguments for the hoie of non-uniform priors (see, e.g., Je�reys

37

) in ertain
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1. Using equation 8.19, I(�) = E [S

2

℄,

V

�1

h

^

�

i

= I(�) = E

h

S

2

i

= E

2

4

 

�`

��

!

2

3

5

whih, for more than one parameter generalizes to

V

�1

jk

h

^

�

i

= E

"

�`

��

j

�`

��

k

#

(8.77)

If the sample onsists of n independent events distributed aording to the

p.d.f.'s f

i

(x

i

; �), the sore is just the sum of the sores for the individual events

and

V

�1

h

^

�

i

= E

2

4

 

n

X

i=1

S

1

(x

i

; �)

!

2

3

5

Performing the square and using the fat that the expetation of a sum is the

sum of the expetations, we get

V

�1

h

^

�

i

=

n

X

i=1

E

h

S

2

1

(x

i

; �)

i

+

n

X

i=1

n

X

j=1

i6=j

E [S

1

(x

i

; �)S

1

(x

j

; �)℄

However, the ross terms are zero, whih follows from the fat that for indepen-

dent x

i

the expetation of the produt equals the produt of the expetations

and from E [S

1

(x; �)℄ = 0 (equation 8.20). Therefore, generalizing to more

than one parameter,

V

�1

jk

h

^

�

i

=

n

X

i=1

E

"

� ln f

i

(x

i

; �)

��

j

� ln f

i

(x

i

; �)

��

k

#

(8.78)

Not knowing the true value of �, we estimate this by evaluating it at � =

^

�.

If all the f

i

are the same, equation 8.78 redues to

V

�1

jk

h

^

�

i

= nE

"

� ln f(x; �)

��

j

� ln f(x; �)

��

k

#

(8.79)

Rather than alulating the expetation and evaluating it at

^

�, we an estimate

the expetation value by the sample mean evaluated at

^

�:

d

V

�1

jk

h

^

�

i

=

n

X

i=1

� ln f(x

i

; �)

��

j

�

�

�

�

�

^

�

� ln f(x

i

; �)

��

k

�

�

�

�

�

^

�

(8.80)

irumstanes. However, they are not ompletely onvining and remain ontroversial.
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2. I is also given by equation 8.23:

I(�) = �E

"

�S

��

#

= �

�S

�

^

�

�

�

�

�

�

^

�=�

= �

�

2

`

�

^

�

2

�

�

�

�

�

^

�=�

(8.81)

where the seond step follows from the linear dependene of S on

^

� (equa-

tion 8.30) for an unbiased, eÆient estimator. The variane is then estimated

by evaluating the derivative at � =

^

�:

d

V

�1

h

^

�

i

= �

�

2

`

��

2

�

�

�

�

�

^

�

(8.82)

In the ase of more than one parameter, this beomes

V

�1

jk

h

^

�

i

= I

jk

(�) = �E

"

�

2

`

��

j

��

k

#

(8.83)

whih is estimated by

d

V

�1

jk

h

^

�

i

= I

jk

(

^

�) = �

�

2

`

��

j

��

k

�

�

�

�

�

^

�

(8.84)

whih is the Hessian matrix

�

of �`. For n independent events, all distributed

as f(x; �), the expetations in equations 8.81 and 8.83 an be estimated by a

sample mean evaluated at

^

�. Thus

d

V

�1

jk

h

^

�

i

= �

n

X

i=1

�

2

ln f(x

i

; �)

��

j

��

k

�

�

�

�

�

^

�

= �n

�

2

ln f(x; �)

��

j

��

k

�

�

�

�

�

^

�

(8.85)

The expetation forms (8.77, 8.78, 8.79 and 8.84) are useful for estimating the error

we expet before doing the experiment, e.g., to deide how many events we need to

have in order to ahieve a ertain preision under various assumptions for �. Both

the expetation and the sample mean forms (8.80 and 8.85) may be used after the

experiment has been done. It is diÆult to give general guidelines on whih method

is most reliable.

Example: Let us apply the two methods to the example of n independent x

i

distributed normally with the same � but di�erent �

i

. Assume that the �

i

are

known. Reall that in this ase

` =

n

X

i=1

2

4

�

1

2

ln(2�)� ln�

i

�

1

2

 

(x

i

� �)

�

i

!

2

3

5

�

Mathematially it is onditions on the �rst derivative vetor, �`=�

^

�, and on the Hessian matrix
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1. From equation 8.78,

V

�1

[�̂℄ =

n

X

i=1

E

2

4

 

� ln f

i

(x

i

;�; �

i

)

��

!

2

3

5

=

n

X

i=1

E

2

4

 

�

1

2

�

��

�

x

i

� �

�

i

�

2

!

2

3

5

=

n

X

i=1

E

"

1

�

2

i

�

x

i

� �

�

i

�

2

#

=

n

X

i=1

1

�

2

i

E

"

�

x

i

� �

�

i

�

2

#

sine �

i

is just a parameter of f

i

, hene a onstant

=

n

X

i=1

1

�

2

i

sine this expetation is 1 for the normal p.d.f.

2. Sine

�`

��

=

P

n

i=1

x

i

��

�

2

i

, equation 8.84 yields

V

�1

[�̂℄ = �

�

2

`

��

2

=

n

X

i=1

1

�

2

i

Thus both methods give V [�̂℄ = 1=

P

�

1

�

2

i

�

. This is the same result we found in

setion 8.4.1, equation 8.60, where we alulated the variane expliitly from the

de�nition. This was, of ourse, to be expeted sine in this example �̂ is unbiased

and eÆient and the range of x is independent of �.

Variane using Bayesian inferene

We have emphasized that L is the p.d.f. for x given � and not the p.d.f. for � given

x. However, using the Bayesian interpretation of probability (setions 2.4.3 and

8.4.4), these two onditional p.d.f.'s are related: By Bayes' theorem,

f

posterior

(�jx) / f(xj�) f

prior

(�)

and f(xj�) is just the likelihood funtion L(x; �). If we are willing to aept Bayes'

postulate (for whih there is no mathematial justi�ation) and take the prior p.d.f.

for �, f

prior

(�), as uniform in � (within possible physial limits), we have

f

posterior

(�jx) =

L(x; �)

R

L(x; �) d�

(8.86)

where the expliit normalization in the denominator is needed to normalize f

posterior

,

sine L is normalized by

R

L dx = 1. Sine, in Bayesian inferene L is regarded as

a p.d.f. for �, the ovariane matrix of

^

�,

V

jk

h

^

�

i

= E

h�

^

�

j

� �

j

� �

^

�

k

� �

k

�i

(8.87)

that de�ne the maximum of ` or the minimum of �`. The Hessian matrix is positive (negative)

de�nite at a minimum (maximum) of the funtion and inde�nite at a saddle point.
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is given by

V

jk

h

^

�

i

=

R

�

^

�

j

� �

j

� �

^

�

k

� �

k

�

L d�

R

L d�

(8.88)

If the integrals in equation 8.88 an not be easily performed analytially, we ould

use Monte Carlo integration. Alternatively, we an estimate the expetation (8.87)

from the data. This is similar to Monte Carlo integration, but instead of Monte

Carlo points � we use the data themselves. Assuming n independent observations

x

i

, we estimate eah parameter for eah observation separately, keeping all other

parameters �xed at

^

�. Thus,

^

�

j(i)

is the value of

^

�

j

that would be obtained from

using only the i

th

event. In other words,

^

�

j(i)

is the solution of

�f

i

(x

i

; �)

��

j

�

�

�

�

�

�

k

=

^

�

k

;k 6=j

= 0

With L regarded as a p.d.f. for �, the

^

�

j(i)

are r.v.'s distributed aording to L.

Their variane about � thus estimates the variane of

^

�. However, not knowing �

we must use our estimate of it. This leads to the following estimate of the ovariane,

where in equation 8.87 the expetation has been replaed by an average over the

observations,

^

� by the estimate from one observation

^

�

j(i)

, and �

j

by our estimate

^

�

j

:

d

V

jk

h

^

�

i

=

1

n

n

X

i=1

�

^

�

j(i)

�

^

�

j

� �

^

�

k(i)

�

^

�

k

�

(8.89)

Equation 8.88 is partiularly easy to evaluate when L is a Gaussian. We have

seen that asymptotially L is a Gaussian funtion of � (equation 8.72) and hene

that ` is paraboli (equation 8.71):

L = L

max

e

�

1

2

Q

2

; Q

2

=

(

^

� � �)

2

�

2

; ` = lnL = lnL

max

�

1

2

Q

2

(8.90)

Then, using the Bayesian interpretation, it follows from equation 8.88 that V

h

^

�

i

=

�

2

= I

�1

(

^

�).

However, in the asymptoti limit it is not neessary to invoke the Bayesian

interpretation to obtain this result, sine we already know from the asymptoti

eÆieny of the ml estimator that V

h

^

�

i

= I

�1

(�) = I

�1

(

^

�).

A graphial method

-

6

�

`(�)

^

�

`

max

�

1

`

1

�

2

`

2

In any ase, if L is Gaussian, the values of

� for whih Q

2

=

(

^

���)

2

�

2

= 1, i.e., the values

of � orresponding to 1 standard deviation

\errors",

^

� � � = ��, are just those values,

�

1

, for whih ` di�ers from `

max

by

1

/

2

. This
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provides another way to estimate the uner-

tainty, Æ

^

� =

r

V

h

^

�

i

, on

^

�: Find the value of

�, �

1

, for whih

`

1

= `(�

1

) = `

max

�

1

2

The error is then Æ

^

� = j

^

�� �

1

j This ould be done graphially from a plot of ` vs. �.

Similarly, two-standard deviation errors (Q

2

= 4) ould be found using `

2

= `

max

�2,

et. (The hange in ` orresponding to Q standard deviations is Q

2

=2.)

But, what do we do if L is not Gaussian? We an be Bayesian and use equa-

tion 8.87 or 8.88. Not wanting to be Bayesian, we an use the following approah.

The two approahes will in general give di�erent estimates of the variane, the

di�erene being smallest when L is nearly of a Gaussian form.

Reall that for eÆient, unbiased estimators L an be Gaussian even for �nite n.

Imagine a one-to-one transformation g(�) from the parameter � to a new parameter

g and suppose that ĝ is eÆient and unbiased and hene that L(g) is normal. Suh

a g may not exist, but for now we assume that it does. We have seen that ĝ = g(

^

�).

Let h be the inverse transformation, i.e., � = h[g(�)℄. Sine, by assumption, L(g)

is Gaussian, Æg is given by a hange of

1

/

2

in `(g).

But, as we have seen in setion 8.4.3, L(�jx) = L(g(�)jx) for all �; there is no

Jaobian involved in going from L(�) to L(g). This means that sine we an �nd

Æg from a hange of

1

/

2

in `(g), Æ� will be given by the same hange.

-

6

g

`(g)

ĝ

`

max

g

1

`

1

g

2

`

2

-

6

�

`(�)

^

� �

1

�

2

L(�) need not be a symmetri funtion of �, in whih ase the errors on

^

� are

asymmetri.

Note that we do not atually need to use the parameter g. We an �nd Æ�

diretly.

A problem is that suh a g may not exist. Asymptotially both L(g) and L(�) are

Gaussian. However, in general, L(g) and L(�) will approah normality at di�erent

rates. It is therefore plausible that there exists some g whih is at least nearly
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normally distributed for �nite n. Sine we never atually have to use g, we an only

adopt it as an assumption, realizing that the further away L for the `best' g is from

normality, the less aurate will be our estimation of Æ�.

This method of error estimation is easily extended to the ase of more than

one parameter. If all estimators are eÆient, L will be a multivariate normal. We

show the example of two parameters, �

1

and �

2

. The ondition of a hange of

1

/

2

in `, i.e., Q

2

= 1, gives an ellipse of onstant L in �

2

vs. �

1

. A distintion must be

made, however, between the `error' and the `redued' or `onditional error', whih

is the error if the values of the other parameters are all assumed to be equal to their

estimated values.

-

6

�

1

�

2

^

�

1

^

�

2

 �

1

!

 �



1

!

"

�

2

#

"

�



2

#

If, for example, �

2

is held �xed at

^

�

2

and ` varied by

1

/

2

, the onditional er-

ror, �



1

is found rather than the error �

1

,

whih is the error that enters the multi-

variate normal distribution. In pratie,

the maximum of `, as well as the vari-

ation of ` by

1

/

2

, are usually found on a

omputer using a searh tehnique. How-

ever, sine it is easier (faster), the pro-

gram may ompute �



rather than �. If

the parameters are unorrelated, �



= �.

If parameters are orrelated, the orrela-

tion should be stated along with the errors, or in other words, the omplete ovari-

ane matrix should be stated, e.g., as �

1

, �

2

, and �, the orrelation oeÆient.

8.4.6 Summary

� If the sample is large, maximum likelihood gives a unique, unbiased, minimum

variane estimate under ertain general onditions. However `large' is not well

de�ned. For �nite samples the ml estimate may not be unique, unbiased, or

of minimum variane. In this ase other estimators may be preferable.

� Maximum likelihood estimators are often the easiest to ompute, espeially

for omplex problems. In many pratial ases maximum likelihood is the

only tratable approah.

� Maximum likelihood estimators are suÆient, i.e., they use all the information

about the parameter that is ontained in the data. In partiular, for small

samples ml estimators an be muh superior to methods whih rely on binned

data.

� Maximum likelihood estimators are not neessarily robust. If you use the

wrong p.d.f., the ml estimate may be worse than that from some other

method.
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� The maximum likelihood method gives no way of testing the validity of the

underlying theory, i.e., whether or not the assumed p.d.f. is the orret one.

In pratie this is not so bad: You an always follow the maximum likelihood

estimation by a goodness-of-�t test. Suh tests will be disussed in setion

10.6.

And �nally, a pratial point: In omplex situations, the likelihood ondition

�`

��

i

= 0 an not be solved analytially. You then must ode the likelihood funtion

and use omputer routines to �nd its maximum. Very lever programs exist as

pre-pakaged routines for �nding the minimum or maximum of a funtion. Do not

be tempted to write your own; take one from a good software library, e.g., that of

the Numerial Algorithms Group (NAG) or the MINUIT

38

program from CERN.

Note that suh programs usually searh for a minimum instead of a maximum, so

put a minus sign before your `. One usually writes a subroutine whih alulates

the funtion for values of � hosen by the program. The program needs a starting

value for �. It evaluates the funtion at numerous points in � spae, determines

the most likely diretion in this spae to �nd the minimum (or maximum), and

proeeds to searh until the minimum is found. The searh an usually be speeded

up by also supplying a subroutine to alulate the derivatives of ` with respet to

the �

i

; otherwise the program must do this numerially.

8.4.7 Extended Maximum Likelihood

Applied to n independent events from the same p.d.f., the likelihood method, as

disussed so far, is a method to determine parameters governing the shape of the

p.d.f. The number of events in the sample is not regarded as a variable.

Fermi proposed to extend the maximum likelihood method by inluding the

number of events as a parameter to be estimated. His motivation was the grand

anonial ensemble of statistial mehanis. In the anonial ensemble the number

of atoms or moleules is regarded as �xed while in the grand anonial ensemble

the number is free to vary.

To inorporate a variable number of events, the ordinary likelihood funtion is

multiplied by the Poisson p.d.f. expressing the probability of obtaining n events

when the expeted number of events is �. This expeted number of events is then

another parameter to be estimated from the data. The likelihood beomes

L(x; �) =

n

Y

i=1

f(x

i

; �) �! L

E

(x; �; �) =

e

��

�

n

n!

n

Y

i=1

f(x

i

; �) (8.91)

`(x; �) =

n

X

i=1

ln f(x

i

; �) �! `

E

(x; �; �) =

n

X

i=1

ln f(x

i

; �)� � + n ln � � lnn!

`

E

(x; �; �) =

n

X

i=1

ln �f(x

i

; �)� � � lnn!



138 CHAPTER 8. PARAMETER ESTIMATION

Or, `

E

(x; �; �) =

n

X

i=1

ln g(x

i

; �)� � (8.92)

where g = �f is the p.d.f. normalized to � rather than to 1 and where we have

dropped the onstant term lnn! sine onstant terms are irrelevant in �nding the

maximum and the variane of estimators.

Just as the grand anonial ensemble an be used even for situations where the

number of moleules is in fat onstant (non-permeable walls), so also the extended

maximum likelihood method. In partiular, if there is no funtional relationship

between � and �, the likelihood ondition �`

E

=�� = 0 will lead to �̂ = n. Also,

�`

E

=��

j

= �`=��

j

, whih leads to idential estimators

^

�

j

as in the ordinary max-

imum likelihood method. Nevertheless, we may still prefer to use the extended

maximum likelihood method. It an happen that the p.d.f., f , is very diÆult to

normalize, e.g., involving a lengthy numerial integration. Then, even though the

number of events is �xed, we an use the extended maximum likelihood method,

allowing the maximum likelihood priniple to �nd the normalization. In this ase,

the resulting estimate of � should turn out to be the atual number of events n times

the normalization of f and the estimate of the other parameters to be the same as

would have been found using the ordinary maximum likelihood method. However,

the errors on the parameters will be overestimated sine the method assumes that

� an have utuations. This overestimation an be removed (f. setion 3.9) by

1. inverting the ovariane matrix,

2. removing the row and olumn orresponding to �,

3. inverting the resulting matrix.

This orresponds to �xing � at the best value, �̂. Thus we ould also �x � = �̂ and

�nd the errors on

^

� by the usual ml proedure.

An example: Suppose we have an angular distribution ontaining N events, F

in the forward hemisphere and B = N � F in the bakward hemisphere. In the

ordinary maximum likelihood method N is regarded as �xed. The p.d.f. for the

division of N events into F forward and B bakward is the binomial p.d.f.:

L(F ; p) = B(F ; p;N) =

N !

F !B!

p

F

(1� p)

B

`(F ; p) = F ln p+ B ln(1� p) + lnN !� lnF !B!

The likelihood ondition is then

�`

�p

=

F

p

�

B

1� p

= 0 �! p̂ =

F

F +B

=

F

N



8.4. MAXIMUM LIKELIHOOD METHOD 139

Its variane is given by

V [p̂℄ = �

"

�

2

`

�p

2

#

�1

= �

"

F

p

2

+

B

(1� p)

2

#

�1

whih we estimate by replaing p by p̂:

b

V [p̂℄ = �

"

F

p̂

2

+

B

(1� p̂)

2

#

�1

= �

"

N

p̂

+

N

(1� p̂)

#

�1

= �

"

N

p̂(1� p̂)

#

�1

=

p̂(1� p̂)

N

The estimated numbers of forward and bakward events, i.e., the estimate of the

expetation of the numbers of forward and bakward events if the experiment were

repeated, are then

b

F = Np̂ = F and

b

B = N(1� p̂) = B

with variane

V

h

^

F

i

= V [Np̂℄ = N

2

V [p̂℄

whih is estimated by replaing V by

b

V :

b

V

h

^

F

i

= N

2

b

V [p̂℄ = Np̂(1� p̂) = N

F

N

B

N

=

FB

N

Similarly,

V

h

^

B

i

= V [N(1� p̂)℄ = V [Np̂℄

b

V

h

^

B

i

=

FB

N

Further,

^

F ,

^

B are ompletely antiorrelated.

In extended maximum likelihood N is not onstant, but Poisson distributed.

Hene,

L

E

=

e

��

�

N

N !

L =

e

��

�

N

N !

N !

F !B!

p

F

(1� p)

B

`

E

= �� +N ln � � lnN ! + F ln p+B ln(1� p) + lnN !� lnF !B!

�`

E

��

= 1 +

N

�

= 0 �! �̂ = N

The likelihood ondition for p,

�`

E

�p

= 0 gives p̂ =

F

N

, the same as in ordinary

likelihood. The variane of p̂ is also the same. For �̂, the variane is found as

follows:

�

2

`

E

��

2

= �

N

�

2

�! V [�̂℄ =

�

2

N

Estimating the variane by replaing � with �̂ gives

b

V (�̂) = N . Further,

�

2

`

E

���p

= 0 �! p̂ and �̂ are unorrelated.
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The estimate of the number of forward events is

^

F = p̂�̂ = F , with the variane

found by error propagation:

V

h

^

F

i

= p̂

2

V [�̂℄ + �̂

2

V [p̂℄ =

F

2

N

2

N +N

2

p̂(1� p̂)

N

=

F

2

N

+N

F

N

B

N

= F

The result for

^

B is similar. Thus,

^

F = F �

p

F and

^

B = B �

p

B

Alternatively, we an write the p.d.f. as a produt of Poisson p.d.f.'s, one for

forward events and one for bakward events (see exerise 13). Again, N is not

�xed. The parameters are now the expeted numbers of forward, �, and bakward,

�, events. Then

L

E

=

e

��

�

F

F !

e

��

�

B

B!

whih leads to the same result:

^

F =

^

� = F �

p

F and

^

B =

^

� = B �

p

B

again with unorrelated errors.

The onstraint of �xed N leads to smaller, but orrelated, errors in the ordi-

nary maximum likelihood method. The estimates of the numbers of forward and

bakward events are, however, the same. Whih method is orret depends on the

question we are asking. To �nd the fration of bakward events we should use ordi-

nary maximum likelihood. To �nd the number of bakward events that we should

expet in repetitions of the experiment where the number of events an vary, we

should use extended maximum likelihood.

8.4.8 Constrained parameters

It often happens that the parameters to be estimated are onstrained, for instane

by a physial law. The imposition of onstraints always implies adding some in-

formation, and therefore the errors of the parameters are in general redued. One

should therefore be areful not to add inorret information. One should always test

that the data are indeed ompatible with the onstraints. For example, before �xing

a parameter at its theoretial value one should perform the �t with the parameter

free and hek that the resulting estimate is ompatible with the theoretial value.

Even if the theory is true, the data may turn out to give an inompatible value

beause of some experimental bias. Testing the ompatibility is usually a good way

to disover suh experimental problems. How to do this will be disussed in setions

10.4 and 10.6.

The onstraints may take the form of a set of equations

g(

^

�) = 0 (8.93)
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The most eÆient method to deal with suh onstraints is to hange parameters

suh that these equations beome trivial. For example, if the onstraint is

g(�) = �

1

+ �

2

� 1 = 0

we simply replae �

2

by 1� �

1

in the likelihood funtion and maximize with respet

to �

1

.

Similarly, boundaries on a parameter, e.g., �

l

< � < �

h

, an be imposed by the

transformation

� = �

l

+

1

2

(sin + 1)(�

h

� �

l

)

and maximizing L with respet to  .

When the �

i

are frational ontributions, subjet to the onstraints

0 � �

i

� 1 ;

k

X

i=1

�

i

= 1

one an use the following transformation:

�

1

= �

1

�

2

= (1� �

1

)�

2

�

3

= (1� �

1

)(1� �

2

)�

3

.

.

. =

.

.

.

�

k�1

= (1� �

1

)(1� �

2

)(1� �

3

) � � � (1� �

k�2

)�

k�1

�

k

= (1� �

1

)(1� �

2

)(1� �

3

) � � � (1� �

k�2

)(1� �

k�1

)

where the �

i

are bounded by 0 and 1 using the method given above:

�

i

=

1

2

(sin 

i

+ 1)

L is then maximized with respet to the k � 1 parameters  

i

. A drawbak of this

method is that the symmetry of the problem with respet to the parameters is lost.

In general, the above simple methods may be diÆult to apply. One then turns

to the method of Lagrangian multipliers. Given the likelihood funtion L(x; �) and

the onstraints g(�) = 0, one �nds the extremum of

F (x; �; �) = lnL(x; �) + �

T

g(�) (8.94)

with respet to � and �. The likelihood ondition (equation 8.58) beomes

�F

��

i

�

�

�

�

�

�=

^

�

�=�̂

=

�`

��

i

�

�

�

�

�

�=

^

�

+ �̂

T

�g(�)

��

i

�

�

�

�

�

�=

^

�

= 0 (8.95)
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�F

��

j

�

�

�

�

�

�=

^

�

�=�̂

= g(

^

�) = 0 (8.96)

The estimators of � found in this way learly satisfy the onstraints (equation 8.93).

They also have all the usual properties of maximum likelihood estimators.

To �nd the varianes, we onstrut the matrix of the negative of the seond

derivatives:

I � �E

0

B

B

B

�

�

2

F

����

0

�

2

F

����

 

�

2

F

����

!

T

�

2

F

��

2

1

C

C

C

A

= �E

0

B

B

B

�

�

2

`

����

0

�g

��

 

�g

��

!

T

0

1

C

C

C

A

�

�

A B

B

T

0

�

(8.97)

It an be shown

4,5

that the ovariane matrix of the estimators is then given by

V

h

^

�

i

= A

�1

� A

�1

B V [�̂℄ B

T

A

�1

(8.98)

V [�̂℄ =

�

B

T

A

�1

B

�

�1

(8.99)

The �rst term of V

h

^

�

i

is the ordinary unonstrained ovariane matrix; the seond

term is the redution in variane due to the additional information provided by the

onstraints. We have impliitly assumed that I is not singular. This may not be the

ase, e.g., when the onstraint is neessary to de�ne the parameters unambiguously.

One then adds another term to F ,

F

0

= F � g

2

(�)

and proeeds as above. The resulting inverse ovariane matrix is usually non-

singular.

4,5

Computer programs whih searh for a maximum will generally perform better

if the onstraints are handled orretly, rather than by some trik suh as setting the

likelihood very small when the onstraint is not satis�ed, sine this will adversely

a�et the program's estimation of derivatives. Also, use of Lagrangian multipliers

may not work with some programs, sine the extremum an be a saddle point rather

than a maximum: a maximum with respet to �, but a minimum with respet to �.

In suh a ase, \hill-limbing" methods will not be apable of �nding the extremum.

8.5 Least Squares method

8.5.1 Introdution

We begin this subjet by starting from maximum likelihood and treating the exam-

ple of n independent x

i

, eah distributed normally with the same mean but di�erent
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�

i

. To estimate � when all the �

i

are known we have seen that the likelihood fun-

tion is

L =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

�

i

�

2

#

` = �

n

2

ln(2�) +

n

X

i=1

"

� ln�

i

�

(x

i

� �)

2

2�

2

i

#

To maximize L, or `, is equivalent to minimizing

P

n

i=1

(x

i

��)

2

�

2

i

. If � were known, this

quantity would be, assuming eah point independent, a �

2

(n). Sine � is unknown

we replae it by an estimate of �, �̂. There is then one relationship between the

terms of the �

2

and therefore

�

2

=

n

X

i=1

(x

i

� �̂)

2

�

2

i

(8.100)

is a �

2

not of n, but of n� 1 degrees of freedom.

The method of least squares takes as the estimator of a parameter that value

whih minimizes �

2

. The least squares estimator is thus given by

��

2

��

�

�

�

�

�

�=�̂

= �2

n

X

i=1

x

i

� �̂

�

2

i

= 0

whih gives the same estimator as did maximum likelihood (equation 8.59):

�̂ =

P

x

i

�

2

i

P

1

�

2

i

(8.101)

Although in this example the least squares and maximum likelihood methods

result in the same estimator, this is not true in general, in partiular if the p.d.f.

is not normal. We will see that although we arrived at the least squares method

starting from maximum likelihood, least squares is muh more solidly based than

maximum likelihood. It is, perhaps as a onsequene, also less widely appliable.

The method of least squares is a speial ase of a more general lass of methods

whereby one uses some measure of distane, d

i

(x

i

; �), of a data point from its

expeted value and minimizes the sum of the distanes to obtain the estimate of �.

Examples of d, in the ontext of our example, are

1: d

i

(x

i

; �) = jx

i

� �̂j

�

2: d

i

(x

i

; �) =

 

jx

i

� �̂j

�

i

!

�

The di�erene between these two is that in the seond ase the distane is saled by

the square root of the expeted variane of the distane. If all these varianes, �

2

i

,
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are the same, the two de�nitions are equivalent. It an be shown

11,13

that the �rst

distane measure with � = 1 leads to �̂ given by the sample median. The seond

distane measure with � = 2 is just �

2

.

The �rst publiation in whih least squares was used is by Legendre. In an

1805 paper entitled \Nouvelles m�ethodes pour la determination des orbites des

om�etes" he writes:

Il faut ensuite, lorsque toutes les onditions du problême sont exprim�ees

onvenablement, determiner les o�eÆiens de mani�ere �a rendre les er-

reurs les plus petites qu'il est possible. Pour et e�et, la m�ethode qui

me parâ�t la plus simple et la plus g�en�erale, onsiste �a rendre minimum

la somme des quarr�es des erreurs.

Least squares was not the only method in use in those days (or now). In 1792

Laplae minimized the sum of absolute errors, although he later swithed to least

squares. Bessel and Enke also used least squares. In 1831, Cauhy suggested,

\que la plus grande de toutes les erreurs, abstration faite du signe, devienne un

minimum", i.e., to minimize the maximum of the absolute values of the deviations,

max jx

i

� �̂j. This `minimax' priniple gives a very robust estimation but is not

very eÆient.

4,5

We have noted that the �

2

of equation 8.100 is a �

2

of n� 1 degrees of freedom.

Thus, if we were to repeat the idential experiment many times, the values of �

2

obtained would be distributed as �

2

(n � 1), provided that the assumed p.d.f. of

the x

i

is orret. We would not expet then to get a value of �

2

whih would be

very improbable if the assumed p.d.f. were orret. This ould provide a reason for

deiding that the assumed p.d.f. is inorret. This built-in test of the validity of the

assumed p.d.f. is a feature whih was missing in the maximum likelihood method.

We will return to this and other hypothesis tests in setions 10.4 and 10.6.

In the example we assumed that the x

i

were normally distributed about � with

standard deviation �

i

. If this were not the ase, the distribution of the quantity �

2

for repetitions of the experiment would not follow the expeted �

2

(n� 1) distribu-

tion. Consequently, the hane of getting a partiular value of �

2

would not be that

given by the �

2

distribution. In other words, the quantity that we have alled �

2

is

a �

2

r.v. only if our assumption that the x

i

are distributed normally is orret.

Assuming that we have not rejeted the p.d.f., we need to estimate the variane

of �̂. First we an use error propagation (setion 8.3.6) to alulate the variane of

�̂, given by equation 8.101, from the varianes of the x

i

. In our example �̂ is linear

in the x

i

; hene the method is exat (equation 8.49):

V [�̂℄ =

X

 

��̂

�x

i

!

2

V [x

i

℄ =

 

1

P

(1=�

i

)

2

!

2

X

V [x

i

℄

�

4

i

=

1

P

1

�

2

i

whih agrees with the variane found in the maximum likelihood method (equa-

tion 8.60).
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We see that in this example (although not in general true) the variane of the

estimator does not depend on the value of �

2

. However, it does depend on the

shape of �

2

(�):

�

2

(�) =

X

�

x

i

� �

�

i

�

2

��

2

��

�

�

�

�

�

�̂

= �

X

2(x

i

� �̂)

�

2

i

= 0

�

2

�

2

��

2

�

�

�

�

�

�̂

= 2

X

1

�

2

i

=

2

V [�̂℄

-

6

�̂

�

2

min

�

�

2

(�)

All higher order derivatives are zero, a on-

sequene of the eÆieny of the estimator and

the linear relationship between �

2

and `. Thus

the �

2

is a parabola:

�

2

(�) = �

2

(�̂) +

(�̂� �)

2

V [�̂℄

Corresponding to what we did in the maxi-

mum likelihood method, we onstrut the er-

ror on �̂ by �nding that value of � for whih �

2

(�) � �

2

(�̂) has a partiular

value. From the above equation we see that a �

2

-di�erene of 1 ours when

(�̂� �)

2

= V [�̂℄, i.e., for those values of � whih are one standard deviation from

�̂, or more generally a value of � for whih �

2

(�) = �

2

(�̂) = n

2

orresponds to an

n standard deviation di�erene from �̂.

8.5.2 The Linear Model

In the preeding example we had a number of measurements of a �xed quantity.

Now let us suppose that we have a number of measurements y

i

of a quantity y whih

depends on some other quantity x. Assume, for now, that the values x

i

are known

exatly, i.e., without error. For eah x

i

, y is measured to be y

i

with expeted error

�

i

. We assume that �

i

does not depend on y

i

.

One of the reasons for doing a �t to a urve is to enable us to predit the

most likely value of future measurements at a spei�ed x. For example, we wish to

alibrate an instrument. Then the preditor variable x would be the value that the

instrument reads. The response variable y would be the true value. A �t averages

out the utuations in the individual readings as muh as possible. This only works,

of ourse, if the form used for the urve in the �t is at least approximately orret.

Although we will use a one-dimensional preditor variable x, the generalization to

more dimensions is straightforward: x! x.

Assume now that we have a model for y vs. x in terms of ertain parameters �

whih are oeÆients of known funtions of x:

y(x) = �

1

h

1

(x) + �

2

h

2

(x) + �

3

h

3

(x) + : : :+ �

j

h

j

(x) (8.102)



146 CHAPTER 8. PARAMETER ESTIMATION

This is the urve whih we �t to the data. There are k parameters, �

j

, to be

estimated. The important features of this model are that the h

j

are known, distin-

guishable, funtions of x, single-valued over the range of x, and that y is linear in

the �

j

. The word `linear' in the term `linear model' thus refers to the parameters �

j

and not to the variable x. In some ases the linear model is just an approximation

arrived at by retaining only the �rst few terms of a Taylor series. The funtions h

j

must be distinguishable, i.e., no h

j

may be expressible as a linear ombination of

the other h

j

; otherwise the orresponding �

j

will be indeterminate.

We want to determine the values of the �

j

for whih the model (eq. 8.102) best

�ts the measurements. We assume that any deviation of a point y

i

from this urve

is due to measurement error or some other unbiased e�ets beyond our ontrol, but

whose distribution is known from previous study of the measuring proess to have

variane �

2

i

. It need not be a Gaussian. We take as our measure of the distane of

the point y

i

from the hypothesized urve the squared distane in units of �

i

, as in

our example above.

The general term for this �tting proedure is `Regression Analysis'. This term

is of historial origin and like many suh terms it is not partiularly appropriate;

nothing regresses. The term is not muh used in physis, where we prefer to speak of

least squares �ts, but is still in ommon use in the soial sienes and in statistis

books. Some authors make a distintion between regression analysis and least

squares, reserving the term regression for the ase where the y

i

(and perhaps the

x

i

) are means (or other desriptive statistis) of some random variable, e.g., y the

average height and x the average weight of Duth male university students. The

mathematis is, however, the same.

-

6

x

y

true urve

�

p.d.f. of y

i

at x

i

�

x

i

y(x

i

)

y

i

1

1

We assume that the atual measurements are desribed by

y

i

= y(x

i

) + �

i

=

k

X

j=1

�

j

h

j

(x

i

) + �

i

(8.103)

where the unknown error on y

i

has the properties: E [�

i

℄ = 0, V [�

i

℄ = �

2

i

, and �

2

i

is

known. The �

i

do not have to be normally distributed for most of what we shall do;

where a Gaussian assumption is needed, we will say so. Note that if at eah x

i

the

y

i

does not have a normal p.d.f., we may be able to transform to a set of variables

whih does.
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Further, we assume for simpliity that eah y

i

is an independent measurement,

although orrelations an easily be taken into aount by making the error matrix

non-diagonal, as will be disussed. The x

i

may be hosen any way we wish, inluding

several x

i

whih are equal. However, we shall see that we need at least k distint

values of x to determine k parameters �

j

.

Estimator

The problem is now to determine the `best' values of k parameters, �

j

, from n

measurements, (x

i

; y

i

). The deviations from the true urve are �

i

. Therefore the

\�

2

" is

Q

2

=

n

X

i=1

�

2

i

�

2

i

(8.104)

=

n

X

i=1

 

y

i

� y(x

i

)

�

i

!

2

=

n

X

i=1

1

�

2

i

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

2

(8.105)

This is a true �

2

, i.e., distributed as a �

2

p.d.f., only if the �

i

are normally dis-

tributed. To emphasize this we use the symbol Q

2

instead of �

2

.

We do not know the atual value of Q

2

, sine we do not know the true values

of the parameters �

j

. The least squares method estimates � by that value

^

� whih

minimizes Q

2

. This is found from the k equations (l = 1; : : : ; k)

�Q

2

��

l

= 2

n

X

i=1

1

�

2

i

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

(�h

l

(x

i

)) = 0

whih we rewrite as

n

X

i=1

h

l

(x

i

)

�

2

i

k

X

j=1

^

�

j

h

j

(x

i

) =

n

X

i=1

y

i

�

2

i

h

l

(x

i

) (8.106)

This is a set of k linear equations in k unknowns. They are alled the normal

equations. It is easier to work in matrix notation. We write

y =

0

B

�

y

1

.

.

.

y

n

1

C

A

; � =

0

B

�

�

1

.

.

.

�

k

1

C

A

; � =

0

B

�

�

1

.

.

.

�

n

1

C

A

H =

0

B

B

B

B

�

h

1

(x

1

) h

2

(x

1

) : : : h

k

(x

1

)

h

1

(x

2

) h

2

(x

2

) : : : h

k

(x

2

)

.

.

.

.

.

.

.

.

.

.

.

.

h

1

(x

n

) h

2

(x

n

) : : : h

k

(x

n

)

1

C

C

C

C

A
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Then

H � =

0

B

B

B

B

�

P

k

j=1

�

j

h

j

(x

1

)

P

k

j=1

�

j

h

j

(x

2

)

.

.

.

P

k

j=1

�

j

h

j

(x

2

)

1

C

C

C

C

A

and the model (eq. 8.103) an be rewritten

y = H � + � (8.107)

Sine E [�℄ = 0, we obtain E

h

y

i

= H �. In other words, the expetation value of

eah measurement is exatly the value given by the model.

The errors �

2

i

an also be inorporated in a matrix, whih is diagonal given our

assumption of independent measurements,

V [y℄ =

0

B

�

�

2

1

: : : 0

.

.

.

.

.

.

.

.

.

0 : : : �

2

n

1

C

A

If the measurements are not independent, we inorporate that by setting the o�-

diagonal elements to the ovarianes of the measurements. In this matrix notation,

the equations for Q

2

(equations 8.104 and 8.105) beome

Q

2

= �

T

V

�1

� (8.108)

=

�

y �H �

�

T

V

�1

�

y �H �

�

(8.109)

To �nd the estimates of � we solve

�Q

2

��

= �2H

T

V

�1

�

y �H �

�

= 0 (8.110)

whih gives the normal equations orresponding to equations 8.106, but now in

matrix form:

H

T

V

�1

H

^

� = H

T

V

�1

y

(k�n) (n�n) (n�k) (k�1) (k�n) (n�n) (n�1)

(8.111)

where we have indiated the dimension of the matries. The normal equations are

solved by inverting the square matrix H

T

V

�1

H, whih is a symmetri matrix sine

V is symmetri. The solution is then

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y (8.112)

It is useful to note that the atual sizes of the errors �

2

i

do not have to be known

to �nd

^

�; only their relative sizes. To see this, write V = �

2

W , where �

2

is an

arbitrary sale fator and insert this in equation 8.112. The fators �

2

anel; thus

�

2

need not be known in order to determine

^

�.
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Now let us evaluate the expetation of

^

�:

E

h

^

�

i

= E

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

y

�

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

E

h

y

i

=

�

H

T

V

�1

H

�

�1

�

H

T

V

�1

H

�

� = �

Thus

^

� is unbiased, assuming that the model is orret. This is true even for small

n. (Reall that maximum likelihood estimators are often biased for �nite n.)

Proedures exist for solving the normal equations without the intermediate step

of matrix inversion. Suh methods are usually preferable in that they usually su�er

less from round-o� problems.

In some ases, it is more onvenient to solve these equations by numerial ap-

proximation methods. As disussed at the end of setion 8.4.6, programs exist to

�nd the minimum of a funtion. For simple ases like the linear problem we have

onsidered, use of suh programs is not very wasteful of omputer time, and its

simpliity dereases the probability of an experimenter's error and probably saves

his time as well. If the problem is not linear, a ase whih we shall shortly disuss,

suh an approah is usually best.

We have stated that there must be no linear relationship between the h

j

. If

there is, then the olumns of H are not all independent, and sine V is symmetri,

H

T

V

�1

H will be singular. The best approah is then to eliminate some of the h's

until the linear relationships no longer exist. Also, there must be at least k distint

x

i

; otherwise the same matrix will be singular.

Note that if the number of parameters k is equal to the number of distint values

of x, i.e., n = k assuming all x

i

are distint, then

�

H

T

V

�1

H

�

�1

= H

�1

V

�

H

T

�

�1

Substituting in equation 8.112 yields

^

� = H

�1

y, assuming that H

T

V

�1

H is not

singular. Thus

^

� is independent of the errors. The urve will pass through all the

points, if that is possible. It may not be possible; the assumed model may not be

orret.

Variane

The ovariane matrix of the estimators is given by

V

h

^

�

i

=

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

| {z }

V

h

y

i

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

T

| {z }

(k�k) (k�n) (n�n) (n�k)

(8.113)

This an be demonstrated by working out a simple example. Alternatively, it follows

from propagation of errors (setion 8.3.6): Sine we are onverting from errors on
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y to errors on

^

�, the matrix D (equation 8.53) is

D(

^

�) =

0

B

B

B

B

B

B

�

�

^

�

1

�y

1

�

^

�

2

�y

1

: : :

�

^

�

k

�y

1

�

^

�

1

�y

2

�

^

�

2

�y

2

: : :

�

^

�

k

�y

2

.

.

.

.

.

.

.

.

.

.

.

.

�

^

�

1

�y

n

�

^

�

2

�y

n

: : :

�

^

�

k

�y

n

1

C

C

C

C

C

C

A

The elements of D are found by di�erentiating equation 8.112, whih gives

D

T

ij

= D

ji

=

�

^

�

i

�y

j

=

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

ij

(8.114)

or

D =

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

T

(8.115)

The ovariane (equation 8.113) then follows from equation 8.52, V

h

^

�

i

= D

T

V

h

y

i

D.

What we here all V

h

y

i

is what we previously just alled V . It is a square,

symmetri matrix. Hene V

�1

is also square and symmetri and therefore (V

�1

)

T

=

V

�1

. For the same reason

�

�

H

T

V

�1

H

�

�1

�

T

=

�

H

T

V

�1

H

�

�1

. Therefore, equation

8.113 an be rewritten:

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

V V

�1

H

�

H

T

V

�1

H

�

�1

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

H

�

H

T

V

�1

H

�

�1

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

(8.116)

Equation 8.112 for the estimator

^

� and equation 8.116 for its variane onstitute

the omplete method of linear least squares.

�

2

unknown

If V (y) is only known up to an overall onstant, i.e., V = �

2

W with �

2

unknown,

it an be estimated from the minimum value of Q

2

: De�ning Q

2

in terms of W , its

minimum value is given by equation 8.108 with � =

^

�:

Q

2

min

=

�

y �H

^

�

�

T

W

�1

�

y �H

^

�

�

(8.117)

If the �

i

are normally distributed, Q

2

= �

2

�

2

where the �

2

has n � k degrees of

freedom. The expetation of Q

2

is then

E

h

Q

2

i

= E

h

�

2

�

2

i

= �

2

(n� k)
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Therefore,



�

2

=

Q

2

min

n� k

(8.118)

is an unbiased estimate of �

2

. It an be shown

�

that this result is true even when

the �

i

are not normally distributed.

Interpolation

Having found

^

�, we may wish to alulate the value of y for some partiular value

of x. In fat, the reason for doing the �t is often to be able to interpolate or

extrapolate the data points to other values of x. This is done by substituting the

estimators in the model. The variane is found by error propagation, reversing the

proedure used above to �nd the variane of

^

�. The estimate ŷ

0

of y at x = x

0

and

its variane are therefore given by

ŷ

0

= H

0

^

� (8.119)

V [ŷ

0

℄ = H

0

V (

^

�)H

T

0

= H

0

�

H

T

V

�1

h

y

i

H

�

�1

H

T

0

(8.120)

where H

0

= (h

1

(x

0

) h

2

(x

0

) : : : h

k

(x

0

) ), i.e., the H-matrix for the single point

x

0

.

8.5.3 Derivative formulation

We an derive the above results in another way. The ovariane matrix an be

found from the derivatives of Q

2

: Starting from equation 8.109,

�Q

2

��

�

�

�

�

�

�=

^

�

= �2H

T

V

�1

�

y �H

^

�

�

(8.121)

�

2

Q

2

��

2

�

�

�

�

�

�=

^

�

= +2H

T

V

�1

H = 2V

�1

h

^

�

i

(8.122)

This is a very useful way to alulate the ovariane, whih we have already seen in

our simple example of repeated measurements of a �xed quantity in the introdution

(setion 8.5.1).

In fat, the solution

^

� an be written in terms of the derivatives of Q

2

making

it unneessary to onstrut H, V , and the assoiated matrix produts. To see this

we substitute the seond derivative, equation 8.122, in equation 8.112. Sine we are

trying to �nd

^

�, we do not yet know it, and we an not evaluate the derivative at

� =

^

�. We therefore evaluate it at some guessed value, �

0

. Thus,

^

� = 2

0

�

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

1

A

�1

H

T

V

�1

y

�

See Kendall & Stuart

11

, vol. II, setion 19.9 and exerise 19.5.
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=

0

�

�

2

Q

2

��
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�

�
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�

�=�

0

1

A

�1

2

4

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

� �

0

�

�Q

2

��

�

�

�

�

�

�=�

0

3

5

= �

0

�

0

�

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

1

A

�1

�

�Q

2

��

�

�

�

�

�

�=�

0

(8.123)

This is the Newton-Raphson method of solving the equations

�Q

2

��

= 0. It is exat,

i.e., independent of the hoie of �

0

for the linear model where the form of Q

2

is a

parabola. In the non-linear ase, the method an still be used, but iteratively; its

suess will depend on how lose �

0

is to

^

� and on how non-linear the problem is.

The derivative formulation for the least squares solution is frequently the most

onvenient tehnique in pratial problems. The derivatives we need are

�Q

2

��

i

=

�

��

i

X

m

�

2

m

�

2

m

= 2

X

m

�

m

�

2

m

��

m

��

i

and

�

2

Q

2

��

i

��

j

= 2

X

m

1

�

2

m

��

m

��

i

��

m

��

j

+ 2

X

m

�

m

�

2

m

�

2

�

m

��

i

��

j

In the linear ase,

�

2

�

m

��

i

��

j

= 0, and

��

m

��

i

= �h

i

(x

m

). Thus, the neessary derivatives

are easy to ompute.

Finally, we note that the minimum value of Q

2

is given by

Q

2

(

^

�) = Q

2

(�

0

) +

�Q

2

��

�

�

�

�

�

�=�

0

� (

^

� � �

0

) +

1

2

(

^

� � �

0

)

T

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

(

^

� � �

0

) (8.124)

where we have expanded Q

2

(

^

�) about �

0

. Third and higher order terms are zero for

the linear model.

Just as in the example in the introdution to least squares, we an show, by

expanding Q

2

about

^

� that the set of values of � given by Q

2

(�) = Q

2

min

+ 1 de�ne

the one standard deviation errors on

^

�. This is the same as the geometrial method

to �nd the errors in maximum likelihood analysis (setion 8.4.5), exept that here

the di�erene in Q

2

is 1 whereas the di�erene in ` was

1

/

2

. This is beause the

ovariane matrix here is given by twie the inverse of the seond derivative matrix,

whereas it was equal to the inverse of the seond derivative matrix in the maximum

likelihood ase.

So far we have made no use of the assumption that the �

i

are Gaussian dis-

tributed. We have only used the onditions E(�

i

) = 0 and V [�

i

℄ = �

2

i

known and

the linearity of the model.

8.5.4 Gauss-Markov Theorem

This is the theorem whih provides the method of least squares with its �rm mathe-

matial foundation. In 1812 Laplae showed that the method of least squares gives
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unbiased estimates, irrespetive of the parent distribution. Nine years later Gauss

proved that among the lass of estimators whih are both linear ombinations of

the data and unbiased estimators of the parameters, the method of least squares

gives estimates having the least possible variane. This was treated more gener-

ally by Markov in 1912. It was extended in 1934 by Aitken to the ase where the

observations are orrelated and have di�erent varianes.

We will simply state the theorem without proof:

�

If E [�

i

℄ = 0 and the ovariane

matrix of the �

i

, V [�℄ is �nite and �xed, i.e., independent of � and y, (it does not

have to be diagonal), then the least squares estimate,

^

� is unbiased and has the

smallest variane of all linear (in y), unbiased estimates, regardless of the p.d.f. for

the �

i

.

Note that

� This theorem onerns only linear unbiased estimators. It may be possible,

partiularly if � is not normally distributed, to �nd a non-linear unbiased

estimator with a smaller variane. Biased estimators with a smaller variane

may also exist.

� Least squares does not in general give the same result as maximum likelihood

(unless the �

i

are Gaussian) even for linear models. In this ase, linear least

squares is often to be preferred to linear maximum likelihood where appli-

able and onvenient, sine linear least squares is unbiased and has smallest

variane. An exeption may our in small samples where the data must be

binned in order to do a least squares analysis, ausing a loss of information.

� The assumptions are important: The measurement errors must have zero

mean and they must be homosedasti (the tehnial name for onstant vari-

ane). Non-zero means or heterosedasti varianes may reveal themselves in

the residuals, y

i

� f(x

i

), f. setion 10.6.8.

8.5.5 Examples

A Straight-Line Fit

As an example of linear least squares we do a least squares �t of independent

measurements y

i

at points x

i

assuming the model y = a+ bx. Thus,

� =

�

a

b

�

; h =

�

1

x

�

; H =

0

B

B

B

�

1 x

1

1 x

2

.

.

.

.

.

.

1 x

n

1

C

C

C

A

and y = H � + �

�

For a proof, see for example, Kendall & Stuart

11

, hapter 19 (Stuart et al.

13

, hapter 29), or

Eadie et al.

4

(or James

5

).
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Sine the measurements are independent, the ovariane matrix is diagonal with

V

ii

(y) = V

ii

(�) = �

2

i

and Q

2

= �

T

V

�1

� =

n

X

i=1

�

2

i

�

2

i

=

n

X

i=1

 

y

i

� a� bx

i

�

i

!

2

Hene, using the derivative method,

�Q

2

�a

= 0 �! â =

1

P

n

i=1

1

�

2

i

n

X

i=1

y

i

�

^

bx

i

�

2

i

�Q

2

�b

= 0 �!

^

b =

1

P

n

i=1

x

2

i

�

2

i

n

X

i=1

x

i

y

i

� âx

i

�

2

i

Solving, we �nd

^

b =

�

P

x

i

y

i

�

2

i

��

P

1

�

2

i

�

�

�

P

y

i

�

2

i

��

P

x

i

�

2

i

�

�

P

x

2

i

�

2

i

��

P

1

�

2

i

�

�

�

P

x

i

�

2

i

�

2

whih an in turn be substituted in the expression for â.

Alternatively, we an solve the matrix equation,

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y

whih, of ourse, gives the same result.

Note that if all �

i

are the same, �

i

= �, then

â = �y �

^

b�x and

^

b =

xy � �x�y

x

2

� �x

2

(8.125)

These are the formulae whih are programmed into many poket alulators. As

suh, they should only be used when the �

i

are all the same. These formulae are,

however, also appliable to the ase where not all �

i

are the same if the sample

average indiated by the bar is interpreted as meaning a weighted sample average

with weights given by 1=�

2

i

, e.g., �y =

P

y

i

=�

2

i

P

1=�

2

i

. The proof is left as an exerise

(ex. 40).

Note that at least two of the x

i

must be di�erent. Otherwise, the denominator

in the expression for

^

b is zero. This illustrates the general requirement that there

must be at least as many distint values of x

i

as there are parameters in the model;

otherwise the matrix H

T

V

�1

H will be singular.

The errors on the least squares estimates of the parameters are given by equation

8.122 or 8.116. With all �

i

the same, equation 8.116 gives

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

=

�

H

T
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�

�1

�
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2

2

6

4

�

1 : : : 1

x

1

: : : x

n

�

0

B

�

1 x

1

.
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.

.
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1 x

n

1
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A

3

7

5

�1

= �
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�

n

P

x

i

P

x

i

P

x
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i

�
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=

�
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� (
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�
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�
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n
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i
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x

2

i

�

P

x

i

�

P

x

i

n

�
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Thus,

 

V [â℄ ov(â;

^

b)

ov(â;

^

b) V

h

^

b

i

!

=

�

2

n

�

x

2

� �x

2

�

�

x

2

��x

��x 1

�

(8.126)

Note that by translating the x-axis suh that �x beomes zero, the estimates of the

parameters beome unorrelated.

Here too, it is possible to use this formula for the ase where not all �

i

are the

same. Besides taking the bar as a weighted average, one must also replae �

2

by

its weighted average,

�

2

=

P

�

2

i

=�

2

i

P

1=�

2

i

=

n

P

1=�

2

i

(8.127)

Note that the errors are smallest for the largest spread in the x

i

. Thus we will

attain the best estimates of the parameters by making measurements only at the

extreme values of x. This proedure is, however, seldom advisable sine it makes it

impossible to test the validity of the model, as we shall see.

Having found â and

^

b, we an alulate the value of y for any value of x by

simply substituting the estimators in the model. The estimate ŷ

0

of y at x = x

0

is

therefore given by

ŷ

0

= â+

^

bx

0

(8.128)

We note in passing that this gives ŷ

0

= �y for x

0

= �x. The variane of ŷ

0

is found

by error propagation:

V [ŷ

0

℄ = V [â℄ + x

2

0

V

h

^

b

i

+ 2x

0

ov(â;

^

b)

Substituting from equation 8.126 gives

V [ŷ

0

℄ =

�

2

n

2

4

1 +

(x

0

� �x)

2

�

x

2

� �x

2

�

3

5

(8.129)

Thus, the loser x

0

is to �x, the smaller the error in ŷ

0

.

A Polynomial Fit

To �t a parabola

y = a

0

+ a

1

x+ a

2

x

2

the matrix H is

H =

0

B

B

B

B

�

1 x

1

x

2

1

1 x

2
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2

2

.

.

.

.

.

.

.

.

.

1 x

n

x

2

n

1

C

C

C

C

A

Assuming that all the �

i

are equal, equation 8.112 beomes
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P
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A
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The extension to higher order polynomials is obvious. Unfortunately, there is no

simple method to invert suh matries, even though the form of the matrix appears

very regular and symmetri. Numerial inversion su�ers from rounding errors when

the order of the polynomial is greater than six or seven.

One an hope to mitigate these problems by hoosing a set of orthogonal poly-

nomials, e.g., Legendre or Thebyhe� (Chebyshev) polynomials, instead of powers

of x. The o�-diagonal terms then involve produts of orthogonal funtions summed

over the events. The expetation of suh produts is zero, and hene the sum of

their produts over a large number of events should be nearly zero. The matrix is

then nearly diagonal and less prone to numerial problems.

Even better is to �nd funtions whih are exatly orthogonal over the measured

data points, i.e., funtions, �, for whih

n

X

i=1

�

j

(x

i

)�

k

(x

i

)(V

�1

)

jk

= Æ

jk

The matrix whih has to be inverted, H

T

V

�1

H, is then simply the unit matrix. An

additional feature of suh a parametrization is that the estimates of the parameters

are independent; the ovariane matrix for the parameters is diagonal. Suh a set of

funtions an always be found, e.g., using Shmidt's orthogonalization method

�

or,

more simply, using Forsythe's method.

40

Its usefulness is limited to ases where we

are merely seeking a parametrization of the data (for the purpose of interpolation

or extrapolation) rather than seeking to estimate the parameters of a theoretial

model.

8.5.6 Constraints in the linear model

If the parameters to be estimated are onstrained, we an, as in the maximum

likelihood ase (setion 8.4.8), try to write the model in terms of new parameters

whih are unonstrained. Alternatively, we an use the more general method of

Lagrangian multipliers, whih we will now disuss for least squares �ts.

Suppose the model is y = H �+� for n observations y

i

and k parameters �

j

. The

H

ij

may take any form, e.g., H

ij

= x

j�1

i

for a polynomial �t to the observations y

i

taken at points x

i

as in the previous setion.

Suppose that the deviations �

i

have ovariane matrix V and that the parameters

� are subjet to m linear onstraints,

k

X

j=1

`

ij

�

j

= R

i

; i = 1; : : : ; m (8.130)

or, in matrix notation,

L � = R (8.131)

�

See, e.g., Margenau & Murphy

39

.
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The least squares estimate of � is then found using a k-omponent vetor of La-

grangian multipliers, 2�, by �nding the extremum of

Q

2

=

�

y �H �

�

T

V

�1

�

y �H �

�

+ 2�

T

(L � � R) (8.132)

where the �rst term is the usual Q

2

and the seond term represents the onstraints.

Di�erentiating with respet to � and with respet to �, respetively, yields the

normal equations

H

T

V

�1

H

^

� + L

T

^

� = H

T

V

�1

y (8.133a)

L

^

� = R (8.133b)

whih an be ombined to give

�

C L

T

L 0

��

^

�

^

�

�

=

�

S

R

�

(8.134)

where

C = H

T

V

�1

H (8.135)

S = H

T

V

�1

y (8.136)

Assuming that both C and LC

�1

L

T

an be inverted, the normal equations an be

solved for

^

� and

^

� giving

3{5

�

^

�

^

�

�

=

�

F G

T

G E

��

S

R

�

(8.137)

where

�

W =

�

LC

�1

L

T

�

�1

(8.138)

F = C

�1

� C

�1

L

T

W LC

�1

=

�

1� C

�1

L

T

W L

�

C

�1

(8.139)

G = W LC

�1

(8.140)

E = �W (8.141)

The solutions an then be written

^

� = F S +G

T

R = F H

T

V

�1

y +G

T

R (8.142)

^

� = GS + E R = GH

T

V

�1

� (8.143)

The ovariane matrix an be shown

3{5

to be given by

V

h

^

�

i

= F (8.144)

V

h

^

�

i

= W (8.145)

ov

�

^

�;

^

�

�

= 0 (8.146)

�

Note that Eadie et al.

4

ontains a misprint in these equations.
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In the unonstrained ase the solution was

^

� = C

�1

S with ovariane matrix

V

h

^

�

i

= C

�1

. These results are reovered from the above equations by setting terms

involving L or R to zero. From equations 8.139 and 8.144 we see that the onstraints

redue the variane of the estimators, as should be expeted sine introduing on-

straints adds information. We also see that the onstraints introdue (additional)

orrelations between the

^

�

i

.

It an be shown

4,5

that the

^

� are unbiased, and that E

h

^

�

i

= 0 as expeted.

8.5.7 Improved measurements through onstraints

An important use of onstraints in the linear model is to improve measurements.

As an example, suppose that one measures the three angles of a triangle. We know,

of ourse, that the sum of the three angles must be 180

Æ

. However, beause of the

resolution of the measuring apparatus, it probably will not be. In partile physis

one often applies the onstraints of energy and momentum onservation to the

measurements of the energies and momenta of partiles produed in an interation.

�

By using this knowledge we an obtain improved values of the measurements.

To do this, we make use of the linear model with onstraints as developed in the

previous setion. We assume that there is just one measurement of eah quantity.

If there is more than one, they an be averaged and the average used in the �t. The

model is here the simplest imaginable, y = �, i.e., what we want to estimate is the

response variable itself. The measurements are then desribed by (equation 8.103)

y

i

=

n

X

j=1

�

i

Æ

ij

+ �

i

= �

i

+ �

i

Thus the matrix H is just the unit matrix, and, in the absene of onstraints, the

normal equations have the trivial (and obvious) solution (equation 8.112)

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y = y

The best value of a measurement (

^

�

i

) is just the measurement itself (y

i

).

With m linear onstraints (equation 8.130 or 8.131) the solution follows imme-

diately from the previous setion by setting H = 1. The improved values of the

measurements are then the

^

�

i

. Note that the onstraints introdue a orrelation

between the measurements.

8.5.8 Linear Model with errors in both x and y

So far we have onsidered the x

i

to be known exatly. Now let us drop this restrition

and allow the x

i

as well as the y

i

to have errors: �

x i

and �

y i

, respetively.

�

In partile physis this proedure is known as kinematial �tting sine the onstraints usually

express the kinematis of energy and momentum onservation.
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We begin by treating the ase of a

straight-line �t, y = a + bx, from setion

8.5.5.

As before, we take Q

2

as the sum of

the squares of the distanes between the

�t line and the measured point saled by

the error on this distane. However, this

distane is not unique. This is illustrated

in the �gure where the ellipse indiates

the errors on x

i

and y

i

. For a point on

the line, P

j

, the distane to D is P

j

D and

the error is the distane along this line from the point D to the error ellipse, R

j

D:

d

j

=

P

j

D

R

j

D

Sine we want the minimum of Q

2

, we also want to take the minimum of the d

j

,

i.e., the minimum of

d

2

i

=

(x� x

i

)

2

�

2

xi

+

(y � y

i

)

2

�

2

yi

(8.147)

where we have assumed that the errors on x

i

and y

i

are unorrelated. Substituting

y = a+ bx and setting

dd

i

dx

= 0 results in the minimum distane being given by

d

2

imin

=

(y

i

� a� bx

i

)

2

�

2

y i

+ b

2

�

2

x i

This same result an be found by taking the usual de�nition of the distane,

d

2

i

=

 

y

i

� y(x

i

)

�

i

!

2

=

 

y

i

� a� bx

i

�

i

!

2

where �

i

is no longer just the error on y

i

, �

y i

, but is now the error on y

i

� a� bx

i

and is found by error propagation to be

�

2

i

= �

2

y i

+ b

2

�

2

x i

Here the error propagation is exat sine y

i

� a� bx

i

is linear in x

i

.

We must now �nd the minimum of

Q

2

=

n

X

i=1

(y

i

� a� bx

i

)

2

�

2

y i

+ b

2

�

2

x i

(8.148)

The easiest method is to program it and use a minimization program. However,

lets see how far we an get analytially.
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Di�erentiating with respet to a gives

�Q

2

�a

= �2

n

X

i=1

y

i

� a� bx

i

�

2

y i

+ b

2

�

2

x i

Setting this to zero and solving for a results in

â =

P

n

i=1

y

i

�

^

bx

i

�

2

y i

+

^

b

2

�

2

x i

P

n

i=1

1

�

2

y i

+

^

b

2

�

2

x i

We note that if all �

x i

= 0 this redues to the expression found in setion 8.5.5.

Unfortunately, the di�erentiation with respet to b is more ompliated. In pratie

it is most easily done numerially by hoosing a series of values for

^

b, alulating â

from the above formula and using these values of â and

^

b to alulate Q

2

, repeating

the proess until the minimum Q

2

is found.

The errors on â and

^

b are most easily found from the ondition thatQ

2

�Q

2

min

= 1

orresponds to one standard deviation errors.

If all �

x i

are the same and also all �

y i

are the same, the situation simpli�es

onsiderably. The above expression for â beomes

â = �y �

^

b�x (8.149)

and di�erentiation with respet to b leads to

�Q

2

�b

= �2

n

X

i=1

y

i

� â�

^

bx

i

�

2

y

+ b

2

�

2

x

+

^

b�

2

x

P

n

i=1

(y

i

� â�

^

bx

i

)

2

�

2

y

+ b

2

�

2

x

= 0

Substituting the expression for â into this equation then yields

^

b

2

�

2

x

�xy �

^

b (�

2

x

�y

2

� �

2

y

�x

2

)� �

2

y

�xy = 0 (8.150)

where

�x

2

= x

2

� �x

2

�y

2

= y

2

� �y

2

�xy = xy � �x�y

This is a quadrati equation for

^

b. Of the two solutions it turns out that the one

with a negative sign before the square root gives the minimum Q

2

; the one with

the plus sign gives the maximum Q

2

of all straight lines passing through the point

(�x; �y). We note that these solutions for â and

^

b redue to those found in setion

8.5.5 when there is no unertainty on x (�

x

= 0).
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In general

Now let us onsider a more ompliated ase. Let us represent a data point by the

vetor z

i

=

�

x

i

y

i

�

. If the model is a more ompliated funtion than a straight

line, or if there is a non-zero orrelation between x

i

and y

i

, the distane measure d

i

de�ned in equation 8.147 beomes

d

2

i

= (z



i

� z

i

)

T

V

i

�1

(z



i

� z

i

)

where V

i

is the ovariane matrix for data point i, V

i

=

�

�

2

x i

ov(x

i

; y

i

)

ov(x

i

; y

i

) �

2

y i

�

and the point on the urve losest to z

i

is represented by z



i

=

�

x



i

y



i

�

. The om-

ponents of z



i

are related by the model: y



i

= H

T

(x



i

) �, whih an be regarded as

onstraints for the minimization of Q

2

. We then use Lagrangian multipliers and

minimize

Q

2

=

n

X

i=1

h

(z



i

� z

i

)

T

V

i

(z



i

� z

i

) + �

i

�

y



i

�H

T

(x



i

)�

�i

(8.151)

with respet to the unknowns:

k parameters �

n unknowns x



i

n unknowns y



i

n unknowns �

i

by setting the derivatives of Q

2

with respet to eah of these unknowns equal to

zero. The solution of these 3n+ k equations is usually quite messy and a numerial

searh for the minimum Q

2

is more pratial.

8.5.9 Non-linear Models

For simpliity we again assume that the x

i

are exatly known.

If the deviations of the measurements y

i

from the true value y(x

i

) are normally

distributed, the likelihood funtion is

L(y; �) =

n

Y

i=1

1

p

2��

i

exp

2

4

�

1

2

 

y

i

� y(x

i

; �)

�

i

!

2

3

5

` = lnL = �

n

2

ln(2�) +

n

X

i=1

2

4

� ln�

i

�

1

2

 

y

i

� y(x

i

; �)

�

i

!

2

3

5

and L is maximal when

Q

2

=

n

X

i=1

 

y

i

� y(x

i

; �)

�

i

!

2
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is minimal. Thus the least squares method yields the same estimates as the maxi-

mum likelihood method, and aordingly has the same desirable properties.

When the deviations are not normally distributed, the least squares method may

still be used, but it does not have suh general optimal properties as to be useful for

small n. Even asymptotially, the estimators need not be of minimum variane.

4,5

In pratie, the minimum of Q

2

is usually most easily found numerially using

a searh program suh as MINUIT. However, an iterative solution

3,6

of the normal

equations (subjet to onstraints) may yield onsiderable savings in omputer time.

8.5.10 Summary

The most important properties of the least squares method are

� In the linear model, it follows from the Gauss-Markov theorem that least

squares estimators have optimal properties: If the measurement errors have

zero expetation and �nite, �xed variane, then the least squares estimators

are unbiased and have the smallest variane of all linear, unbiased estimators.

� If the errors are Gaussian, least squares estimators are the same as maximum

likelihood estimators.

� If the errors are Gaussian, the minimum value of Q

2

provides a test of the

validity of the model, at least in the linear model (f. setions 10.4.3 and

10.6.3).

� If the model is non-linear in the parameters and the errors are not Gaussian,

the least squares estimators usually do not have any optimal properties.

The least squares method disussed so far does not apply to histograms or other

binned data. Fitting to binned data is treated in setion 8.6.

8.6 Estimators for binned data

The methods of parameter estimation treated so far were developed and applied

either to points (events) sampled from some p.d.f. (moments and maximum likeli-

hood) or to measurements, i.e., the results of some previous analysis (least squares

and maximum likelihood). Here we want to apply a least squares method to a

sample of events in order to estimate parameters of the underlying p.d.f., muh as

we did with maximum likelihood.

8.6.1 Minimum Chi-Square

The astute reader will have notied that the least squares method requires measure-

ments y

i

with variane V [y

i

℄ for values x

i

of the preditor variable. What do we
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do when the data are simply observations of the values of x for a sample of events?

This was easily treated in the maximum likelihood method. For a least squares

type of estimator we must transform this set of observations into estimates of y at

various values of x.

To do this we ollet the observations into mutually exlusive and exhaustive

lasses de�ned with respet to the variable x. (The extension to more than one

variable is straightforward.) An example of suh a lassi�ation is a histogram and

we shall sometimes refer to the lasses as bins, but the onept is more general than

a histogram. Assume that we have k lasses and let �

i

be the probability, alulated

from the assumed p.d.f., that an observation falls in the i

th

lass. Then

k

X

i=1

�

i

= 1

and the distribution of observations among the lasses is a multinomial p.d.f. Let

n be the total number of observations and n

i

the number of observations in the i

th

lass. Then p

i

= n

i

=n is the fration of observations in the i

th

lass.

The minimum hi-square method onsists of minimizing Pearson's

53

�

2

, whih

we refer to here as Q

2

1

,

Q

2

1

= n

k

X

i=1

(p

i

� �

i

)

2

�

i

=

k

X

i=1

(n

i

� n�

i

)

2

n�

i

(8.152)

= n

 

k

X

i=1

p

2

i

�

i

� 1

!

The estimators

^

�

j

are then the solutions of

�Q

2

1

��

j

= n

k

X

i=1

�Q

2

1

��

i

��

i

��

j

= �n

k

X

i=1

�

p

i

�

i

�

2

��

i

��

j

= 0 (8.153)

This appears rather similar to the usual least squares method. The `measure-

ment' is now the observed number of events in a bin, and the model is that there

should be n�

i

events in the bin. Reall (setion 3.3) that the multinomial p.d.f.

has for the i

th

bin the expetation �

i

= n�

i

and variane �

2

i

= n�

i

(1 � �

i

). For a

large number of bins, eah with small probability �

i

, the variane is approximately

�

2

i

= n�

i

and the ovarianes, ov(n

i

; n

j

) = �n�

i

�

j

, i 6= j, are approximately zero.

The `error' used in equation 8.152 is thus that expeted from the model and is

therefore a funtion of the parameters. In the least squares method we assumed,

as a ondition of the Gauss-Markov theorem, that �

2

i

was �xed. Sine that is here

not the ase, the Gauss-Markov theorem does not apply to minimum �

2

.

This use of the error expeted from the model may seem rather surprising, but

nevertheless this is the de�nition of Q

2

1

. We note that in least squares the error

was atually also an expeted error, namely the error expeted from the measuring

apparatus, not the error estimated from the measurement itself.
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In pratie, Q

2

1

may be diÆult to minimize owing to the dependene of the

denominator on the parameters. This onsideration led to the modi�ed minimum

hi-square method where one minimizes Q

2

2

(Neyman's �

2

), whih is de�ned using

an approximation of the observed, i.e., estimated, error, �

2

i

� n

i

, whih is valid for

large n

i

:

Q

2

2

= n

k

X

i=1

(p

i

� �

i

)

2

p

i

=

k

X

i=1

(n

i

� n�

i

)

2

n

i
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= n
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i
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i

� 1

!

The estimators

^

�

j

are then the solutions of

�Q

2

2

��

j

= n

k

X

i=1

�Q

2

2

��

i

��

i

��

j

= 2n

k

X
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�

i

p

i

!

��

i

��

j

= 0 (8.155)

From the approximations involved, it is lear that neither Q

2

is a true �

2

for

�nite n. However, both beome a �

2

(k � s) asymptotially, where s is the number

of parameters whih are estimated. Also, it an be shown

11

that the estimators

found by both methods are `best asymptotially normal' (BAN) estimators, i.e.,

that the estimators are onsistent, asymptotially normally distributed, eÆient (of

minimum variane), and that

�

^

�

�p

i

exists and is ontinuous for all i. Both Q

2

1

and Q

2

2

thus lead asymptotially to estimators with optimal properties.

8.6.2 Binned maximum likelihood

Alternatively, one an use the maximum likelihood method on the binned data.

The multinomial p.d.f. (eq. 3.3) in our present notation is

f =

n!

n

1

!n

2

! : : : n

k

!

�

n

1

1

�

n

2

2

: : : �

n

k

k

= n!

k

Y

i=1

�

n

i

i

n

i

!

Dropping fators whih are independent of the parameters, the log-likelihood whih

is to be maximized is given by

` = lnL =

k

X

i=1

n

i

ln�

i

(8.156)

Note that in the limit of zero bin width this is idential to the usual log-likelihood

of equation 8.57. The estimators

^

�

j

are the values of � for whih ` is maximum and

are given by

�`

��

j

=

k

X

i=1

n

i

� ln�

i

��

i

��

i

��

j

= n

k

X

i=1

�

p

i

�

i

�

��

i

��

j

= 0 (8.157)
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These maximum likelihood estimators are also BAN.

This formulation assumes that the total number of observations, n =

P

n

i

, is

�xed, as did the minimum hi-square methods of the previous setion. If this is

not the ase, the binned maximum likelihood method is easily extended. As in

setion 8.4.7, the joint p.d.f. is multiplied by a Poisson p.d.f. for the total number

of observations. Equivalently (f. exerise 13), we an write the joint p.d.f. as a

produt of k Poisson p.d.f.'s:

f =

k

Y

i=1

�

n

i

i

e

��

i

n

i

!

where �

i

is the expeted number of observations in bin i. This leads to

`

E

=

k

X

i=1

n

i

ln �

i

�

k

X

i=1

�

i

(8.158)

In terms of the present notation, �

i

= �

tot

�

i

. But now �

tot

=

P

�

i

is not neessarily

equal to n.

8.6.3 Comparison of the methods

Asymptotially, all three of these methods are equivalent. How do we deide whih

one to use? In a partiular problem, one method ould be easier to ompute.

However, given the omputer power most physiists have available, this is seldom

a problem. The question is then whih method has the best behavior for �nite n.

� Q

2

1

requires a large number of bins with small �

i

for eah bin in order to

neglet the orrelations and to approximate the variane by n�

i

. Assuming

that the model is orret, this will mean that all n

i

must be small.

� In addition, Q

2

2

requires all n

i

to be large in order that

p

n

i

be a good estimate

of the variane. Thus the n

i

must be neither too large nor too small. In

partiular, an n

i

= 0 auses Q

2

2

to blow up.

� The binned maximum likelihood method does not su�er from suh problems.

In view of the above, it is perhaps not surprising that the maximum likelihood

method usually onverges faster to eÆieny. In this respet the modi�ed minimum

hi-square (Q

2

2

) is usually the worst of the three methods.

11

One may still hoose to minimize Q

2

1

or Q

2

2

, perhaps beause the problem is

linear so that the equations

�Q

2

��

j

= 0 an be solved simply by a matrix inversion

instead of a numerial minimization. One must then ensure that there are no small

n

i

, whih in pratie is usually taken to mean that all n

i

must be greater than 5 or

10. Usually one attains this by ombining adjaent bins. However, one an just as

well ombine non-adjaent ones. Nor is there any requirement that all bin widths

be equal. One must simply alulate the �

i

properly, i.e., as the integral of the
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p.d.f. over the bin, whih is not always adequately approximated by the bin width

times the value of the p.d.f. at the enter of the bin.

Sine the maximum likelihood method is usually preferred, we an ask why we

bin the data at all. Although binning is required in order to use a minimum hi-

square method, we an perfetly well do a maximum likelihood �t without binning.

Although binning loses information, it may still be desirable in the maximum like-

lihood method in order to save omputing time when the data sample is very large.

In hoosing the bin sizes one should pay partiular attention to the amount of in-

formation that is lost. Large bins lose little information in regions where the p.d.f.

is nearly onstant. Nor is muh information lost if the bin size is small ompared to

the experimental resolution in the measurement of x. It would seem best to try to

have the information ontent of the bins approximately equal. However, even with

this riterion the hoie of binning is not unique. It is then wise to hek that the

results do not depend signi�antly on the binning.

\There are nine and sixty ways of onstruting tribal lays.

And { every { single { one { of { them { is { right!"

|Rudyard Kipling

8.7 Pratial onsiderations

In this setion we try to give some guidane on whih method to use and to treat

some ompliations that arise in real life.

8.7.1 Choie of estimator

Criteria

Faed with di�erent methods whih lead to di�erent estimators we must deide

whih estimator to use. Eadie et al.

4

and James

5

give the following order of impor-

tane of various riteria for the estimators:

1. Consisteny. The estimator should onverge to the true value with inreasing

numbers of observations. If this is not the ase, a proedure to remove the

bias should be applied.

2. Minimum loss of information. When an estimator summarizes the results of

an experiment in a single number, it is of vital interest to subsequent users of

the estimate that no other number ould ontain more information about the

parameter of interest.
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3. Minimum variane (eÆieny). The smaller the variane of the estimator, the

more ertain we are that it is near the true value of the parameter (assuming

it is unbiased).

4. Robustness. If the p.d.f. is not well known, or founded on unsafe assumptions,

it is desirable that the estimate be independent of, or insensitive to, departures

from the assumed p.d.f. In general, the information ontent of suh estimates

is less sine one hooses to ignore the information ontained in the form of

the p.d.f.

5. Simpliity. When a physiist reads the published value of some parameter,

he usually presumes that the estimate of the parameter is unbiased, normally

distributed, and unorrelated with other estimates. It is therefore desirable

that estimators have these simple properties. If the estimate is not simple,

it should be stated how it deviates from simpliity and not given as just a

number � an error.

6. Minimum omputer time. Although not fundamental, this may be of pratial

onern.

7. Minimum loss of physiist's time. This is also not fundamental; its importane

is frequently grossly overestimated.

Compromising between these riteria

The order of the desirable properties above reets a general order of importane.

However, in some situations a somewhat di�erent order would be better. For ex-

ample, the above list plaes more importane on minimum loss of information than

on minimum variane. These two riteria are related. The minimum variane is

bounded by the inverse of the information. However this limit is not always attain-

able. In suh ases it is possible that two estimates t

1

and t

2

of � are suh that

I

2

(�) > I

1

(�) but V [t

1

℄ < V [t

2

℄. The reommendation here is to hoose t

2

, the esti-

mate with the greater information. The reason is that, having more information, it

will be more useful later when the result of this experiment is ombined with results

of other experiments. On the other hand, if deisions must be made, or onlusions

drawn, on the basis of just this one experiment, then it would be better to hoose

t

1

, the estimate with the smaller variane.

Obtaining simpliity

It may be worth sari�ing some information to obtain simpliity.

Estimates of several parameters an be made unorrelated by diagonalizing the

ovariane matrix and �nding the orresponding linear ombinations of the param-

eters. But the new parameters may lak physial meaning.

Tehniques for bias removal will be disussed below (setion 8.7.2).
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When suÆient statistis exist, they should be used, sine they an be estimated

optimally (f. setion 8.2.8).

Asymptotially, most usual estimators are unbiased and normally distributed.

The question arises how good the asymptoti approximation is in any spei� ase.

The following heks may be helpful:

� Chek that the log-likelihood funtion or �

2

is a paraboli funtion of the

parameters.

� If one has two asymptotially eÆient estimators, hek that they give on-

sistent results. An example is the minimum hi-square estimate from two

di�erent binnings of the data.

� Study the behavior of the estimator by Monte Carlo tehniques, i.e., make

a large number of simulations of the experiment and apply the estimator to

eah Monte Carlo simulation in order to answer questions suh as whether the

estimate is normally distributed. However, this an be expensive in omputer

time.

A hange of parameters an sometimes make an estimator simpler. For instane

the estimate of �

2

= g(�

1

) may be simpler than the estimate of �

1

. However, it is in

general impossible to remove both the bias and the non-normality of an estimator

in this way

4,5

.

Eonomi onsiderations

Eonomy usually implies fast omputing. Optimal estimation is frequently iterative,

requiring muh omputer time. The following three approahes seek a ompromise

between eÆieny (minimum variane) and eonomi ost.

� Linear methods. The fastest omputing is o�ered by linear methods, sine

they do not require iteration. These methods an be used when the expeted

values of the observations are linear funtions of the parameters. Among linear

unbiased estimators, the least squares method is the best, whih follows from

the Gauss-Markov theorem (setion 8.5.4).

When doing empirial �ts, rather than �ts to a known (or hypothesized) p.d.f.,

hoose a p.d.f. from the exponential family (setion 8.2.7) if possible. This

leads to easy omputing and has optimal properties.

� Two-step methods. Some omputer time an be saved by breaking the prob-

lem into two steps:

1. Estimate the parameters by a simple, fast, ineÆient method, e.g., the

moments method.

2. Use these estimates as starting values for an optimal estimation, e.g.,

maximum likelihood.
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Although more physiist's time may be spent in evaluating the results of the

�rst step, this might also lead to a better understanding of the problem.

� Three-step method.

1. Extrat from the data a ertain number of statistis whih summarize

the observations ompatly, and if possible in a way whih inreases in-

sight into the problem. For example, one an make a histogram, whih

redues the number of observations to the number of bins in the his-

togram. Another example is the summary of an angular distribution by

the oeÆients of the expansion of the distribution in spherial harmon-

is. These oeÆients are rapidly estimated by the moments method

(setion 8.3.2) and their physial meaning is lear.

2. Estimate the parameters of interest using this summary data. If the

summary data have an intuitive physial meaning this estimation may

be greatly simpli�ed.

3. Use the preliminary estimates from the seond step as starting values for

an optimal estimation diretly from the original data.

The third step should not be forgotten. It is partiularly important when the

information in the data is small (`small statistis'). Beause of the third step,

the seond step does not have to be exat, but only approximate.

8.7.2 Bias redution

We have already given a proedure for bias redution in setion 8.3.1 for the ase

of an estimator ĝ whih is alulated from an unbiased estimator

^

� by a hange of

variable ĝ = g(

^

�). Now let us onsider two general methods.

Exat distribution of the estimate known

If the p.d.f. of the estimator is exatly known, the bias b = E

h

^

�

i

� � an be alu-

lated. If b does not depend on the parameters, we an use the unbiased estimator

^

�

0

=

^

�� b instead of the biased estimator

^

�. The varianes of

^

�

0

and

^

�, are the same

sine b is exatly known.

However, b is usually not exatly known sine it usually depends on some of

the parameters of the p.d.f. It must therefore be estimated. Assuming that we an

make an unbiased estimate of the bias,

^

b, the unbiased estimator of the parameter

is

^

�

0

=

^

� �

^

b, whih results in a larger variane for

^

�

0

than for

^

�.

Exat distribution of the estimate unknown

There is a straightforward method

4,5

to use in the ase that the p.d.f. is not well

known or no unbiased estimate of b is possible. Suppose that

^

� is a biased estimator
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whih is asymptotially unbiased (as maximum likelihood estimators frequently

are). Express

^

� as a power series in

1

N

, where N is the number of events. The

leading term is then �, independent of N . The N

�1

term is the leading bias term.

Now split the data into two samples, eah of

N

2

events. Let the estimate from the

two

N

2

samples be

^

�

1

and

^

�

2

. The expetation of the above expansion will be

E

h

^

�

i

= � +

1

N

� +O

�

1

N

2

�

E

h

^

�

1

i

= E

h

^

�

2

i

= � +

2

N

� +O

�

1

N

2

�

Thus,

E

�

2

^

� �

1

2

(

^

�

1

+

^

�

2

)

�

= � +O

�

1

N

2

�

and we see that we have a method to redue the bias from O

�

1

N

�

to O

�

1

N

2

�

. The

variane is, however, in general inreased by a term of order

1

N

.

A generalization of this method,

11,13

known as the jakknife,

�

estimates � by

^

� = N

^

�

N

� (N � 1)

^

�

N�1

(8.159)

where

^

�

N

is the estimator using all N events and

^

�

N�1

is the average of the N

estimates possible using N � 1 events:

^

�

N�1

=

N

X

i=1

^

�

i

=N (8.160)

where

^

�

i

is the estimate obtained using all events exept event i.

A more general method, of whih the jakknife is an approximation, is the

bootstrap method introdued by Efron.

41{43

Instead of using eah subset of N � 1

observations, it uses samples of size M � N randomly drawn, with replaement,

from the data sample itself. For details, see, e.g., Referene 43.

8.7.3 Variane of estimators|Jakknife and Bootstrap

The jakknife and the bootstrap of the previous setion provide methods, albeit

omputer intensive, to evaluate the variane of estimators, whih may be used in

situations where the usual methods are unreliable, e.g., small statistis where the

asymptoti properties of ml estimators are questionable, non-Gaussian errors in

least-squares �ts,, or non-linear transformations of parameters (f. setion 8.3.6).

�

Named after a large folding poket knife, this proedure, like its namesake, serves as a handy

tool in a variety of situations where speialized tehniques may not be available.
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The jakknife estimation of the variane of an estimator

^

� is given by

43,44

^

V

h

^

�

i

J

=

N � 1

N

N

X

i=1

�

^

�

i

�

^

�

N�1

�

2

(8.161)

where the notation is the same as in the previous setion.

While the jakknife is often a good method to estimate the variane of an es-

timator, it an fail miserably when the value of the estimator does not behave

smoothly to small hanges in the data. An example of suh an estimator is the

median. Suppose the data onsist of 13 points: 5 values smaller than 9; the values

9, 11, and 13; and 5 values larger than 13. The sample median is 11. Removing any

one of the smallest 6 values results in a median of 12 (midway between 11 and 13),

while removing any one of the largest 6 values results in a median of 10. Removal

of the middle value results in 11. There are only 3 di�erent jakknife values; the

estimate does not hange smoothly with hanges in the data, but only in large steps.

This failure of the jakknife an be overome by removing more points to make the

jakknife samples. This is known as the delete-d jakknife; the interested reader

is referred, e.g., to Referene 43.

For bootstrap sample size, M , equal to the data sample size, N , there are

N

N

distint samples possible, whih is very large even for moderate N . Then the

bootstrap sampling distribution for an estimator is a good approximation of the true

sampling distribution, onverging to it as N !1 under fairly general onditions.

This method is something like Monte Carlo, but uses the data themselves instead

of a known (or hypothesized) distribution. The variane of

^

� is then estimated by

the following proedure:

1. Selet B independent bootstrap samples, eah onsisting of N data, drawn

with replaement from the real data sample. Usually B in the range 25{200

will suÆe,

43

but this an be heked by repeating for large values of B until

the improvement is negligible.

2. Evaluate

^

� for eah bootstrap sample, giving B values,

^

�

b

.

3. The bootstrap estimate of the variane of

^

� is then

^

V

h

^

�

i

B

=

1

B � 1

B

X

b=1

�

^

�

b

�

^

�

b

�

2

(8.162)

where

^

�

b

=

B

X

b=1

^

�

b

=B

Note that these two methods are appliable to non-parametri estimators as well

as parametri. If the estimators are the result of a parametri �t, e.g., ml, the B

bootstrap samples an be generated from the �tted distribution funtion, i.e., the
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parametri estimate of the population, rather than from the data. The estimation

of the variane is again given by equation 8.162.

Limitation: It should be lear that the non-parametri bootstrap will not be

reliable when the estimator depends strongly on the tail of the distribution, as is

the ase, e.g., with high-order moments. A bootstrap sample an never ontain

points larger than the largest point in the data.

8.7.4 Robust estimation

When the form of the p.d.f. is not exatly known, the following questions arise:

1. What kind of parameters an be estimated without any assumption about the

form of the p.d.f.? Suh estimators are usually alled `distribution-free'. This

term may be misleading, for although the estimate itself does not depend on

the assumption of a p.d.f., its properties, e.g., the variane, do depend on the

atual (unknown) p.d.f.

2. How reliable are the estimates if the assumed form of the p.d.f. is not quite

orret?

Center of a symmetri distribution

There is relatively little known about robust estimation. The only ase treated ex-

tensively in the literature is the estimation of the enter of an unknown, symmetri

distribution. The enter of a distribution may be de�ned by a `loation parameter'

suh as the mean, the median, the mode, the midrange, et. Several of these esti-

mators were mentioned in setion 8.1. The sample mean is the most obvious and

most often used estimator of loation beause

� By the entral limit theorem it is onsistent whenever the variane of the p.d.f.

is �nite.

� It is optimal (unbiased and minimum variane) when the p.d.f. is a Gaussian.

However, if the distribution is not normal, the sample mean may not be the best

estimator. For symmetri distributions of �nite range, e.g., the uniform p.d.f. or a

triangular p.d.f., the loation is determined by speifying the end points of the dis-

tribution. The midrange is then an exellent estimator. However, for distributions

of in�nite range, the midrange is a poor estimator.

The following table

4,5

shows asymptoti eÆienies, i.e., the ratio of the min-

imum variane bound to the variane of the estimator, of loation estimators for

various p.d.f.'s.
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Distribution Sample Sample Sample

median mean midrange

Normal 0.64 1.00 0.00

Cauhy 0.82 0.00 0.00

Double exponential 1.00 0.50 0.00

Uniform 0.00 0.00 1.00

None of these three estimators is asymptotially eÆient for all four distribu-

tions. Nor has any of these estimators a non-zero asymptoti eÆieny for all four

distributions. As an example take a distribution whih is the sum of a normal

distribution and a Cauhy distribution having the same mean:

f(x) = � N(x;�; �

2

) + (1� �)C(x;�; �) ; 0 � � � 1

Beause of the Cauhy admixture, the sample mean has in�nite variane, as we

see in the table, while the sample median has at worst (� = 1) a variane of

1=0:64 = 1:56 times the minimum variane bound. This illustrates that the median

is generally more robust than the mean.

Other methods to improve robustness involve `trimming', i.e., throwing away

the highest and lowest points before using one of the above estimators. This is

partiularly useful when there are large tails whih ome mostly from experimental

problems. Suh methods are further disussed by Eadie et al.

4,5

Center of an asymmetri distribution

Consider the estimation of the enter of a narrow `signal' distribution superim-

posed on an unknown but wider `bakground' distribution. The asymmetry of the

bakground makes it diÆult to use any of the above-mentioned estimators.

A ommon tehnique is to parametrize the signal and bakground in some arbi-

trary way and to do a maximum likelihood or least squares �t to obtain optimum

values of the parameters, inluding the loation parameter of interest. This is

a non-robust method beause the loation estimate depends on the bakground

parametrization and on orrelations with other parameters.

A robust tehnique for this problem is to estimate the mode of the observed

distribution. The mode is nearly invariant under variations of a smooth bakground.

An obvious way to estimate the mode is to histogram the data and take the enter

of the most populated bin. Suh a method depends on the binning used. A better

method is given by the following proedure: Find the two observations whih are

separated by the smallest distane, and hoose the one whih has the loser next

nearest neighbor. The estimate of the mode is then taken as the position of this

observation. A generalization of this method is that of k nearest neighbors, where

the density of observations at a given point is estimated by the reiproal of the

distane between the smallest and largest of the k observations losest to the point.
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8.7.5 Detetion eÆieny and Weights

We are often not able to observe diretly the phenomenon we wish to study. The

apparatus generally introdues some distortion or bias, the e�et of whih must be

taken into aount. Suh distortion may take the form of a detetion eÆieny,

i.e., the apparatus may not detet all events and the eÆieny of detetion may

depend on the values of the variables being measured. This problem has already

been mentioned in setion 4.2.

The method used to aount for this distortion depends on the severity of the

problem. If the detetion eÆieny varies greatly over the range of the variables, it

will be neessary to treat the problem exatly in order to avoid losing a great deal

of information. On the other hand, if the detetion eÆieny is nearly uniform (say

to within 20%), an approximate method will suÆe.

Maximum likelihood|ideal method

As already mentioned in setion 4.2, the p.d.f. of the observations is the produt of

the underlying physial p.d.f. and the eÆieny funtion. It often happens that the

physial p.d.f. an be written as the produt of two p.d.f.'s where the parameters

we want to estimate our in only one of the two. For example, onsider the

prodution of partiles in an interation. The energies of the produed partiles

will not depend on where the interation took plae. The p.d.f. is then a produt of

a p.d.f. for the plae where the interation takes plae and a p.d.f. for the interation

itself. Aordingly we write the physial p.d.f. as

f(x; y; �;  ) = p(x; �) q(y; )

where the p.d.f.'s p and q are, as usual, normalized:

R

p dx =

R

q dy = 1. Let e(x; y)

be the detetor eÆieny, i.e., the p.d.f. desribing the probability that an event is

observed. Then the p.d.f. of the atual observations is

g(x; y; �;  ) =

p(x; �) q(y; ) e(x; y)

R

p(x; �) q(y; ) e(x; y) dx dy

Note that the eÆieny may depend on both x and y. The likelihood of a given set

of observations is then

L(x

1

; : : : x

N

; y

1

: : : y

N

; �;  ) =

N

Y

i=1

g(x

i

; y

i

; �;  ) =

N

Y

i=1

g

i

Hene, ` = lnL =W +

N

X

i=1

ln(e

i

q

i

) (8.163)

where W =

N

X

i=1

ln p

i

�N ln

Z

pqe dx dy (8.164)

and where p

i

= p(x

i

; �)
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Suppose now that we are not interested in estimating  , but only �. Then the seond

term of equation 8.163 does not depend on the parameters and may be ignored. The

estimates

^

� and their varianes are then found in the usual way treating W as the

log-likelihood.

In pratie, diÆulties arise when pqe is not analytially normalized, but must

be normalized numerially by time-onsuming Monte Carlo. Moreover, the results

depend on the form of q, whih may be poorly known and of little physial interest.

For these reasons one prefers to �nd a way of eliminating q from the expressions.

Sine this will exlude information, it will inrease the varianes, but at the same

time make the estimates more robust.

Troll, to thyself be true|enough.

|Ibsen, \Peer Gynt"

Maximum likelihood|approximate method

We replae W in equation 8.164 by

W

0

=

N

X

i=1

�

1

e

i

ln p

i

�

(8.165)

Intuitively, the observation of an event with eÆieny e

i

orresponds, in some

sense, to w

i

= 1=e

i

events having atually ourred. Then the likelihood for all of

the events, i.e., the one whih is observed and the ones whih are not, is p

w

i

i

, whih

results in W

0

.

Whatever the validity of this argument, it turns out

4,5

that the estimate

^

�

0

obtained by maximizingW

0

is, like the usual maximum likelihood estimate, asymp-

totially normally distributed about the true value. However, are must be taken

in evaluating the variane. Using the seond derivative matrix of W

0

is wrong sine

it assumes that

N

X

i=1

w

i

= N

events have been observed. One approah to uring this problem is to renormalize

the weights by using w

0

i

= Nw

i

=

P

w

i

instead of w

i

. However, this is only satisfa-

tory if the weights are all nearly equal.

The orret proedure, whih we will not derive, results in

4,5

V

�

^

�

0

�

= H

�1

H

0

H

�1

(8.166)

where the matries H and H

0

are given by

H

jk

= E

"

1

e

 

� ln p

��

j

! 

� ln p

��

k

!#
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H

0

jk

= E

"

1

e

2

 

� ln p

��

j

! 

� ln p

��

k

!#

whih may be estimated by the sample mean:

^

H

jk

=

1

N

N

X

i=1

1

e

i

p

2

i

 

�p

i

��

j

! 

�p

i

��

k

!

(8.167a)

^

H

0

jk

=

1

N

N

X

i=1

1

e

2

i

p

2

i

 

�p

i

��

j

! 

�p

i

��

k

!

(8.167b)

evaluated at � =

^

�

0

. If e is onstant, this redues to the usual estimator of the

ovariane matrix given in equations 8.78 and 8.80.

Alternatively, one an estimate the matrix elements from the seond derivatives:

H

jk

= �

�

2

W

0

��

j

��

k

�

�

�

�

�

�=

^

�

;

^

H

jk

= �

1

N

N

X

i=1

"

1

e

i

�

2

ln p

i

��

j

��

k

#

�=

^

�

(8.168a)

H

0

jk

= �

1

e

�

2

W

0

��

j

��

k

�

�

�

�

�

�=

^

�

;

^

H

jk

= �

1

N

N
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i=1

"

1

e

2

i

�

2

ln p

i

��

j

��

k

#

�=

^

�

(8.168b)

If e is onstant, this redues to the usual estimator of the ovariane matrix given

in equations 8.84 and 8.85.

To summarize: Find the estimates

^

�

0

by maximizing W

0

(eq. 8.165). If possible

ompute H and H

0

by equation 8.167 or 8.168; if the derivatives are not known an-

alytially, use equation 8.168, evaluating

�

2

W

0

��

j

��

k

numerially. The ovariane matrix

is then given by equation 8.166.

It is lear from the above formulae that the appearane of one event with a

very large weight will ruin the method, sine it will ause W

0

(equation 8.165) to

be dominated by one term and will make the variane very large. Aordingly, a

better estimate may be obtained by rejeting events with very large weights.

Minimum hi-square|approximate method

Consider a histogram with k bins ontaining n

i

events in the i

th

bin. Suppose that a

model predits the normalization n =

P

n

i

as well as the shape of the distribution.

Denote the expeted number of events in the i

th

bin by

a

i

(�) = A(�)

R

i

pqe dx

R

pqe dx

(8.169)

where A(�) =

P

a

i

is the predited total number of events and

R

i

indiates an

integral over bin i.

The minimum hi-square and modi�ed minimum hi-square formulae (setion
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8.6.1) beome

Q

2

1

=

k

X

i=1

(n

i

� a

i

)

2

a

i

;

�Q

2

1

��
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k

X

i=1

"

�

n

i

a

i

�
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� 1

#

�a

i
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Q

2

2

=

k

X
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(n

i

� a

i

)

2

n

i

;

�Q

2

2

��

= �2

k

X

i=1

�

1�

a

i

n

i

�

�a

i

��

So far, this is exat. Now let us introdue the approximate method by removing

the dependene on q from equation 8.169. Let b

i

be the predited number of events in

bin i when e = 1. We want to orret the numbers b

i

using the known experimental

eÆieny to obtain numbers 

i

suh that

E [

i

℄ = a

i

(8.170)

From its de�nition, b

i

is given by

b

i

= B(�)

R

i

pq dx

R

pq dx

= A(�)

R

i

pq dx

R

pqe dx

where B(�) is the total number of events predited when e = 1. Combining this

equation with equation 8.169, we �nd

a

i

= b

i

R

i

pqe dx

R

i

pq dx

The inverse of this ratio of integrals an be rewritten as

R

i

pqew dx

R

i

pqe dx

= E

i

[w℄

where w =

1

e

is the weight. This expetation an be estimated by the sample mean

of the weights of the events in the bin:

d

E

i

[w℄ =

P

n

i

j=1

w

ij

n

i

where w

ij

is the weight (1=e

i

) of the j

th

event in the i

th

bin.

We now de�ne



i

=

b

i

n

i

P

n

i

j=1

w

ij

From the preeding equations it is lear that this 

i

satis�es equation 8.170.

The expressions for Q

2

then use 

i

instead of a

i

. Writing �

2

i

for a

i

in the ase of

Q

2

1

and for n

i

in the ase of Q

2

2

, both may be written as

Q

2

=

k

X

i=1

1

�

2

i

 

n

i

� b

i

n

i

P

j

w

ij

!

2

=

k

X

i=1

1

�

02

i

0

�

X

j

w

ij

� b

i

1

A

2



178 CHAPTER 8. PARAMETER ESTIMATION

where

1

�

02

i

=

1

�

2

i

 

n

i

P

j

w

ij

!

2

The `error', �

0

i

, is then given by

�

02

i

= E

2

6

4

0

�

n

i

X

j=1

w

ij

� b

i

1

A

2

3

7

5

= E

2

6

4

0

�

n

i

X

j=1

w

ij

1

A

2

3

7

5

� b

2

i

sine E

h

P

n

i

j=1

w

ij

i

= b

i

. Further, one an show that

E

2

6

4

0

�

n

i

X

j=1

w

ij

1

A

2

3

7

5

= E

2

4

n

i

X

j=1

w

2

ij

3

5

+ E

2

6

4

n

i

X

j=1

n

i

X

k=1

k 6=j

w

ij

w

ik

3

7

5

� E [n

i

℄E

h

w

2

i

i

+ b

2

i

E [w

2

i

℄ an be estimated by the sample mean

d

E [w

2

i

℄ =

1

n

i

n

i

X

j=1

w

2

ij

E [n

i

℄ an be estimated in two ways: from the model, whih gives the minimum

hi-square method; or from the data, whih gives the modi�ed minimum hi-square

method. The resulting expressions for Q

2

are

d

E [n

i

℄ = 

i

; Q

02

1

=

k

X

i=1

2

6

6

4

�

P

n

i

j=1

w

ij

� b

i

�

2

b

i

P

n

i

j=1

w

2

ij

P

n

i

j=1

w

ij

3

7

7

5

(8.171)

d

E [n

i

℄ = n

i

; Q

02

2

=

k

X

i=1

2

6

4

�

P

n

i

j=1

w

ij

� b

i

�

2

P

n

i

j=1

w

2

ij

3

7

5

(8.172)

Clearly both Q

0

approah the orresponding Q as the weights all approah 1. As in

the unweighted ase, the minimum hi-square method (Q

1

) is better justi�ed than

the modi�ed minimum hi-square method (Q

2

). However, if b

i

is a linear funtion

of the parameters, the solution of the modi�ed method an in priniple be written

expliitly, whih is muh faster than a numerial minimization.

But who an disern his errors?

Clear thou me from hidden faults.

|Psalm 19.12

8.7.6 Systemati errors

If a meter has a random error, then its readings are distributed in some way about

the true value. If the error distribution is not spei�ed further, you expet it to
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be Gaussian. Thus if it is simply stated that the error is 1%, you expet that this

distribution will be a Gaussian distribution with a standard deviation of 1% of the

true value. The standard deviation of a single reading will be 1% of that reading.

But by making many (N) readings and averaging them, you obtain an estimate of

the true value whih has a muh smaller variane. Usually, the variane is redued

by a fator 1=N , whih follows from the entral limit theorem.

If the meter has a systemati error suh that it onsistently reads 1% too high,

the situation is di�erent. The readings are thus orrelated. Averaging a large

number of readings will not derease this sort of error, sine it a�ets all the readings

in the same way. With more readings, the average will not onverge to the true

value but to a value 1% higher. It is as though we had a biased estimator.

Systemati errors an be very diÆult to detet. For example, we might measure

the voltage aross a resistor for di�erent values of urrent. If the systemati error

was 1 Volt, all the results would be shifted by 1 Volt in the same diretion. If we

plotted the voltages against the urrents, we would �nd a straight line, as expeted.

However, the line would not pass through the origin. Thus, we ould in priniple

disover the systemati e�et. On the other hand, with a systemati error of 1% on

the voltage, all points would be shifted by 1% in the same diretion. The voltages

plotted against the urrents would lie on a straight line and the line would pass

through the origin. The voltages would thus appear to be orretly measured.

But the slope of the line would be inorret. This is the worst kind of systemati

error|one whih annot be deteted statistially. It is truly a `hidden fault'.

The size of a systemati error may be known. For example, onsider temperature

measurements using a thermoouple. You alibrate the thermoouple by measuring

its output voltages V

1

and V

2

for two known temperatures, T

1

and T

2

, using a volt-

meter of known resolution. You then determine some temperatures T by measuring

voltages V and using the proportionality of V to T to alulate T :

T =

T

2

� T

1

V

2

� V

1

(V � V

1

) + T

1

The error on T will inlude a systemati ontribution from the errors on V

1

and V

2

as well as a random error on V . In this example the systemati error is known.

In other ases the size of the systemati error is little more than a guess. Suppose

you are studying gases at various pressures and you measure the pressure using a

merury manometer. Atually it only measures the di�erene in pressure between

atmospheri pressure and that in your vessel. For the value of the atmospheri

pressure you rely on that given by the nearest meteorologial station. But how big

is the di�erene in the atmospheri pressure between the station at the time the

atmospheri pressure was measured and your laboratory at the time you did the

experiment?

Or, suppose you are measuring a (Gaussian) signal on top of a bakground. The

estimate of the signal (position, width, strength) may depend on the funtional

form hosen for the bakground. If you do not know what this form is, you should
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try various forms and assign systemati errors based on the resulting variations in

the estimates.

Experimental tips

To lear your experiment of `hidden faults' you should begin in the design of the

experiment. Estimate what the systemati errors will be, and, if they are too large,

design a better experiment.

Build onsisteny heks into the experiment, e.g., hek the alibration of an

instrument at various times during the ourse of the experiment.

Try to onvert a systemati error into a random error. Many systemati e�ets

are a funtion of time. Examples are eletronis drifts, temperature drifts, even

psyhologial hanges in the experimenter. If you take data in an orderly sequene,

e.g., measuring values of y as a funtion of x in the order of inreasing x, suh drifts

are systemati. So mix up the order. By making the measurements in a random

order, these errors beome random.

The orret proedure depends on what you are trying to measure. If there are

hysteresis e�ets in the apparatus, measuring or setting the value of a quantity,

e.g., a magneti �eld strength, from above generally gives a di�erent result than

setting it from below. Thus, if the absolute values are important suh adjustments

should be done alternatively from above and from below. On the other hand, if

only the di�erenes are important, e.g., you are only interested in a slope, then all

adjustments should be made from the same side, as the systemati e�et will then

anel.

Error propagation with systemati errors

Having eliminated what systemati e�ets you an, you must evaluate the rest.

Di�erent independent systemati errors are, sine independent, added in quadra-

ture.

�

Sine random and systemati errors are independent, they too an be added

in quadrature to give the total error. Nevertheless, the two types of error are often

quoted separately, e.g.,

R = �1:9� 0:1� 0:4

where (onventionally) the �rst error is statistial and the seond systemati. Suh a

statement is more useful to others, partiularly if they want to ombine your result

with other results whih may have the same systemati errors. For this reason,

the various ontributions to the systemati errors should also be given separately,

partiularly those whih ould be ommon to other experiments. One also sees in

this example that more data would not help sine the systemati error is muh

larger than the statistial error.

Error propagation is done using the ovariane matrix in the usual way exept

�

This assumes that the errors are normally distributed. If you know this not to be the ase,

you should try to ombine the errors using the orret p.d.f.'s.
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that we keep trak of the statistial and systemati ontributions to the error.

Suppose that we have two `independent' measurements x

1

and x

2

with statistial

errors �

1

and �

2

and with a ommon systemati error s. For pedagogial purposes

we an think of the x

i

as being omposed of two parts, x

i

= x

R

i

+ x

S

i

, where x

R

i

has

only a random statistial error, �

i

, and x

S

i

has only a systemati error, s. Then x

R

1

and x

R

2

are ompletely independent and x

S

1

and x

S

2

are ompletely orrelated. The

variane of x

i

is then

V [x

i

℄ = E

h

x

2

i

i

� (E [x

i

℄)

2

= E

�

�

x

R

i

+ x

S

i

�

2

�

�

�

E

h

x

R

i

+ x

S

i

i�

2

= �

2

i

+ s

2

The ovariane is

ov(x

1

; x

2

) = E [x

1

x

2

℄� E [x

1

℄E [x

2

℄

= E

h�

x

R

1

+ x

S

1

� �

x

R

2

+ x

S

2

�i

� E

h

x

R

1

+ x

S

1

i

E

h

x

R

2

+ x

S

2

i

Eah term involves four produts. Those involving an x

R

i

anel leaving

ov(x

1

; x

2

) = ov(x

S

1

; x

S

2

) = s

2

Thus the ovariane matrix is

V =

�

�

2

1

+ s

2

s

2

s

2

�

2

2

+ s

2

�

So far we have onsidered systemati errors whih are onstants. They also

our as frations or perentages. The systemati error s is then not a onstant but

proportional to the measurement (atually to the true value, but for small errors

the di�erene is by de�nition negligible): s = �x with, e.g., � = 0:01 for a 1% error.

The above analysis is still valid: x

S

1

and x

S

2

are still ompletely orrelated. The

resulting ovariane matrix is

V =

�

�

2

1

+ �

2

x

2

1

�

2

x

1

x

2

�

2

x

1

x

2

�

2

2

+ �

2

x

2

2

�

Generalization is rather obvious. If there are several independent soures of

systemati error then they are added in quadrature. If there are more variables the

matrix is larger. For example, onsider three variables with independent statistial

errors, a ommon systemati error s and in addition an independent systemati

error t whih is shared by x

1

and x

2

but not x

3

. The ovariane matrix is then

V =

0

B

�

�

2

1

+ s

2

+ t

2

s

2

+ t

2

s

2

s

2

+ t

2

�

2

2

+ s

2

+ t

2

s

2

s

2

s

2

�

2

3

+ s

2

1

C

A
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Least squares �t with systemati errors

Consider a least squares �t where the y-values have not only a statistial error �,

but also a ommon systemati error s. The ovariane matrix for y is then

V

ij

h

y

i

= Æ

ij

�

2

+ s

2

This is just the ovariane matrix previously onsidered in setion 8.5.5 with the

addition of s

2

to every element. As an example, onsider a �t to a straight line,

y = a + bx. Using this V and � = y � a � bx, in Q

2

= �

T

V � and solving

�Q

2

�a

= 0

and

�Q

2

�b

= 0 leads to the same expressions for the estimators as before (equation

8.125). A ommon systemati shift of all points up or down learly has no e�et

on the slope, and therefore we expet the same variane for

^

b as before. However,

a systemati shift in y will a�et the interept; onsequently, we expet a larger

variane for â.



Chapter 9

Con�dene intervals

In the previous hapter we have disussed methods to estimate the values of un-

known parameters. As the unertainty, or \error", Æ

^

�, on the estimate,

^

�, we have

been ontent to state the standard deviations and orrelation oeÆients of the

estimate as found from the ovariane matrix or the estimated ovariane matrix.

This is inadequate in ertain ases, partiularly when the sampling p.d.f., i.e., the

p.d.f. of the estimator is non-Gaussian. In this hapter our interest is to �nd the

range

�

a

� � � �

b

whih ontains the true value �

t

of � with \probability" �. We shall see that when

the sampling p.d.f. is Gaussian, the interval [�

a

; �

b

℄ for � = 68:3% is the same as

the interval of �1 standard deviation about the estimated value.

9.1 Introdution

In parameter estimation we found an estimator for a parameter

^

� and its variane

�

2

^

�

= V

h

^

�

i

and we wrote the result as � =

^

� � �

^

�

. Assuming a normal distribution

for

^

�, one is then tempted to say, as we did in setion 8.2.4, that the probability is

68.3% that

^

� � �

^

�

� �

t

�

^

� + �

^

�

(9.1)

Now, what does this statement mean? If we interpret it as 68.3% probability that

the value of �

t

is within the stated range, we are using Bayesian probability (f.

setion 2.4.4) with the assumption of uniform prior probability. This assumption is

not always justi�able and often is wrong, as is illustrated in the following example:

An empty dish is weighed on a balane. The result is 25:31 � 0:14 g. A sample

of powder is plaed on the dish, and the weight is again determined. The result is

25:51� 0:14 g. By subtration and ombination of errors, the weight of the powder

is found to be 0:20 � 0:20 g. Our �rst onlusion is that the sientist should have

used a better balane. Next we try to determine some probabilities. From the

183
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normal distribution, there is a probability of about 16% that a value lies lower than

� � �. In this example that means that there is a hane of about 16% that the

powder has negative weight (an anti-gravity powder!). The problem here is Bayes'

postulate of uniform prior probability. We should have inorporated in the prior

knowledge the fat that the weight must be positive, but we didn't.

Let us avoid the problems of Bayesian prior probability and stik to the fre-

quentist interpretation. This will lead us to the onept of on�dene intervals,

developed largely by Neyman,

45

whih give a purely frequentist interpretation to

equation 9.1. We shall return to the Bayesian interpretation in setion 9.9.

Suppose we have a p.d.f. f(x; �) whih depends on one parameter �. The prob-

ability ontent � of the interval [a; b℄ in X-spae is

� = P (a � X � b) =

Z

b

a

f(x; �) dx (9.2)

Common hoies for � are 68.3% (1�), 95.4% (2�), 99.7% (3�), 90% (1.64�), 95%

(1.96�), and 99% (2.58�), where the orrespondene between perent and a number

of standard deviations (�) assumes that f is a Gaussian p.d.f.

If the funtion f and the parameter � are known we an alulate � for any a

and b. If � is unknown we try to �nd another variable z = z(x; �) suh that its

p.d.f., g(z), is independent of �. If suh a z an be found, we an onstrut an

interval [z

a

; z

b

℄, where z

x

= z(x; �), suh that

� = P (z

a

� Z � z

b

) =

Z

z

b

z

a

g(z) dz (9.3)

It may then be possible to use this equation together with equation 9.2 to �nd an

interval [�

�

; �

+

℄ suh that

P (�

�

� �

t

� �

+

) = � (9.4)

The meaning of this last equation must be made lear. Contrast the following

two quite similar statements:

1. The probability that �

t

is in the interval [�

�

; �

+

℄ is �.

2. The probability that the interval [�

�

; �

+

℄ ontains �

t

is �.

The �rst sounds like �

t

is the r.v. and that the interval is �xed. This is inorret|

we are frequentists here, and so �

t

is not a r.v. The seond statement sounds like a

statement about �

�

and �

+

, whih is the orret meaning of equation 9.4. �

�

and

�

+

are the results of the experiment, and hene r.v.'s. To put it slightly di�erently:

Performing the experiment as we have done, we have the probability, �, of �nding

an interval, [�

�

; �

+

℄, whih ontains the (unknown) true value of �, �

t

. If we were to

repeat the experiment many times, a fration � of the experiments would yield an

interval ontaining the true value, i.e., an interval whih \overs" the true value.

Turned around, this means that if we assert on the basis of our experiment that

the true value of � lies in the interval [�

�

; �

+

℄, we will be right in a fration � of



9.1. INTRODUCTION 185

the ases. Thus, � expresses the degree of on�dene (or belief) in our assertion;

hene the name on�dene interval. The quantity � is known by various names:

on�dene oeÆient, overage probability, on�dene level. However, the

last term, \on�dene level", is inadvisable, sine it is also used for a di�erent

onept, whih we will enounter in goodness-of-�t tests (f. setion 10.6).

The interval [�

�

; �

+

℄ orresponding to a on�dene oeÆient � is in general not

unique; many di�erent intervals exist with the same probability ontent.

We an, of ourse, hoose to state any one of these intervals. Commonly used

riteria to remove this arbitrariness are

1. Symmetri interval:

^

� � �

�

= �

+

�

^

�.

2. Shortest interval: �

+

� �

�

is the smallest possible, given �.

3. Central interval: the probability ontent below and above the interval are

equal, i.e., P (� < �

�

) = P (� > �

+

) = (1� �)=2.

For a symmetri distribution having a single maximum these riteria are equivalent.

We usually prefer intervals satisfying one (or more) of these riteria. However, non-

entral intervals will be preferred when there is some reason to be more areful on

one side than on the other, e.g., the amount of tritium emitted from a nulear power

station.

Normally distributed estimators. To illustrate the above proedure: Let t(x)

be an estimator of a parameter having true value �. As we have seen in the previous

hapter, many estimators are (at least asymptotially) normally distributed about

the true value. Then t is a r.v. distributed as N(t; �; �

2

). Equation 9.2 is then

� = P (a � T � b) =

Z

b

a

N(t; �; �

2

) dt = erf

 

b� �

�

!

� erf

 

a� �

�

!

(9.5)

sine the .d.f. of the normal p.d.f. is the error funtion (f. setion 3.7).

If � is not known, we an not evaluate the integral. Instead, assuming that � is

known, we transform to the r.v. z = t � �. The interval [; d℄ for z orresponds to

the interval [� + ; � + d℄ for t. Hene, equation 9.3 beomes

� = P (� +  � T � � + d) =

Z

�+d

�+

N(t; �; �

2

) dt = erf

 

d

�

!

� erf

 



�

!

(9.6)

We an, for a given �, now hoose an interval [�+ ; �+ d℄ satisfying this equation.

Now t � � + d implies that � � t� d and t � � +  implies that t�  � �. Hene,

the above interval in t-spae orresponds to the interval [t�d; t� ℄ in �-spae, and

we have the desired on�dene interval for �:

� = P (t� d � � � t� ) (9.7)
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Again, we emphasize that although this looks like a statement onerning the proba-

bility that � is in this interval, it is not, but instead means that we have a probability

� of being right when we assert that � is in this interval.

If neither � or � is known, one hooses the standardized variable z =

t��

�

. The

probability statement about Z is

� = P ( � Z � d) =

Z

d



N(z; 0; 1) dz = erf(d)� erf() (9.8)

whih an be onverted into a probability statement for �:

� = P (t� d� � � � t+ �) (9.9)

For the normal distribution this onversion is easy, due to the symmetry of the

distribution between Z and �. Note however that equation 9.9 does not help us

very muh sine we do not know �. We will disuss this further in setion 9.4.2

9.2 Con�dene belts

Now let us see how we onstrut on�dene intervals for an arbitrary p.d.f.

45

Suppose

that t(x) is an estimator of the parameter � with p.d.f. f(tj�). For a given value of

�, there will be values of t, t

�

(�) and t

+

(�) suh that

� = P (t

�

� T � t

+

) =

Z

t

+

t

�

f(tj�) dt (9.10)

These values of t then de�ne an interval in t-spae, [t

�

; t

+

℄, with probability ontent

�. Usually the hoie of t

�

and t

+

is not unique, but may be �xed by an additional

riterion, e.g., by requiring a entral interval:

Z

t

�

�1

f(tj�) dt =

1� �

2

=

Z

+1

t

+

f(tj�) dt (9.11)

6

-

t

�

�

�

(

^

t)

�

+

(

^

t)

�

t

^

tt

�

(�

t

) t

+

(�

t

)

t

�

(�)

or �

+

(t)

t

+

(�)

or �

�

(t)

We do not, of ourse, know the

true value of �, and hene we are

unable to solve this equation for t

�

and t

+

. Nevertheless, we an make

a plot of t

�

(�) and t

+

(�) vs. �,

whih an also be viewed as a plot

of, respetively, �

+

(t) and �

�

(t) vs.

t. The region between the t

�

and

t

+

urves is known as a on�dene

belt.

For an unbiased, normally dis-

tributed estimator, as in the previ-

ous setion, f(tj�) = N(t; �; �

2

) and the lines for � = 0:683 would be, from equation

9.11, t

�

(�) = � � � and t

+

(�) = � + �.
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For any value of �, the hane of �nding a value of t in the interval [t

�

(�); t

+

(�)℄

is �, by onstrution. Conversely, having done an experiment giving a value t =

^

t,

the values of �

�

and �

+

orresponding to t

+

=

^

t and t

�

=

^

t an be read o� of the

plot as indiated. The interval [�

�

; �

+

℄ is then a on�dene interval of probability

ontent � for �. This an be seen as follows:

Suppose that �

t

is the true value of �. A fration � of experiments will then

result in a value of t in the interval [t

�

(�

t

); t

+

(�

t

)℄. Any suh value of t would yield,

by the above-indiated method, an interval [�

�

; �

+

℄ whih would inlude �

t

. On the

other hand, the fration 1� � of experiments whih result in a value of t not in the

interval [t

�

(�

t

); t

+

(�

t

)℄ would yield an interval [�

�

; �

+

℄ whih would not inlude �

t

.

Thus the probability ontent of the interval [�

�

; �

+

℄ is also �.

To summarize, given a measurement

^

t, the entral � on�dene interval (�

�

�

� � �

+

) is the solution of

Z

^

t

�1

f(tj�

+

) dt =

1� �

2

=

Z

+1

^

t

f(tj�

�

) dt (9.12)

If f(t) is a normal p.d.f., whih is often (at least asymptotially, as we have seen in

hapter 8) the ase, this interval is idential for � = 68:3% to [

^

���

^

�

< � <

^

�+�

^

�

℄. If

f(t) is not Gaussian, the interval of �1� (�

2

the variane of

^

�) does not neessarily

orrespond to � = 68:3%. In this ase the unertainty should be given whih does

orrespond to � = 68:3%. Suh an interval is not neessarily symmetri about

^

�.

In `pathologial' ases, the on�dene belt may wiggle in suh a way that the

resulting on�dene interval onsists of several disonneted piees. While mathe-

matially orret, the use of suh disonneted intervals may not be very meaningful.

9.3 Con�dene bounds

As mentioned above, the hoie of on�dene interval is usually not unique. In

many ases we prefer a entral interval. But sometimes an extremely non-entral

interval is preferable from a physial standpoint. In partiular, on�dene bounds,

i.e., upper or lower limits, are useful when the `best' value of a parameter is found

to be lose (or perhaps beyond) a physial boundary.

For an upper limit, t

+

(�) is hosen in�nite (or equal to the maximum allowed

value of t). Then, the funtion t

�

(�) is de�ned (equation 9.10) by

� = P (T > t

�

) =

Z

+1

t

�

f(tj�) dt

For a measurement

^

t, �

+

is read from this t

�

(�) urve as in the previous setion. In

other words, the upper limit, �

+

is the solution of

� = P (� < �

+

) =

Z

+1

^

t

f(tj�

+

) dt (9.13)
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The statement is then that � < �

+

with on�dene �, and suh an assertion will be

orret in a fration � of the ases.

Lower limits are de�ned analogously: The lower limit �

�

, for whih � > �

�

with

on�dene �, is found from

� = P (� > �

�

) =

Z

^

t

�1

f(tj�

�

) dt (9.14)

Note that we have de�ned these limits as > and <, whereas we used � and �

for on�dene intervals. Some authors also use � and � for on�dene bounds. For

ontinuous estimators, this makes no di�erene. However, for disrete estimators,

e.g., a number of events, the integral over the p.d.f. of the estimator is replaed by

a sum, and then this di�erene is important. This will be disussed further for the

Poisson p.d.f. (setion 9.6).

9.4 Normal on�dene intervals

The example of a normally distributed estimator has already been disussed in the

introdution (setion 9.1). There we saw that the situation is di�erent depending

on whether � is or is not known.

9.4.1 � known

If the variane, �

2

, of the estimator is known, the on�dene interval is easily alu-

lated, as shown in the introdution. Suppose we have n measurements of an exat

quantity, �, like the mass of a ball, using an apparatus of known resolution, �

a

. The

estimate, �̂ = �x, of the quantity is then normally distributed as N(�̂;�; �

2

= �

2

a

=n),

and on�dene intervals (equation 9.7) are omputed using � and the error funtion

(equation 9.6). The entral on�dene belt is de�ned by straight lines orrespond-

ing to t

�

= �� b�, where b is the number of standard deviations orresponding to

probability �.

9.4.2 � unknown

But suppose that we do not know the resolution of the apparatus. As shown in the

introdution, it is still possible to give a on�dene interval, but only in terms of �

(equations 9.8 and 9.9). Sine � is not known, this is not partiularly useful.

Rather, the approah is to estimate � from the data. In the simple example of a

set of n measurements of the same quantity, x, with an apparatus of onstant, but

unknown resolution, �, the mean is estimated by �̂ = �x. As we have seen (equation

8.7), the resolution is then estimated by

�̂ = s =

s

n

n� 1

(x� �x)

2
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and the variane of the estimator is estimated by

V [�̂℄ =

s

2

n

Although z =

x��

�

is distributed as a standard normal p.d.f., i.e., z

2

is distributed

as �

2

, the orresponding variable for the ase of unknown �,

t =

x� �

�̂

=

(x� �)=�

�̂=�

=

z

�̂=�

is not. Instead, it follows Student's t distribution (setion 3.13). It is therefore not

orret to determine a on�dene interval for � from the normal p.d.f.

Qualitatively we an understand that the on�dene region will be somewhat

larger with � unknown than with � known, sine the region must also take into

aount utuations of s from the true value of �. It an be shown

6,11,13

that the

entral �-on�dene interval is given by

�

�

= �̂� T (

1

2

(1 + �);n� 1)

q

V [�̂℄ (9.15)

The fator T is derived from the .d.f. of Student's t distribution. It is the value of

t for whih the .d.f. is equal to

1

2

(1 + �):

Z

T

�1

t(x;n� 1) dx =

1

2

(1 + �) (9.16)

In the ase of a least squares �t to measurements y

i

, all having the same (un-

known) Gaussian error �, this generalizes to

�

i�

=

^

�

i

� T (

1

2

(1 + �);n� k)

r

V

h

^

�

i

i

(9.17)

where n is the number of points and k the number of parameters in the model.

9.5 Binomial on�dene intervals

For a binomial p.d.f., B(n;N; p), for whih we want to estimate the parameter p, the

experimental observation is the number of suesses, n, in N trials. The estimator

of p is then n=N .
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For a given number of trials and various

values of p, the on�dene-belt diagram

an be onstruted as before using sums

instead of integrals. Sine the estimator of

p, t = n=N an take on only disrete val-

ues, the t

�

(p) and t

+

(p) urves will have a

stairase-like form. Also, it will not usu-

ally be possible to �nd an interval for �

exatly equal to say 95%. One normally

then takes the next higher possible value,

i.e., one takes an interval with probability

ontent slightly larger that 95%.

6

-

t = n=N

p

t

�

(p)

t

+

(p)

For example, to �nd the 95% entral on�dene interval for p, given that we

observe n suesses in N trials, we �rst �nd the regions p < p

+

and p > p

�

using

the disrete analogues of equations 9.13 and 9.14 to �nd 97.5% upper and lower

limits

P (p < p

+

) =

N

X

k=n+1

B(k;N; p

+

) � 0:975 (9.18a)

P (p > p

�

) =

n�1

X

k=0

B(k;N; p

�

) � 0:975 (9.18b)

The smallest value of p

+

and the largest value of p

�

satisfying these equations give

the entral 95% on�dene interval [p

�

; p

+

℄. In other words, we �nd the upper and

lower limits for 1�

1��

2

and then exlude these regions.

Using the � in these equations rather than taking the values of p for whih the

equality is most nearly satis�ed means that if no value gives an equality, we take

the next larger value for p

+

and the next smaller value for p

�

. This is known as

being onservative. It implies that for some values of p we have overoverage,

whih means that for some values of p the overage probability is atually greater

than the 95% that we laim, i.e., that P (p

�

< p < p

+

) > 0:95 instead of = 0:95.

This is not desirable, but the alternative would be to have underoverage for other

values of p. Sine we do not know what the true value of p is|if we did know, we

would not be doing the experiment|the lesser of two evils is to aept overoverage

in order to rule underoverage ompletely out.

9.6 Poisson on�dene intervals

9.6.1 Large N

If the number of observed events is large, the Poisson p.d.f. is well approximated

by a Gaussian, and the Gaussian p.d.f. may be used to determine the on�dene
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interval.

9.6.2 Small N | Con�dene bounds

If the number of events is smaller a on�dene interval may be determined in the

same way as for the binomial p.d.f.

However, for very small numbers of events one frequently prefers to state upper

or lower limits. The Poisson p.d.f. is a partiularly important ase for suh limits,

sine many random proesses follow the Poisson p.d.f. (setion 3.4).

Some experiments searh for rare or `forbidden' proesses and onlude by stat-

ing upper limits for their ourrene. For example, we may searh for the deay

�! e, whih is forbidden in the standard theory of weak interations, but whih

would be allowed in various proposed generalizations of this theory. Detetion of

suh a deay would show that the standard theory was only an approximate theory,

and the rate, i.e., the fration of �'s whih deay through this mode, would help to

hoose among the various alternative theories. Usually suh experiments �nd a few

events whih are onsistent with the searhed-for proess, but whih are not nees-

sarily evidene for it beause of possible bakground proesses. The experimental

result is then stated as an upper limit for the proess.

On the other hand, a theory may predit that some proess must not be zero.

Then an experiment will seek to give a lower limit.

When n events have been observed, the � upper limit �

+

for the parameter �

of the Poisson p.d.f. is, from equation 9.13, the solution of

� = P (� < �

+

) =

1

X

k=n+1

P (k;�

+

) =

1

X

k=n+1

e

��

+

�

k

+

k!

= 1�

n

X

k=0

P (k;�

+

) = 1�

n

X

k=0

e

��

+

�

k

+

k!

(9.19)

The solution is easily found using the fat that the sum in the right-hand side of

equation 9.19 is related to the .d.f. of the �

2

-distribution for 2(n + 1) degrees of

freedom.

4,5,46

Thus,

1� � =

n

X

k=0

P (k;�

+

) = P

h

�

2

(2n+ 2) > 2�

+

)

i

=

Z

1

2�

+

�

2

(2n+ 2) d�

2

(9.20)

The upper limit �

+

an thus be found from a table of the .d.f. of �

2

(2n + 2).

Laking a table, equation 9.19 an be solved by iteration.

Let us emphasize, perhaps unneessarily, exatly what the upper limit means: If

the true value of � is really �

+

, the probability that a repetition of the experiment

will �nd a number of events whih is as small or smaller than n is 1� �; for a true

value of � larger than �

+

, the hane is even smaller. Thus we say that we are

`� on�dent' that � is less than �

+

. In making suh statements, we will be right in

a fration � of the ases.
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Similarly, the � lower limit, �

�

, is the solution of

� =

n�1

X

k=0

P (k;�

�

) =

n�1

X

k=0

e

��

�

�

k

�

k!

(9.21)

whih an be found from the .d.f. of the �

2

-distribution for 2n degrees of freedom.

Thus,

� =

n�1

X

k=0

P (k;�

�

) = P

h

�

2

(2n) > 2�

�

)

i

=

Z

1

2�

�

�

2

(2n) d�

2

(9.22)

The fat that it is here 2n degrees of freedom instead of 2(n + 1) as for the upper

limit is beause there are only n terms in the sum of equation 9.22 whereas there

were n+ 1 terms in the upper limit ase, equation 9.20.

9.6.3 Bakground

As mentioned above, there is usually bakground to the signal. The bakground

is also Poisson distributed. The sum of the two Poisson-distributed quantities is

also Poisson distributed (setion 3.7), with mean equal to the sum of the means of

the signal and bakground, � = �

s

+ �

b

. Assume that �

b

is known with negligible

error. However, we do not know the atual number of bakground events, n

b

, in our

experiment. We only know that n

b

� n. If �

b

+�

s

is large we may approximate the

Poisson p.d.f. by a Gaussian and take the number of bakground events as n̂

b

� �

b

.

Then �̂

s

= n� n̂

b

= n� �

b

, with variane V [�̂

s

℄ = V [n℄ + V [n̂

b

℄ = n + �

b

.

An upper limit may be found by replaing �

+

in equation 9.19 by (�

+

+ �

b

). A

lower limit may be found from equation 9.21 by a similar substitution. The results

are

�

+

= �

+

(nobakground)� �

b

(9.23)

�

�

= �

�

(nobakground)� �

b

(9.24)

A diÆulty arises when the number of observed events is not large ompared

to the expeted number of bakground events. The situation is even worse when

the expeted number of bakground events is greater than the number of events

observed. For small enough n and large enough �

b

, equation 9.23 will lead to a

negative upper limit. So, if you follow this proedure, you may end up saying

something like \the number of whatever-I-am-trying-to-�nd is less than �1 with

95% on�dene." To anyone not well versed in statistis this sounds like nonsense,

and you probably would not want to make suh a silly sounding statement. Of

ourse, 95% on�dene means that 5% of the time the statement is false. This is

simply one of those times, but still it sounds silly. We will return to this point in

setion 9.12.
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9.7 Use of the likelihood funtion or �

2

We have seen in setion 8.4.5 how to estimate the variane of a maximum likelihood

estimator. Using the asymptoti normality of maximum likelihood estimators, we

an �nd on�dene intervals as for any normally distributed quantity with known

variane (equations 9.6 and 9.7):

^

� � d � � �

^

� +  with on�dene � = erf

 

d

�

^

�

!

� erf

 



�

^

�

!

With smaller samples it is usually most onvenient to use the likelihood ratio

(di�erene in log likelihood) to estimate the on�dene interval. Then, relying on

the assumption that a hange of parameters would lead to a Gaussian likelihood

funtion (f. setion 8.4.5), the region for whih ` > `

max

� a

2

=2, or equivalently

(f. setion 8.5.1) �

2

< �

2

min

+ a

2

, orresponds to a probability ontent

� =

Z

+a

�a

N(z; 0; 1) dz = erf(a)� erf(�a)

In `pathologial' ases, i.e., ases where there is more than one maximum, as

pitured here, the situation is less lear. Applying the above proedure would lead

to disonneted intervals, whereas the interval for the transformed parameter would

give a single interval. It is sometimes said that it is nevertheless orret to state a

� on�dene interval as

6

-

`

�

1

�

2

�

3

�

4

�

1

� � � �

2

or �

3

� � � �

4

However, this statement seems to be the

result of onfusing on�dene intervals

with �duial intervals (setion 9.8). Be

that as it may, the usefulness of suh in-

tervals is rather dubious, and in any ase

gives an inomplete piture of the situation. One should ertainly give more details

than just stating these intervals.

The appliation of other methods of estimating the variane of

^

� to �nding

on�dene intervals for �nite samples is disussed in some detail by Eadie et al.

4

and James

5

.

9.8 Fiduial intervals

Con�dene intervals, as developed by Neyman and disussed in the previous se-

tions, use a fully frequentist approah to probability. R. A. Fisher, a few years

earlier, had followed a somewhat di�erent, also frequentist, approah to interval

estimation

24

. His intervals are alled �duial intervals. A third approah is the

muh older Bayesian one, whih will be presented in the next setion.
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Fisher's onept of information (setion 8.2.5) is intimately related to the like-

lihood funtion. So too is his �duial interval.

In setion 8.4.2 we saw that asymptotially the likelihood funtion L(x; �) be-

omes (under rather general assumptions) a Gaussian funtion of the parameters

�. This does not mean (as we have repeatedly emphasized) that L is a p.d.f. for

�. That only happens in a Bayesian interpretation, whih we are not making here.

Reall that the priniple of maximum likelihood, i.e., that the best estimate of �

is that value of � for whih the likelihood funtion is a maximum, was not derived,

but assumed on intuitive grounds. In the same way we go now a step further and

assume, again intuitively, that L represents our level of redene in a value of �. A

�duial interval for a degree of redene � is de�ned as an interval [�

1

; �

2

℄ suh that

� =

R

�

2

�

1

L d�

R

+1

�1

L d�

(9.25)

This proedure is supported by the onnetion we have seen (setion 8.4.2)

between the asymptoti Gaussian shape of L and the variane of the maximum

likelihood estimator. And just as with the maximum likelihood method, the attra-

tiveness of �duial intervals is based on asymptoti properties.

As with on�dene intervals, a supplementary riterium, suh as a entral inter-

val, is needed in addition to equation 9.25 to uniquely de�ne a �duial interval.

Often the on�dene interval and �duial interval approahes lead to the same

interval. However, the approah, and hene the meaning, is di�erent. The on�-

dene approah says that if we assert that the true value is in a 95% interval we

will be right 95% of the time. However, in the �duial approah the same assertion

means that we are 95% sure that we are right this time. This shift in emphasis is

the same as in the meaning of the likelihood funtion itself: We an regard L(x; �)

as an elementary probability in whih � is �xed and x varies, i.e., as the p.d.f. for

the r.v. X. On the other hand, we an regard it as a likelihood in whih x is �xed

and � varies, as is done in the maximum likelihood method. Similarly, in interval

estimation, we an regard � as a onstant and set up ontaining intervals whih are

random variables (the on�dene interval approah); or we an regard the observa-

tions as �xed and set up intervals based on some unde�ned intensity of belief in the

values of the parameter generating the observations (the �duial interval approah).

Today, �duial intervals are seldom used, sine they lak a �rm mathematial

basis. If one is a frequentist, one generally prefers on�dene intervals.

9.9 Credible (Bayesian) intervals

Con�dene intervals are based on the frequentist interpretation of probability and

are statements about the probability of experimental results. Fiduial intervals are

also based on the frequentist interpretation of probability (the parameters � have

�xed true values) but represent our redene (or belief) about the values of the
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parameters. However, we may prefer to use Bayesian probability. In this ase we an

onstrut intervals, [a; b℄, alled redible intervals, Bayesian on�dene intervals,

or simply Bayesian intervals, suh that � is the probability that parameter � is

in the interval:

� = P (a � � � b) =

Z

b

a

f(�jx) d� (9.26)

where f(�jx) is the Bayesian posterior p.d.f. As with on�dene and �duial inter-

vals, supplementary onditions, suh as entrality, are needed to uniquely speify

the interval. We have seen in setion 8.4.5 that, assuming Bayes' postulate, f(�jx)

is just the likelihood funtion L(x; �), apart, perhaps, from normalization.

9.10 Disussion of intervals

We have presented three approahes to interval estimation: on�dene intervals,

�duial intervals, and redible (or Bayesian) intervals. In ases where the likelihood

funtion is a Gaussian funtion of the parameters, as is usually true asymptotially,

these approahes (with a suitable hoie of prior in the Bayesian ase) all lead to the

same interval. Though this is omforting, we must realize that in less ideal irum-

stanes the intervals given by the di�erent approahes may be di�erent. This does

not mean that any of the approahes is wrong, but rather that they are answering

di�erent questions or making di�erent assumptions.

The virtue of the on�dene interval approah is its �rm grounding in frequentist

probability. The Bayesian approah is also �rmly grounded, but loses something

in objetivity by its subjetive Bayesian interpretation of probability as a degree of

belief. Further, it su�ers from its need for an arbitrary hoie of prior probability

(Bayes' postulate). The �duial approah is well-grounded only where its results

are idential to the other approahes. Extension to other ases is more a question

of intuition.

We thus are inlined to prefer the on�dene interval approah even though it

is a very ompliated proedure ompared to the other approahes. However, the

on�dene interval approah is unable to inorporate prior information, as we will

see in the next setion.

9.11 Measurement of a bounded quantity

Let us return to the example in the introdution (setion 9.1). A dish is weighed, a

sample is plaed on the dish and the ombination is weighed, and then the mass of

the sample is estimated by subtrating the mass of the dish from the mass of the

dish plus sample. If the mass of the sample is smaller than or omparable to the

resolution of the balane, the on�dene interval [�1; 0℄ will have a non-negligible

probability ontent. This is learly ridiulous and omes about beause we have

not made use of our knowledge that the mass must be positive. Suh a situation
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an also our when we must subtrat a number of bakground events from the

observed number of events to �nd the number of events in the signal; a number of

events also an not be negative.

The problem is how to inorporate this onstraint (or prior knowledge) into

the on�dene interval. In the on�dene interval approah there is no way to

do this. The best we an do is to hoose an interval whih does not ontain the

forbidden region (< 0 in our example). Consider the �gure showing on�dene

belts in setion 9.2. Suppose that we know that �

t

> �

min

. We an think of several

alternatives to the interval [�

�

; �

+

℄ when �

�

< �

+

:

1. [�

min

; �

+

℄. But this is the same interval we would have found using a on�dene

belt with t

+

shifted upwards suh that the t

+

urve passes through the point

(�

min

;

^

t ). This on�dene belt learly has a smaller �. This plaes us in the

position of stating the same on�dene for two intervals, the one ompletely

ontained in, and smaller than, the other.

2. [�

min

; �

00

+

℄, where �

00

+

is the solution of t

min

(�) = t

min

, with t

min

= t

+

(�

min

). This

is the interval we would have stated had we found

^

t = t

+

(�

min

). So, apparently

the fat that we found a lower value of

^

t does not mean anything|any value of

^

t smaller than t

+

(�

min

) leads to the same on�dene interval! This proedure

is learly unsatisfatory.

3. [�

min

; �

0

+

℄, where �

0

+

is determined from a new on�dene belt onstruted

suh that the t

+

urve passes through the point (�

min

;

^

t ). The t

�

urve is

taken as that urve whih together with this new t

+

urve gives the required

�. This approah seems better than the previous two. However, it is still

unsatisfatory sine it relies on the measurement to de�ne the on�dene

belt.

The situation is even worse if not only �

�

(

^

t) < �

min

but also �

+

(

^

t) > �

max

. Then

we �nd ourselves in the absurd situation of, e.g., stating the onlusion of our

experiment as �0:2 < � < 1:2 with 95% on�dene when we know that 0 < � < 1|

we are only 95% on�dent that � is within its physial limits! The best proedure

to follow has been the subjet of muh interest lately among high energy physiists,

partiularly those trying to measure the mass of the neutrino and those searhing

for hypothetial new partiles. The most reasonable proedure seems to be

47

that of

Feldman and Cousins,

48

who redisovered a presription previously given by Kendall

and Stuart.

11

On the other hand, in the �duial approah physial boundaries are easily in-

orporated. The likelihood funtion is simply set to zero for unphysial values of

the parameters and renormalized. Equation 9.25 is thus replaed by

� =

R

�

2

�

1

L d�

R

�

max

�

min

L d�

(9.27)
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Also the Bayesian approah has no diÆulty in inorporating the physial limits.

They are naturally imposed on the prior probability. If the prior probability is

uniform within the physial limits, the result is the same interval as in the �duial

approah (equation 9.27).

Note, however, that in order to ombine with the results of other experiments,

the (nonphysial) estimate and its variane should be stated, as well as the on-

�dene interval. This, in fat, should also be done for quantities whih are not

bounded.

9.12 Upper limit on the mean of a Poisson p.d.f.

with bakground

In setion 9.6.3 we introdued the problem of measuring an upper limit on the

number of (Poisson distributed) events for a partiular proess in the presene of

bakground. This is related to the problems of the previous setion. The number of

events an not be negative; it is a bounded quantity. Within the lassial on�dene

limit approah, the most reasonable proedure here too is that of Feldman and

Cousins

48

.

Another approah is to determine an upper limit by an extension of the argument

of setion 9.6.

46,49

As in that setion, let n be the number of events observed, n

b

the

expeted number of bakground events, and �

+

the upper limit on �

s

. Then �

+

is

that value of �

s

suh that any random repetition of the urrent experiment would,

if �

s

atually equals �

+

, result in more than n events and would also have n

b

� n,

all with probability �. Thus, in equation 9.19 the sum, whih is the probability of

� n events given � = �

+

, is replaed by the same probability given � = �

b

+ �

+

normalized to the probability that n

b

� n.

� = 1�

P (� n events)

P (� n bakground events)

= 1�

e

�(�

�

+

+b

)

P

n

k=0

(�

+

+�

b

)

k

k!

e

��

b

P

n

k=0

�

k

b

k!

(9.28)

This equation must be solved for �

+

. In pratie this is best done numerially,

adjusting �

+

until the desired � is obtained. However, to inorporate the probability

that n

b

� n, we have been Bayesian. The result is thus a redible upper limit rather

than a lassial upper limit.

When �

b

is not known to a negligible error, the same approah an be used.

However, we must integrate over the p.d.f. for n

b

. It is most onvenient to use a

Monte Carlo tehnique. We generate a sample of Monte Carlo experiments taking �

b

randomly distributed aording to our knowledge of �

b

(usually normally) and with

a �xed �

s

. Experiments with n

b

> n are rejeted. The sum in equation 9.19 or 9.21

is then estimated by the fration of remaining Monte Carlo experiments satisfying
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the orresponding probability. The proess is repeated for di�erent values of �

s

until the desired value of � is found.

50



\Whih way ought I to go to get from here?"

\That depends a good deal on where you want to get to," said the Cat.

\I don't muh are where|" said Alie.

\Then it doesn't matter whih way you go," said the Cat.

|Lewis Carroll, \Alie in Wonderland"

Chapter 10

Hypothesis testing

10.1 Introdution

In hapter 8 we were onerned with estimating parameters of a p.d.f. using a statis-

ti alulated from observations assumed to be distributed aording to that p.d.f.

In hapter 9 we sought an interval whih we were on�dent (to some spei�ed de-

gree) ontained the true value of the parameter. In this hapter we will be onerned

with whether some previously designated value of the parameter is ompatible with

the observation, or even whether the assumed p.d.f. is ompatible. In a sense, this

latter question logially preedes the estimation of the value of a parameter, sine

if the p.d.f. is inompatible with the data there is little sense in trying to estimate

its parameters.

When the hypothesis under test onerns the value of a parameter, the problems

of hypothesis testing and parameter testing are related and tehniques of parameter

estimation will lead to analogous testing proedures. If little is known about the

value of a parameter, you will want to estimate it. However, if a theory predits

it to have a ertain value, you may prefer to test whether the data are ompatible

with the predited value. In either ase you should be lear whih you are doing.

That others are often onfused about this is no exuse.

10.2 Basi onepts

The question here is thus one of hypothesis testing. We make some hypothesis

and want to use experimental observations to test whether it is orret. Not all

sienti� hypotheses an be tested statistially. For instane, the hypothesis that

199
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every partile in the universe attrats every other partile an not be tested sta-

tistially. Statistial hypotheses onern the distributions of observable random

variables. Suppose we have N suh observations. We denote them by a vetor x

in an N -dimensional spae, 
, alled the sample spae (setion 2.1.2), whih is the

spae of all possible values of x, i.e., the spae of all possible results of an experi-

ment. A statistially testable hypothesis is one whih onerns the probability of a

partiular observation X, P (X 2 
).

Suppose that x onsists of a number of independent measurements of a r.v., x

i

.

Let us give four examples of statistial hypotheses onerning x:

1. The x

i

are distributed normally with partiular values of � and �.

2. The x

i

are distributed normally with a partiular value of �.

3. The x

i

are distributed normally.

4. The results of two experiments, x

1i

and x

2i

are distributed identially.

Eah of these hypotheses says something about the distribution of probability over

the sample spae and is hene statistially testable by omparison with observations.

Examples 1 and 2 speify a p.d.f. and ertain values for one or both of its pa-

rameters. Suh hypotheses are alled parametri hypotheses. Example 3 spei�es

the form of the p.d.f., but none of its parameters, and example 4 does not even

speify the form of the p.d.f. These are examples of non-parametri hypothe-

ses, i.e., no parameter is spei�ed in the hypothesis. We shall mainly onentrate

on parametri hypotheses, leaving non-parametri hypotheses to setion 10.7.

Examples 1 and 2 di�er in that 1 spei�es all of the parameters of the p.d.f.,

whereas 2 spei�es only a subset of the parameters. When all of the parameters are

spei�ed the hypothesis is termed simple; otherwise omposite. If the p.d.f. has n

parameters, we an de�ne an n-dimensional parameter spae. A simple hypothesis

selets a unique point in this spae. A omposite hypothesis selets a subspae

ontaining more than one point. The number of parameters spei�ed exatly by

the hypothesis is alled the number of onstraints. The number of unspei�ed

parameters is alled the number of degrees of freedom of the hypothesis. Note the

similarity of terminology with that used in parameter estimation:

Parameter Estimation Hypothesis Testing

n = number of observations parameters

k = number of parameters parameters spei�ed

to be by the hypothesis

estimated (onstraints)

n� k = number of degrees of freedom
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To test an hypothesis on the basis of a random sample of observations, we must

divide the sample spae 
 into two subspaes. If the observation x lies in one of these

subspaes, all it !, we shall rejet the hypothesis; if x lies in the omplementary

region, !

�

= 
 � !, we shall aept the hypothesis. The subspae ! is alled the

ritial region of the test, and !

�

is alled the aeptane region.

A few words are in order regarding this terminology. In siene we an never

ompletely rejet or aept an hypothesis. Nevertheless, the words \rejet" and

\aept" are in ommon usage. They should be understood as meaning \the ob-

servations are unfavorable" or \favorable" to the hypothesis. Sine aeptane or

rejetion is never ertain, it is lear that we also need to be able to state our de-

gree of on�dene in aeptane or rejetion, just as when onstruting on�dene

intervals we did so with a spei�ed on�dene.

The hypothesis being tested is generally designated H

0

and is alled the null

hypothesis. For the time being, we will assume that H

0

is a simple hypothesis,

i.e., it spei�es the p.d.f. ompletely. We an then alulate the probability that

a random observation will fall in the ritial region, and we an hoose this region

suh that this probability is equal to some pre-hosen value, �,

P (x 2 !jH

0

) = � (10.1)

This value � is thus the probability of rejeting H

0

if H

0

is true. It is alled the

size of the test or the level of signi�ane, although this latter term an be

misleading. For a disrete p.d.f. the possible values of � will also be disrete, while

for a ontinuous p.d.f. any value of � is possible.

In general, there will be many, often an in�nity, of subspaes ! of the same size

�. Whih of them should we use? In other words, whih of all possible observations

should we regard as favoring and whih as disfavoring H

0

?

To deide whih subspae to take as !, we need to know what the alternatives

are. It is perfetly possible that an observation is unlikely under H

0

but even more

unlikely under an alternative hypothesis. Fored to hoose between the two we

would not want to rejet H

0

. Thus whether we aept or rejet H

0

depends on

what the alternative hypothesis, usually designated H

1

, is.

It should now be lear that a ritial region (or, synonymously, a test) must be

judged by its properties both when H

0

is true and when H

0

is false. We want to

aept H

0

if it is true and rejet it if it is false. Our deision, i.e., aeptane or

rejetion, an be wrong in two ways:

1. Error of the �rst kind, or loss, or false negative: H

0

is true, but we

rejet it.

2. Error of the seond kind, or ontamination, or false positive: H

0

is

false, but we aept it.

The probability of making an error of the �rst kind is equal to the size of the

ritial region, �. The probability of making an error of the seond kind depends
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on the alternative hypothesis and is denoted

�

by �:

P (x 2 !

�

jH

1

) = � (10.2)

The omplementary probability,

P (x 2 !jH

1

) = 1� � (10.3)

is alled the power of the test of H

0

against H

1

. The spei�ation of H

1

when

giving the power is learly essential sine � depends on H

1

.

Clearly, we would like a test to have small values of both � and �. However,

it is usually a trade-o�: dereasing � frequently inreases � and vie versa. Let us

onsider two examples where H

0

and H

1

are both simple hypotheses.

Example 1. Consider H

0

and H

1

both of whih hypothesize that the r.v. X

is normally distributed with standard deviation �. The di�erene between the

hypotheses lies in the value of �. For H

0

it is �

0

and for H

1

it is �

1

. We make two

independent observations x

1

and x

2

to test H

0

against H

1

.

The two observations an be represented by a point in 
, whih is a plane having

x

1

and x

2

as axes. The joint p.d.f. under H

0

is a bivariate normal distribution

entered at the point A, i.e., at x

1

= x

2

= �

0

. The density of points about A in

the �gure is meant to represent this p.d.f. Under H

1

the p.d.f. is the same exept

that it is entered at the point B, x

1

= x

2

= �

1

.

A test of H

0

ould be made by de�ning ! by the line PQ with H

0

6
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`

`

`

`

`

`

`

`

`

`

`

to be rejeted if the point representing

the observations lies above the line PQ.

Another possible ritial region is that

between the lines CA and AD. Both of

these regions have the same probability

under H

0

and hene the same size, �.

However, the values of � are muh

di�erent. The �rst test will almost al-

ways rejet H

0

when H

1

is true, while

the seond test will often wrongly a-

ept H

0

. Thus � is muh larger for the

seond test, and hene the power of the

�rst test is larger. It should be obvious

that the more powerful test is prefer-

able.

Example 2. In the previous example the sample spae was only two dimensions.

When the dimensionality is larger, it is inonvenient to formulate the test in terms of

the omplete sample spae. Rather, a small number

�

The symbols � and � are used by most authors for the probabilities of errors of the �rst and
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H

1

H

0

M

f(M)

0 M



M

�

0

�

H

H

�

�

�

(frequently one) of test statistis is

de�ned and the test is formulated in

terms of them. In fat, as we shall later

see, in some ases a single test statis-

ti provides the best test. Reall that

a statisti is a funtion only of the ob-

servations and does not depend on any

assumptions about the p.d.f.

Suppose that we want to distin-

guish K

�

p elasti sattering events

from inelasti sattering events where

a �

0

is produed. The hypotheses are

then

H

0

: K

�

p!K

�

p

H

1

: K

�

p!K

�

p�

0

If the experiment measures the mo-

menta and energies of harged partiles

but does not detet neutral partiles, a

onvenient test statisti is the missing

mass, the mass of the neutral system

in the �nal state. This is easily alulated from the energies and momenta of the

initial- and �nal-state harged partiles. The true value of the missing mass is

M = 0 under H

0

, and M = 135 MeV/

2

under H

1

. We an hoose a ritial region

M > M



. The orresponding loss and ontamination are shown in the �gure. The

hoie ofM



will be governed by balaning our interest in both small loss and small

ontamination.

Note that the atual ontamination in our sample of elasti events depends on

the a priori abundane of inelasti events produed. If this is small ompared to

that of elasti events, we an tolerate a large value of �.

10.3 Properties of tests

In parameter estimation we were faed with the problem of hoosing the best esti-

mator. Here a similar situation arises: we seek the best test. To aid us, we examine

some properties of tests.

10.3.1 Size

In the previous setion we de�ned (equation 10.1) the size, �, of a test as the

probability that the test would rejet the null hypothesis when it is true. If H

0

is

a simple hypothesis, the size of a test an be alulated. In other ases it is not

seond kind. However, some authors use 1� � where we use �.
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always possible. Clearly a test of unknown size is worthless.

10.3.2 Power

We have de�ned (equation 10.3) the power, 1 � �, of a test of one hypothesis H

0

against another hypothesis H

1

as the probability that the test would rejet H

0

when

H

1

is true. If H

1

is a simple hypothesis, the power of a test an be alulated. If

H

1

is omposite, the power an still be alulated, but is in general no longer a

onstant but a funtion of the parameters.

Suppose that H

0

and H

1

speify the same p.d.f., the di�erene being the value

of the parameter �:

H

0

: � = �

0

H

1

: � 6= �

0

The ontamination, �, is then a funtion of �, as is the power:

p(�) = 1� �(�) (10.4)

Note that by de�nition, p(�

0

) = 1� �(�

0

) = �.

Tests may then be ompared on the basis of their power funtion. If H

0

and

H

1

are both simple, the best test of size (at signi�ane level) � is the test with

maximum power at � = �

1

, the value spei�ed by H

1

. In the �gure, test B has the

largest power for � > �

0

and in partiular at � = �

1

, whereas test C is more powerful

for �

0

< � < �

0

.

-

�

0

�

0

�

1

�

0

p(�)

1

�

B

A

C

If for a given value of � a test is

at least as powerful as any other

possible test of the same size, it

is alled a most powerful (MP)

test at that value of �, and its rit-

ial region is alled a best riti-

al region (BCR). A test whih

is most powerful for all regions of �

under onsideration is alled a uni-

formly most powerful (UMP)

test. Clearly, if a test is MP at �

1

and the test is independent of �

1

, then it is UMP. It is frequently not possible to

�nd an UMP test, although we will see in setion 10.4.1 that if H

0

and H

1

are both

simple hypotheses, then an UMP test always exists. Unfortunately, in real life an

UMP test does not usually exist. An UMP test whih is also unbiased (setion

10.3.4) is alled UMPU.

10.3.3 Consisteny

A highly desirable property of a test is that, as the number of observations in-

reases, it should distinguish better between the hypotheses. A test is termed
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-

�

0

�

0

p(�)

1

�

�

�

�

�

�

�I

N

onsistent if the power tends to

unity as the number of observations

inreases:

lim

N!1

P (x 2 !jH

1

) = 1

where x is the set of N observations

and ! is the ritial region under

H

0

. The power funtion thus tends

to a step funtion as N !1.

10.3.4 Bias

A test is biased if the power fun-

tion is smaller at a value of � orresponding to H

1

than at the value, �

0

, spei�ed

by H

0

, i.e., when there exists a value � for whih

p(�) = 1� �(�) < � ; � 6= �

0

An example is test B at � = �

1

in the �gure. In suh a ase the hane of aepting

H

0

is greater when � = �

1

than when � = �

0

, whih means we are more likely to

aept H

0

when it is false than when it is true. Suh a test is learly undesirable in

general.

-

�

0

�

1

�

2

�

0

p(�)

1

�

BA

In some situations it may be

preferable to use a biased test. For

example, test B may be hosen

rather than test A if it is partiu-

larly important to be able to dis-

riminate against � = �

2

, where test

B is more powerful than A. How-

ever, in so doing all disrimination

between H

0

and H

1

in the region of

�

1

is lost.

The de�nition of a biased test an be formulated in a way whih is also appliable

for omposite hypotheses. Let H

0

speify that � is in some interval �

0

. Then a test

is unbiased if

P (x 2 !j�)

�

� �; for all � 2 �

0

� �; for all � =2 �

0

In real life it is usually possible to �nd an unbiased test.

10.3.5 Distribution-free tests

Most of the time we do not invent our own tests, but instead use some standard

test. To be `standard', the distribution of the test statisti, and hene the size of
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the ritial region, must be independent of the p.d.f. spei�ed by H

0

. It an only

depend on whether H

0

is true. Suh a test is alled distribution-free. An example

is the well-known Pearson's �

2

test, whih we shall meet shortly.

It should be emphasized that it is only the size or level of signi�ane of the

test whih does not depend on the distributions spei�ed in the hypotheses. Other

properties of the test do depend on the p.d.f.'s. In partiular, the power will depend

on the p.d.f. spei�ed in H

1

.

10.3.6 Choie of a test

Traditionally, the hoie of a test is done by �rst speifying the loss � and then

hoosing the test on the basis of the power. This proedure assumes that the risk

of an error of the �rst kind (loss) is a given onstant, and that one only has to

minimize the risk of an error of the seond kind (ontamination).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

1

1

�

��

1

A

A

B

B

C

N-P

However, this is frequently not the

ase. We want to have both kinds of

errors as small as possible. It is then

advantageous to take both � and � as

variables in omparing the tests. As-

sume, for simpliity, that both H

0

and

H

1

are simple, speifying �

0

and �

1

, re-

spetively. Then, for a given test and

a given value of � = p(�

0

), one an de-

termine � = 1 � p(�

1

). Repeating for

di�erent values of �, a urve giving �

as a funtion of � an be onstruted,

as shown in the �gure.

The dashed line in the �gure orre-

sponds to 1 � � = �, so that all unbi-

ased test urves will lie entirely below this line, passing through the points (1,0)

and (0,1). Sine we desire to have both � and � small, test C in the �gure is learly

inferior to the others for all values of � and �. If both H

0

and H

1

are simple, there

always exists a test (the Neyman-Pearson test, f. setion 10.4.1) whih is at least

as good as any other test for all � and �. If this test is too ompliated, or in the

ase of omposite hypotheses, one ould be in the position of hoosing, for example,

between tests A and B. Clearly, test A should be hosen for � < �

1

and test B for

� > �

1

.

If the hypotheses are omposite, the �gure an beome a multidimensional dia-

gram with new axes orresponding to � or to other unspei�ed parameters. Or eah

test an be represented by a family of urves in the �-� plane.

A minor diÆulty arises when disrete distributions are involved, sine only a

disrete set of �'s are then available, and the �-� urves are disontinuous.

The above tehniques allow one to hoose the best test. Whether it is good
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enough depends on the ost (in terms of suh things as time and money) of making

an error, i.e., a wrong deision.

10.4 Parametri tests

10.4.1 Simple Hypotheses

The Neyman-Pearson test

When bothH

0

andH

1

are simple hypotheses, the problem of �nding the best ritial

region (BCR), or most powerful (MP) test, of size � is partiularly straightforward,

as was shown by Neyman and Pearson.

51

We suppose that the r.v. x is distributed under H

0

as f(x; �

0

) and under H

1

as

g(x; �

1

). Then equations 10.1 and 10.3 an be written

P (x 2 !

�

j H

0

) =

Z

!

�

f(x; �

0

) dx = � (10.5)

P (x 2 !

�

j H

1

) =

Z

!

�

g(x; �

1

) dx = 1� � (10.6)

We want to �nd the ritial region !

�

whih, for a given value of �, maximizes

1� �. Rewriting equation 10.6, we have

1� � =

Z

!

�

g(x; �

1

)

f(x; �

0

)

f(x; �

0

) dx

= E

!

�

"

g(x; �

1

)

f(x; �

0

)

�

�

�

�

�

H

0

#

whih is the expetation of g(x; �

1

)=f(x; �

0

) in the region !

�

assuming that H

0

is

true. This will be maximal if we hoose the region !

�

as that region ontaining the

points x for whih this ratio is the largest. In other words, we order the points x

aording to this ratio and add these points to ! until ! has reahed the size �.

The BCR thus onsists of the points x satisfying

f(x; �

0

)

g(x; �

1

)

� 

�

where 

�

is hosen suh that !

�

is of size � (equation 10.5).

This ratio is, for a given set of data, just the ratio of the likelihood funtions,

whih is known as the likelihood ratio. We therefore use the test statisti

� =

L(xjH

0

)

L(xjH

1

)

(10.7)

and

rejet H

0

if � � 

�

aept H

0

if � > 

�

This is known as the Neyman-Pearson test.
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An Example

As an example, onsider the normal distribution treated in example 1 of setion

10.2. BothH

0

andH

1

hypothesize a normal p.d.f. of the same variane, but di�erent

means, �

0

underH

0

and �

1

underH

1

. The variane is, for both hypotheses, spei�ed

as �

2

. The ase where the variane is not spei�ed is treated in setion 10.4.3. The

likelihood funtion under H

i

for n observations is then

L(xjH

i

) = (2�)

�n=2

exp

2

4

�

1

2

n

X

j=1

(x

j

� �

i

)

2

�

2

3

5

= (2�)

�n=2

exp

�

�

n

2�

2

n

s

2

+ (�x� �

i

)

2

o

�

where �x and s

2

are the sample mean and sample variane, respetively. Hene, our

test statisti is (equation 10.7)

� =

L(xjH

0

)

L(xjH

1

)

= exp

�

n

2�

2

n

(�x� �

1

)

2

� (�x� �

0

)

2

o

�

= exp

�

n

2�

2

n

2�x(�

0

� �

1

) + (�

2

1

� �

2

0

)

o

�

and the BCR is de�ned by � � 

�

or

�x(�

0

� �

1

) +

1

2

(�

2

1

� �

2

0

) �

�

2

n

ln 

�

whih beomes

�x �

1

2

(�

1

+ �

0

)�

�

2

n

ln 

�

�

1

� �

0

if �

1

> �

0

(10.8)

�x �

1

2

(�

1

+ �

0

) +

�

2

n

ln 

�

�

0

� �

1

if �

1

< �

0

(10.9)

Thus we see that the BCR is determined by the value of the sample mean. This

should not surprise us if we reall that �x was an eÆient estimator of � (setion

8.2.7).

In applying the test, we rejet H

0

if �

1

> �

0

and �x is above a ertain ritial

value (equation 10.8), or if �

1

< �

0

and �x is below a ertain ritial value (equation

10.9).

To �nd this ritial value, we reall that �x itself is a normally distributed r.v.

with mean � and variane �

2

=n. (This is the result of the entral limit theorem,

but when the p.d.f. for x is normal, it is an exat result for all n.) We will treat the

ase of �

1

> �

0

and leave the other ase as an exerise for the reader.

For �

1

> �

0

, the right-hand side of equation 10.8 is just �x

�

given by

r

n

2��

2

Z

1

�x

�

exp

�

�

n

2�

2

(�x� �

0

)

2

�

d�x = �
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Transforming to a standard normal variable,

z =

�x� �

0

�=

p

n

(10.10)

we an rewrite this in terms of the standard normal integral, whih is given by the

error funtion (setion 3.7):

� =

1

p

2�

Z

1

z

�

e

�z

2

=2

dz =

1

p

2�

Z

�z

�

�1

e

�z

2

=2

dz = erf(�z

�

) (10.11)

For example, for � = 0:05 we �nd in a table that z

�

= 1:645. For �

0

= 2, � = 1,

and n = 25, this value of z

�

inserted in equation 10.10 yields �x

�

= 2:33. Then if

�x > 2:33, we rejet H

0

with a level of signi�ane of 5%.

The power of the test an also be easily omputed in this example. It is

r

n

2��

2

Z

1

�x

�

exp

�

�

n

2�

2

(�x� �

1

)

2

�

d�x = 1� �

whih, in terms of the error funtion and the z

�

de�ned above, an be written

1� � = 1� erf

 

p

n

�

(�

0

� �

1

) + z

�

!

= erf

 

p

n

�

(�

1

� �

0

)� z

�

!

(10.12)

We see that the power inreases monotonially with both n and �

1

� �

0

.

10.4.2 Simple H

0

and omposite H

1

In the previous setion we have seen how to onstrut the best test between two

simple hypotheses. Unfortunately, no suh generally optimal method exists when

H

0

and/or H

1

is not simple.

Suppose that we want to test a simple H

0

against a omposite H

1

. Let us �rst

treat an H

1

whih is just a olletion of simple hypotheses, e.g., under H

0

� = �

0

,

and under H

1

� = �

1

or �

2

or �

3

or : : : �

n

. We ould imagine testing H

0

against eah

of these alternatives separately using a MP test as found in setion 10.4.1. However,

this would lead in general to a di�erent ritial region in eah ase and most likely

to aeptane of H

0

in some ases and rejetion in others. We are therefore led to

inquire whether there exists one BCR for all the alternative values. A test using

suh a BCR would be UMP.

UMP test for the exponential family

Unfortunately, an UMP test does not generally exist. One important ase where

an UMP test does exist is when the p.d.f. of H

0

and H

1

is of the exponential

family (setion 8.2.7), but then only for `one-sided' tests.

4,5

We illustrate this for

the Gaussian p.d.f. from our results of setion 10.4.1.
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In that example we saw that for �

1

> �

0

a BCR was given by �x � b

�

and for

�

1

< �

0

by �x � a

�

. Thus if H

1

ontains only values greater than, or only values

less than �

0

, we have a (one-sided) UMP test, but not if H

1

allows values of �

on both sides of �

0

. In suh ases we would intuitively expet that a ompromise

ritial region de�ned by �x � a

�=2

or �x � b

�=2

would give a satisfatory `two-

sided' test, and this is what is usually used. It is, of ourse, less powerful than

the one-sided tests in their regions of appliability as is illustrated in the �gure.

-

1

0

p

�

�

0

�

Critial region in both tails equally.

Critial region in lower tail.

Critial region in upper tail.

Maximizing loal power

If no UMP test exists, it an be a good idea to look for a test whih is most

powerful in the neighborhood of the null hypothesis. This is the plae where a test

will usually be least powerful. Consider the two simple hypotheses, both speifying

the same p.d.f.,

H

0

: � = �

0

H

1

: � = �

1

= �

0

+�

where � is small.

The log-likelihood an be expanded about �

0

,

lnL(x; �

1

) = lnL(x; �

0

) + �

� lnL

��

�

�

�

�

�

�=�

0

+ : : :

Sine we are treating two simple tests, we an use the Neyman-Pearson test (equa-

tion 10.7) to rejet H

0

if the likelihood ratio is smaller than some ritial value:

� =

L(xjH

0

)

L(xjH

1

)

� 

�

This is equivalent to

lnL(x; �

0

)� lnL(x; �

1

) � ln 

�
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or (assuming � > 0)

� lnL

��

�

�

�

�

�

�=�

0

� k

�

; k

�

= �

ln 

�

�

Now, if the observations are independent and identially distributed, we know from

setion 8.2.5 that under H

0

the expetation of L is a maximum and

E

"

� lnL

��

�

�

�

�

�

�=�

0

#

= 0

E

2

4

 

� lnL

��

!

2

3

5

= nI

for n independent observations, where I is the information on � for 1 observation.

Under suitable onditions

� lnL

��

is approximately normally distributed with mean 0

and variane nI. The value of k

�

orresponding to a partiular hoie of size � an

then be found as in setion 10.4.1 (equation 10.11):

� = erf(�z

�

) ; where z

�

=

k

�

p

nI

In this way, a loally most powerful test is approximately given by rejeting H

0

if

� lnL

��

�

�

�

�

�

�=�

0

� z

�

p

nI ; � = erf(�z

�

) (10.13)

10.4.3 Composite hypotheses|same parametri family

We now turn to the more general ase where both H

0

and H

1

are omposite hy-

potheses. We make a distintion between the ase where the p.d.f.'s spei�ed in

the hypotheses belong to one ontinuous family from the ase where they belong to

distint families. In the �rst ase the only di�erene between the hypotheses is the

spei�ation of the parameters, e.g.,

H

0

: f(x; �) ; with � < �

0

H

1

: f(x; �) ; with � > �

0

However, in the seond ase the p.d.f.'s are di�erent and may even involve di�erent

numbers of parameters. In this setion we will treat the �rst ase.

Likelihood ratio test

We have seen (setion 8.4) that the maximum likelihood method gave estimators

whih, under ertain onditions, had desirable properties. A method of test on-

strution losely related to it is the likelihood ratio method proposed by Neyman
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and Pearson

52

in 1928. It has played a similar role in the theory of tests to that

of the maximum likelihood method in the theory of estimation. As we have seen

(set. 10.4.1), this led to a MP test for simple hypotheses.

Assume that the N observations, x, are independent and that both hypotheses

speify the p.d.f. f(x; �). Then the likelihood funtion is

L(x; �) =

N

Y

i=1

f(x

i

; �)

We denote the total parameter spae by � and a subspae of it by �. Then the

hypotheses an be spei�ed by

H

0

: � 2 �

H

1

: � 2 �� �

Examples, where for simpliity we assume that there are only two parameters � =

(�

1

; �

2

), are

Example 1 2 3

H

0

�

1

= a and �

2

= b �

1

=  ; �

2

unspei�ed �

1

+ �

2

= d

H

1

�

1

6= a and/or �

2

6= b �

1

6=  ; �

2

unspei�ed �

1

+ �

2

6= d

In the �rst example H

0

is in fat a simple hypothesis.

We use the term onditional maximum likelihood for the maximum of the like-

lihood funtion for � in the region spei�ed by H

0

. Similarily, the unonditional

maximum likelihood is the maximum of the likelihood in the entire parameter spae.

We de�ne as the test statisti the maximum likelihood ratio, �, as the ratio of

the onditional maximum likelihood to the unonditional maximum likelihood:

� =

L

�max

(x; �)

L

�max

(x; �)

(10.14)

Clearly, 0 � � � 1. Given what we know about the maximum likelihood method for

parameter estimation, it ertainly seems reasonable that this statisti would provide

a reasonable test. In the limit ofH

0

and H

1

both being simple, it is equivalent to the

Neyman-Pearson test (equation 10.7, setion 10.4.1). The suess of the maximum

likelihood ratio as a test statisti is due to the fat that it is always a funtion of

a suÆient statisti for the problem. Its main justi�ation is its past suess. It

has been found very frequently to result in a workable test with good properties, at

least for large sets of observations.

The hypotheses to be tested an usually be written in the form

H

0

: �

i

= �

i0

for i = 1; 2; : : : ; r (denote this by �

r

= �

r0

)

�

j

unspei�ed for j = 1; 2; : : : ; s (denote this by �

s

)

H

1

: �

i

6= �

i0

for i = 1; 2; : : : ; r (denote this by �

r

6= �

r0

)

�

j

unspei�ed for j = 1; 2; : : : ; s
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Hypotheses whih do not speify exat values for parameters, but rather relation-

ships between parameters, e.g., �

1

= �

2

, an usually be reformulated in terms of

other parameters, e.g., �

0

1

= �

1

� �

2

= 0 and �

0

2

= �

1

+ �

2

unspei�ed. We an

introdue the more ompat notation of L(x; �

r

; �

s

), i.e., we write two vetors of

parameters, �rst those whih are spei�ed under H

0

and seond those whih are not.

The unspei�ed parameters �

s

are sometimes referred to as `nuisane' parameters.

In this ompat notation, the test statisti an be rewritten as

� =

L

�

x; �

r0

;

^

^

�

s

�

L

�

x;

^

�

r

;

^

�

s

�

(10.15)

where

^

^

�

s

is the value of �

s

at the maximum of L in the restrited region � and

^

�

r

and

^

�

s

are the values of �

r

and �

s

at the maximum of L in the full region �.

If H

0

is true, we expet � to be near to 1. The ritial region will therefore be

� � 

�

(10.16)

where 

�

must be determined from the p.d.f. of �, g(�), under H

0

. Thus, for a test

of size �, 

�

is found from

� =

Z



�

0

g(�) d� (10.17)

It is thus neessary to know how � is distributed. Furthermore, to perform this

integration, g(�) must not depend on any of the unspei�ed (nuisane) parameters.

Lukily, this is so for most statistial problems.

Example: As an example, let us again take a normal p.d.f. with H

0

speifying

the mean as � = �

0

and H

1

speifying � 6= �

0

. Both hypotheses leave � unspei�ed;

thus � is a nuisane parameter. Then

L(x;�; �) = (2��

2

)

�N=2

N

Y

i=1

exp

"

�

1

2

�

x

i

� �

�

�

2

#

We have seen (setion 8.4.1) that the unonditional maximum likelihood estimators

are

�̂ = �x

�̂

2

= s

2

=

1

N

N

X

i=1

(x

i

� �x)

2

Thus, the unonditional likelihood is

L(x; �̂; �̂) = (2�s

2

)

�N=2

exp

�

�

1

2

N

�
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Under H

0

, the maximum likelihood estimator is

^

�̂

2

=

1

N

N

X

i=1

(x

i

� �

0

)

2

= s

2

+ (�x� �

0

)

2

Therefore the onditional maximum likelihood is given by

L(x;�

0

;

^

�̂) =

n

2�

h

s

2

+ (�x� �

0

)

2

io

�N=2

exp

�

�

1

2

N

�

The likelihood ratio is then

� =

(

s

2

s

2

+ (�x� �

0

)

2

)

1

2

N

(10.18)

Consequently,

�

2=N

=

1

1 +

t

2

N�1

; t

2

=

N(�x� �

0

)

2

1

N�1

P

N

i=1

(x

i

� �x)

2

(10.19)

This t is a Student's t-statisti with N � 1 degrees of freedom (equation 3.40). We

see that � is a monotonially dereasing funtion of t

2

. Reall that the t-distribution

is symmetri about zero. The ritial region, � < �

�

, therefore orresponds to the

two regions t < t

��=2

and t > t

�=2

. The values of t

��=2

orresponding to a partiular

test size � an be found from the Student's t-distribution, and from that value the

orresponding value of �

�

follows using the above equation. It an be shown that

this test is UMPU.

11,13

Asymptoti distribution of the likelihood ratio

In order to determine the ritial region of the likelihood ratio, �, it is neessary to

know how it is distributed under H

0

. Sometimes we an �nd this distribution quite

easily, as in the example of the previous setion. But often it is diÆult, sine the

distribution is unknown or sine it is awkward to handle. One an sometimes use

Monte Carlo, but this is not always satisfatory. The usual proedure is to onsider

the asymptoti distribution of the likelihood ratio, and use it as an approximation

to the true distribution.

We know that asymptotially the maximum likelihood estimator

^

� attains the

minimum variane bound and that

^

� beomes normally distributed aording to the

likelihood funtion. Suppressing the normalization fator, the likelihood funtion is

of the form

L(x; �) = L(x; �

r

; �

s

) / exp

�

�

1

2

(

^

� � �)

T

I(

^

� � �)

�

(10.20)

where I is the information matrix for �,

I =

2

6

6

4

I

r

.

.

. I

rs

� � �

.

.

. � � �

I

T

rs

.

.

. I

s

3

7

7

5
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Thus, equation 10.20 an be written

L(x; �

r

; �

s

) / exp

n

�

1

2

h

(

^

�

r

� �

r

)

T

I

r

(

^

�

r

� �

r

)

+ 2 (

^

�

r

� �

r

)

T

I

rs

(

^

�

s

� �

s

)

+ (

^

�

s

� �

s

)

T

I

s

(

^

�

s

� �

s

)

io

(10.21)

At the maximum of L under H

1

,

^

�

r

= �

r

and

^

�

s

= �

s

. Thus the exponent of

equation 10.21 is zero and equation 10.21 beomes L / 1. Under H

0

, we must

replae

^

�

s

in equation 10.21 by

^

^

�

s

At the maximum of L, we have

^

^

�

s

= �

s

. Thus,

under H

0

equation 10.21 beomes

L / exp

�

�

1

2

(

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

�

Taking the ratio, we �nd

� = exp

�

�

1

2

(

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

�

or

�2 ln� = (

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

From the property that L is normally distributed, it follows that �2 ln� is a dis-

tributed as �

2

with r degrees of freedom under H

0

, where r is the number of

parameters spei�ed under H

0

. For a test of size �, we therefore rejet H

0

if

�2 ln� > �

2

�

where

Z

1

�

2

�

�

2

(r) d�

2

= �

Under H

1

, it turns out that �2 ln� is distributed as a non-entral �

2

with r

degrees of freedom and non-entrality parameter

K = (

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

The non-entral �

2

distribution, �

02

(r;K), is the distribution of a sum of variables

distributed normally with a non-zero mean and unit variane. It an be used to

alulate the power of the test:

4,5,11,13

p = 1� � =

Z

1

�

2

�

dF

1

where F

1

is the .d.f. of �

02

.

The asymptoti properties of the likelihood ratio test whih have been found in

this setion depend on the asymptoti properties of the likelihood funtion, whih

in turn rest on regularity assumptions about the likelihood funtion. In partiular,

we have assumed that the range of the p.d.f. does not depend on the value of a

parameter. Nevertheless, it turns out that under ertain onditions �2 ln� is even

then distributed as �

2

, but with 2r instead of r degrees of freedom.

11,13
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Small sample behavior of the likelihood ratio

Although the asymptoti properties of the likelihood ratio for hypotheses having

p.d.f.'s of the same family are quite simple, the small sample behavior is not so

easy. The usual approah is to �nd a orretion fator, f , suh that �(2 ln�)=f is

distributed as �

2

(r) even for small N .

4,5,11,13

Only the ase of the linear model will

be treated here.

Linear model: A partiular ase is the linear model (setion 8.5.2) in whih the

N observations y

i

are assumed to be related to other observations x

i

, within random

errors �

i

, by a funtion linear in the k parameters �

j

,

y

i

= y(x

i

) + �

i

=

k

X

j=1

�

j

h

j

(x

i

) + �

i

We assume that the �

i

are normally distributed with mean 0 and variane �

2

. We

wish to test whether the �

j

have the spei�ed values �

0j

, or more generally, whether

they satisfy some set of r linear onstraints,

A� = b (10.22)

where A and b are spei�ed under H

0

. Under H

1

, the � may take on any set of

values not satisfying the onstraints of equation 10.22.

The likelihood for both H

0

and H

1

is given by

L(x; �) = (2��

2

)

�N=2

exp

2

6

4

�

1

2�

2

N

X

i=1

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

2

3

7

5

= (2��

2

)

�N=2

exp

�

�

1

2

Q

2

�

We now distinguish two ases:

Variane known. We �rst treat the ase of known variane �

2

. The esti-

mates of the parameters are given by the least squares solutions (setion 8.5), with

onstraints for H

0

yielding

^

�

0j

and without onstraints for H

1

yielding

^

�

1j

. The

likelihood ratio, �, is then given by

�2 ln� =

1

�

2

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

0j

h

j

(x

i

)

3

5

2

�

1

�

2

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

1j

h

j

(x

i

)

3

5

2

= Q

2

0

�Q

2

1

(10.23)

It has been shown

4,5

that the seond term an be expressed as the �rst term plus a

quadrati form in the �

i

, and hene that �2 ln� is distributed as a �

2

of r degrees

of freedom. This result is true exatly for all N , not just asymptotially. It also

holds if the errors are not independent but have a known ovariane matrix.
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The test thus onsists of performing two least squares �ts, one with and one

without the onstraints of H

0

. Eah �t results in a value of Q

2

, the di�erene of

whih, Q

2

0

�Q

2

1

, is a �

2

(r). H

0

is then rejeted ifQ

2

0

�Q

2

1

> �

2

�

where

R

1

�

2

�

�

2

(r) d�

2

=

�.

We an qualitatively understand this result in the following way: Asymptoti-

ally, Q

2

0

is a �

2

(N �k+ r) and Q

2

1

is a �

2

(N �k). From the reprodutive property

of the �

2

distribution (setion 3.12), the di�erene of these �

2

is also a �

2

with a

number of degrees of freedom equal to the di�erene of degrees of freedom of Q

2

0

and Q

2

1

, namely r. Thus the above result follows.

Variane unknown. If the variane �

2

is unknown, it must be estimated from

the data. Under H

0

the estimate of �

2

is

s

2

0

=

1

N

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

0j

h(x

i

)

3

5

2

and the maximum likelihood beomes

L(x;H

0

) =

1

(2�)

N=2

(s

2

0

)

N=2

exp

�

�

N

2

�

The expressions for H

1

are similar. The likelihood ratio is then

� =

 

s

2

1

s

2

0

!

N=2

(10.24)

or �

�2=N

= 1 +

s

2

0

� s

2

1

s

2

1

(10.25)

It an be shown that (s

2

0

� s

2

1

)=�

2

and s

2

1

=�

2

are independently distributed as

�

2

with r and N � k degrees of freedom, respetively. The ratio,

F =

N � k

r

s

2

0

� s

2

1

s

2

1

(10.26)

is therefore distributed as the F -distribution (setion 3.14). H

0

is then rejeted if

F > F

�

, where

R

1

F

�

F (r;N � k) dF = �.

However, under H

1

, (s

2

0

�s

2

1

)=�

2

is distributed as a non-entral �

2

. This leads to

a non-entral F -distribution from whih the power of the test an be alulated.

11,13

10.4.4 Composite hypotheses

|di�erent parametri families

When the p.d.f. spei�ed by H

1

an not be attained by varying the parameters

of the p.d.f. of H

0

, we speak of di�erent parametri families of funtions. The



218 CHAPTER 10. HYPOTHESIS TESTING

distribution of the likelihood ratio then usually turns out to depend on N as well

as on whih hypothesis is true. The likelihood ratio an still be used as a test, but

these dependenes must be properly taken into aount.

4,5

The tests are therefore

more ompliated.

The easiest method to treat this situation is to onstrut a omprehensive family

of funtions

h(x; �; �;  ) = (1� �)f(x;�) + �g(x; )

by introduing an additional parameter �.

What we really want to test is H

0

against H

1

,

H

0

: f(x;�) ; � unspei�ed

H

1

: g(x; ) ;  unspei�ed

Instead, we an use the omposite funtion to test H

0

against H

0

1

:

H

0

: h(x; �; �;  ) ; � = 0; �;  unspei�ed

H

0

1

: h(x; �; �;  ) ; � 6= 0; �;  unspei�ed

using the maximum likelihood ratio as in the previous setion:

� =

L(x; � = 0;

^

^

�;  )

L(x;

^

�;

^

�;

^

 )

=

0

B

�

f(x;

^

^

�)

(1�

^

�)f(x;

^

�) +

^

�g(x;

^

 )

1

C

A

N

(10.27)

Then under H

0

, �2 ln� is distributed asymptotially as �

2

(1) sine one onstraint

(� = 0) has been imposed on the parameter spae.

The power of the test an be found using the fat that, under H

1

, �2 ln�

is distributed as a non-entral �

2

, �

02

(1; K) with 1 degree of freedom and non-

entrality parameter K = �

2

=S where

S = E

2

6

4

h

f(x;�)� g(x; )

i

2

h

(1� �)f(x;�) + �g(x; )

i

2

3

7

5

(10.28)

Sine this test ompares f(x;�) with a mixture of f and g, it is not expeted to be

very powerful.

In pratie, one would also make a test of H

1

against the mixture, i.e., de�ne a

new H

0

0

orresponding to � = 1, and test this against the mixture H

0

1

in the same

manner as above, hoping that H

0

or H

0

0

, but not both, would be rejeted.

10.5 And if we are Bayesian?

If we are Bayesian, our belief in (the probability of) H

0

or H

1

is simply given by

Bayes' theorem. After an experiment giving result x, the probability of H

i

(i = 0; 1)

is

P (H

i

jx) =

P (xjH

i

)

P (xjH

0

) + P (xjH

1

)

P

p

(H

i

) (10.29)
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where P

p

(H

i

) is the probability of H

i

before (prior to) doing the experiment and

P (xjH

i

) is the probability of obtaining the result x if H

i

is true, whih is idential

to L(xjH

i

). We an ompare P (H

0

jx) and P (H

1

jx), e.g., by their ratio. If both H

0

and H

1

are simple hypotheses,

P (H

0

jx)

P (H

1

jx)

=

P (xjH

0

)

P (xjH

1

)

P

p

(H

0

)

P

p

(H

1

)

(10.30)

= �

P

p

(H

0

)

P

p

(H

1

)

(10.31)

where � is just the likelihood ratio (eq. 10.7). This leads to statements suh as

\the probability of H

0

is, e.g., 20 times that of H

1

". Note, however, that here, as

always with Bayesian statistis, it is neessary to assign prior probabilities. In the

absene of any prior knowledge, P

p

(H

0

) = P

p

(H

1

). The test statisti is then �, just

as in the Neyman-Pearson test (setion 10.4.1). However now the interpretation is

a probability rather than a level of signi�ane.

Suppose that H

1

is a omposite hypothesis where a parameter � is unspei�ed.

Equation 10.30 remains valid, but with

P (xjH

1

) =

Z

f(x; �jH

1

) d� (10.32)

=

Z

P (xj�;H

1

) f(�jH

1

) d� (10.33)

Now, P (xj�;H

1

) is idential to L(x; �) under H

1

and f(�jH

1

) is just the prior p.d.f.

of � under H

1

. In pratie, this may not be so easy to evaluate. Let us therefore

make some simplifying assumptions for the purpose of illustration. We know that

asymptotially L(x; �) is proportional to a Gaussian funtion of � (eq. 8.72). Let us

take a prior probability uniform between �

min

and �

max

and zero otherwise. Then,

with �

2

^

�

the variane of the estimate,

^

�, of �, equation 10.33 beomes

P (xjH

1

) = L

max

(x; �)

Z

exp

 

�

(� �

^

�)

2

2�

2

^

�

!

1

�

max

� �

min

d� (10.34)

=

L

max

(x; �)

�

max

� �

min

Z

�

max

�

min

exp

 

�

(� �

^

�)

2

2�

2

^

�

!

d� (10.35)

= L

max

(x; �)

�

^

�

p

2�

�

max

� �

min

(10.36)

where we have assumed that the tails of the Gaussian ut o� by the integration

limits �

min

, �

max

are negligible. Thus equation 10.30 beomes

P (H

0

jx)

P (H

1

jx)

= �

P

p

(H

0

)

P

p

(H

1

)

�

max

� �

min

�

^

�

p

2�

(10.37)
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where � is now the maximum likelihood ratio � = L(xjH

0

)=L

max

(xjH

1

). Note that

there is a dependene not only on the prior probabilities of H

0

and H

1

, but also on

the prior probability of the parameter �.

Someone remarked to me one:

\Physiians shouldn't say, `I have ured this man',

but, `this man didn't die under my are'."

In physis too, instead of saying,

\I have explained suh and suh phenomenon",

one might say, \I have determined auses for it

the absurdity of whih annot be onlusively proved."

|Georg Christoph Lihtenberg

10.6 Goodness-of-�t tests

10.6.1 Con�dene level or p-value

As in the previous setion, we are onerned with testing an hypothesis H

0

at

some signi�ane level �. Again, H

0

will be rejeted if a test statisti has a value

whih lies in the ritial region !. The di�erene with the previous setion lies

in the alternative hypothesis H

1

. Now H

1

is simply not H

0

, i.e., H

1

is the set of

all possible alternatives to H

0

. Thus H

1

an not be formulated and onsequently,

the hane of an error of the seond kind an not be known. Nor an most of the

tests of the previous setion (inluding the use of Bayesian probability) be applied,

involving as they do the likelihood ratio, for if we do not speify H

1

, we an not

alulate the likelihood under H

1

.

Goodness-of-�t tests ompare the experimental data with the p.d.f. spei�ed

under H

0

and lead to the statement that the data are onsistent or inonsistent

with H

0

. Usually one states a on�dene level, e.g., \The data are onsistent with

H

0

at a on�dene level of 80%." The on�dene level

�

(l), also known as

p-value,

y

is the size that the test would have if the ritial region were suh that

the test statisti were at the boundary between rejetion and aeptane of H

0

.

In other words, it is the probability, assuming H

0

is true, of obtaining a value of

the test statisti as \bad" as or \worse" than that atually obtained. Thus, a high

on�dene level means that if H

0

is true there is a large hane of obtaining data

`similar' to ours. On the ontrary, if l is small there is a small hane, and H

0

�

Many authors use 1� l where we use l.

y

The preferable term is p-value, sine it eliminates onfusion with the on�dene level of

on�dene intervals (hapter 9), whih, although related, is di�erent. Nevertheless, the term

on�dene level is widely used, espeially by physiists.
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an be rejeted. Despite the suggestive \p", the p-value is not a probability; it is a

random variable.

We shall only onsider distribution-free tests, for the pratial reason that they

are widely appliable. To apply a test, one needs to know the p.d.f. of the test

statisti in order to alulate the on�dene level. For the well-known tests tables

and/or omputer routines are widely available. For a spei� problem it may be

possible to onstrut a better test, but it may not be so muh better that it is worth

the e�ort.

10.6.2 Relation between Con�dene level and Con�dene

Intervals

The same integrals are involved in on�dene intervals and goodness-of-�t tests. To

illustrate this, onsider a r.v., x, whih is distributed normally, f(x) = N(x;�; �

2

).

For n points, assuming �

2

known, the estimator of the mean, t = �x, is also nor-

mally distributed:

f(t) = N(t;�; �

2

=n)

The overage probability (or on�dene oeÆient or on�dene level) of the on�-

dene interval [�

�

; �

+

℄, e.g., for a entral on�dene interval from equation 9.12,

is given by equation 9.10,

� =

Z

t

+

(�)

t

�

(�)

N(t;�; �

2

=n) dt (10.38)

whih holds for any value of �.

If H

0

states that x is distributed normally with mean � = 0,

H

0

: f(x) = N(x; 0; �

2

) or f(t) = N(t; 0; �

2

=n)

and if the data give t = �x, the on�dene level or p-value (for a symmetri two-sided

test) is

l =

Z

�j�xj

�1

N(t; 0; �

2

=n) dt+

Z

+1

+j�xj

N(t; 0; �

2

=n) dt

= 1�

Z

+j�xj

�j�xj

N(t; 0; �

2

=n) dt (10.39)

Note the similarity of the integrals in equations 10.38 and 10.39. We see that

the overage probability of the interval [�j�xj;+j�xj℄, �, is related to the p-value

by l = 1 � �. However, for the on�dene interval, the overage probability

is spei�ed �rst and the interval, [�

�

; �

+

℄, is the random variable, while for the

goodness-of-�t test the hypothesis is spei�ed (� = �

0

) and the p-value is the r.v.

Referring to the on�dene belt �gure of setion 9.2, and supposing that �

t

is

the hypothesized value of the parameter �

0

, t

�

(�

0

) and t

+

(�

0

) are the values of
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^

t whih would give l = 1 � �. Put another way, if we deide to rejet H

0

if

l < �, then the regions outside the on�dene belt for � = 1�� is the rejetion

region. Thus the on�dene belt de�nes the aeptane region of the orresponding

goodness-of-�t test.

10.6.3 The �

2

test

Probably the best known and most used goodness-of-�t test is the �

2

test. We

have already frequently alluded to it. We know (setion 3.12) that the sum of N

normally distributed r.v.'s is itself a r.v. whih is distributed as �

2

(N). Hene,

assuming that our measurements, y

i

, have a normally distributed error, �

i

, the

sum

X

2

=

N

X

i=1

(y

i

� f

i

)

2

�

2

i

(10.40)

where f

i

is the value that y

i

is predited to have under H

0

, will be distributed as

�

2

(N). The l is easily alulable from the �

2

distribution:

l =

Z

1

X

2

�

2

(z;N) dz (10.41)

This X

2

is just the quantity that is minimized in a least squares �t (where we

denoted it by Q

2

). In the linear model, assuming Gaussian errors, X

2

= Q

2

min

is

still distributed as �

2

even though parameters have been estimated by the method.

However the number of degrees of freedom is redued to N � k, where k is the

number of parameters estimated by the �t. If onstraints have been used in the �t

(f. setion 8.5.6), the number of degrees of freedom is inreased by the number of

onstraints, sine eah onstraint among the parameters redues by one the number

of free parameters estimated by the �t. If the model is non-linear, X

2

= Q

2

min

is

only asymptotially distributed as �

2

(N � k).

It is sometimes argued that the �

2

test should be two-tailed rather than one-

tailed, i.e., that H

0

should be rejeted for unlikely small values of X

2

as well as

for unlikely large values. Arguments given for this pratie are that suh small

values are likely to have resulted from omputational errors, overestimation of the

measurement errors �

i

, or biases (unintentional or not) in the data whih have not

been aounted for in making the predition. However, while an improbably small

value ofX

2

might well make one suspiious that one or more of these onsiderations

had ourred (and indeed several instanes of sienti� fraud have been disovered

this way), suh a low X

2

an not be regarded as a reason for rejeting H

0

.

10.6.4 Use of the likelihood funtion

It is often felt that sine the likelihood funtion is so useful in parameter estimation

and in the formulation of tests of hypotheses, it should also be useful as a goodness-

of-�t test. Frequently the statement is made that it an not be used for this purpose.

In fat, it an be used, but it is usually diÆult to do so.
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The problem is that in order to use the value of L as a test, we must know

how L is distributed in order to be able to alulate the on�dene level. Suppose

that we have N independent observations, x

i

, eah distributed as f(x). The log

likelihood is then just

` =

N

X

i=1

ln f(x

i

)

If no parameter is estimated from the data, the mean of ` is just

E [`℄ =

Z

N

X

i=1

ln f(x

i

)L dx

1

dx

2

:::dx

N

= N

Z

ln f(x)f(x) dx

Similarly higher moments ould be alulated, and from these moments (just the

�rst two if N is large and the entral limit theorem is appliable) the distribution

of `, g(`), ould be reonstruted. The on�dene level would then be given by

l =

Z

`

�1

g(`) d` (10.42)

If parameters are estimated by maximum likelihood, the alulations beome

muh more ompliated. A simple, but expensive, solution is to generate Monte

Carlo experiments. From eah Monte Carlo experiment one alulates ` and thus

obtains an approximate distribution for ` from whih the l an be determined.

10.6.5 Binned data

We now onsider tests of binned data.

�

Sine binning data loses information, we

should expet suh tests to be inferior to tests on individual data. Further, we must

be sure to have a suÆient number of events in eah bin, sine most of the desirable

properties of the tests are only true asymptotially.

However, binning the data removes the diÆulty thatH

1

is ompletely unspe-

i�ed, sine the number of events in a bin must be distributed multinomially. Thus

both H

0

and H

1

speify the multinomial p.d.f. Some or all of the parameters are

spei�ed under H

0

; none of them are spei�ed under H

1

further than that they

are di�erent from those spei�ed under H

0

.

Likelihood ratio test

Suppose that we have k bins with n

i

events in bin i and

P

k

i=1

n

i

= N . Let H

0

be a simple hypothesis, i.e., all parameters are spei�ed. Let p

i

be the probability

ontent of bin i under H

0

and q

i

the probability ontent under the true p.d.f.,

whih we of ourse do not know. The likelihood underH

0

and under the true p.d.f.

�

Although we use the term `binned', whih suggests a histogram, any lassi�ation of the

observations may be used. See also setion 8.6.1.
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are then, from the multinomial p.d.f., given by

L

0

(njp) = N !

k

Y

i=1

p

n

i

i

n

i

!

L(njq) = N !

k

Y

i=1

q

n

i

i

n

i

!

An estimate q̂

i

of the true probability ontent an be found by maximizing L(njq)

subjet to the onstraint

P

k

i=1

q

i

= 1. The result

�

is

q̂

i

=

n

i

N

The test statisti is then the likelihood ratio (f. setion 10.4.3)

� =

L

0

(njp)

L(njq̂)

= N

N

k

Y

i=1

 

p

i

n

i

!

n

i

(10.43)

The exat distribution of � is not known. However, we have seen in setion 10.4.3

that �2 ln� is asymptotially distributed as �

2

(k�1) underH

0

, where the num-

ber of degrees of freedom, k� 1, is the number of parameters spei�ed. The multi-

nomial p.d.f. has only k�1 parameters (p

i

) beause of the restrition

P

k

i=1

p

i

= 1.

If H

0

is not simple, i.e., not all p

i

are spei�ed, the test an still be used but the

number of degrees of freedom must be dereased aordingly.

Pearson's �

2

test

The lassi test for binned data is the �

2

test proposed by Karl Pearson

53

in 1900.

It makes use of the asymptoti normality of a multinomial p.d.f. to �nd that under

H

0

the statisti

X

2

=

k

X

i=1

(n

i

�N�

i

)

2

N�

i

(10.44)

is distributed asymptotially as �

2

(k � 1).

If H

0

is not simple, its free parameters an be estimated, (setion 8.6.1) by

the minimum hi-square method. In that method, the quantity whih is minimized

with respet to the parameters (equation 8.152) is just Pearson's X

2

. The mini-

mum value thus found therefore serves to test the hypothesis. It an be shown that

in this ase X

2

is asymptotially distributed as �

2

(k� s� 1) where s is the num-

ber of parameters whih are estimated. This is also true if the binned maximum

likelihood method (setion 8.6.2) is used to estimate the parameters.

11, 13

Simi-

�

This was derived for the binomial p.d.f. in setion 8.4.7. It may be trivially extended to the

multinomial ase by treating eah bin separately as binomially distributed between that bin and

all the rest.
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larly, the quantity whih is minimized in the modi�ed minimum hi-square method

(equation 8.154) is also asymptotially distributed as �

2

(k � s� 1).

But what if we estimate the parameters by a di�erent method? In partiular, as

is frequently the ase, what if we estimate the parameters by maximum likelihood

using the individual data rather than the binned data? It then turns out

11, 13

that

X

2

is still distributed as �

2

, but with a number of degrees of freedom, d, between

that of the binned �t and the fully spei�ed ase, i.e., k � s � 1 � d � k � 1.

The exat number of degrees of freedom depends on the p.d.f. The test is then no

longer distribution free, although for large k and small s it is nearly so.

Equation 10.44 assumes thatH

0

only predits the shape of the distribution, i.e.,

the probability, �

i

, that an event will be in bin i, with

P

�

i

= 1. If also the total

number of events is predited by H

0

, the distribution is no longer multinomial,

but rather a multinomial times a Poisson or, equivalently, the produt of k Poisson

distributions. The test statisti is then

X

2

=

k

X

i=1

(n

i

� �

i

)

2

�

i

(10.45)

where, under H

0

, �

i

is the mean (and variane) of the Poisson distribution for

bin i. Sine eah bin is independent, there are now k degrees of freedom, and X

2

is distributed asymptotially as �

2

(k � s).

Pearson's �

2

test makes use of the squares of the deviations of the data from

that expeted under H

0

. Tests an be devised whih use some other measure of

deviation, replaing the square of the absolute value of the deviation by some other

power and saling the deviation or not by the expeted variane. Suh tests are,

however, beyond the sope of this ourse.

Choosing optimal bin size

If one is going to bin his data, he must de�ne the bins. If the number of bins is

small, too muh information may be lost. But a large number of bins may mean that

there are too few events per bin. Most of the results for binned data are only true

asymptotially, e.g., the normal limit of the multinomial p.d.f. or the distribution

of �2 ln� or X

2

as �

2

.

There are, in fat, two questions whih play a role here. The �rst is whether the

binning may be deided on the basis of the data; the seond onerns the minimum

number of events per bin. At �rst glane it would seem that the bin boundaries

should not depend on the observations themselves, i.e., that we should deide on

the binning before looking at the data. If the bin boundaries depend on the data,

then the bin boundaries are random variables, and no provision has been made in

our formalism for utuations in the position of these boundaries. On the other

hand, the asymptoti formalism holds for any set of �xed bins, and so we might

expet that it does not matter whih of these sets we happen to hoose, and this

has indeed been shown to be so.

11, 13
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Intuitively, we ould expet that we should hoose bins whih are equiprobable

under H

0

. Pearson's �

2

test is onsistent (asymptotially unbiased) whatever the

binning, but for �nite N it is not, in general, unbiased. It an be shown

4, 5, 11, 13

that for equiprobable bins it is loally unbiased, i.e., unbiased against alternatives

whih are very lose to H

0

, whih is ertainly a desirable property.

Having deided on equiprobable bins, the next question is how many bins.

Clearly, we must not make the number of bins k too large, sine the multinor-

mal approximation to the multinomial p.d.f. will no longer be valid. A rough rule

whih is ommonly used is that no expeted frequeny, Np

i

, should be smaller

than � 5. However, aording to Kendall and Stuart,

11

there seems to be no gen-

eral theoretial basis for this rule. Cohran goes even further and laims

4

that the

asymptoti approximation remains good so long as not more than 20% of the bins

have an expeted number of events between 1 and � 5.

This does not neessarily mean that it is best to take k = N=5 bins. By

maximizing loal power, one an try to arrive at an optimal number of bins. The

result

4, 5

is

k = b

2

4

p

2(N � 1)

�

�

+ �

1�p

0

3

5

2=5

(10.46)

where � = 1 �

R

�

�

��

�

N(x; 0; 1) dx is the

size of the test for a standard normal distri-

bution and p

0

is the loal power. In general,

for a simple hypothesis a value for b between

2 and 4 is good, the best value depending

on the p.d.f. under H

0

. Typial values for k

(N=k) using b = 2 are given in the following

table. We see from the table that there is only

a mild sensitivity of the number of bins to �

and p

0

. For N = 200, 25{30 bins would be

reasonable.

p

0

N � 0.5 0.8

200 0.01 27 (7.4) 24 (8.3)

0.05 31 (6.5) 27 (7.4)

500 0.01 39 (13) 35 (14)

0.05 45 (11) 39 (13)

Thus we are led to the following reommendations for binning:

1. Determine the number of bins, k, using equation 10.46 with b � 2 to 4.

2. If N=k turns out to be too small, derease k to make N=k � 5.

3. De�ne the bins to have equal probability ontent, either from the p.d.f. spe-

i�ed by H

0

or from the data.

4. If parameters have to be estimated (H

0

does not speify all parameters), use

maximum likelihood on the individual observations, but remember that the

test statisti is then only approximately distribution-free.

Note, however, that, regardless of the above presription, if the p.d.f. under H

0

does not inlude resolution e�ets, one should not hoose bins muh smaller than

the resolution.
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Even with the above presription, the spei�ation of the bins is still not unique.

The usual method in one dimension would be to de�ne a bin as an interval in the

variable, bin

i

= (x

i

; x

i

+ Æ

i

). However, there is nothing in the above presription

to forbid de�ning a single bin as onsisting of more than one (nonadjaent) interval.

This might even be desirable from the point of view H

0

. For example, H

0

might

speify a p.d.f. that is symmetri about 0, and we might only be interested in testing

this hypothesis against alternatives whih are also symmetri about 0. Then it

would be appropriate to de�ne bins as intervals in jxj rather than in x.

In more than one dimension the situation is more ambiguous. For example,

to onstrut equiprobable bins in two dimensions, the easiest way is to �rst �nd

equiprobable bins in x and then for eah bin in x to �nd equiprobable bins in

y. This is easily generalized to more dimensions. However, one ould equally well

hoose �rst to onstrut bins and y and then in x, whih in general would yield

di�erent bins. One ould also hoose di�erent numbers of bins in x than in y. The

hoie depends on the individual situation. One should prefer smaller bins in the

variable for whih H

0

is most sensitive.

There is, obviously, one taboo: You must not try several di�erent hoies of

binning and hoose the one whih gives the best (or worst) on�dene level.

10.6.6 Run test

�

2

tests make use of the squares of the deviations of the data from that expeted

under H

0

. Thus they only use the size of the deviations and ignore their signs.

However, the signs of the deviations are also important, and systemati deviations

of the same sign indiate that the hypothesis is unlikely, as is illustrated in the �gure.

A test whih uses only the sign of the devi-

ations is the run test. A run is de�ned as a

set of adjaent points all having the same sign

of deviation. The data and urve in the �gure

have deviations AAABBBBBBAAA, where

A represents a positive and B a negative devi-

ation. There are thus three runs, whih seems

rather small. We would expet the hane of an

A to equal that of a B and to show no orrelation

between points if the hypothesis were true. This

implies that we should expet runs to be short;

a long run of 6 points as in the �gure should be

unlikely. In fat, this expetation is stritly true only if H

0

is a simple hypothesis.

To be more quantitative, let k

A

be the number of positive deviations and k

B

the number of negative deviations. Let k = k

A

+ k

B

. Given k

A

and k

B

, we an

alulate the probability that there will be r runs. If either k

A

or k

B

is zero, there

is, neessarily only one run, and P (r = 1) = 1.
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Given k

A

and k

B

, the number of di�erent ways to arrange them is

 

k

k

A

!

=

k!

k

A

!k

B

!

Suppose that there are r runs. First, suppose that r is even and that the sequene

begins with an A. Then there are k

A

A-points and r=2 � 1 divisions between

them. For the example of the �gure this is AAAjAAA. With k

A

A's there are

k

A

� 1 plaes to put the �rst dividing line, sine it an not go at the ends. Then

there are k

A

� 2 plaes to put the seond dividing line, sine it an not go at the

ends or next to the �rst dividing line. In total there are

�

k

A

�1

r=2�1

�

ways to arrange

the dividing lines among the A's. There is a similar fator for arrangement of the

B's and a fator 2 beause we assumed we started with an A and it ould just have

well been a B. Thus the probability of r runs, for r even, is

P (r) =

2

�

k

A

�1

r=2�1

��

k

B

�1

r=2�1

�

�

k

k

A

�

(10.47)

Similarly, one �nds for r odd

P (r) =

�

k

A

�1

(r�3)=2

��

k

B

�1

(r�1)=2

�

+

�

k

A

�1

(r�1)=2

��

k

B

�1

(r�3)=2

�

�

k

k

A

�

(10.48)

From these it an be shown that the expetation and variane of r are

E [r℄ = 1 +

2k

A

k

B

k

(10.49)

V [r℄ =

2k

A

k

B

(2k

A

k

B

� k)

k

2

(k � 1)

(10.50)

The ritial region of the test is de�ned as improbably low values of r, r < r

�

.

For k

A

and k

B

greater than about 10 or 15, one an use the Gaussian approx-

imation for r. For smaller numbers one an ompute the probabilities diretly

using equations 10.47 and 10.48. In our example, k

A

= k

B

= 6. From equa-

tions 10.49 and 10.50 we expet r = 7 with variane 2.73, or � = 1:65. We

observe 3 runs, whih di�ers from the expeted number by 4=1:65 = 2:4 standard

deviations. Using the Gaussian approximation, this orresponds to a (one-tailed)

on�dene level of 0.8%. Exat alulation using equations 10.47 and 10.48 yields

P (1) + P (2) + P (3) = 1:3%. Whereas the �

2

is aeptable (�

2

= 12 for 12

points), the run test suggests that the urve does not �t the data.

The run test is muh less powerful than a �

2

test, using as it does muh less

information. But the two tests are ompletely independent and hene they an

be ombined. An hypothesis may have an aeptable �

2

, but still be wrong and

rejetable by the run test. Unfortunately, the run test is appliable only when H

0

is simple. If parameters have been estimated from the data, the distribution of the

number of runs is not known and the test an not be applied.
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10.6.7 Tests free of binning

Sine binning loses information, we should expet tests whih do not require binning

to be in priniple better than tests whih do.

The suessful bin-free tests are based on the .d.f., F (x), underH

0

and onsist

of in some way omparing this .d.f. with the data. To do so involves the onept

of order statistis, whih are just the observations, x

i

, ordered in some way, i.e.,

renumbered as x

(j)

. In one dimension this is trivial. For n observations, the order

statistis obey

x

(1)

� x

(2)

� : : : � x

(n)

In more than one dimension it is rather arbitrary, implying as it were a redution of

the number of dimensions to one. Even in one dimension the ordering is not free of

ambiguity sine we ould equally well have ordered in desending order. We ould

also make a hange of variable whih hanges the order of the data.

We de�ne the sample .d.f. for n observations as

S

n

(x) =

8

>

<

>

:

0 ; x < x

(1)

r

n

; x

(r)

� x < x

(r+1)

1 ; x

(n)

� x

(10.51)

whih is simply the fration of the observations not exeeding x. Clearly, under

H

0

, S

n

(x) ! F (x) as n ! 1. The tests onsist of omparing S

n

(x) with

F (x). We shall disuss two suh tests, the Smirnov-Cram�er-von Mises test and the

Kolmogorov test. Unfortunately, both are only appliable to simple hypotheses,

sine the distribution of the test statisti is not distribution-free when parameters

have been estimated from the data.

Smirnov-Cram�er-von Mises test

As a measure of the di�erene between S

n

(x) and F (x) this test uses the statisti

W

2

=

Z

1

0

[S

n

(x)� F (x)℄

2

 (x) dF

=

Z

+1

�1

[S

n

(x)� F (x)℄

2

 (x)f(x)dx

with  (x) = 1. We see that W

2

is the expetation of [S

n

(x)� F (x)℄

2

under

H

0

. Inserting S

n

(equation 10.51) and performing the integral results in

nW

2

=

1

12n

+

n

X

i=1

"

F (x

(i)

)�

2i� 1

2n

#

2

(10.52)

�

A more omplete and more aurate table is given by Anderson and Darling,

54

who also

onsider the test statisti with  (x) = fF (x) [1� F (x)℄g

�1

.
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The asymptoti distribution of nW

2

has been

found, and from it ritial regions have been

omputed. Those orresponding to frequently

used test sizes are given in the following table.

The asymptoti distribution is reahed remark-

ably rapidly. To the auray of this table,

�

the

asymptoti limit is reahed

4, 5, 11

for n � 3.

Test size Rejetion region

� nW

2

>

0.10 0.347

0.05 0.461

0.01 0.743

0.001 1.168

Kolmogorov test

This test also ompares S

n

and F (x), but only uses the maximum di�erene: The

Kolmogorov (or Smirnov, or Kolmogorov-Smirnov) test statisti is the maximum

deviation of the observed distribution S

n

(x) from the .d.f. F (x) under H

0

:

D

n

= max fjS

n

(x)� F (x)jg for all x (10.53)

The asymptoti distribution of D

n

yields the ritial regions shown in the

table. This approximation is onsid-

ered satisfatory for more than about

80 observations.

4, 5, 11

Computer rou-

tines also exist.

y

Test size Rejetion region

�

p

nD

n

>

0.01 1.63

0.05 1.36

0.10 1.22

0.20 1.07

Alternatively, one an take the maximum positive deviation,

D

+

n

= max f+ [S

n

(x)� F (x)℄g for all x (10.54)

It an be shown that 4n(D

+

n

)

2

is distributed asymptotially as a �

2

of 2 degrees

of freedom. The same holds for D

�

n

,

D

�

n

= max f� [S

n

(x)� F (x)℄g for all x (10.55)

Or, as proposed by Kuiper,

56

one an use

V = D

+

n

+D

�

n

(10.56)

Asymptoti ritial regions of V an be alulated.

55, 57

The sensitivity of the Kolmogorov test to deviations from the .d.f. is not in-

dependent of x. It is more sensitive around the median value and less sensitive

in the tails. This ours beause the di�erene jS

n

(x)� F (x)j does not, under

H

0

have a probability distribution that is independent of x. Rather, its variane

is proportional to F (x) [1� F (x)℄, whih is largest at F = 0:5. Consequently,

y

See, e.g., Numerial Reipes.

55



10.6. GOODNESS-OF-FIT TESTS 231

the signi�ane of a large deviation in a tail is underweighted in the test. The Kol-

mogorov test therefore turns out to be more sensitive to departures of the data from

the median of H

0

than to departures from the width. Various modi�ations of the

Kolmogorov test statisti have been proposed

54, 58, 59

to ameliorate this problem.

Although the distribution of the test statisti, D

n

, is generally unknown if pa-

rameters have been estimated from the data, there are ases where the distribution

has been alulated, e.g., whenH

0

spei�es an exponential distribution whose mean

is estimated from the data.

60

It also may be possible to determine the distribution

of the test statisti yourself, e.g., using Monte Carlo tehniques.

10.6.8 But use your eyes!

A few words of aution are appropriate at this point. As illustrated by the �gure

at the start of the setion on the run test (setion 10.6.6), one test may give an

aeptable value while another does not. Indeed, it is in the nature of statistis

that this must sometimes our.

Also, a �t may be quite good over part of the range of the variable and quite bad

over another part. The resulting test value will be some sort of average goodness,

whih an still have an aeptable value. And so: Do not rely blindly on a test. Use

your eyes. Make a plot and examine it.

There are several useful plots you an make. One is, as was done to illustrate

the run test, simply a plot of the data with the �t distribution superimposed. Of

ourse, the error bars should be indiated. It is then readily apparent if the �t

is bad only in some partiular region, and frequently you get an idea of how to

improve the hypothesis. This is illustrated in the �gure where the �t (dashed line)

in (a) is perfet, while in (b) higher order terms are learly needed and in () either

higher orders or a disontinuity are required.

6

-

x

y

(a) (b) ()

Sine it is easier to see departures from a horizontal straight line, you ould

instead plot the residuals, y

i

�f(x

i

), or even better, the residuals divided by their
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error, (y

i

�f(x

i

))=Æ, where Æ an be either the error on the data, or the expeted

error from a �t.

It may happen that there is only one or just a few data points whih aount for

almost all the deviation from the �t. These are known as outliers. One is tempted

to throw suh points away on the assumption that they are due to some atastrophi

error in the data taking, e.g., writing down 92 instead of 29. However, one must be

areful. Statistis an not really help here. You have to deide on the basis of what

you know about your apparatus. Automati outlier rejetion should be avoided. It

is said

�

that the disovery of the hole in the ozone layer above the south pole was

delayed several years beause omputer programs automatially rejeted the data

whih indiated its presene.

It's not right to pik only what you like,

but to take all of the evidene.

|Rihard P. Feynman

I don't see the logi of rejeting data

just beause they seem inredible.

|Sir Fred Hoyle

�

Cited by Barlow

1

from New Sientist, 31 Marh 1988.



10.7. NON-PARAMETRIC TESTS 233

10.7 Non-parametri tests

The main lasses of non-parametri problems whih an be solved by distribution-

free methods are

1. The two-sample problem. We wish to test whether two (or more generally k)

samples are distributed aording to the same p.d.f.

2. Randomness. A series of n observations of a single variable is ordered in some

way, e.g., in the time at whih the observation was made. We wish to test

that all of the observations are distributed aording to the same p.d.f., i.e.,

that there has been no hange in the p.d.f. as a funtion of, e.g., time.

3. Independene of variables. We wish to test that a bivariate (or multivariate)

distribution fatorizes into two independent marginal distributions, i.e., that

the variables are independent (f. setion 2.2.4).

These are all hypothesis-testing problems, whih are similar to the goodness-of-

�t problem in that the alternative hypothesis is simply not H

0

.

The �rst two of the above problems are really equivalent to the third, even

though the �rst two involve observations of just one quantity. For problem 1, we

an ombine the two samples x

(1)

i

and x

(2)

i

into one sample by de�ning a seond

variable y

i

= 1 or 2 depending on whether x

i

is from the �rst or the seond sample.

Independene of x and y is then equivalent to independene of the two samples. For

problem 2, suppose that the x

i

of problem 3 are just the observations of problem 2

and that the y

i

are the order of the observations. Then independene of x

i

and y

i

is equivalent to no order dependene of the observations of problem 1. Let us begin

then with problem 3.

10.7.1 Tests of independene

We have a sample of observations onsisting of pairs of real numbers, (x; y) dis-

tributed aording to some p.d.f., f(x; y), with marginal p.d.f.'s, g(x) and h(y).

We wish to test

H

0

: f(x; y) = g(x)h(y)

Sample orrelation oeÆient

An obvious test statisti is the sample orrelation oeÆient (f. equation 2.27).

r =

1

n

P

n

i=1

x

i

y

i

� �x�y

s

x

s

y

=

xy � �x�y

s

x

s

y

(10.57)

where �x and �y are the sample means and s

x

and s

y

are the sample varianes of x

and y, respetively, and xy is the sample mean of the produt xy. Under H

0

, x
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and y are independent, whih leads to the following expetations:

E

h

X

x

i

y

i

i

=

X

E [x

i

y

i

℄ =

X

E [x

i

℄E [y

i

℄ = nE [x℄E [y℄

Sine E [�x�y℄ = E [x℄E [y℄, it follows that

E [r℄ = 0

Higher moments of r an also be easily alulated. It turns out that the variane

is V [r℄ =

1

n�1

. Thus, the �rst two moments are exatly equal to the moments

of the bivariate normal distribution with zero orrelation. Further, the third and

fourth moments are asymptotially approximately equal to those of the normal

distribution. From this it follows

11

that

t = r

s

n� 2

1� r

2

(10.58)

is distributed approximately as Student's t-distribution with (n � 2) degrees of

freedom, the approximation being very aurate even for small n. The on�dene

level an therefore be alulated from the t-distribution. H

0

is then rejeted for

large values of jtj.

Rank tests

The rank of an observation x

i

is simply its position, j, among the order statistis

(f. setion 10.6.7), i.e., the position of x

i

when all the observations are ordered.

In other words,

rank(x

i

) = j if x

(j)

= x

i

(10.59)

The relationship between statistis, order statistis and rank is illustrated in the

following table:

i 1 2 3 4 5 6

statisti (measurement) x

i

7.1 3.4 8.9 1.1 2.0 5.5

order statisti x

(i)

1.1 2.0 3.4 5.5 7.1 8.9

rank rank(x

i

) 5 3 6 1 2 4

For eah pair of observations (x

i

; y

i

), the di�erene in rank

D

i

= rank(x

i

)� rank(y

i

) (10.60)

is alulated. Spearman's rank orrelation oeÆient is then de�ned as

� = 1�

6

n

3

� n

n

X

i=1

D

2

i

(10.61)
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whih an take on values between �1 and 1. If x and y are ompletely orrelated,

x

i

and y

i

will have the same rank and D

i

will be zero, leading to � = 1. It an be

shown

1, 11

that for large n (� 10) � has the same distribution as r in the previous

setion, and Student's t-distribution an be used, substituting � for r in equation

10.58.

10.7.2 Tests of randomness

Given n observations, x

i

, ordered aording to some other variable, e.g., time, alled

the trend variable, we wish to test whether the x

i

are random in, i.e., independent

of, the trend variable, t. H

0

is then that all the x

i

are distributed aording to the

same p.d.f.

As already remarked, we an test for randomness in the same way as for inde-

pendene by making a y-variable equal to the trend variable, y

i

= t

i

.

If the trend is assumed to be monotoni, additional tests are possible. The

reader is referred to Kendall and Stuart.

11, 13

10.7.3 Two-sample tests

Given independent samples of n

1

and n

2

observations, we wish to test whether

they ome from the same p.d.f. The hypothesis to be tested is thus

H

0

: f

1

(x) = f

2

(x)

If both samples ontain the same number of observations (n

1

= n

2

), we an group

the two samples into one sample of pairs of observations and apply one of the tests

for independene. However, we an also adapt (without the restrition n

1

= n

2

)

any of the goodness-of-�t tests (setion 10.6) to this problem.

Kolmogorov test

The Kolmogorov test (f. setion 10.6.7) adapted to the two-sample problem om-

pares the sample .d.f.'s of the two samples. Equations 10.53-10.55 beome

D

n

1

n

2

= max fjS

n

1

(x)� S

n

2

(x)jg for all x (10.62)

D

�

n

1

n

2

=max f� [S

n

1

(x)� S

n

2

(x)℄g for all x (10.63)

However, now the ritial values given in setion 10.6.7 are in terms of

q

n

1

n

2

n

1

+n

2

D

n

1

n

2

rather than

p

nD

n

and 4

n

1

n

2

n

1

+n

2

(D

�

n

1

n

2

)

2

rather than 4nD

�

n

, respetively.

Run test

The two samples are ombined keeping trak of the sample from whih eah obser-

vation omes. Runs in the sample number, rather than in the sign of the deviation,
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are then found. In the notation of setion 10.6.6, A and B orrespond to an obser-

vation oming from sample 1 and sample 2, respetively. The test then follows as

in setion 10.6.6.

�

2

test

Consider two histograms with idential binning. Let n

ji

be the number of entries

in bin i of histogram j. Eah histogram has k bins and a total of N

j

entries.

The Pearson �

2

statisti (equation 10.44) beomes a sum over all bins of both

histograms,

X

2

=

2

X

j=1

k

X

i=1

(n

ji

�N

j

p

i

)

2

N

j

p

i

(10.64)

Under H

0

the probability ontent p

i

of bin i is the same for both histograms and

it is estimated from the ombined histogram:

p̂

i

=

n

1i

+ n

2i

N

1

+N

2

Substituting this for p

i

in equation 10.64 results, after some work, in

X

2

= (N

1

+N

2

)

"

1

N

1

k

X

i=1

n

2

1i

n

1i

+ n

2i

+

1

N

2

k

X

i=1

n

2

2i

n

1i

+ n

2i

� 1

#

(10.65)

In the usual limit of a large number of events in eah bin, X

2

is distributed as a

�

2

(k � 1). The number of degrees of freedom is k � 1, sine that is the number

of parameters spei�ed by H

0

. In other words, there are 2(k � 1) free bins, and

(k�1) parameters are estimated from the data, leaving (k�1) degrees of freedom.

This is diretly generalizable to more than two histograms. For r histograms,

X

2

=

2

4

r

X

j=1

N

r

3

5

�

2

4

r

X

j=1

0

�

1

N

r

k

X

i=1

n

2

ji

P

r

j=1

n

ji

1

A

� 1

3

5

(10.66)

whih, for all n

ji

large, behaves as �

2

with (r � 1)(k � 1) degrees of freedom.

Mann-Whitney test

As previously mentioned, the two-sample problem an be viewed as a test of inde-

pendene for whih, as we have seen, rank tests an be used. A rank test appropriate

for this problem is the Mann-Whitney test, whih is also known as the Wiloxon

�

test, the rank sum test, or simply the U -test. Let the observations of the �rst

sample be denoted x

i

and those of the seond sample y

i

. Rank them together.

�

Wiloxon proposed the test before Mann and Whitney, but his name is also used for another

test, the Wiloxonmathed pairs test, whih is di�erent. The use of Mann-Whitney here eliminates
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This results in a series like xyyxxyx. For eah x value, ount the number of y

values that follow it and add up these numbers. In the above example, there are

3 y values after the �rst x, 1 after the seond, 1 after the third, and 0 after the

fourth. Their sum, whih we all U

x

is 5. Similarly, U

y

= 3+ 3+ 1 = 7. In fat,

you only have to ount for one of the variables, sine

U

x

+ U

y

= N

x

N

y

U

x

an be omputed in another way, whih may be more onvenient, by �nding the

total rank, R

x

, of the x's, whih is the sum of the ranks of the x

i

. In the example

this is R

x

= 1 + 4 + 5 + 7 = 17. Then U

x

is given by

U

x

= N

x

N

y

+

N

x

(N

x

+ 1)

2

�R

x

(10.67)

UnderH

0

, one expets U

x

= U

y

=

1

2

N

x

N

y

. Asymptotially, U

x

is distributed

normally

1, 11

with mean

1

2

N

x

N

y

and variane

1

12

N

x

N

y

(N

x

+N

y

+1), from whih

(two-tailed) ritial values may be omputed. For small samples, one must resort

to tables.

This test an be easily extended

11

to r samples: For eah of the

1

2

r(r�1) pairs

of samples, U

x

is alulated (all it U

pq

for the samples p and q) and summed

U =

r

X

p=1

r

X

q=p+1

U

pq

(10.68)

Asymptotially U is distributed normally under H

0

with mean and variane:

E [U ℄ =

1

4

0

�

N

2

�

r

X

p=1

N

2

p

1

A

(10.69)

V [U ℄ =

1

72

2

4

N

2

(2N + 3)�

r

X

p=1

N

2

p

(2N

p

+ 3)

3

5

(10.70)

where N =

P

r

p=1

N

p

.

10.7.4 Two-Gaussian-sample tests

The previous two-sample tests make no assumptions about the distribution of the

samples and are ompletely general. If we know something about the distribution

we an make more powerful tests. Often, thanks to the entral limit theorem, the

distribution is (at least to a good approximation) Gaussian. If this is not the ase,

a simple transformation suh as x ! lnx, x ! x

2

, or x ! 1=x may result

in a distribution whih is nearly Gaussian. If we are testing whether two samples

have the same distribution, testing the transformed distribution is equivalent to

testing the original distribution. We now onsider tests for two samples under the

assumption that both are normally distributed.
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Test of equal mean

As we have already done several times when dealing with normal distributions, we

distinguish between ases where the variane of the distributions is or is not known.

Known �: Suppose we have two samples, x

i

and y

i

, both known to have a

Gaussian p.d.f. with variane �

2

x

and �

2

y

, respetively. If �

2

x

= �

2

y

, the hypothesis

that the two Gaussians are the same is equivalent to the hypothesis that their

means are the same, or that the di�erene in their means, � = �

x

� �

y

, is zero.

An obvious test that the means are equal, also valid when �

2

x

6= �

2

y

is given by an

estimate of this di�erene,

^

� = �̂

x

� �̂

y

, whih has variane

V

h

^

�

i

= V [�̂

x

℄ + V [�̂

y

℄ =

�

2

x

N

x

+

�

2

y

N

y

We know that the di�erene of two normally distributed random variables is also

normally distributed. Therefore,

^

� will be distributed as a Gaussian with variane

V

h

^

�

i

and mean 0 or non-0 under H

0

andH

1

, respetively. H

0

is then rejeted for

large j

^

�j and the size of the test follows from the integral of the Gaussian over the

ritial region as in setions 10.4.1 and 10.4.2. This is, of ourse, just a question of

how many standard deviations

^

� is from zero, and rejetion of H

0

if

^

� is found to

be too many � from zero.

Unknown �: If the parent p.d.f. of eah sample is known to be normal, but its

variane is unknown, we an estimate the variane for eah sample:

�̂

2

x

=

P

N

x

i=1

(x

i

� �x)

2

N

x

� 1

; �̂

2

y

=

P

N

y

i=1

(y

i

� �y)

2

N

y

� 1

(10.71)

A Student's-t variable an then be onstruted. Reall that suh a r.v. is the ratio

of a standard Gaussian r.v. to the square root of a redued �

2

r.v. Under H

0

,

�

x

= �

y

and

^

� = (�x � �y)=

r

�

2

x

N

x

+

�

2

y

N

y

is normally distributed with mean 0 and

variane 1. From equation 10.71 we see that

�

2

=

(N

x

� 1)�̂

2

x

�

2

x

+

(N

y

� 1)�̂

2

y

�

2

y

(10.72)

is distributed as �

2

withN

x

+N

y

�2 degrees of freedom, the loss of 2 degrees of free-

dom oming from the determination of �x and �y. The ratio,

^

�=

q

�

2

=(N

x

+N

y

� 2),

is then distributed as Student's t. However, we an alulate this only if �

x

and

possible onfusion.
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�

y

an be eliminated from the expression. This ours if �

x

= �

y

, resulting in

t =

�x� �y

S

q

1

N

x

+

1

N

y

(10.73)

where S

2

=

(N

x

� 1)�̂

2

x

+ (N

y

� 1)�̂

2

y

N

x

+N

y

� 2

(10.74)

Note that S

2

is in fat just the estimate of the variane obtained by ombining

both samples.

We emphasize that this test rests on two assumptions: (1) that the p.d.f. of

both samples is Gaussian and (2) that both Gaussians have the same variane. The

latter an be tested (f. setion 10.7.4). As regards the former, it turns out that

this test is remarkably robust. Even if the parent p.d.f. is not Gaussian, this test is

a good approximation.

11

This was also the ase for the sample orrelation (setion

10.7.1).

Correlated samples: In the above we have assumed that the two samples are

unorrelated. A ommon ase where samples are orrelated is in testing the e�et of

some treatment. For example, the light transmission of a set of rystals is measured.

The rystals are then treated in some way and the light transmission is measured

again. One ould ompare the means of the sample before and after treatment.

However, we an introdue a orrelation by using the simple mathematial relation

P

x

i

�

P

y

i

=

P

(x

i

� y

i

). A rystal whose light transmission was lower than

the average before the treatment is likely also to be below the average after the

treatment, i.e., there is a positive orrelation between the transmission before and

after. This redues the variane of the before-after di�erene, �: �

2

�

= �

2

x

+ �

2

y

�

2��

x

�

y

. We do not have to know the orrelation, or indeed �

x

or �

y

, but an

estimate the variane of � = x� y diretly from the data:

�̂

2

�

=

1

N � 1

N

X

i=1

�

�

2

i

�

�

�

2

�

(10.75)

Again we �nd a Student's-t variable:

^

� =

�

� is normally distributed with variane

�

2

�

=N . Thus,

p

N

�

�=�

�

is a standard normal r.v. Further, (N � 1)�̂

2

�

=�

2

�

is a �

2

r.v. of N � 1 degrees of freedom. Hene, the ratio

t =

�

�

p

N

�̂

�

(10.76)

is a Student's-t variable of N � 1 degrees of freedom, one degree of freedom being

lost by the determination of

�

�, a result already known from equation 3.40.



240 CHAPTER 10. HYPOTHESIS TESTING

Test of equal variane

One ould approah this problem as above for the means, i.e., estimate the variane

of eah sample and ompare their di�erene with zero. However, this requires

knowing the means or, if unknown, estimating them. Further, we must know how

this di�erene is distributed.

A more straightforward approah makes use of the F -distribution (f. setion

3.14), whih is the p.d.f. for the ratio of two redued �

2

variables. For eah sample,

the estimate of the variane (equation 8.3 or 8.7 depending on whether the mean is

known) divided by the true variane is related to a �

2

(f. equation 10.72). Thus

F =

�

2

x

=(N

x

� 1)

�

2

y

=(N

y

� 1)

=

�̂

2

x

=�

2

�̂

2

y

=�

2

(10.77)

is distributed as the F -distribution. The �

2

anels in this expression, and on-

sequently F an be alulated diretly from the data. We ould just as well have

used 1=F instead of F ; both have the same p.d.f. By onvention F is taken > 1.

The parameters of the F -distribution are �

1

= N

x

� 1, �

2

= N

y

� 1 if �̂

2

x

is in

the numerator of equation 10.77.

\Never trust to general impressions, my boy,

but onentrate yourself upon details."

|Arther Conan Doyle: Sherlok Holmes in

\A Case of Identity"

10.7.5 Analysis of Variane

Analysis of Variane (AV or ANOVA), originally developed by R. A. Fisher in the

1920's, is widely used in the soial sienes, and there is muh literature|entire

books|about it. In the physial sienes it is muh less frequently used and so will

be only briey treated here in the ontext of testing whether the means of k normal

samples are equal. The method is muh more general. In partiular, it an be used

for parameters in the linear model. As usual, Kendall and Stuart

11, 13

provide a

wealth of information.

The basi method: One-way lassi�ation

Given k samples, eah normally distributed with the same unknown variane, �

2

,

we want to test whether the means of all samples are the same. Suppose that sample
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i ontains N

i

measurements and has a sample moment �y

i

, whih estimates its true

mean �

i

. Using all N =

P

k

i=1

N

i

measurements we an alulate the overall

sample mean �y in order to estimate the overall true mean �. The null hypothesis

is that � = �

i

for all i.

If the �

i

di�er we an expet the �y

i

to di�er more from �y than would be expeted

from the variane of the parent Gaussian alone. Unfortunately, we do not know �,

whih would enable us to alulate this expetation. We an, however, estimate

� from the data. We an do this in two ways: from the variation of y within

the samples and from the variation of �y between samples. The results of these

two determinations an be ompared and tested for equality. To do this we will

onstrut an F variable (setion 3.14). Reall that F is the ratio of two redued

�

2

variables.

The expeted error on the estimated mean is �=

p

N . Therefore, under H

0

�

2

(k) =

k

X

i=1

(�y

i

� �)

2

�

2

=N

i

is distributed as �

2

(k). Sine � is unknown, we replae it by its estimate (obtained

from the entire sample) to obtain a �

2

of k � 1 degrees of freedom:

�

2

(k � 1) =

k

X

i=1

N

i

(�y

i

� �y)

2

�

2

(10.78)

A seond �

2

variable is obtained from the estimate of � for eah sample

�̂

2

i

=

1

N

i

� 1

N

i

X

j=1

�

y

(i)

j

� �y

i

�

2

(10.79)

(where y

(i)

j

is element j of sample i) by a weighted average:

�̂

2

=

1

N � k

k

X

i=1

(N

i

� 1) �̂

2

i

(10.80)

whih is a generalization of equation 10.74. Then (N � k)�̂

2

=�

2

is a �

2

r.v. with

N � k degrees of freedom, sine k sample means, �y

i

, have also been determined.

The ratio of these two �

2

variables, normalized by dividing by their respetive

numbers of degree of freedom, is an r.v. distributed as F (k� 1;N � k):

F =

1

k�1

P

k

i=1

N

i

(�y

i

� �y)

2

1

N�k

P

k

i=1

P

N

i

j=1

(y

(i)

j

� �y

i

)

2

(10.81)

If the hypothesis of equal means is false, the �y

i

will be di�erent and the numerator of

equation 10.81 will be larger than expeted underH

0

while the denominator, being

an average of the sample variane within samples, will be una�eted (remember that

the true variane of all samples is known to be the same). Hene large values of F

are used to rejetH

0

with a on�dene level determined from the one-tailed ritial

values of the F distribution. If there are only two samples, this analysis is equivalent

to the previously desribed two-sample test using Student's t distribution.
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Multiway analysis of variane

Let us examine the situation of the previous setion in a slightly di�erent way. An

estimate of the variane of the (Gaussian) p.d.f. is given by �̂

2

= Q=(N�1) where

the \sum of squares" (SS), denoted here byQ (in ontrast to previous setions where

Q

2

was used), is given (f. equation 8.118) by

Q = (N � 1) �̂

2

=

N

X

i=1

(y

i

� �y)

2

(10.82)

Under H

0

, Q=�

2

is a �

2

of N � 1 degrees of freedom. Equation 10.82 an be

rewritten

Q =

k

X

i=1

N

i

X

j=1

(y

(i)

j

� �y)

2

(10.83)

=

k

X

i=1

N

i

X

j=1

�

y

(i)

j

� �y

i

+ �y

i

� �y

�

2

=

k

X

i=1

8

<

:

N

i

X

j=1

�

�

y

(i)

j

� �y

i

�

2

+ (�y

i

� �y)

2

�

+ 2 (�y

i

� �y)

N

i

X

j=1

�

y

(i)

j

� �y

i

�

9

=

;

The seond term is zero sine both its sums are equal:

N

i

X

j=1

y

(i)

j

=

N

i

X

j=1

�y

i

= N

i

�y

i

Hene,

Q = (N � 1) �̂

2

=

k

X

i=1

(N

i

� 1) �̂

2

i

+

k

X

i=1

N

i

(�y

i

� �y)

2

(10.84)

There are thus two ontributions to our estimate of the variane of the p.d.f.: The

�rst term is the ontribution of the variane of the measurements within the samples;

the seond is that of the variane between the samples. Also the number of degrees

of freedom are partitioned. As we have seen in the previous setion, the �rst and

seond terms are related to �

2

variables of N � k and k � 1 degrees of freedom,

respetively, and their sum, N � 1, is the number of degrees of freedom of the �

2

variable assoiated with �̂

2

.

Now suppose the samples are lassi�ed in some way suh that eah sample has

two indies, e.g., the date of measurement and the person performing the measure-

ment. We would like to partition the overall variane between the various soures:

the variane due to eah fator (the date and the person) and the innate residual

variation. In other words, we seek the analog of equation 10.84 with three terms.

We then want to test whether the mean of the samples is independent of eah fator

separately.
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Of ourse, the situation an be more ompliated. There an be more than two

fators. The lassi�ation is alled \rossed" if there is a sample for all ombinations

of fators. More ompliated is the ase of \nested" lassi�ation where this is not

the ase. Further, the number of observations in eah sample an be di�erent. We

will only treat the simplest ase, namely two-way rossed lassi�ation.

We begin with just one observation per sample. As an example, suppose that

there are a number of tehniians who have among their tasks the weighing of

samples. As a hek of the proedure, a referene sample is weighed one eah day

by eah tehniian. One wants to test (a) whether the balane is stable in time,

i.e., gives the same weight eah day, and (b) that the weight found does not depend

on whih tehniian performs the measurement.

In suh a ase the measurements an be plaed in a table with eah row or-

responding to a di�erent value of the �rst fator (the date) and eah olumn to a

value of the seond fator (the tehniian). Suppose that there are R rows and C

olumns. The total number of measurements is then N = RC. We use subsripts

r and  to indiate the row and olumn, respetively. The sample means of row r

and olumn  are given, respetively, by

�y

r:

=

1

C

C

X

=1

y

r

; �y

:

=

1

R

R

X

r=1

y

r

(10.85)

In this notation a dot replaes indies whih are averaged over, exept that the

dots are suppressed if all indies are averaged over (�y � �y

::

). We now proeed as

in equations 10.82-10.84 to separate the variane (or more aurately, the sum of

squares, SS) between rows from the rest:

Q =

X

r

X



(y

r

� �y)

2

(10.86)

=

X

r

X



(y

r

� �y

r

)

2

+ C

X

r

(�y

r:

� �y)

2

(10.87)

where C is, of ourse, the same for all rows and hene an be taken out of the sum

over r. The seond term, to be denoted Q

R

, is the ontribution to the SS due to

variation between rows while the �rst term ontains both the inter-olumn and the

innate, or residual, ontributions.

We an, in the same way, separate the SS between rows from the rest. The result

an be immediately written down by exhanging olumns and rows in equation

10.87:

Q =

X



X

r

(y

r

� �y

:

)

2

+R

X



(�y

:

� �y)

2

(10.88)

The residual ontribution, Q

W

, to the SS an be obtained by subtrating the inter-

row and inter-olumn ontributions from the total:

Q

W

= Q�Q

R

�Q

C

=

X

r

X



(y

r

� �y)

2

� C

X

r

(�y

r:

� �y)

2

�R

X



(�y

:

� �y)

2



244 CHAPTER 10. HYPOTHESIS TESTING

whih, using the fat that

X

r

X



y

r

= C

X

r

�y

r:

= R

X



�y

:

= CR �y (10.89)

an be shown to be equal to

Q

W

=

X

r

X



(y

r

� �y

r:

� �y

:

+ �y)

2

We have thus split the variane into three parts. The number of degrees of freedom

also partitions:

Two-way Crossed Classi�ation { Single Measurements

Fator SS d.o.f.

Row Q

R

= C

P

r

(�y

r:

� �y)

2

R� 1

Column Q

C

= R

P



(�y

:

� �y)

2

C � 1

Residual Q

W

=

P

r

P



(y

r

� �y

r:

� �y

:

+ �y)

2

RC �R� C + 1

Total Q =

P

r

P



(y

r

� �y)

2

RC � 1

Divided by their respetive numbers of degrees of freedom, the SS are, under

H

0

, all estimators of �

2

. The hypothesesH

R

0

, that the means of all rows are equal,

and H

C

0

, similarly de�ned for olumns, an be separately tested by the one-tailed

F -test using, respetively,

F

R

=

1

R�1

Q

R

1

(R�1)(C�1)

Q

W

; F

C

=

1

C�1

Q

C

1

(R�1)(C�1)

Q

W

(10.90)

Let us now look at this proedure somewhat more formally. What we, in fat,

have done is used the following model for our measurements:

y

r

= �+ �

r

+ !



;

X

r

�

r

=

X



!



= 0 (10.91)

whih is a linear model with R+C +1 parameters subjet to R+C onstraints.

The measurements are then equal to � + �

r

+ !



+ �

r

where the measurement

errors, �

r

, are assumed to be normally distributed with the same variane. The

hypothesis to be tested is that all the �

r

and !



are 0. The �

r

and the !



an be

tested separately. The least squares estimator for �

r

is

^

�

r

=

1

C

X



y

r

� �̂ = �y

r:

� �y (10.92)

If all �

r

are zero, whih is the ase under H

0

, then

�

2

=

X

r

^

�

2

r

�

2

=C

=

C

P

r

(�y

r:

� �y)

2

�

2

=

Q

R

�

2

(10.93)
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is a �

2

of R � 1 degrees of freedom. However, sine �

2

is unknown, we an not

use this �

2

diretly.

As shown above, a seond, independent �

2

an be found, namely Q

W

=�

2

,

whih is from that part of the sum of squares not due to inter-row or inter-olumn

variation. This �

2

is then ombined with that of equation 10.93 to make an F -test.

for the hypothesis that all �

r

are zero. Similarly, an F -test an be derived for

the hypothesis that all !



are zero. The method an be extended to muh more

ompliated linear models.

However, we will go just one step further: two-way rossed lassi�ation with

several, K, observations per lass. We limit ourselves to the same number, K,

for all lasses. It is now possible to generalize the model by allowing \interation"

between the fators. The model is

y

rk

= �+ �

r

+ !



+ �

r

;

X

r

�

r

=

X



!



=

X

r

X



�

r

= 0 (10.94)

where k is the index speifying the observation within lass r.

In our example of di�erent tehniians and di�erent dates, the variane among

tehniians an now depend on the date. (On a day a tehniian does not feel well

the measurements might show more variation.)

The null hypothesis that all �

r

, !



, and �

r

are zero is equivalent to three

hypotheses all being true, namelyH

R

0

that all �

r

are zero, a similarH

C

0

for olumns,

and H

I

0

that all �

r

are zero. These three hypotheses an all be tested separately.

Here too, the proedure of equations 10.82-10.84 an be followed with the ad-

dition of a sum over k. The result is the partition of the sum of squares over four

terms:

Two-way Crossed Classi�ation

Fator SS d.o.f.

Row Q

R

= CK

P

r

(�y

r::

� �y)

2

R� 1

Column Q

C

= RK

P



(�y
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� �y)

2

C � 1

Interation Q

I

= K

P

r

P
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r::
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+ �y)

2

RC �R� C + 1

Residual Q

W

=

P

r

P



P

k

(y

rk

� �y

r:

)

2

RC(K � 1)

Total Q =

P

r

P



P

k

(y

rk

� �y)

2

RCK � 1

where the averages are, e.g.,

�y

r::

=

1

CK

X



X

k

y

rk

; �y

r:

=

1

K

X

k

y

rk

F -tests an be onstruted using Q

R

, Q

C

, and Q

I

together with Q

W

.
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1. In statistis we will see that the moments of the parent distribution an be

`estimated', or `measured', by alulating the orresponding moment of the

data, e.g., x =

1

n

P

x

i

gives an estimate of the mean � and

q

1

n

P

(x

i

� x)

2

estimates �, et.

(a) Histogram the following data using a suitable bin size.

90 90 79 84 78 91 88 90 85 80

88 75 73 79 78 79 67 83 68 60

73 79 69 74 76 68 72 72 75 60

61 66 66 54 71 67 75 49 51 57

62 64 68 58 56 79 63 68 64 51

58 53 65 57 59 65 48 54 55 40

49 42 36 46 40 37 53 48 44 43

35 39 30 41 41 22 28 36 39 51

These data will be available in a �le, whih an be read, e.g., in FORTRAN

by

READ(11,'(10F4.0)') X

where X is an array de�ned by REAL X(80).

(b) Estimate the mean, standard deviation, skewness, mode, median and

FWHM (full width at half maximum) using the data and using the his-

togram bin ontents and the entral values of the bins.

You may �nd the FORTRAN subroutine FLPSOR useful: CALL FLPSOR(X,N),

where N is the dimension, e.g., 80, of the array X. After alling this routine,

the order of the elements of X will be in asending order.

2. Verify by making a histogram of 1000 random numbers that your random

number generator indeed gives an approximately uniform distribution in the

interval 0 to 1.

Make a two-dimensional histogram using suessive pairs of random numbers

for the x and y oordinates. Does this two-dimensional distribution also

appear uniform? Calulate the orrelation oeÆient between x and y.

3. LetX

i

; i = 1; 2; :::; n, be n independent r.v.'s uniformly distributed between

0 and 1, i.e., the p.d.f. is f(x) = 1 for 0 � x � 1 and f(x) = 0 otherwise.

Let Y be the maximum of the n X

i

: Y = max(X

1

;X

2

; :::;X

n

). Derive

the p.d.f. for Y , g(y). Hint: What is the .d.f. for Y ?

4. For two r.v.'s, x and y, show that

V [x+ y℄ = V [x℄ + V [y℄ + 2 ov(x; y)
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5. Show that the skewness an be written



1

=

1

�

3

�

E

h

x

3

i

� 3E [x℄E

h

x

2

i

+ 2E [x℄

3

�

6. The Chebyhev Inequality. Assume that the p.d.f. for the r.v. X has mean �

and variane �

2

. Show that for any positive number k, the probability that

x will di�er from � by more than k standard deviations is less than or equal

to 1=k

2

, i.e., that

P (jx� �j � k�) �

1

k

2

7. Show that j ov(x; y)j � �

x

�

y

, i.e., that the orrelation oeÆient, �

x;y

=

ov(x; y)=�

x

�

y

, is in the range �1 � � � 1 and that � = �1 if and only

if x and y are linearly related.

8. A beam of mesons, omposed of 90% pions and 10% kaons, hits a

�

Cerenkov

ounter. In priniple the ounter gives a signal for pions but not for kaons,

thereby identifying any partiular meson. In pratie it is 95% eÆient at

giving a signal for pions, and also has a 6% probability of giving an aidental

signal for a kaon. If a meson gives a signal, what is the probability that the

partile was a pion? If there is no signal, what is the probability that it was

a kaon?

9. Mongolian swamp fever (MSF) is suh a rare disease that a dotor only expets

to meet it one in 10000 patients. It always produes spots and aute lethargy

in a patient; usually (60% of ases) they su�er from a raging thirst, and

oasionally (20% of ases) from violent sneezes. These symptoms an arise

from other auses: spei�ally, of patients who do not have MSF, 3% have

spots, 10% are lethargi, 2% thirsty, and 5% omplain of sneezing. These four

probabilities are independent.

Show that if you go to the dotor with all these symptoms, the probability

of your having MSF is 80%. What is the probability if you have all these

symptoms exept sneezing?

10. Suppose that an antimissile system is 99.5% eÆient in interepting inoming

ballisti missiles. What is the probability that it will interept all of 100

missiles launhed against it? How many missiles must an aggressor launh to

have a better than even hane of one or more penetrating the defenses? How

many missiles would be needed to ensure a better than even hane of more

than two missiles evading the defenses?

11. A student is trying to hith a lift. Cars pass at random intervals, at an average

rate of 1 per minute. The probability of a ar giving a student a lift is 1%.

What is the probability that the student will still be waiting:
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(a) after 60 ars have passed?

(b) after 1 hour?

12. Show that the harateristi funtion of the Poisson p.d.f.,

P (r;�) =

�

r

e

��

r!

is

�(t) = exp

h

�

�

e

{t

� 1

�i

Use the harateristi funtion to prove the reprodutive property of the Pois-

son p.d.f.

13. A single number often used to haraterize an angular distribution is the

forward-bakward ratio, F=B, or the forward-bakward asymmetry,

F

N

,where

F is the number of events with os � > 0, B is the number of events with

os � < 0, and N = F +B is the total number of events. Assume that the

events are independent and that the event rate is onstant, for both forward

and bakward events.

Clearly, only two of the three variables, F , B, N , are independent. We an

regard this situation in two ways:

(a) The number of eventsN is Poisson distributed with mean � and they are

split into F and B = N �F following a binomial p.d.f., B(F ;N;p

F

),

i.e., the independent variables are N and F .

(b) The F events and B events are both Poisson distributed (with param-

eters �

F

and �

B

), and the total is just their sum, i.e., the independent

variables are F and B.

Show that both ways lead to the same p.d.f.

14. Show that the Poisson p.d.f. tends to a Gaussian with mean � and variane

�

2

= � for large �, i.e.,

P (r;�) �! N(r;�; �)

For � = 5:3, what is the probability of 2 or less events? Approximating

the disrete Poisson by the ontinuous Gaussian p.d.f., � 2 should be re-

garded as < 2:5, half way between 2 and 3. What is the probability in this

approximation?

15. For a Gaussian p.d.f.:

(a) What is the probability of a value lying more than 1:23� from the mean?
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(b) What is the probability of a value lying more than 2:43� above the

mean?

() What is the probability of a value lying less than 1:09� below the mean?

(d) What is the probability of a value lying above a point 0:45� below the

mean?

(e) What is the probability that a value lies more than 0:5� but less than

1:5� from the mean?

(f) What is the probability that a value lies above 1:2� on the low side of

the mean, and below 2:1� on the high side?

(g) Within how many standard deviations does the probability of a value

ourring equal 50%?

(h) How many standard deviations orrespond to a one-tailed probability of

99%?

16. During a meteor shower, meteors fall at the rate of 15.7 per hour. What is the

probability of observing less than 5 in a given period of 30 minutes? What

value do you �nd if you approximate the Poisson p.d.f. by a Gaussian p.d.f.?

17. Four values (3.9, 4.5, 5.5, 6.1) are drawn from a normal p.d.f. whose mean is

known to be 4.9. The variane of the p.d.f. is unknown.

(a) What is the probability that the next value drawn from the p.d.f. will

have a value greater than 7.3?

(b) What is the probability that the mean of three new values will be between

3.8 and 6.0?

18. Let x and y be two independent r.v.'s, eah distributed uniformly between 0

and 1. De�ne z

�

= x� y.

(a) How are z

+

and z

�

distributed?

(b) What is the orrelation between z

+

and z

�

; between z

+

and y?

It will probably help your understanding of this situation to use Monte Carlo

to generate points uniform in x and y and to make a two-dimensional his-

togram of z

+

vs. z

�

.

19. Derive the reprodutive property of the Gaussian p.d.f., i.e., show that if

x and y are independent r.v.'s distributed normally as N(x;�

x

; �

2

x

) and

N(y;�

y

; �

2

y

), respetively, then z = x + y is also normally distributed as

N(z;�

z

; �

2

z

). Show that �

z

= �

x

+ �

y

and �

2

z

= �

2

x

+ �

2

y

. Derive also

the p.d.f. for z = x� y, for z = (x+ y)=2, and for z = �x =

P

n

i=1

x

i

=n

when all the x

i

are normally distributed with the same mean and variane.
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20. For the bivariate normal p.d.f. for x; y with orrelation oeÆient �, trans-

form to variables u; v suh that the ovariane matrix is diagonal and show

that

�

2

u

=

�

2

x

os

2

� � �

2

y

sin

2

�

os

2

� � sin

2

�

�

2

v

=

�

2

y

os

2

� � �

2

x

sin

2

�

os

2

� � sin

2

�

where tan 2� =

2��

x

�

y

�

2

x

� �

2

y

21. Show that for the bivariate normal p.d.f., the onditional p.d.f., f(yjx), is a

normal p.d.f. with mean and variane,

E [yjx℄ = �

y

+ �

�

y

�

x

(x� �

x

) and V [yjx℄ = �

2

y

(1� �

2

)

22. For a three-dimensional Gaussian p.d.f. the ontours of onstant probability

are ellipsoids de�ned by onstant

G = (x� �)

T

V

�1

(x� �)

Find the probability that a point is within the ellipsoid de�ned by G = 1.

23. Given n independent variables, x

i

, distributed aording to f

i

having mean,

�

i

, and variane, V

i

= �

2

i

, show that S =

P

x

i

has mean �

S

= E [S℄ =

P

�

i

and variane V [S℄ =

P

V

i

=

P

�

2

i

. What are the expeted value and

variane of the average of the x

i

, �x =

1

n

P

x

i

?

24. Derive the reprodutive property of the Cauhy p.d.f. Does the p.d.f. of the

sum of n independent, Cauhy-distributed r.v.'s, approah the normal p.d.f.

in the limit n!1?

25. Let x and y be independent r.v.'s, eah distributed normally with mean 0

and varianes �

2

x

and �

2

y

, respetively.

(a) Derive the p.d.f. of the r.v. z = x=y.

(b) Desribe a method to generate random numbers distributed as a standard

Cauhy p.d.f. Try it.

26. (a) Show that for n independent r.v.'s, x

i

, uniformly distributed between 0

and 1, the p.d.f. for

g =

P

n

i=1

x

i

�

n

2

q

n

12

approahes N(g; 0; 1) for n!1.
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(b) Demonstrate the result (a) by generating by Monte Carlo the distribution

of g for n = 1, 2, 3, 5, 10, 50 and omparing it to N(g; 0; 1).

() If the x

i

are uniformly distributed in the intervals [0:0; 0:2℄ and [0:8; 1:0℄.

i.e.,

f(x) =

1

0:4

; 0:0 � x � 0:2 or 0:8 � x � 1:0

= 0 ; otherwise,

what distribution will g approah? Demonstrate this by Monte Carlo as

in (b).

27. Show that the weighting method used in the two-dimensional example of rude

Monte Carlo integration (set. 6.2.5, eq. 6.5) is in fat an appliation of the

tehnique of importane sampling.

28. Perform the integral I =

R

1

0

x

3

dx by rude Monte Carlo using 100, 200,

400, and 800 points. Estimate not only I, but also the error on I. Does the

error derease as expeted with the number of points used?

Repeat the determination of I 50 times using 200 (di�erent) points eah time

and histogram the resulting values of I. Does the histogram have the shape

that you expet? Also evaluate the integral by the following methods and

ompare the error on I with that obtained by rude Monte Carlo:

(a) using hit or miss Monte Carlo and 200 points.

(b) using rude Monte Carlo and strati�ation, dividing the integration re-

gion in two, (0,0.5) and (0.5,1), and using f � 200 points in (0,0.5) and

(1�f) � 200 points in (0.5,1), where f = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, and 0.9. Plot the error on I vs. f .

() as (b) but for f=0.5 with various intervals, (0,) and (,1), for  = 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Make a plot of the estimated

error on I vs. .

(d) using rude Monte Carlo and antitheti variables x and (1�x) and 200

points.

(e) as (d) but with only 100 points.

(f) using importane sampling with the funtion g(x) = x

2

and 200 points.

29. Generate 20000 Monte Carlo points with x > 0 distributed aording to the

distribution

f(x) =

1

2

 

1

�

e

�x=�

+

1

�

e

�x=�

!

for � = 3 and � = 10. Do this for (a) the weighting, (b) the rejetion,

and () the omposite methods using inverse transformations. Whih method
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is easiest to program? Whih is fastest? Make histograms of the resulting

distribution in eah ase and verify that the distribution is orret.

If you an only detet events with 1 < x < 10, what fration of the events

will you detet? Suppose in addition, that your detetor has a detetion

eÆieny given by

e =

�

0; if x < 1 or x > 10

(x� 1)=9; if 1 < x < 10

How an you arrive at a histogram for the x-distribution of the events you

detet? There are various methods. Whih should be the best?

30. Generate 1000 points, x

i

, from the Gaussian p.d.f. N(x; 10; 5

2

). Use eah

of the following estimators to estimate the mean of X: sample mean, sample

median, and trimmed sample mean (10%).

Repeat assuming we only measure values of X in the interval (5,25), i.e. if

an x

i

is outside this range, throw it away and generate a new value.

Repeat this all 25 times, histogramming eah estimation of the mean. From

these histograms determine the variane of eah of the six estimators.

31. Under the assumptions that the range of the r.v. X is independent of the

parameter � and that the likelihood, L(x; �), is regular enough to allow

interhanging

�

2

��

2

and

R

dx, derive equation 8.23,

I

x

(�) = �E

"

�

��

S(x; �)

#

32. Show that the estimator



�

2

=

P

(x

i

� �)

2

=n is an eÆient estimator of the

variane of a Gaussian p.d.f. of known mean by showing that its variane is

equal to I

�1

.

33. Using the method of setion 8.2.7, �nd an eÆient and unbiased estimator for

�

2

of a normal p.d.f. when � is known and there is thus only one parameter

for the distribution.

34. We ount the number of deays in a �xed time interval, T . We do this N

times yielding the results n

i

, i = 1; :::;N . The soure is assumed to onsist

of a large number of atoms having a long half-life. The data, n

i

, are therefore

assumed to be distributed aording to a Poisson p.d.f., the parameter of

whih an be estimated by �̂ = �n (setion 8.3.2). Suppose, however, that we

want instead to estimate the probability of observing no deays in the time

interval, T .

(a) What is the estimator in the frequeny method of estimation?
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(b) Derive a less biased estimator.

() Derive the varianes of both the estimator and the less biased estimator.

35. (a) Derive equations 8.41 and 8.42, i.e., show that the variane of the r

th

sample moment is given by

V [x

r

℄ =

1

n

h

E

h

x

2r

i

� (E [x

r

℄)

2

i

and that

ov [x

r

; x

q

℄ =

1

n

h

E

h

x

r+q

i

� E [x

r

℄E [x

q

℄

i

(b) Derive an expression in terms of sample moments to estimate the vari-

ane, V

h



�

2

i

, of the moments estimator of the parent variane,



�

2

=



m

2

�



m

2

1

36. We estimate the values of x and y by their sample means, �x and �y, whih

have varianes �

2

x

and �

2

y

. The ovariane is zero. We want to estimate the

values of r and � whih are related to x and y by

r

2

= x

2

+ y

2

and tan � =

y

x

Following the substitution method, what are r̂ and

^

�? Find the varianes and

ovariane of r̂ and

^

�.

37. We measure x = 10:0� 0:5 and y = 2:0� 0:5. What is then our estimate

of x=y? Use Monte Carlo to investigate the validity of the error propagation.

38. We measure os � and sin �, both with standard deviation �. What is the

ml estimator for �? Compare with the results of exerise 36.

39. Deay times of radioative atoms are desribed by an exponential p.d.f. (equa-

tion 3.10):

f(t; �) =

1

�

e

�t=�

(a) Having measured the times t

i

of n deays, how would you estimate �

and the variane V [�̂ ℄ (1) using the moments method and (2) using the

maximum likelihood method? Whih method do you prefer? Why?

(b) Generate 100 Monte Carlo events aording to this p.d.f. with � = 10,

(f. exerise 29) and alulate �̂ and V [�̂ ℄ using both the moments

and the maximum likelihood methods. Are the results onsistent with

� = 10? Whih method do you prefer? Why?
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() Use a minimization program, e.g., MINUIT, to �nd the maximum of the

likelihood funtion for the Monte Carlo events of (39b). Evaluate V [�̂ ℄

using both the seond-derivative matrix and the variation of l by

1

/

2

.

Compare the results for �̂ and V [�̂ ℄ with those of (39b).

(d) Repeat (39b) 1000 times making histograms of the value of �̂ and of the

estimate of the error on �̂ for eah method. Do you prefer the moments

or the maximum likelihood expression for V [�̂ ℄? Why?

(e) Suppose that we an only detet times t < 10. What is then the

likelihood funtion? Use a minimization program to �nd the maximum

of the likelihood funtion and thus �̂ and its variane. Does this value

agree with � = 10?

(f) Repeat (39b) and (39e) with 10000 Monte Carlo events.

40. Verify that a least squares �t of independent measurements to the model

y = a+ bx results in estimates for a and b given by

â = �y �

^

b�x and

^

b =

xy � �x�y

x

2

� �x

2

where the bar indiates a weighted sample average with weights given by

1=�

2

i

, as stated in setion 8.5.5.

41. Use the method of least squares to derive formulae to estimate the value (and

its error), y � Æy, from a set of n measurements, y

i

� Æy

i

. Assume that

the y

i

are unorrelated. Comment on the relationship between these formulae

and those derived from ml (equations 8.59 and 8.60).

42. Perform a least squares �t of a parabola

y(x) = �

1

+ �

2

x+ �

3

x

2

for the four independent measurements: 5� 2; 3� 1; 5� 1; 8� 2 measured

at the points x = �0:6;�0:2; 0:2; 0:6, respetively. Determine not only the

^

�

i

and their ovarianes, but also alulate the value of y and its unertainty

at x = 1.

To invert a matrix you an use the routine RSINV:

CALL RSINV (N,A,N,IFAIL)

where A is a symmetri, positive matrix of dimension (N,N). If the matrix

inversion is suessful, IFAIL is returned as 0.

43. The three angles of a triangle are independently measured to be 63

Æ

, 34

Æ

,

and 85

Æ

, all with a resolution of 1

Æ

.

(a) Calulate the least squares estimate of the angles subjet to the require-

ment that their sum be 180

Æ

.
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(b) Calulate the ovariane matrix of the estimators.

44. Generate events as in exerise 39b. Histogram the times t

i

and use the two

minimum hi-square methods and the binned maximum likelihood method to

estimate the lifetime � . Use a minimization program, e.g., MINUIT, to �nd

the minima and maximum. Compare the results of these three methods and

those of exerise 39b.

45. In setion 8.7.4 is a table omparing the eÆienies of various loation es-

timators for various distributions. Generate 10000 random numbers from a

standard normal distribution and estimate the mean using eah of the esti-

mators in the table. Repeat this 1000 times making histograms of the values

of eah estimator. The standard deviation of these histograms is an estimate

of the standard deviation of the estimator. Are these in the ratio expeted

from the table?

46. Consider a long-lived radioative soure.

(a) In our detetor it produes 389 ounts in the �rst minute and 423 ounts

in the seond minute. Assuming a 100% eÆient detetor, what is the

best estimation of the ativity of the soure?

(b) What an you say about the best value and unertainty for the ativity

of the soure from the following set of independent measurements?

1:08� 0:13 ; 1:04� 0:07 ; 1:13� 0:10 Bq:

47. A urrent is determined by measuring the voltage V aross a standard re-

sistor. The voltmeter has a resolution �

V

and a systemati error s

V

. We

measure two urrents using the same resistor and voltmeter. Sine the resis-

tane is unhanged between the measurements, we regard its unertainty as

entirely systemati. Find the ovariane matrix for the two urrents, whih

are alulated using Ohm's law, I

i

= V

i

=R.

48. We measure a quantity X 25 times using an apparatus of unknown but on-

stant resolution. The average value of the measurements is �x = 128. The

estimate of the variane is s

2

=

1

24

P

(x � �x)

2

= 225. What is the 95%

on�dene interval on the true value, �, of the quantity X?

49. You want to determine the probability, p, that a student passes the statis-

tis exam. Sine there are only two possible outomes, pass and fail, the

appropriate p.d.f. is binomial, B(k;N;p).

(a) Construt the on�dene belt for a 95% entral on�dene interval for p

for the ase that 10 students take the exam and k pass, i.e., draw k

+

(p)

and k

�

(p) urves on a p vs. k plot.



265

(b) Assume that 8 of the 10 pass. Find the 95% entral on�dene interval

from the plot onstruted in (a) and by solving equation 9.18.

50. An experiment studying the deay of the proton (an extremely rare proess, if

it ours at all) observes 7 events in 1 year for a sample of 10

6

kg of hydrogen.

(a) Assume that there is no bakground. Give a 90% entral on�dene

interval and a 90% upper limit for the expeted number of proton deays

and from these alulate the orresponding interval and limit for the

mean lifetime of the proton.

(b) Repeat (a) assuming that bakground proesses are expeted to on-

tribute an average of 3 events per year.

() Repeat (a) assuming 8 expeted bakground events per year.

51. Construt a most powerful (MP) test for one observation, x, for the hypothesis

that X is distributed as a Cauhy distribution,

f(x) =

1

� [1 + (x� �)

2

℄

with � = 0 under H

0

and � = 1 under H

1

. What is the size of the test if

you deide to rejet H

0

when x > 0:5?

52. Ten students eah measure the mass of a sample, eah with an error of 0.2 g:

10:2 10:4 9:8 10:5 9:9 9:8 10:3 10:1 10:3 9:9 g

(a) Test the hypothesis that they are all measurements of a sample whose

true mass is 10.1 g.

(b) Test the hypothesis that they are all measurements of the same sample.

53. On Feb. 23, 1987, the Irvine-Mihigan-Brookhaven experiment was ounting

neutrino interations in their detetor. The time that the detetor was on

was split into ten-seond intervals, and the number of neutrino interations

in eah interval was reorded. The number of intervals ontaining i events is

shown in the following table. There were no intervals ontaining more than 9

events.

Number of events 0 1 2 3 4 5 6 7 8 9

Number of intervals 1042 860 307 78 15 3 0 0 0 1

This date was also the date that astronomers �rst saw the supernova S1987a.

(a) Test the hypothesis that the data are desribed by a Poisson distribution.
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(b) Test the hypothesis that the data are desribed by the sum of two Poisson

distributions, one for a signal of 9 events within one ten-seond interval,

and another for the bakground of ordinary osmi neutrinos.

54. Marks on an exam are distributed over male and female students as follows

(it is left to your own bias to deide whih group is male):

Group 1 39 18 3 22 24 29 22 22 27 28 23 48

Group 2 42 23 36 35 38 42 33

Assume that test sores are normally distributed within eah group.

(a) Assume that the variane of the sores of both groups is the same, and

test the hypothesis that the mean is also the same for both groups.

(b) Test the assumption that the variane of the sores of both groups is the

same.

55. The light transmission of rystals is degraded by ionizing radiation. Folklore,

and some qualitative physis arguments, suggest that it an be (partially)

restored by annealing. To test this the light transmission of 7 rystals, whih

have been exposed to radiation, is measured. The rystals are then annealed,

and their light transmission again measured. The results:

Crystal 1 2 3 4 5 6 7

Before 29 30 42 34 37 45 32

After 36 26 46 36 40 51 33

di�erene 7 �4 4 2 3 6 1

Assume that the unertainty in the measurement of the transmission is nor-

mally distributed.

(a) Test whether the light transmission has improved using only the mean

of the before and after measurements.

(b) Test whether the light transmission has improved making use of the

measurements per rystal, i.e., using the di�erenes in transmission.

For the following exerises you will be assigned a �le ontaining the data to be

used. It will onsist of 3 numbers per event, whih may be read, e.g., in FORTRAN

by
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READ(11,'(I5)') NEVENTS

READ(11,'(3F10.7)') ((E(I,IEV),I=1,3),IEV=1,NEVENTS)

The data may be thought of as being the measurement of the radioative deay

of a neutral partile at rest into two new partiles, one positive and one negative,

with

E(1,IEV) = x, the mass of the deaying partile as determined from the en-

ergies of the deay produts. The mass values have a ertain

spread due to the resolution of our apparatus and/or the Heisen-

berg unertainty priniple (for a very short-lived partile).

E(2,IEV) = os �, the osine of the polar angle of the positive deay partile's

diretion.

E(3,IEV) = �=�, the azimuthal angle, divided by �, of the positive deay par-

tile's diretion. Division by � results in a more onvenient

quantity to histogram.

Assume that the deay is of a vetor meson to two pseudo-salar mesons. The deay

angular distribution is then given by

f(os �; �) =

3

4�

�

1

2

(1� �

00

) +

1

2

(3�

00

� 1) os

2

� � �

1;�1

sin

2

� os 2�

�

p

2Re�

10

sin 2� os�

�

A1. Use the moments method to estimate the mass of the partile and the deay

parameters �

00

, �

1;�1

, and Re�

10

. Also estimate the variane and standard

deviation of the p.d.f. for x. Estimate also the errors of all of the estimates.

A2. Use the maximum likelihood method to estimate the deay parameters �

00

,

�

1;�1

, and Re�

10

using a program suh as MINUIT to �nd the maximum of the

likelihood funtion. Determine the errors on the estimates using the variation

of the likelihood.

A3. Assume that x is distributed normally. Determine � and � using maximum

likelihood. Also determine the ovariane matrix of the estimates.

A4. Assume that x is distributed normally. Determine � and � using both the

minimum �

2

and the binned maximum likelihood methods. Do this twie,

one with narrow and one with wide bins. Compare the estimates and their

ovariane matrix obtained with these two methods with eah other and with

that of the previous exerise.

A5. Test the assumption of vetor meson deay against the hypothesis of deay of

a salar meson, in whih ase the angular distribution must be isotropi.
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For the following exerises you will be assigned a �le ontaining the data to be

used. It is the same situation as in the previous exerises exept that it is somewhat

more realisti, having some bakground to the signal.

B1. From an examination of histograms of the data, make some reasonable hypothe-

ses as to the nature of the bakground, i.e., propose some funtional form for

the bakground, f

b

(x) and f

b

(os �; �).

B2. Modify your likelihood funtion to inlude your hypothesis for the bakground,

and use the maximum likelihood method to estimate the deay parameters

�

00

, �

1;�1

, and Re�

10

as well as the fration of signal events. Also determine

the position of the signal, �, and its width, �, under the assumption that the

signal x is normally distributed. Determine the errors on the estimates using

the variation of the likelihood.

B3. Develop a way to use the moments method to estimate, taking into aount

the bakground, the deay parameters �

00

, �

1;�1

, and Re�

10

. Estimate also

the errors of the estimates.

B4. Determine the goodness-of-�t of the �ts in the previous two exerises. There

are several goodness-of-�t tests whih ould be applied. Why did you hoose

the one you did?


