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They say that Understanding ought to work by the rules of right

reason. These rules are, or ought to be, 
ontained in Logi
; but

the a
tual s
ien
e of logi
 is 
onversant at present only with things

either 
ertain, impossible, or entirely doubtful, none of whi
h (for-

tunately) we have to reason on. Therefore the true logi
 for this

world is the 
al
ulus of Probabilities, whi
h takes a

ount of the

magnitude of the probability whi
h is, or ought to be, in a reason-

able man's mind.

|J. Clerk Maxwell

Chapter 1

Introdu
tion

Statisti
s is a tool useful in the design, analysis and interpretation of experi-

ments. Like any other tool, the more you understand how it works the better you


an use it.

The fundamental laws of 
lassi
al physi
s do not deal with statisti
s, nor with

probability. Newton's law of gravitation F = G

Mm

r

2


ontains an exponent 2 in

the denominator|exa
tly 2, not 2:000 � 0:001. But where did the 2 
ome from?

It 
ame from analysis of many detailed and a

urate astronomi
al observations of

Ty
ho Brahe and others.

In \statisti
al" physi
s you have su
h a 
ompli
ated situation that you treat it

in a \statisti
al" manner, although I would prefer to make a distin
tion between

statisti
s and probability and 
all it a probabilisti
 manner. In quantum me
hani
s

the probability is intrinsi
 to the theory rather than a mere 
onvenien
e to get

around 
omplexity.

Thus in studying physi
s you have no need of statisti
s, although in some sub-

je
ts you do need probability. But when you do physi
s you need to know what

measurements really mean. For that you need statisti
s.

Using probability we 
an start with a well de�ned problem and 
al
ulate the


han
e of all possible out
omes of an experiment. With probability we 
an thus go

from theory to the data.

In statisti
s we are 
on
erned with the inverse problem. From data we want to

infer something about physi
al laws. Statisti
s is sometimes 
alled an art rather

1



2 CHAPTER 1. INTRODUCTION

than a s
ien
e, and there is a grain of truth in it. Although there are standard

approa
hes, most of the time there is no \best" solution to a given problem. Our

most 
ommon tasks for statisti
s fall into two 
ategories: parameter estimation and

hypothesis testing.

In parameter estimation we want to determine the value of some parameter in a

model or theory. For example, we observe that the for
e between two 
harges varies

with the distan
e r between them. We make a theory that F � r

��

and want to

determine the value of � from experiment.

In hypothesis testing we have an hypothesis and we want to test whether that

hypothesis is true or not. An example is the Fermi theory of �-de
ay whi
h predi
ts

the form of the ele
tron's energy spe
trum. We want to know whether that is


orre
t. Of 
ourse we will not be able to give an absolute yes or no answer. We

will only be able to say how 
on�dent we are, e.g., 95%, that the theory is 
orre
t,

or rather that the theory predi
ts the 
orre
t shape of the energy spe
trum. Here

the meaning of the 95% 
on�den
e is that if the theory is 
orre
t, and if we were

to perform the experiment many times, 95% of the experiments would appear to

agree with the theory and 5% would not.

Parameter estimation and hypothesis testing are not 
ompletely separate topi
s.

It is obviously nonsense to estimate a parameter if the theory 
ontaining the pa-

rameter does not agree with the data. Also the theory we want to test may 
ontain

parameters; the test then is whether values for the parameters exist whi
h allow

the theory to agree with the data.

Although the main subje
t of this 
ourse is statisti
s, it should be 
lear that

an understanding of statisti
s requires understanding probability. We will begin

therefore with probability. Having had probability, it seems only natural to also

treat, though perhaps brie
y, Monte Carlo methods, parti
ularly as they are often

useful not only in the design and understanding of an experiment but also 
an be

used to develop and test our understanding of probability and statisti
s.

There are a great many books on statisti
s. They vary greatly in 
ontent and

intended audien
e. Notation is by no means standard. In preparing these le
tures I

have relied heavily on the following sour
es (sometimes to the extent of essentially


opying large se
tions):

� R. J. Barlow,

1

a re
ent text book in the Man
hester series. Most of what

you need to know is in this book, although the level is perhaps a bit low.

Nevertheless (or perhaps therefore), it is a pleasure to read.

� Siegmund Brandt,

2

a good basi
 book at a somewhat higher level. Unfor-

tunately, the FORTRAN sample programs it 
ontains are rather old-fashioned.

There is an emphasis on matrix notation. There is also a German edition.

� A. G. Frodesen, O. Skjeggestad, and H. T�fte,

3

also a good basi
 text (despite

the words \parti
le physi
s" in the title) at a higher level. Unfortunately, it

is out of print.
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� W. T. Eadie et al.,

4

or the se
ond edition of this book by F. James

5

, a book

at an advan
ed level. It is diÆ
ult to use if you are not already fairly familiar

with the subje
t.

� G. P. Yost,

6

the le
ture notes for a 
ourse at Imperial College, London. They

are somewhat short on explanation.

� Glen Cowan,

7

a re
ent book at a level similar to these le
tures. In fa
t, had

this book been available I probably would have used it rather than writing

these notes.

Other books of general interest are those of Lyons,

8

Meyer,

9

and Bevington.

10

A 
omprehensive referen
e for almost all of probability and statisti
s is the three-

volume work by Kendall and Stuart

11

. Sin
e the death of Kendall, volumes 1 and 2

(now 
alled 2a) are being kept up to date by others,

12,13

and a volume (2b) on

Bayesian statisti
s has been added.

14

Volume 3 has been split into several small

books, \Kendall's Library of Statisti
s", 
overing many spe
ialized topi
s. Another


lassi
 of less en
y
lopedi
 s
ope is the one-volume book by Cram�er

15

.

1.1 Language

Statisti
s, like physi
s, has it own spe
ialized terminology with words whose mean-

ing di�ers from the meaning in everyday use or the meaning in physi
s. An example

is the word estimate. In statisti
s \estimate" is used where the physi
ist would say

\determine" or \measure", as in parameter estimation. The physi
ist or indeed

ordinary people tend to use \estimate" to mean little more than \guess" as in \I

would estimate that this room is about 8 meters wide." We will generally use the

statisti
ians' word.

Mu
h of statisti
s has been developed in 
onne
tion with population studies

(so
iology, medi
ine, agri
ulture, et
.) and industrial quality 
ontrol. One 
annot

study the entire population; so one \draws a sample". But the population exists.

In experimental physi
s the set of all measurements (or observations) forms the

\sample". If we make more measurements we in
rease the size of the sample, but

we 
an never attain the \population". The population does not really exist but is

an underlying abstra
tion. For us some terminology of the statisti
ians is therefore

rather inappropriate. We therefore sometimes make substitutions like the following:
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\demographi
" terminology \physi
s" terminology

sample data (set)

draw a sample observe, measure

sample of size N N observations, N measurements

population observable spa
e

population mean parent mean

= mean of the underlying distribution

population varian
e, et
. parent varian
e, et
.

sample mean sample mean = mean of the data

= experimental mean or average

We will just say \mean" when it is 
lear from the 
ontext whether we are referring

to the parent or the sample mean.

1.2 Computer usage

In this day and age, data analysis without a 
omputer is in
on
eivable. While there

exist (a great many) programs to perform statisti
al analyses of data, they tend to

be diÆ
ult to learn and/or limited in what they 
an do. Their use also tends to

indu
e a 
ook-book mentality. Consequently, we shall not use them, but will write

our own programs (in FORTRAN or C). In this way we will at least know what we are

doing. Subroutines will be provided for a few 
on
eptually simple, but te
hni
ally


ompli
ated, tasks.

Data is often presented in a histogram (1 or 2 dimensional). Computer pa
kages

to do this will be available.

As an aid to understanding it is often useful to use random numbers, i.e., perform

simple Monte Carlo (
f. Part II). On a 
omputer there is generally a routine whi
h

returns a \pseudo-random" number. What that a
tually is will be treated in se
tion

6.1.2. An example of su
h use is to generate random numbers a

ording to a given

distribution, e.g., uniformly between 0 and 1, and then to histogram some fun
tion

of these numbers.

Parameter estimation (
hapter 8) is often most 
onveniently done by numeri
ally

�nding the maximum (or minimum) of some fun
tion. Computer programs to do

this will also be available.

1.3 Some advi
e to the student

The goal of this 
ourse is not to provide a 
ook book of statisti
al data analysis.

Instead, we aim for some understanding of statisti
al te
hniques, of whi
h there

are many. La
k of time will pre
lude rigorous proof (or sometimes any proof) of

results. Moreover, we will introdu
e some theoreti
al 
on
epts, whi
h will not seem
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immediately useful, but whi
h should put the student in a better position to go

beyond what is in
luded in this 
ourse, as will almost 
ertainly be ne
essary at

some time in his 
areer. Further, we will point out the assumptions underlying,

and the limitations of, various te
hniques.

A major diÆ
ulty for the student is the diversity of the questions statisti
al te
h-

niques are supposed to answer, whi
h results in a plethora of methods. Moreover,

there is seldom a single \
orre
t" method, and de
iding whi
h method is \best" is

not always straightforward, even after you have de
ided what you mean by \best".

A further 
ompli
ation arises from what we mean by \probability". There are

two major interpretations, \frequentist" (or \
lassi
al") and \Bayesian" (or \sub-

je
tive"), whi
h leads to two di�erent ways to do statisti
s. While the emphasis

will be on the 
lassi
al approa
h, some e�ort will go into the Bayesian approa
h as

well.

While there are many questions and many te
hniques, they are related. In order

to see the relationships, the student is strongly advised not to fall behind.

Finally, some advi
e to astronomers whi
h is equally valid for physi
ists:

Whatever your 
hoi
e of area, make the 
hoi
e to live your professional

life at a high level of statisti
al sophisti
ation, and not at the level|

basi
ally freshman lab. level|that is the unfortunate 
ommon 
urren
y

of most astronomers. Thereby we will all move forward together.

|William H. Press

16





Part I

Probability

7





\La th�eorie des probabilit�es n'est que

le bon sens reduit au 
al
ul."

|P.-S. de Lapla
e, \M�e
anique C�eleste"

Chapter 2

Probability

2.1 First prin
iples

2.1.1 Probability|What is it?

We begin by taking the \frequentist" approa
h. A given experiment is assumed

to have a 
ertain number of possible out
omes or events E. Suppose we repeat

the identi
al experiment N times and �nd out
ome E

i

N

i

times. We de�ne the

probability of out
ome E

i

to be

P (E

i

) = lim

N!1

N

i

N

(2.1)

We 
an also be more abstra
t. Intuitively, probability must have the following

properties. Let 
 be the set of all possible out
omes.

Axioms:

1. P (
) = 1 The experiment must have an out
ome.

2. 0 � P (E), E 2 


3. P ([E

i

) =

P

P (E

i

), for any set of disjoint E

i

; E

i

2 


(Axiom of Countable Additivity)

It is straightforward to derive the following theorems:

1. P (E) = 1� P (E

�

), where 
 = E [ E

�

, E and E

�

disjoint.

2. P (E) � 1

9
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3. P (;) = 0, where ; is the null set.

4. If E

1

,E

2

2 
 and not ne
essarily disjoint, then

P (E

1

[ E

2

) = P (E

1

) + P (E

2

)� P (E

1

\ E

2

)

A philosopher on
e said, \It is ne
essary

for the very existen
e of s
ien
e that

the same 
onditions always produ
e the same results."

Well, they do not. |Ri
hard P. Feynman

2.1.2 Sampling

We restri
t ourselves to experiments where the out
ome is one or more real numbers,

X

i

. Repetition of the experiment will not always yield the same out
ome. This


ould be due to an inability to reprodu
e exa
tly the initial 
onditions and/or to

a probabilisti
 nature of the pro
ess under study, e.g., radioa
tive de
ay. The X

i

are therefore 
alled random variables (r.v.), i.e., variables whose values 
annot

be predi
ted exa
tly. Note that the word `random' in the term `random variable'

does not mean that the allowed values of X

i

are equiprobable, 
ontrary to its use

in everyday spee
h. The set of possible values of X

i

, whi
h we have denoted 
, is


alled the sample spa
e. A r.v. 
an be

� dis
rete: The sample spa
e 
 is a set of dis
rete points. Examples are the

result of a throw of a die, the sex of a 
hild (F=1, M=2), the age (in years)

of students studying statisti
s, names of people (Marieke=507, Piet=846).

� 
ontinuous: 
 is an interval or set of intervals. Examples are the frequen
y of

radiation from a bla
k body, the angle at whi
h an ele
tron is emitted from

an atom in �-de
ay, the height of students studying statisti
s.

� a 
ombination of dis
rete and 
ontinuous.

An experiment results thus in an out
ome whi
h is a set of real numbers X

i

whi
h are random variables. They form a sampling of a parent `population'. Note

the di�eren
e between the sample, the sample spa
e and the population:

� The population is a list of all members of the population. Some members of

the population may be identi
al.

� The sample spa
e is the set of all possible results of the experiment (the

sampling). Identi
al results are represented by only one member of the set.
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� The sample is a list of the results of a parti
ular experiment. Some of the

results may be identi
al. How often a parti
ular result, i.e., a parti
ular

member of the sample spa
e, o

urs in the sample should be approximately

proportional to how often that result o

urs in the population.

The members of the population are equiprobable while the members of the sample

spa
e are not ne
essarily equiprobable. The sample re
e
ts the population whi
h is

derived from the sample spa
e a

ording to some probability distribution, usually


alled the parent (or underlying) probability distribution.

2.1.3 Probability density fun
tion (p.d.f.)

Conventionally, one uses a 
apital letter for the experimental result, i.e., the sam-

pling of a r.v. and the 
orresponding lower 
ase letter for other values of the r.v.

Here are some examples of probability distributions:

� the throw of a die. The sample spa
e is 
 = f1; 2; 3; 4; 5; 6g. The probability

distribution is P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =

1

6

, whi
h gives

a parent population of f1; 2; 3; 4; 5; 6g. An example of an experimental result

is X = 3.

� the throw of a die having sides marked with one 1, two 2's, and three 3's.

The sample spa
e is 
 = f1; 2; 3g. The probability distribution is P (1) =

1

6

,

P (2) =

1

3

, P (3) =

1

2

. The parent population is f1; 2; 2; 3; 3; 3g. An experi-

mental result is X = 3 (maybe).

In the dis
rete 
ase we have a probability fun
tion, f(x), whi
h is greater than zero

for ea
h value of x in 
. From the axioms of probability,

X




f(x) = 1

P (A) � P (X 2 A) =

X

A

f(x) ; A � 


For a 
ontinuous r.v., the probability of any exa
t value is zero sin
e there are

an in�nite number of possible values. Therefore it is only meaningful to talk of the

probability that the out
ome of the experiment, X, will be in a 
ertain interval.

f(x) is then a probability density fun
tion (p.d.f.) su
h that

P (x � X � x + dx) = f(x) dx ,

Z




f(x) dx = 1 (2.2)

Sin
e most quantities of interest to us are 
ontinuous we will usually only treat

the 
ontinuous 
ase unless the 
orresponding treatment of the dis
rete 
ase is not

obvious. Usually going from the 
ontinuous to the dis
rete 
ase is simply the re-

pla
ement of integrals by sums. We will also use the term p.d.f. for f(x) although
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in the dis
rete 
ase it is really a probability rather than a probability density. Some

authors use the term `probability law' instead of p.d.f., thus avoiding the mislead-

ing (a
tually wrong) use of the word `density' in the dis
rete 
ase. However, su
h

use of the word `law' is misleading to a physi
ist, 
f. Newton's se
ond law, law of


onservation of energy, et
.

2.1.4 Cumulative distribution fun
tion (
.d.f.)

The 
umulative distribution fun
tion (
.d.f.) is the probability that the value of a

r.v. will be � a spe
i�
 value. The 
.d.f. is denoted by the 
apital letter 
orrespond-

ing to the small letter signifying the p.d.f. The 
.d.f. is thus given by

F (x) =

Z

x

�1

f(x

0

) dx

0

= P (X � x) (2.3)

Clearly, F (�1) = 0 and F (+1) = 1.

Properties of the 
.d.f.:

� 0 � F (x) � 1

� F (x) is monotone and not de
reasing.

� P (a � X � b) = F (b)� F (a)

� F (x) dis
ontinuous at x implies

P (X = x) = lim

Æx!0

[F (x+ Æx)� F (x� Æx)℄ , i.e., the size of the jump.

� F (x) 
ontinuous at x implies P (X = x) = 0.

The 
.d.f. 
an be 
onsidered to be more fundamental than the p.d.f. sin
e the


.d.f. is an a
tual probability rather than a probability density. However, in appli-


ations we usually need the p.d.f. Sometimes it is easier to derive �rst the 
.d.f.

from whi
h you get the p.d.f. by

f(x) =

�F (x)

�x

(2.4)

2.1.5 Expe
tation values

Consider some single-valued fun
tion, u(x) of the random variable x for whi
h f(x)

is the p.d.f. Then the expe
tation value of u(x) is de�ned:

E [u(x)℄ =

Z

+1

�1

u(x) f(x) dx (2.5)

=

Z

+1

�1

u(x) dF (x) ; f(x) 
ontinuous (2.6)

Properties of the expe
tation value:
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� If k is a 
onstant, then E [k℄ = k

� If k is a 
onstant and u a fun
tion of x, then E [ku℄ = kE [u℄

� If k

1

and k

2

are 
onstants and u

1

and u

2

are fun
tions of x, then

E [k

1

u

1

+ k

2

u

2

℄ = k

1

E [u

1

℄ + k

2

E [u

2

℄, i.e., E is a linear operator.

Note that some books, e.g., Barlow

1

, use the notation hu(x)i instead of E [u(x)℄.

2.1.6 Moments

Moments are 
ertain spe
ial expe
tation values. The m

th

moment is de�ned (think

of the moment of inertia) as

E [x

m

℄ =

Z

+1

�1

x

m

f(x) dx (2.7)

The moment is said to exist if it is �nite. The most 
ommonly used moment is the

(population or parent) mean,

� � E [x℄ =

Z

+1

�1

xf(x) dx (2.8)

The mean is often a good measure of lo
ation, i.e., it frequently tells roughly where

the most probable region is, but not always.

-

6

x

f(x)

�

-

6

x

f(x)

�

In statisti
s we will see that the sample mean, x, the average of the result of a

number of experiments, 
an be used to estimate the parent mean, �, the mean of

the underlying p.d.f.

Central moments are moments about the mean. The m

th


entral moment is

de�ned as

E [(x� �)

m

℄ =

Z

+1

�1

(x� �)

m

f(x) dx (2.9)

If � is �nite, the �rst 
entral moment is 
learly zero. If f(x) is symmetri
 about its

mean, all odd 
entral moments are zero.

The se
ond 
entral moment is 
alled the varian
e. It is denoted by V [x℄, �

2

x

,

or just �

2

.

�

2

x

� V [x℄ � E

h

(x� �)

2

i

(2.10)

= E

h

x

2

i

� �

2

(2.11)
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The square root of the varian
e, �, is 
alled the standard deviation. It is a measure

of the spread of the p.d.f. about its mean.

Sin
e all symmetri
al distributions have all odd 
entral moments zero, the odd


entral moments provide a measure of the asymmetry. The �rst 
entral moment is

zero. The third 
entral moment is thus the lowest order odd 
entral moment. One

makes it dimensionless by dividing by �

3

and de�ning the skewness as




1

�

E

h

(x� �)

3

i

�

3

(2.12)

This is the de�nition of Fisher, whi
h is the most 
ommon. However, be aware that

other de�nitions exist, e.g., the Pearson skewness,

�

1

�

0

�

E

h

(x� �)

3

i

�

3

1

A

2

= 


2

1

(2.13)

The sharpness of the peaking of the p.d.f. is measured by the kurtosis (also

spelled 
urtosis). There are two 
ommon de�nitions, the Pearson kurtosis,

�

2

�

E

h

(x� �)

4

i

�

4

(2.14)

and the Fisher kurtosis,




2

�

E

h

(x� �)

4

i

�

4

� 3 = �

2

� 3 (2.15)

The �3 makes 


2

= 0 for a Gaussian. For this reason, it is somewhat more 
on-

venient, and is the de�nition we shall use. A p.d.f. with 


2

> 0 (< 0) is 
alled

leptokurti
 (platykurti
) and is less (more) peaked than a Gaussian, i.e., having

higher (lower) tails.

Moments are often normalized in some other way than we have done with 


1

and 


2

, e.g., with the 
orresponding power of �:




k

�

E

h

x

k

i

�

k

; r

k

�

E

h

(x� �)

k

i

�

k

(2.16)

It 
an be shown that if all 
entral moments exist, the distribution is 
ompletely


hara
terized by them. In statisti
s we 
an estimate ea
h parent moment by its

sample moment (
f. se
tion 8.3.2) and so, in prin
iple, re
onstru
t the p.d.f.

Other attributes of a p.d.f.:

� mode: The lo
ation of a maximum of f(x). A p.d.f. 
an be multimodal.

� median: That value of x for whi
h the 
.d.f. F (x) =

1

2

. The median is not

always well de�ned, sin
e there 
an be more than one su
h value of x.
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.d.f.

-

6

1

1

2

x

F (x)

median

-

6

1

1

2

x

F (x)

medians

p.d.f.

-

6

x

f(x)

-

6

x

f(x)

\If any one imagines that he knows something,

he does not yet know as he ought to know."

|1 Corinthians 8:2

2.2 More on Probability

2.2.1 Conditional Probability

Suppose we restri
t the set of results of our experiment (observations or events) to

a subset A � 
. We denote the probability of an event E given this restri
tion by

P (E j A); we speak of \the probability of E given A." Clearly this `
onditional'

probability is greater than the probability without the restri
tion, P (E) (unless of


ourse A

�

, the 
omplement of A, is empty). The probability must be renormalized

su
h that the probability that the 
ondition is ful�lled is unity. The 
onditional

probability should have the following properties:
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P (A j A) = 1 renormalization

P (A

2

j A

1

) = P (A

1

\ A

2

j A

1

)

While the probability 
hanges with the restri
tion,

ratios of probabilities must not:

P (A

1

\ A

2

j A

1

)

P (A

1

j A

1

)

=

P (A

1

\ A

2

)

P (A

1

)




A

2

A

1

These requirements are met by the de�nition, assuming P (A

1

) > 0,

P (A

2

j A

1

) �

P (A

1

\ A

2

)

P (A

1

)

(2.17)

If P (A

1

) = 0, P (A

2

j A

1

) makes no sense. Nevertheless, for 
ompleteness we de�ne

P (A

2

j A

1

) = 0 if P (A

1

) = 0.

It 
an be shown that the 
onditonal probability satis�es the axioms of proba-

bility.

It follows from the de�nition that

P (A

1

\ A

2

) = P (A

2

j A

1

)P (A

1

)

If P (A

2

j A

1

) is the same for all A

1

, i.e., A

1

and A

2

are independent, then

P (A

2

j A

1

) = P (A

2

)

and P (A

1

\ A

2

) = P (A

1

)P (A

2

)

2.2.2 More than one r.v.

Joint p.d.f.

If the out
ome is more than one r.v., say X

1

and X

2

, then the experiment is a

sampling of a joint p.d.f., f(x

1

; x

2

), su
h that

P (x

1

< X

1

< x

1

+ dx

1

; x

2

< X

2

< x

2

+ dx

2

) = f(x

1

; x

2

) dx

1

dx

2

(2.18)

P (a < X

1

< b ; 
 < X

2

< d) =

Z

b

a

dx

1

Z

d




dx

2

f(x

1

; x

2

) (2.19)

Marginal p.d.f.

The marginal p.d.f. is the p.d.f. of just one of the r.v.'s; all dependen
e on the other

r.v.'s of the joint p.d.f. is integrated out:

f

1

(x

1

) =

Z

+1

�1

f(x

1

; x

2

) dx

2

(2.20)

f

2

(x

2

) =

Z

+1

�1

f(x

1

; x

2

) dx

1

(2.21)

Conditional p.d.f.
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-

6

X

1

X

2

x

1




Suppose that there are two r.v.'s, X

1

and X

2

, and

a spa
e of events 
.

Choosing a value x

1

ofX

1

restri
ts the possible

values of X

2

. Assuming f

1

(x

1

) > 0, then f(x

2

j

x

1

) is a p.d.f. of X

2

given X

1

= x

1

.

In the dis
rete 
ase, from the de�nition of 
on-

ditional probability (eq. 2.17), we have

f(x

2

j x

1

) � P (X

2

= x

2

j X

1

= x

1

) =

P (X

2

= x

2

\X

1

= x

1

)

P (X

1

= x

1

)

=

P (X

2

= x

2

; X

1

= x

1

)

P (X

1

= x

1

)

=

f(x

1

; x

2

)

f

1

(x

1

)

The 
ontinuous 
ase is, analogously,

f(x

2

j x

1

) =

f(x

1

; x

2

)

f

1

(x

1

)

(2.22)

Note that this 
onditional p.d.f. is a fun
tion of only one r.v., x

2

, sin
e x

1

is �xed.

Of 
ourse, a di�erent 
hoi
e of x

1

would give a di�erent fun
tion. A 
onditional

probability is then obviously 
al
ulated

P (a < X

2

< b j X

1

= x

1

) =

Z

b

a

f(x

2

j x

1

) dx

2

(2.23)

This may also be written P (a < X

2

< b j x

1

).

We 
an also 
ompute 
onditional expe
tations:

E [u (x

2

) j x

1

℄ =

Z

+1

�1

u(x

2

)f(x

2

j x

1

) dx

2

(2.24)

For example, the 
onditional mean, E [x

2

j x

1

℄,

or the 
onditional varian
e, E [(x

2

� E [x

2

j x

1

℄)

2

j x

1

℄.

The generalization to more than two variables is straightforward, e.g.,

f(x

2

; x

4

j x

1

; x

3

) =

f(x

1

; x

2

; x

3

; x

4

)

f

13

(x

1

; x

3

)

where f

13

(x

1

; x

3

) =

Z Z

f(x

1

; x

2

; x

3

; x

4

) dx

2

dx

4

2.2.3 Correlation

When an experiment results in more than one real number, i.e., when we are 
on-


erned with more than one r.v. and hen
e the p.d.f. is of more than one dimension,

the r.v.'s may not be independent. Here are some examples:
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� Let A =`It is Sunday', B =`It is raining'. The probability of rain on Sunday is

the same as the probability of rain on any other day. A and B are independent.

But if A =`It is De
ember', the situation is di�erent. The probability of rain

in De
ember is not the same as the probability of rain in all other months. A

and B are 
orrelated.

� If you spend 42 hours ea
h week at the university, the probability that at a

randomly 
hosen moment your head is at the university is

1

/

4

. Similarly, the

probability that your feet are at the university is

1

/

4

. The probability that

both your head and your feet are at the university is also

1

/

4

and not

1

/

16

; the

lo
ations of your head and your feet are highly 
orrelated.

� Abram and Lot were standing at a road jun
tion. The probability that Lot

would take the left-hand road was

1

/

2

. The probability that Abram would take

the left-hand road was also

1

/

2

. But the probability that they both would take

the left-hand road was zero.

17

� The Fermi theory allows us to 
al
ulate the energy spe
trum of the parti
les

produ
ed in �-de
ay, e.g., n! pe

�

�

e

, from whi
h we 
an 
al
ulate the prob-

ability that the proton will have more than, say

3

/

4

, of the available energy.

We 
an also 
al
ulate the probability that the ele
tron will have more than

3

/

4

of the available energy. But the probability that both the ele
tron and the

proton will have more than

3

/

4

of the available energy is zero. The energies

of the ele
tron and the proton are not independent. They are 
onstrained by

the law of energy 
onservation.

Given a two-dimensional p.d.f. (the generalization to more dimensions is straight-

forward), f(x; y), the mean and varian
e of X, �

X

and �

2

X

are given by

�

X

= E [X℄ =

Z

+1

�1

Z

+1

�1

xf(x; y) dxdy

�

2

X

= E

h

(X � �

X

)

2

i

A measure of the dependen
e of X on Y is given by the 
ovarian
e de�ned as


ov(X; Y ) � E [(X � �

X

)(Y � �

Y

)℄ (2.25)

= E [XY ℄� �

Y

E [X℄� �

X

E [Y ℄ + �

X

�

Y

= E [XY ℄� �

X

�

Y

(2.26)

From the 
ovarian
e we de�ne a dimensionless quantity, the 
orrelation 
oef-

�
ient

�

XY

�


ov(X; Y )

�

X

�

Y

(2.27)

If �

X

= 0, thenX � �

X

and 
onsequently E [XY ℄ = �

X

E [Y ℄ = �

X

�

Y

, whi
h means

that 
ov(X; Y ) = 0. In this 
ase the above de�nition would give � indeterminate,

and we de�ne �

XY

= 0.



2.2. MORE ON PROBABILITY 19

It 
an be shown that �

2

� 1, the equality holding if and only if X and Y are

linearly related. The proof is left to the reader (exer
ise 7).

Note that while the mean and the standard deviation s
ale, the 
orrelation


oeÆ
ient is s
ale invariant, e.g.,

�

2X

= 2�

X

and �

2X

= 2�

X

�

2X;Y

=


ov(2X; Y )

�

2X

�

Y

=

2 
ov(X; Y )

2�

X

�

Y

The 
orrelation 
oeÆ
ient �

XY

is a measure of how mu
h the variables X and Y

depend on ea
h other. It is most useful when the 
ontours of 
onstant probability

density, f(x; y) = k, are roughly ellipti
al, but not so useful when these 
ontours

have strange shapes:

-

6

X

Y

� > 0

-

6

X

Y

� < 0

-

6

X

Y

� � 0

In the last 
ase, even though X and Y are 
learly related, � � 0. This 
an be seen

as follows:

E [(X � �

X

) j y℄ =

Z

(x� �

X

)f(x j y) dx

=

Z

(x� �

X

)

f(x; y)

f

Y

(y)

dx

= 0 for all y

Thus, the mean value of X is independent of y. Then,


ov(X; Y ) = E [(X � �

X

) (Y � �

Y

)℄

=

Z

(y � �

Y

)

Z

(x� �

X

)f(x; y) dx

| {z }

=0

dy

= 0

Consequently, �

XY

= 0.
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However, if we 
hange variables, e.g.,

by rotating, �, i.e., �

X

0

Y

0

, will no longer

be 0.

-

6

X

0

Y

0

� > 0

Also in the ellipti
al 
ase, su
h a 
hange in variables 
an make � = 0.

-

6

X

Y

� > 0

-

-

6

X

0

Y

0

� = 0

In fa
t, it is always possible (also in n dimensions) to remove the 
orrelation by a


hange of variables (
f. se
tion 2.2.7).

The 
orrelation 
oeÆ
ient, �, measures the average linear 
hange in the marginal

p.d.f. of one variable for a spe
i�ed 
hange in the other variable. This 
an be 0 even

when the variables 
learly depend on ea
h other. This o

urs when a 
hange in one

variable produ
es a 
hange in the marginal p.d.f. of the other variable but no 
hange

in its average, only in its shape. Thus zero 
orrelation does not imply independen
e.

2.2.4 Dependen
e and Independen
e

We know from the de�nitions of 
onditional and marginal p.d.f.'s that

f(x

1

; x

2

) = f(x

2

j x

1

)f

1

(x

1

) (2.28)

and f

2

(x

2

) =

Z

f(x

1

; x

2

) dx

1

Hen
e f

2

(x

2

) =

Z

f(x

2

j x

1

)f

1

(x

1

) dx

1

Now suppose that f(x

2

j x

1

) does not depend on x

1

, i.e., is the same for all x

1

.

Then

f

2

(x

2

) = f(x

2

j x

1

)

Z

f

1

(x

1

) dx

1

| {z }

=1; normalization

= f(x

2

j x

1

)

Substituting this in (2.28) gives

f(x

1

; x

2

) = f

1

(x

1

)f

2

(x

2

)
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The joint p.d.f. is then just the produ
t of the marginal p.d.f.'s. We take this as

the de�nition of independen
e:

r.v.'s X

1

and X

2

are independent � f(x

1

; x

2

) = f

1

(x

1

)f

2

(x

2

)

r.v.'s X

1

and X

2

are dependent � f(x

1

; x

2

) 6= f

1

(x

1

)f

2

(x

2

)

We 
an easily derive two theorems:

Theorem: X

1

and X

2

are independent r.v.'s with joint p.d.f. f(x

1

; x

2

) if and only

if f(x

1

; x

2

) = g(x

1

)h(x

2

) with g(x

1

) � 0 and h(x

2

) � 0 for all x

1

; x

2

2 
.

=) From the de�nition of independen
e, f 
an be written as the produ
t of

the marginal p.d.f.'s, whi
h ful�ll the requirement of being positive for

all x

1

; x

2

2 
.

(= Assume f(x

1

; x

2

) = g(x

1

)h(x

2

) with g and h positive. Then the marginal

distributions are

f

1

(x

1

) =

Z

g(x

1

) h(x

2

) dx

2

= g(x

1

)

Z

h(x

2

) dx

2

= 
 g(x

1

)

and f

2

(x

2

) =

Z

g(x

1

) h(x

2

) dx

1

= h(x

2

)

Z

g(x

1

) dx

1

= d h(x

2

)

Hen
e, f(x

1

; x

2

) = g h =

1


d

f

1

(x

1

)f

2

(x

2

)

And, sin
e f

1

and f

2

are normalized to 1, 
d = 1. Q.E.D.

Note that g and h do not have to be the marginal p.d.f.'s; the only requirement

is that their produ
t equal the produ
t of the marginals.

Theorem: If X

1

and X

2

are independent r.v.'s with marginal p.d.f.'s f

1

(x

1

) and

f

2

(x

2

), then for fun
tions u(x

1

) and v(x

2

), assuming all E's exist,

E [u (x

1

) v (x

2

)℄ = E [u (x

1

)℄E [v (x

2

)℄

=) From the de�nition of expe
tation, and sin
e X

1

and X

2

are independent,

E [u (x

1

) v (x

2

)℄ =

Z Z

u(x

1

) v(x

2

) f(x

1

; x

2

) dx

1

dx

2

=

Z

u(x

1

) f

1

(x

1

) dx

1

Z

v(x

2

) f

2

(x

2

) dx

2

=

Z Z

u(x

1

) f(x

1

)f(x

2

)

| {z }

=f(x

1

;x

2

)

dx

1

dx

2

Z Z

v(x

2

) f(x

2

)f(x

1

)

| {z }

=f(x

1

;x

2

)

dx

2

dx

1

= E [u(x

1

)℄E [v(x

2

)℄

A 
onsequen
e of this last theorem is that X

1

, X

2

independent implies


ov(x

1

; x

2

) � E [(x

1

� �

1

) (x

2

� �

2

)℄ = E [x

1

� �

1

℄E [x

2

� �

2

℄ = 0

But the 
onverse is not true.



22 CHAPTER 2. PROBABILITY

2.2.5 Chara
teristi
 Fun
tion

So far we have only 
onsidered real r.v.'s. But from two real r.v.'s we 
an 
onstru
t

a 
omplex r.v., Z = X + {Y with expe
tation E [Z℄ = E [X℄ + {E [Y ℄

The 
hara
teristi
 fun
tion of the p.d.f. f(x) is de�ned as the expe
tation of the


omplex quantity e

{tx

, t real:

�(t) = E

h

e

{tx

i

=

(

R

+1

�1

e

{tx

f(x) dx (X 
ontinuous)

P

k

e

{tx

k

f(x

k

) (X dis
rete)

(2.29)

For X 
ontinuous, �(t) is the Fourier integral of f(x).

The 
hara
teristi
 fun
tion 
ompletely determines the p.d.f., sin
e by inverting

the Fourier transformation we regain f(x):

f(x) =

1

2�

Z

+1

�1

�(t)e

�{xt

dt (2.30)

From the de�nition, it is 
lear that �(0) = 1 and j�(t)j � 1.

The 
umulative distribution fun
tion, or indeed the probability for any interval

[x

min

; x℄, 
an also be found from �(t):

F (x) =

Z

x

x

min

f(x) dx =

Z

x

x

min

1

2�

Z

+1

�1

�(t)e

�{xt

dt dx

=

1

2�

Z

+1

�1

�(t)

Z

x

x

min

e

�{xt

dx dt

=

1

2�

Z

+1

�1

�(t)

�

1

�{t

�

�

e

�{xt

� e

�{x

min

t

�

dt

=

{

2�

Z

+1

�1

e

�{xt

� e

�{x

min

t

t

�(t) dt

In the dis
rete 
ase, f(x

k

) is given by the di�eren
e in the probability of adja
ent

values of x,

f(x

k

) = F (x

k

)� F (x

k�1

)

=

{

2�

Z

+1

�1

e

�{tx

k

� e

�{tx

k�1

t

�(t) dt

The 
hara
teristi
 fun
tion is parti
ularly useful in 
al
ulating moments. Dif-

ferentiating �(t) with respe
t to t and evaluating the result at t = 0 gives

d

q

�(t)

dt

q

�

�

�

�

�

t=0

=

Z

+1

�1

({x)

q

e

0

f(x) dx = {

q

E [x

q

℄

The 
hara
teristi
 fun
tion 
an also be written in terms of the moments by

means of a Taylor expansion.

�(t) = E

h

e

{tx

i

= E

"

1

X

r=0

({tx)

r

r!

#

=

1

X

r=0

({t)

r

r!

E [x

r

℄ (2.31)
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Some authors prefer, espe
ially for dis
rete r.v.'s, to use the probability gener-

ating fun
tion instead of the 
hara
teristi
 fun
tion. It is in fa
t the same thing,

just repla
ing e

{t

by z:

G(z) = E [z

x

℄ =

(

R

+1

�1

z

x

f(x) dx

P

k

z

x

k

f(x

k

)

The moments are then found by di�erentiating with respe
t to z and evaluating at

z = 1,

G

0

(1) =

dG(z)

dz

�

�

�

z=1

=

R

+1

�1

xz

x�1

f(x) dx

�

�

�

z=1

= E [x℄

G

00

(1) =

d

2

G(z)

dz

2

�

�

�

z=1

=

R

+1

�1

x(x� 1)z

x�2

f(x) dx

�

�

�

z=1

= E [x(x� 1)℄ = E [x

2

℄� E [x℄

Thus the varian
e is given by

V [x℄ = E

h

x

2

i

� (E [x℄)

2

= G

00

(1) +G

0

(1)� [G

0

(1)℄

2

Another appli
ation of the 
hara
teristi
 fun
tion is to �nd the p.d.f. of sums

of independent r.v.'s. Let x and y be r.v.'s. Then w = x + y is also an r.v. The


hara
teristi
 fun
tion of w is

�

w

(t) = E

h

e

{tw

i

= E

h

e

{t(x+y)

i

= E

h

e

{tx

e

{ty

i

If x and y are independent, this be
omes

�

w

(t) = E

h

e

{tx

i

E

h

e

{ty

i

= �

x

(t)�

y

(t) (2.32)

Thus the 
hara
teristi
 fun
tion of the sum of independent r.v.'s is just the produ
t

of the individual 
hara
teristi
 fun
tions.

2.2.6 Transformation of variables

We will treat the two-dimensional 
ase. You 
an easily generalize to N dimensions.

Continuous p.d.f.

Given r.v.'s X

1

, X

2

from a p.d.f. f(x

1

; x

2

) de�ned on a set A, we transform (X

1

; X

2

)

to (Y

1

; Y

2

). Under this transformation the set A maps onto the set B.

-

6

a

A

X

1

X

2

-

-

6

b

B

Y

1

Y

2
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Let a � A be a small subset whi
h the transformation maps onto b � B, i.e.,

(X

1

; X

2

) 2 a! (Y

1

; Y

2

) 2 b su
h that P (a) = P (b)

Then P [(Y

1

; Y

2

) 2 b℄ = P [(X

1

; X

2

) 2 a℄ =

Z

a

Z

f(x

1

; x

2

) dx

1

dx

2

The transformation is given by

y

1

= u

1

(x

1

; x

2

)

y

2

= u

2

(x

1

; x

2

)

The transformation must be one-to-one. Then a unique inverse transformation

exists:

x

1

= w

1

(y

1

; y

2

)

x

2

= w

2

(y

1

; y

2

)

(A
tually the 
ondition of one{to{one 
an be relaxed in some 
ases.) Assume also

that all �rst derivatives of w

1

and w

2

exist. Then

P (a) = P (b)

Z

a

Z

f(x

1

; x

2

) dx

1

dx

2

=

Z

b

Z

f (w

1

(y

1

; y

2

); w

2

(y

1

; y

2

)) jJ j dy

1

dy

2

where J is the Ja
obian determinant (assumed known from 
al
ulus) and the abso-

lute value is taken to ensure that the probability is positive,

J = J

 

w

1

; w

2

y

1

; y

2

!

=

�

�

�

�

�

�

�w

1

�y

1

�w

2

�y

1

�w

1

�y

2

�w

2

�y

2

�

�

�

�

�

�

(2.33)

Hen
e the p.d.f. in (Y

1

; Y

2

) is the p.d.f. in (X

1

; X

2

) times the Ja
obian:

g(y

1

; y

2

) = f (w

1

(y

1

; y

2

) ; w

2

(y

1

; y

2

)) jJ j (2.34)

Dis
rete p.d.f.

This is a
tually easier, sin
e we 
an take the subsets a and b to 
ontain just one

point. Then

P (b) = P (Y

1

= y

1

; Y

2

= y

2

) = P (a) = P (X

1

= x

1

= w

1

(y

1

; y

2

); X

2

= w

2

(y

1

; y

2

))

g(y

1

; y

2

) = f(w

1

(y

1

; y

2

) ; w

2

(y

1

; y

2

))

Note that there is no Ja
obian in the dis
rete 
ase.
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2.2.7 Multidimensional p.d.f. { matrix notation

In this se
tion we present the ve
tor notation we will use for multidimensional

p.d.f.'s. An n-dimensional random variable, i.e., the 
olle
tion of the n r.v.'s

x

1

; x

2

; : : : ; x

n

is denoted by an n-dimensional 
olumn ve
tor and its transpose by a

row ve
tor:

x =

0

B

B

B

�

x

1

x

2

.

.

.

x

n

1

C

C

C

A

x

T

= (x

1

x

2

: : : x

n

) (2.35)

If the r.v. x is distributed a

ording to the p.d.f. f(x), the 
.d.f. is

F (x) =

Z

x

1

�1

: : :

Z

x

n

�1

f(x) dx ; dx = dx

1

dx

2

: : : dx

n

The p.d.f. and the 
.d.f. are related by

f(x) =

�

n

�x

1

�x

2

: : : �x

n

F (x)

The moments about the origin of order l

1

; l

2

; : : : ; l

n

are

�

l

1

;l

2

;:::;l

n

= E

h

x

l

1

1

; x

l

2

2

; : : : ; x

l

n

n

i

=

Z

1

�1

: : :

Z

1

�1

x

l

1

1

x

l

2

2

� � �x

l

n

n

f(x) dx

The mean of a parti
ular r.v., e.g., x

2

, is

�

2

= �

010:::0

These means 
an be written as a ve
tor, the mean of x:

� =

0

B

B

B

B

�

�

1

�

2

.

.

.

�

n

1

C

C

C

C

A

Moments about the mean are

�

l

1

;l

2

;:::;l

n

= E

h

(x

1

� �

1

)

l

1

(x

2

� �

2

)

l

2

: : : (x

n

� �

n

)

l

n

i

The varian
es are, e.g.,

�

2

1

= �

2

(x

1

) = �

200:::00

= E

h

(x

1

� �

1

)

2

i

and the 
ovarian
es

�

ij

= 
ov(x

i

; x

j

) = E [(x

i

� �

i

)(x

j

� �

j

)℄ ; i 6= j

e.g., 
ov(x

1

; x

2

) = �

1100:::00
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The varian
es and 
ovarian
es may be written as a matrix, 
alled the 
ovarian
e

(or varian
e) matrix:

V = E

h

(x� �)(x� �)

T

i

=

0

B

B

B

�

�

11

�

12

: : : �

1n

�

21

�

22

: : : �

2n

.

.

.

.

.

.

.

.

.

.

.

.

�

n1

�

n2

: : : �

nn

1

C

C

C

A

(2.36)

=

0

B

B

B

B

�

�

2

1

�

12

�

1

�

2

: : :

�

12

�

1

�

2

�

2

2

: : :

.

.

.

.

.

.

.

.

.

�

1n

�

1

�

n

�

2n

�

2

�

n

: : :

1

C

C

C

C

A

(2.37)

where �

ij

is the 
orrelation 
oeÆ
ient for r.v.'s x

i

and x

j

:

�

ij

�

�

ij

�

i

�

j

=


ov(x

i

; x

j

)

q

�

2

i

�

2

j

(2.38)

The 
ovarian
e matrix is 
learly symmetri
 (�

ji

= �

ij

). As is well known in

linear algebra, it is always possible to �nd a unitary transformation, U , of the r.v.

x to the r.v. y = U x su
h that the 
ovarian
e matrix of y, V

h

y

i

= U V [x℄U

T

, is

diagonal, whi
h means that the y

i

are un
orrelated.

2.3 Bayes' theorem

A \ B = B \ A. Hen
e, P (A \ B) = P (B \ A). From the de�nition of 
onditional

probability, eq. (2.17), P (A j B) � P (A \B)=P (B), it then follows that

P (A j B)P (B) = P (B j A)P (A) (2.39)

This simple theorem

�

of Rev. Thomas Bayes

18

is quite inno
uous. However it

has far-rea
hing 
onsequen
es in one interpretation of probability, as we shall see

in the next se
tion.

\When I use a word," Humpty Dumpty said in a

rather s
ornful tone, \it means just what I


hoose it to mean|neither more nor less."

|Lewis Carroll, \Through the Looking Glass"

�

Sometimes 
alled the 
hain rule of probability, this theorem was �rst formulated by Rev. Bayes

around 1759. The exa
t date is not known; the paper was published posthumously by his good

friend Ri
hard Pri
e in 1763. Bayes' formulation was only for P (A) uniform. The theorem was

formulated in its present form by Lapla
e,

19

who was apparently unaware of Bayes' work. Lapla
e
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2.4 Probability|What is it?, revisited

We have used mathemati
al probability, whi
h is largely due to Kolmogorov, to

derive various properties of probability. In our minds we have so far an idea of what

probability means, whi
h we refer to as the frequen
y approa
h. In this se
tion we

shall �rst review these two topi
s and then dis
uss another interpretation of the

meaning of probability, whi
h we shall 
all subje
tive probability.

2.4.1 Mathemati
al probability (Kolmogorov)

In this approa
h

21

we began with three axioms, from whi
h we 
an derive everything.

We 
an 
al
ulate the probability of any 
ompli
ated event for whi
h we know the

a priori probabilities of its 
omponents. But this is simply mathemati
s. What

probability really means requires a 
onne
tion to the real world. As Bayes wrote,

22

It is not the business of the Mathemati
ian to dispute whether quantities

do in fa
t ever vary in the manner that is supposed, but only whether

the notion of their doing so be intelligible; whi
h being allowed, he has

the right to take it for granted, and then to see what dedu
tions he


an make from that supposition... He is not inquiring how things are in

matter of fa
t, but supposing things to be in a 
ertain way, what are the


onsequen
es to be dedu
ed from them; and all that is to be demanded

of him is, that his suppositions be intelligible, and his inferen
es just

from the suppositions he makes.

Bertrand Russel put it somewhat more su

in
tly:

Mathemati
s is the only s
ien
e where one never knows what one is

talking about nor whether what is said is true.

2.4.2 Empiri
al or Frequen
y interpretation (von Mises)

In this approa
h, largely due to von Mises,

23

probability is viewed as the limit of the

frequen
y of a result of an experiment or observation when the number of identi
al

experiments is very large, i.e.,

P (x

i

) = lim

N!1

N

i

N

(2.40)

There are two short
omings to this approa
h:

� P (x

i

) is not just a property of the experiment. It also depends on the \
olle
-

went on to apply

20

it to problems in 
elestial me
hani
s, medi
al statisti
s and even, a

ording to

some a

ounts, to jurispruden
e.
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tive" or \ensemble", i.e., on the N repetitions of the experiment. For example,

if I take a resistor out of a box of resistors, the probability that I measure the

resistan
e of the resistor as 1 ohm depends not only on how the resistor was

made, but also on how all the other resistors in the box were made.

� The experiment must be repeatable, under identi
al 
onditions, but with dif-

ferent out
omes possible. This is a great restri
tion on the number of situa-

tions in whi
h we 
an use the 
on
ept of probability. For example, what is

the probability that it will rain tomorrow? Su
h a question is meaningless for

the frequentists, sin
e the experiment 
annot be repeated!

2.4.3 Subje
tive (Bayesian) probability

This approa
h attempts to extend the notion of probability to the areas where the

experiment of the frequentists 
annot be repeated. Probability here is a subje
tive

\degree of belief" whi
h 
an be modi�ed by observations. This was, in fa
t, the

interpretation of su
h pioneers in probability as Bayes and Lapla
e.

This approa
h takes Bayes' theorem (2.39), whi
h we repeat here,

P (A j B)P (B) = P (B j A)P (A)

and interprets A as a theory or hypothesis and B as a result or observation. P (A)

is then the probability that A is true, or, in other words, our \belief" in the theory.

Then Bayes' theorem be
omes

P (theory j result)P (result) = P (result j theory)P (theory)

Then

P (theory j result) =

P (result j theory)

P (result)

P (theory)

Here, P (theory) is our \belief" in the theory before doing the experiment, P (result j

theory) is the probability of getting the result if the theory is true, P (result) is the

probability of getting the result irrespe
tive of whether the theory is true or not,

and P (theory j result) is our belief in the theory after having obtained the result.

This seems to make sense. We see that if the theory predi
ts the result with

high probability, i.e., P (result j theory) big, then P (theory j result), i.e., your belief

in the theory after the result, will be higher than it was before, P (theory), and vi
e

versa. However, if the result is likely even if the theory is not true, then your belief

in the theory will not in
rease by very mu
h sin
e then

P (resultjtheory)

P (result)

is not mu
h

greater than 1.

Suppose we want to determine some parameter of nature, �, by doing an ex-

periment whi
h has out
ome Z. Further, suppose we know the 
onditional p.d.f. to

get Z given �: f(z j �). Our prior, i.e., before we do the experiment, belief about

� is given by P

prior

(�). Now the probability of z, P (z), is just the marginal p.d.f.:
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f

1

(z) =

P

�

0

f(z j �

0

)P

prior

(�

0

). Then by Bayes' theorem,

P

posterior

(� j z) =

f(z j �)

f

1

(z)

P

prior

(�) (2.41)

Or, if � is a 
ontinuous variable, whi
h in physi
s is most often the 
ase,

f

posterior

(� j z) =

f(z j �)

f

1

(z)

f

prior

(�) (2.42)

where f

1

(z) =

R

f(z j �

0

) f

prior

(�

0

) d�

0

.

Given P

prior

(�) this is all OK. The problem here is: What is P

prior

(�)? By its

nature this is not known. Guessing the prior probability is 
learly subje
tive and

uns
ienti�
. The usual pres
ription is

Bayes' Postulate: If 
ompletely ignorant about P

prior

(�), take all values of � as

equiprobable.

There are obje
tions to this postulate:

� If we are 
ompletely ignorant about P (�), how do we know P

prior

(�) is a


onstant?

� A di�erent 
hoi
e of P

prior

(�) would give a di�erent P

posterior

.

� If we are ignorant about P (�), we are also ignorant about P (�

2

) or P (

p

�)

or P (1=�). Taking any of these as 
onstant would imply a di�erent P

prior

(�),

giving a di�erent posterior probability.

These obje
tions are usually answered by the assertion (supported by experien
e)

that P

posterior

usually 
onverges to about the same value after several experiments

irrespe
tive of the initial 
hoi
e of P

prior

.

2.4.4 Are we frequentists or Bayesians?

First we note that it is in the sense of frequen
ies that the word `probability' is used

in quantum me
hani
s and statisti
al physi
s. Turning to experimental results,

in the physi
al s
ien
es, most experiments are, in prin
iple, repeatable and the

problem 
an be stated to spe
ify the \
olle
tive". So the frequentist interpretation

is usually OK for us. Given the obje
tions we have seen in the Bayesian approa
h,

parti
ularly that of subje
tivity, most physi
ists today, like mathemati
ians starting

in the mid-nineteenth 
entury, would 
laim to be frequentists.

However in interpreting experimental results we often sound like Bayesians. For

example, you measure the mass of the ele
tron to be 520 � 10 keV=


2

, i.e., you

measured 520 keV=


2

with an apparatus with a resolution of 10 keV=


2

. You might

then say \The mass of the ele
tron is probably 
lose to 520 keV=


2

." Or you might

say \The mass of the ele
tron is between 510 and 530 keV=


2

with 68% probability.
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But this is not the frequentist's probability|the experiment has not been repeated

an in�nite or even a large number of times. It sounds mu
h more like a Bayesian

probability: With a resolution, or `error', of � = 10 keV=


2

, the probability that we

will measure a mass m when the true value is m

e

is

P (m j m

e

) / e

�(m�m

e

)

2

=2�

2

Then by Bayes' theorem, the probability that the true mass has the value m

e

after

we have measured a value m is

P (m

e

j m) =

P (m j m

e

)

P (m)

P

prior

(m

e

)

/ P (m j m

e

) assuming P

prior

(m

e

) = 
onst:

/ e

�(m�m

e

)

2

=2�

2

In a frequentist interpretation of probability, the statement that the ele
tron

has a 
ertain mass with a 
ertain probability is utter nonsense. The ele
tron has

a de�nite mass: The probability that it has that mass is 1; the probability that it

has some other value is 0. Our only problem is that we do not know what the value

is. We 
an, nevertheless, make the statement \The mass of the ele
tron is between

510 and 530 keV=


2

with 68% 
on�den
e." Note that this di�ers from the Bayesian

statement above by just one word. This will be dis
ussed further in the se
tions

on maximum likelihood (se
t. 8.2.4) and 
on�den
e intervals (se
t. 9), where what

exa
tly we mean by the word 
on�den
e will be explained.

�

\That's a great deal to make one word mean,"

Ali
e said in a thoughtful tone.

\When I make a word do a lot of work like that,"

said Humpty Dumpty, \I always pay it extra."

|Lewis Carroll, \Through the Looking Glass"

�

Fisher

24

, introdu
ing his pres
ription for 
on�den
e intervals, had this s
athing 
omment on

Bayesian probability (referred to as inverse probability):

I know only one 
ase in mathemati
s of a do
trine whi
h has been a

epted and

developed by the most eminent men of their time, and is now perhaps a

epted by

men now living, whi
h at the same time has appeared to a su

ession of sound writers

to be fundamentally false and devoid of foundation. Yet that is quite exa
tly the

position in respe
t of inverse probability. Bayes, who seems to have �rst attempted

to apply the notion of probability, not only to e�e
ts in relation to their 
auses but

also to 
auses in relation to their e�e
ts, invented a theory, and evidently doubted its

soundness, for he did not publish it during his life. It was posthumously published by

Pri
e, who seems to have felt no doubt of its soundness. It and its appli
ations must

have made great headway during the next 20 years, for Lapla
e takes for granted in a

highly generalised form what Bayes tentatively wished to postulate in a spe
ial 
ase.



Chapter 3

Some spe
ial distributions

We now examine some distributions whi
h are frequently en
ountered in physi
s

and/or statisti
s. We begin with dis
rete distributions.

3.1 Bernoulli trials

A Bernoulli trial is an experiment with two possible out
omes, e.g., the toss of a


oin. The random variable is the out
ome of the experiment, k:

out
ome probability

`su

ess', k = 1 p

`failure', k = 0 q = 1� p

The p.d.f. is

f(k; p) = p

k

q

1�k

(3.1)

Note that we use a semi
olon to separate the r.v. k from the parameter of the

distribution, p. This p.d.f. results in the moments and 
entral moments:

E [k

m

℄ = 1 � p + 0 � (1� p) = p

E [(k � �)

m

℄ = (1� p)

m

p

| {z }

k=1

+ (0� p)

m

(1� p)

| {z }

k=0

In parti
ular,

� = p

V [k℄ = E

h

k

2

i

� (E [k℄)

2

= p� p

2

= p(1� p)

31
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3.2 Binomial distribution

The binomial distribution gives the probability of k su

esses (ones) in n inde-

pendent Bernoulli trials ea
h having a probability p of su

ess. We denote this

distribution by B(k;n; p). The probability of k su

esses followed by n� k failures

is p

k

q

n�k

. But the order of the su

esses and failures is unimportant. There are

�

n

k

�

=

n!

k!(n�k)!

di�erent permutations. Therefore the p.d.f. is given by

B(k;n; p) =

 

n

k

!

p

k

(1� p)

n�k

(3.2)

It has the following properties:

� = E [k℄ = np (mean)

�

2

= V [k℄ = np(1� p) (varian
e)




1

=

1�2p

p

np(1�p)

(skewness)




2

=

1�6p(1�p)

np(1�p)

(kurtosis)

�(t) = [pe

{t

+ (1� p)℄

n

(
hara
teristi
 fun
tion)

We will derive the �rst of these properties and leave the rest as exer
ises.

� = E [k℄ =

n

X

k=0

kB(k;n; p) =

n

X

k=0

k

 

n

k

!

p

k

(1� p)

n�k

=

n

X

k=0

k

n!

k!(n� k)!

p

k

(1� p)

n�k

= np

n

X

k=1

k

(n� 1)!

k(k � 1)!(n� k)!

p

k�1

(1� p)

n�k

k = 0 term is 0

= np

n

0

X

k

0

=0

n

0

!

k

0

!(n

0

� k

0

)!

p

k

0

(1� p)

n

0

�k

0

| {z }

=[p+(1�p)℄

n

0

=1

with n

0

= n� 1; k

0

= k � 1

= np

Many distributions have a reprodu
tive property, i.e., the p.d.f. of the sum of

two or more independent r.v.'s, ea
h distributed a

ording to the same p.d.f., is the

same p.d.f. as for the individual r.v.'s although (usually) with di�erent parameters.

Let X, Y be independent r.v.'s both distributed a

ording to a binomial p.d.f.

with parameter p. Thus

f(x; y) = B(x;n

x

; p)B(y;n

y

; p) =

 

n

x

x

!

p

x

(1� p)

n

x

�x

 

n

y

y

!

p

y

(1� p)

n

y

�y

What is then the p.d.f. of the r.v. X+Y ? We 
hange variables and, for 
onvenien
e,

introdu
e new parameters:

new variables Z

1

= X + Y Z

2

= Y

inverse transformation X = Z

1

� Z

2

Y = Z

2

new parameters n

z

1

= n

x

+ n

y

n

z

2

= n

y
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The p.d.f. for the new variables is then

g(z

1

; z

2

) = f(z

1

� z

2

; z

2

)

=

 

n

z

1

� n

z

2

z

1

� z

2

! 

n

z

2

z

2

!

p

z

1

(1� p)

n

z

1

�z

1

The p.d.f. for Z

1

= X + Y is the marginal of this. Hen
e we must sum over z

2

.

g

1

(z

1

) =

X

z

2

g(z

1

; z

2

) = p

z

1

(1� p)

n

z

1

�z

1

X

z

2

 

n

z

1

� n

z

2

z

1

� z

2

! 

n

z

2

z

2

!

For normalization the sum must be just

�

n

z

1

z

1

�

. Thus g

1

is also a binomial p.d.f.:

g

1

(x + y) = B(z

1

;n

z

1

; p) = B(x + y;n

x

+ n

y

; p)

3.3 Multinomial distribution

This is the generalization of the binomial distribution to more than two out
omes.

Let there be m di�erent out
omes, with probabilities p

i

. Consider n experiments

and let k

i

denote the number of experiments having out
ome i. The p.d.f. is then

M(k

1

; k

2

; : : : ; k

m

; p

1

; p

2

; : : : ; p

m

; n) =

n!

k

1

!k

2

! : : : k

m

!

p

k

1

1

p

k

2

2

: : : p

k

m

m

(3.3)

subje
t to the 
onditions

m

X

i=1

p

i

= 1 and

m

X

i=1

k

i

= n

We 
an write the multinomial p.d.f. in a more 
ondensed form:

M(k; p; n) = n!

m

Y

i=1

p

k

i

i

k

i

!

(3.4)

An example of appli
ation of this p.d.f. is a histogram of m bins with a prob-

ability of p

i

that the out
ome of an experiment will be in the i

th

bin. Then for n

experiments, the probability that the numbers of entries in the bins will be given

by the k

i

is given by the multinomial p.d.f.

To 
al
ulate expe
tation values we make use of the binomial p.d.f.: For a given

bin, either an out
ome is in it (probability p

i

) or not (probability 1� p

i

=

P

j 6=i

p

j

).

This is just the 
ase of the binomial p.d.f. In other words, the marginal p.d.f. of

the multinomial is the binomial. Hen
e,

�

i

= E [k

i

℄ = np

i

�

2

i

= V [k

i

℄ = np

i

(1� p

i

)
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Further, 
ov(k

i

; k

j

) = �np

i

p

j

i 6= j

The 
orrelation 
oeÆ
ient is then

�

ij

=


ov(k

i

; k

j

)

�

i

�

j

= �

s

p

i

1� p

i

p

j

1� p

j

The 
orrelation 
omes about be
ause n is �xed:

P

k

i

= n. The k

i

are thus not

independent. If n is not �xed, i.e., n is a r.v., the bin 
ontents are not 
orrelated.

But then we do not have the multinomial p.d.f. but the Poisson p.d.f. for ea
h bin.

The 
hara
teristi
 fun
tion of the multinomial p.d.f. is

�(t

2

; t

3

; : : : ; t

m

) =

�

p

1

+ p

2

e

{t

2

+ p

3

e

{t

3

+ : : :+ p

m

e

{t

m

�

n

3.4 Poisson distribution

This p.d.f. applies to the situation where we dete
t events but do not know the

number of trials. An example is a radioa
tive sour
e where we dete
t the de
ays

but do not dete
t the non-de
ays. The events are 
ounted as a fun
tion of some

parameter x, e.g., the time of a de
ay. The probability of an event in an interval

�x is assumed proportional to �x.

Now make �x so small that the probability of more than one event in the interval

�x is negligible. Consider n su
h intervals. Let � be the probability of an event

in the total interval n�x. Assume � 6= �(x). Then the probability of an event in

�x is p = �=n. The probability of r events in the total interval, i.e., r of the n

subintervals 
ontain one event, is given by the binomial p.d.f.

P (r;�) = B

 

r;n;

�

n

!

=

n!

r!(n� r)!

 

�

n

!

r

 

1�

�

n

!

n�r

Now

n!

(n�r)!

= n(n� 1)(n� 2) : : : (n� r + 1) r terms

� n

r

sin
e n >> r

and

�

1�

�

n

�

n�r

�

�

1�

�

n

�

n

�!

n!1

e

��

Hen
e, we arrive at the expression for the Poisson p.d.f.:

P (r;�) =

e

��

�

r

r!

We 
an 
he
k that P (r;�) is properly normalized:

1

X

r=0

P (r;�) = e

��

1

X

r=0

�

r

r!

= e

��

e

�

= 1
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The mean is

� = E [r℄ =

1

X

r=0

re

��

�

r

r!

= �e

��

1

X

r=1

�

r�1

(r � 1)!

= �e

��

1

X

r

0

=0

�

r

0

r

0

!

r

0

= r � 1

= �

1

X

r

0

=0

P (r

0

;�)

= �

Hen
e the Poisson p.d.f. is usually written

P (r;�) =

e

��

�

r

r!

(3.5)

It gives the probability of getting r events if the expe
ted number (mean) is �.

Further, you 
an easily show that the varian
e is equal to the mean:

�

2

r

= V [r℄ = � (3.6)

Other properties:




1

=

E

[

(r��)

3

℄

�

3

=

�

�

3=2

=

1

p

�

(skewness)




2

=

E

[

(r��)

4

℄

�

4

=

3�

2

+�

�

2

� 3 =

1

�

(kurtosis)

�(t) =

P

1

r=0

e

{tr

P (r;�) =

P

1

r=0

e

{tr

�

r

r!

e

��

= e

��

P

1

r=0

(�e

{t

)

r

r!

= e

��

exp (�e

{t

)

�(t) = exp [� (e

{t

� 1)℄ (
hara
teristi
 fun
tion)

From the skewness we see that the p.d.f. be
omes more symmetri
 as � in
reases.

When 
al
ulating a series of Poisson probabilities, one 
an make use of the

re
urren
e formula P (r + 1) =

�

r+1

P (r).

Reprodu
tive property

The Poisson p.d.f. has a reprodu
tive property: For independent r.v.'s X and Y ,

both Poisson distributed, the joint p.d.f. is

f(x; y) =

�

x

x

�

y

y

e

��

x

e

��

y

x!y!

x; y = 0; 1; 2; 3; : : :

To �nd the p.d.f. of X + Y we 
hange variables

new variables Z

1

= X + Y Z

2

= Y

inverse transformation X = Z

1

� Z

2

Y = Z

2
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The joint p.d.f. of the new variables is then

g(z

1

; z

2

) =

�

z

1

�z

2

x

�

z

2

y

e

��

x

e

��

y

(z

1

� z

2

)!z

2

!

The marginal p.d.f. for z

1

is (using the fa
t that 0 � z

2

� z

1

)

g

1

(z

1

) =

z

1

X

z

2

=0

g(z

1

; z

2

) =

e

��

x

��

y

z

1

!

z

1

X

z

2

=0

z

1

!

(z

1

� z

2

)!z

2

!

�

z

1

�z

2

x

�

z

2

y

| {z }

=(�

x

+�

y

)

z

1

(binomial theorem)

=

(�

x

+ �

y

)

z

1

e

�(�

x

+�

y

)

z

1

!

whi
h has the form of a Poisson p.d.f. Q.E.D. We rewrite it

g(x+ y) =

(�

x

+ �

y

)

x+y

e

�(�

x

+�

y

)

(x+ y)!

The p.d.f. of the sum of two Poisson distributed random variables is also Poisson

with � equal to the sum of the �'s of the individual Poissons. This 
an also be

easily shown using the 
hara
teristi
 fun
tion (exer
ise 12).

Examples

The Poisson p.d.f. is appli
able when

� the events are independent, and

� the event rate is 
onstant (= �).

We give a number of examples:

� Thus the number of raisins per unit volume in raisin bread should be Poisson

distributed. The baker has mixed the dough thoroughly so that the raisins do

not sti
k together (independent) and are evenly distributed (
onstant event

rate).

� However, the number of zebras per unit area is not Poisson distributed (even

in those parts of the world where there are wild zebras), sin
e zebras live in

herds and are thus not independently distributed.

� A 
lassi
 example of Poisson statisti
s is the distribution of the number of

Prussian 
avalry soldiers ki
ked to death by horses.

25

In 10 di�erent 
avalry


orps over 20 years there were 122 soldiers ki
ked to death by horses. The

average is thus k = 122=200 = 0:610 deaths/
orps/year.
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Assuming that the death rate is 
onstant over the 20 year period and inde-

pendent of 
orps and that the deaths are independent (not all 
aused by one

killer horse) then the deaths should be Poisson distributed: the probability of

k deaths in one parti
ular 
orps in one year is P (k;�). Sin
e the mean of P

is �, we take the experimental average as an `estimate' of �. The distribution

should then be P (k; 0:61) and we should expe
t 200� P (k; 0:61) o

urren
es

of k deaths in one year in one 
orps. The data:

number of deaths in a
tual number of times Poisson

1 
orps in 1 year 1 
orps had k deaths predi
tion

k in 1 year 200� P (k; 0:610)

0 109 108.67

1 65 66.29

2 22 20.22

3 3 4.11

4 1 0.63

5 0 0.08

200 200.00

The `experimental' distribution agrees very well with the Poisson p.d.f. The

reader 
an verify that the experimental varian
e, estimated by

1

N

P

(k

i

� k)

2

,

is 0.608, very 
lose to the mean (0.610) as expe
ted for a Poisson distribution.

� The number of entries in a given bin of a histogram when the (independent)

data are 
olle
ted over a �xed time interval, i.e., when the total number of

entries in the histogram is not �xed.

However, if the rate of the basi
 pro
ess is not 
onstant, the distribution may not

be Poisson, e.g.,

� The radioa
tive de
ay over a period of time signi�
ant 
ompared with the

lifetime of the sour
e.

� The radioa
tive de
ay of a small amount of material.

� The number of intera
tions produ
ed by a beam 
onsisting of a small number

of parti
les in
ident on a thi
k target.

In the �rst two examples the event rate de
reases with time, in the third with

position. In the last two there is the further restri
tion that the number of events is

signi�
antly restri
ted, as it 
an not ex
eed the number of atoms or beam parti
les,

while for the Poisson distribution the number extends to in�nity.

� The number of people who die ea
h year while operating a 
omputer is also
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not Poisson distributed. Although the probability of dying while operating

a 
omputer may be 
onstant, the number of people operating 
omputers in-


reases ea
h year. The event rate is thus not 
onstant.

The Poisson p.d.f. requires that the events be independent. Consider the 
ase

of a 
ounter with a dead time of 1 �se
. This means that if a se
ond parti
le

passes through the 
ounter within 1 �se
 after one whi
h was re
orded, the 
ounter

is in
apable of re
ording the se
ond parti
le. Thus the dete
tion of a parti
le is

not independent of the dete
tion of other parti
les. If the parti
le 
ux is low, the


han
e of a se
ond parti
le within the dead time is so small that it 
an be negle
ted.

However, if the 
ux is high it 
annot be. No matter how high the 
ux, the 
ounter


annot 
ount more than 10

6

parti
les per se
ond. In high 
uxes, the number of

parti
les dete
ted in some time interval will not be Poisson distributed.

Radioa
tive de
ays { Poisson approximation of a Binomial

Let us examine the 
ase of radioa
tive de
ays more 
losely. Consider a sample of

n radioa
tive atoms. In a time interval T some will de
ay, others will not. There

are thus two possibilities between whi
h the n atoms are divided. The appropriate

p.d.f. is therefore the binomial. The probability that r atoms de
ay in time T is

thus

f(r) = B(r;n; p) =

n!

r!(n� r)!

p

r

(1� p)

n�r

(3.7)

where p is the probability for one atom to de
ay in time T . Of 
ourse, p depends

on the length of the time interval. In the following time interval n will be less but

the value of p will remain the same. But if n is large and p small, then n >> r and

the 
hange in n 
an be negle
ted. Then

n!

(n� r)!

= n(n� 1)(n� 2) � � � (n� r + 1) r terms

� n

r

Also,

(1� p)

n�r

= 1� p(n� r) +

p

2

2!

(n� r)(n� r � 1) + : : :

� 1� p(n� r) +

p

2

2!

(n� r)

2

+ : : :

= e

�p(n�r)

� e

�pn

Substituting these approximations in (3.7) yields

f(r) = B(r;n; p) �

(np)

r

r!

e

�np

= P (r;np)

whi
h is a Poisson p.d.f. with � = np. This derivation is in fa
t only slightly di�erent

from our previous one; the approximations involved here are the same.
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3.5 Exponential and Gamma distributions

Radioa
tive de
ays (again): As dis
ussed in the previous se
tion, the probability

of r de
ays in time dt is given by the binomial p.d.f.:

P (r) =

n!

r!(n� r)!

p

r

(1� p)

n�r

where n is the number of unde
ayed atoms at the start of the interval. The proba-

bility that one atom de
ays is p, whi
h of 
ourse depends on the length of the time

interval, dt. Now r is just the 
urrent value of �

dn

dt

, i.e., the number of atoms

whi
h de
ay in dt equals the 
hange in the number of unde
ayed atoms. Therefore,

E

"

dn

dt

#

= �E [r℄ = �np (3.8)

Inter
hanging the order of the di�erentiation and the integration of the expe
tation

operator yields

dE [n℄

dt

= �np

Identifying the a
tual number with its expe
tation,

dn

dt

= �np

n = n

0

e

�pt

(3.9)

Thus the number of unde
ayed atoms falls exponentially. From this it follows that

the p.d.f. for the distribution of individual de
ay times (lifetimes) is exponential:

Exponential p.d.f.: Let f(t) be the p.d.f. for an individual atom to de
ay at

time t. The probability that it de
ays before time t is then F (t) =

R

t

0

f(t) dt. The

expe
ted number of de
ays in time t is

E [n

0

� n℄ = n

0

F (t) = n

0

Z

t

0

f(t) dt

Substituting for E [n℄ from equation 3.9 and di�erentiating results in the exponential

p.d.f.:

f(t; t

0

) =

1

t

0

e

�t=t

0

(3.10)

whi
h gives, e.g., the probability that an individual atom will de
ay in time t. Note

that this is a 
ontinuous p.d.f.

Properties:

� = E [t℄ = t

0




1

= 2

�

2

= V [t℄ = t

2

0




2

= 6

�(x) = [1� {xt

0

℄

�1
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Sin
e we 
ould start timing at any point, in parti
ular at the time of the �rst

event, f(t) is the p.d.f. for the time of the se
ond event. Thus the p.d.f. of the time

interval between de
ays is also exponential. This is the spe
ial 
ase of k = 1 of the

following situation:

Let us �nd the distribution of the time t for k atoms to de
ay. The r.v. T =

P

k

1

t

i

is the sum of the time intervals between k su

essive atoms. The t

i

are independent.

The 
.d.f. for t is then just the probability that more than k atoms de
ay in time t:

F (t) = P (T � t) = 1� P (T > t)

Sin
e the de
ays are Poisson distributed, the probability of m de
ays in the interval

t is

P (m) =

(�t)

m

e

��t

m!

where � = 1=t

0

, and t

0

is the mean lifetime of an atom. The probability of < k

de
ays is then

P (T > t) =

k�1

X

m=0

(�t)

m

e

��t

m!

=

Z

1

�t

z

k�1

e

�z

(k � 1)!

dz

(The repla
ement of the sum by the integral 
an be found in any good book of

integrals.) Substituting the gamma fun
tion, �(k) = (k � 1)!, the 
.d.f. be
omes

F (t) = 1�

Z

�t

0

z

k�1

e

�z

�(k)

dz

Changing variables, y = z=�,

F (t) =

Z

t

0

�

k

y

k�1

e

��y

�(k)

dy

The p.d.f. is then

f(t; k; �) =

dF

dt

=

�

k

t

k�1

e

��t

�(k)

, t > 0; (3.11)

whi
h is 
alled the gamma distribution. Some properties of this p.d.f. are

� = E [t℄ = k=� 


1

= 2=

p

k

�

2

= V [t℄ = k=�

2




2

= 6=k

�(x) =

h

1�

{x

�

i

�k

Note that the exponential distribution, f(t; 1; �) = �e

��t

, is the spe
ial 
ase of the

gamma distribution for k = 1. The exponential distribution is also a spe
ial 
ase

of the Weibull distribution (se
tion 3.17).

Although in the above derivation k is an integer, the gamma distribution is, in

fa
t, more general: k does not have to be an integer. For � =

1

2

and k =

n

2

, the

gamma distribution redu
es to the �

2

(n) distribution (se
tion 3.12).
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3.6 Uniform distribution

The uniform distribution (also known as the re
tangular distribution),

f(x; a; b) =

1

b� a

, a � x � b and f(x) = 0 , elsewhere (3.12)

is the p.d.f. of a r.v. distributed uniformly between a and b.

Properties:

� = E [t℄ =

R

b

a

x

b�a

dx =

b+a

2

mean

�

2

= V [x℄ =

R

b

a

x

2

b�a

dx� �

2

=

(b�a)

2

12

varian
e




1

=

E

[

(x��)

3

℄

�

3

= 0 skewness




2

=

E

[

(x��)

4

℄

�

4

� 3 = �1:2 kurtosis

�(t) =

sinh

[

1

2

{t(b�a)

℄

{t(b�a)

+

1

2

{t(b + a) 
hara
teristi
 fun
tion

Round-o� errors in arithmeti
 
al
ulations are uniformly distributed.

3.7 Gaussian or Normal distribution

This is probably the best known and most used p.d.f.

N(x;�; �

2

) =

1

p

2��

2

e

�(x��)

2

=2�

2

(3.13)

Some books use the notation N(x;�; �). The Gaussian distribution is symmetri


about �, and � is a measure of its width.

We name this distribution after Gau�, but in fa
t many people dis
overed it

and investigated its properties independently. The Fren
h name it after Lapla
e,

who had noted

26

its main properties when Gau� was only six years old. The �rst

known referen
e to it, before Lapla
e was born, is by the Englishman A. de Moivre

in 1733,

27

who, however, did not realize its importan
e and made no use of it. Its

importan
e in probability and statisti
s (
f. se
tion 8.5) awaited Gau�

28

(1809).

The origin of the name `normal' is un
lear. It 
ertainly does not mean that

other distributions are abnormal.

Properties: (The �rst two justify the notation used for the two parameters of the

Gaussian.)

� = E [x℄ = � mean

�

2

= V [x℄ = �

2

varian
e




1

= 


2

= 0 skewness and kurtosis

E [(x� �)

n

℄ =

(

0; n odd

(n� 1)!!�

n

=

n!�

n

2

n=2

(

n

2

)!

; n even


entral moments

where a!! � 1 � 3 � 5 � � �a

�(t) = exp

h

{t��

1

2

t

2

�

2

i


hara
teristi
 fun
tion
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When using the Gaussian, it is usually 
onvenient to shift the origin, x! x

0

=

x� � to obtain

N(x

0

; 0; �

2

) =

1

p

2��

2

e

�x

02

=2�

2

(3.14)

We 
an also 
hange the s
ale, x ! z = (x � �)=�, de�ning a `standard' variable,

i.e., a variable with � = 0 and � = 1. Then we obtain the unit Gaussian (also


alled the unit Normal or standard Normal) p.d.f.:

N(z; 0; 1) =

1

p

2�

e

�z

2

=2

(3.15)

whi
h has the 
umulative distribution (
.d.f.)

erf(z) �

1

p

2�

Z

z

�1

e

�x

2

=2

dx (3.16)

whi
h is 
alled the error fun
tion or normal probability integral. The 
.d.f. of

N(x;�; �

2

) is then erf

�

x��

�

�

.

Some authors use the following de�nition of the error fun
tion instead of equa-

tion 3.16:

�(z) �

2

p

�

Z

z

0

e

�t

2

dt (3.17)

It is this de�nition whi
h is used by the FORTRAN library fun
tion ERF(Z). Our

de�nition (3.16) is related to this de�nition by

erf(z) =

1

2

+

1

2

�

 

z

p

2

!

(3.18)

The Gaussian as limiting 
ase

The Gaussian distribution is so important be
ause it is a limiting 
ase of nearly all


ommonly used p.d.f.'s. This is a 
onsequen
e of the Central Limit Theorem, whi
h

we will dis
uss shortly (
f. 
hapter 5). This relationship is shown for a number of

distributions in the following �gure:
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�
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�

�
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�
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�

�

�
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dimension m

-
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�

�

�

�

�

�

�

�

�

�

�

�

�
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�

�
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�

�

�

�

�

�

�
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�

�

�*

m = 2

Normal

N(x;�; �

2

)

�

N !1

Binomial
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-

Np = � = 
onst:

p! 0

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

N !1

Poisson

P (k;�)

�

�

�

�

�

�

�

�

��

�

�

�

��

�!1

Student's t

f(t;N)

F -distribution

f(F ; �

1

; �

2

)

�

�

2

!1

N = �

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

�

1

= 1

N = �

2

H

H

H

H

H

H

H

H

H

H

H

H

H

HY

�

2

!1

�

1

!1

limit

exa
t

Reprodu
tive property

Sin
e the Poisson p.d.f. has the reprodu
tive property and sin
e the Gaussian p.d.f.

is a limit of the Poisson, it should not surprise us that the Gaussian is also re-

produ
tive: If X and Y are two independent r.v.'s distributed as N(x;�

x

; �

2

x

) and

N(y;�

y

; �

2

y

) then Z = X + Y is distributed as N(z;�

z

; �

2

z

) with �

z

= �

x

+ �

y

and

�

2

z

= �

2

x

+ �

2

y

. The proof is left as an exer
ise (exer
ise 19).

3.8 Log-Normal distribution

If an r.v., y, is normally distributed with mean � and varian
e �

2

, then the r.v.,

x = e

y

, is distributed as

f(x;�; �

2

) =

1

p

2��

2

1

x

exp

 

�

1

2

(log x� �)

2

�

2

!

(3.19)

As with the normal p.d.f., some authors 
onsider �, rather than �

2

, as the parameter

of the p.d.f.

Properties:

E [x℄ = exp

�

�+

1

2

�

2

�

mean

V [x℄ = exp (2�+ �

2

) [exp (�

2

)� 1℄ varian
e

Note that the parameters � and �

2

are not the mean and varian
e of the p.d.f.

of x, but rather the parameters of the 
orresponding normal p.d.f. of y = log x,

N(y;�; �

2

).
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3.9 Multivariate Gaussian or Normal distribution

Consider n random variables x

i

with expe
tations (means) �

i

, whi
h we write as

ve
tors:

x =

0

B

B

B

�

x

1

x

2

.

.

.

x

n

1

C

C

C

A

� =

0

B

B

B

B

�

�

1

�

2

.

.

.

�

n

1

C

C

C

C

A

The Gaussian is an exponential of a quadrati
 form in (x� �). In generalizing

the Gaussian to more than one dimension, we repla
e (x� �) by the most general

n-dimensional quadrati
 form whi
h is symmetri
 about the point �,

�

1

2

(x� �)

T

A (x� �)

We have written the �

1

2

expli
itly in order that A =

1

�

2

in the one-dimensional


ase. Sin
e we have 
onstru
ted this to be symmetri
 about �, we must have that

E [x℄ = �. Hen
e, E

h

x� �

i

= 0, and

Z

+1

�1

(x� �) exp

�

�

1

2

(x� �)

T

A (x� �)

�

dx = 0

By di�erentiating this with respe
t to � we get (1 is the unit matrix)

Z

+1

�1

h

1� (x� �)(x� �)

T

A

i

exp

�

�

1

2

(x� �)

T

A (x� �)

�

dx = 0

Therefore,

E

h

1� (x� �)(x� �)

T

A

i

= 0

E

h

(x� �)(x� �)

T

i

A = 1

This expe
tation is just the de�nition of the 
ovarian
e matrix, V (equation 2.36).

Hen
e V A = 1 or

A = V

�1

If the 
orrelations between all the x

i

, are zero, i.e., if all �

ij

; i 6= j, are zero, then

V is diagonal with V

ii

= �

2

i

. Then A is also diagonal with A

ii

=

1

�

2

i

and

exp

�

�

1

2

(x� �)

T

A(x� �)

�

= exp

"

�

1

2

 

(x

1

� �

1

)

2

�

2

1

+

(x

2

� �

2

)

2

�

2

2

+ : : :

!#

= exp

"

�

(x

1

� �

1

)

2

2�

2

1

#

exp

"

�

(x

2

� �

2

)

2

2�

2

2

#

� � �

The p.d.f. is thus just the produ
t of n 1-dimensional Gaussians. Thus all �

ij

= 0

implies that x

i

and x

j

are independent. As we have seen (se
t. 2.2.4), this is not

true of all p.d.f.'s.
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It remains to determine the normalization. The result is

N

�

x;�; V

�

=

1

(2�)

n=2

jV j

1=2

exp

�

�

1

2

(x� �)

T

V

�1

(x� �)

�

(3.20)

where jV j is the determinant of V . This assumes that V is non-singular, i.e.,

jV j 6= 0. If V is singular, that means that two of the x

i

are 
ompletely 
orrelated,

i.e., j�

ij

j = 1. In that 
ase we 
an repla
e x

j

by a fun
tion of x

i

thus redu
ing the

dimension by one.

Comparison of equations 3.13 and 3.20 shows that an n-dimensional Gaussian

may be obtained from a 1-dimensional Gaussian by the following substitutions:

x ! x � ! �

�

2

! V �

�2

! V

�1

� ! jV j

1=2

1

p

2�

!

1

(2�)

n=2

These same substitutions are appli
able for many (not all) 
ases of generalization

from 1 to n dimensions, as we might expe
t sin
e the Gaussian p.d.f. is so often a

limiting 
ase.

Multivariate Normal - summary:

p.d.f. N

�

x;�; V

�

=

1

(2�)

n=2

j

V

j

1=2

exp

h

�

1

2

(x� �)

T

V

�1

(x� �)

i

(3.20)

mean E [x℄ = �


ovarian
e 
ov(x) = V

V [x

i

℄ = V

ii


ov(x

i

; x

j

) = V

ij


hara
teristi


fun
tion �(t) = exp

h

{t��

1

2

t

T

V t

i

Other interesting properties:

� Contours of 
onstant probability density are given by

(x� �)

T

V

�1

(x� �) = C , a 
onstant

� Any se
tion through the distribution, e.g., at x

i

= 
onst., gives again a mul-

tivariate normal p.d.f. It has dimension n � 1. For the 
ase x

i

= 
onst., the


ovarian
e matrix V

n�1

is obtained by removing the i

th

row and 
olumn from

V

�1

and inverting the resulting submatrix.

� Any proje
tion onto a lower spa
e gives a marginal p.d.f. whi
h is a multi-

variate normal p.d.f. with 
ovarian
e matrix obtained by deleting appropriate

rows and 
olumns of V . In parti
ular, the marginal distribution of x

i

is

f

i

(x

i

) = N(x

i

;�

i

; �

2

i

)
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� A set of variables, ea
h of whi
h is a linear fun
tion of a set of normally

distributed variables, has itself a multivariate normal p.d.f.

We will now examine a spe
ial 
ase of the multivariate normal p.d.f., that for two

dimensions.

3.10 Binormal or Bivariate Normal p.d.f.

This is the multivariate normal p.d.f. for 2 dimensions. Using (x; y) instead of

(x

1

; x

2

), we have

V =

�

�

2

x

��

x

�

y

��

x

�

y

�

2

y

�

V

�1

=

1

�

2

x

�

2

y

(1� �

2

)

�

�

2

y

���

x

�

y

���

x

�

y

�

2

x

�

f(x; y) =

1

2��

x

�

y

p

1� �

2

e

�

1

2

G

where G =

1

(1� �

2

)

2

4

�

x� �

x

�

x

�

2

� 2�

�

x� �

x

�

x

�

 

y � �

y

�

y

!

+

 

y � �

y

�

y

!

2

3

5

Contours of 
onstant probability density are given by setting the exponent equal to

a 
onstant. These are ellipses, 
alled 
ovarian
e ellipses.

-

x

6

y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

�

�

x

� �

x

�

x

�

x

+ �

x

�

y

� �

y

�

y

�

y

+ �

y

For G = 1, the extreme values of the

ellipse are at �

x

� �

x

and �

y

� �

y

. The

larger the 
orrelation, the thinner is the

ellipse, approa
hing 0 as j�j ! 1. (Of


ourse in the limit of � = �1, G is in�nite

and we really have just 1 dimension.)

The orientation of the major axis of

the ellipse is given by

tan 2� =

2��

x

�

y

�

2

x

� �

2

y

Note that � = �45

Æ

only if �

2

x

= �

2

y

� = 0 if � = 0

In 
al
ulating � by taking the ar
tangent of the above equation, one must be


areful of quadrants. If the ar
tangent fun
tion is de�ned to lie between �

�

2

and

�

2

, then � is the angle of the major axis if �

x

> �

y

; otherwise it is the angle

of the minor axis. It is therefore more 
onvenient to use an ar
tangent fun
tion

de�ned between �� and � su
h as the ATAN2(y,x) of some languages: 2� =

ATAN2(2��

x

�

y

; �

2

x

� �

2

y

).



3.10. BINORMAL OR BIVARIATE NORMAL P.D.F. 47

In the one-dimensional Gaussian the probability that x is within k standard

deviations of � is given by

P (�� k� � x � �+ k�) =

Z

�+k�

��k�

N(x;�; �

2

) dx (3.21)

whi
h is an integral over the interval of x where G � k. In two dimensions this

generalizes to the probability that (x; y) is within the ellipse 
orresponding to k

standard deviations, whi
h is given

�

by

P (G � k) =

1

2��

x

�

y

p

1� �

2

Z

G � k

Z

e

�

1

2

G

dx dy (3.22)

Some values:

2-dimensional 1-dimensional 2� 1-dimensional

P (G � k) k P (G � k) = P (�

x

� k� � x � �

x

+ k�)

P (�� k� � x � �+ k�) P (�

y

� k� � y � �

y

+ k�)

0.3934693 1 0.6826895 0.466065

0.6321206 2 0.9544997 0.911070

0.7768698 3 0.9973002 0.994608

0.8646647 4 0.9999367 0.999873

0.9179150 5 0.9999994 0.999999

0.9502129 6

Note that the 2-dimensional probability for a given k is mu
h less than the 
or-

responding 1-dimensional probability. This is easily understood: the produ
t of

the two 1-dimensional probabilities is the probability that (x; y) is in the re
tangle

de�ned by �

x

� k�

x

� x � �

x

+ k�

x

and �

y

� k�

y

� y � �

y

+ k�

y

. The ellipse is

entirely within this re
tangle and hen
e the probability of being within the ellipse

is less than the probability of being within the re
tangle.

-

x

6

y

�

y

�

x

�

�

�

�

�

�

�*

�

�

�

�

�

�

u

A

A

A

A

A

AK

A

A

A

v

�

v

�

u

A

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

Sin
e the 
ovarian
e matrix is symmet-

ri
, there exists a unitary transformation

whi
h diagonalizes it. In two dimensions

this is the rotation matrix U ,

U =

�


os � � sin �

sin � 
os �

�

This matrix transforms (x; y) to (u; v):

�

u

v

�

= U

�

x

y

�

�

We will see in se
t. 3.12 that G is a so-
alled �

2

r.v. P (G � k) 
an therefore also be found from

the 
.d.f. of the �

2

distribution, tables of whi
h, as well as 
omputer routines, are readily available.
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The new 
ovarian
e matrix is U V U

T

. Sin
e

the transformation is unitary, areas are preserved (Ja
obian jJ j = 1). Hen
e,

P [(x; y) inside ellipse℄ = P [(u; v) inside ellipse℄

The standard deviations of u; v are then found from the transformed 
ovarian
e

matrix. After some algebra we �nd

�

2

u

=

�

2

x


os

2

� � �

2

y

sin

2

�


os

2

� � sin

2

�

(3.23a)

�

2

v

=

�

2

y


os

2

� � �

2

x

sin

2

�


os

2

� � sin

2

�

(3.23b)

or

�

2

u

=

�

2

x

�

2

y

(1� �

2

)

�

2

y


os

2

� � ��

x

�

y

sin 2� + �

2

x

sin

2

�

(3.24a)

�

2

v

=

�

2

x

�

2

y

(1� �

2

)

�

2

x


os

2

� + ��

x

�

y

sin 2� + �

2

y

sin

2

�

(3.24b)

Or starting from the un
orrelated (diagonalized) variables (u,v), a rotation by � to

the new variables x; y will give

�

2

x

= �

2

u


os

2

� + �

2

v

sin

2

� (3.25a)

�

2

y

= �

2

v


os

2

� + �

2

u

sin

2

� (3.25b)

� = sin � 
os �

�

2

u

� �

2

v

�

x

�

y

(3.25
)

Note that if � is fairly large, i.e., the ellipse is thin, just knowing �

x

and �

y

would give a very wrong impression of how 
lose a point (x; y) is to (�

x

; �

y

).

The properties stated at the end of the previous se
tion, regarding the 
ondi-

tional and marginal distributions of the multivariate normal p.d.f. 
an be easily

veri�ed for the bivariate normal. In parti
ular, the marginal p.d.f. is

f

x

(x) = N(x;�

x

; �

2

x

) (3.26)

and the 
onditional p.d.f. is

f(y jx) =

f(y; x)

f

x

(x)

=

1

q

2��

2

y

p

1� �

2

exp

(

�

1

2�

2

y

(1� �

2

)

�

y �

�

�

y

+ �

�

y

�

x

(x� �

x

)

��

2

)

= N

�

y;�

y

+ �

�

y

�

x

(x� �

x

) ; �

2

y

h

1� �

2

i

�

(3.27)
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3.11 Cau
hy (Breit-Wigner or Lorentzian) p.d.f.

The Cau
hy p.d.f. is

C(x;�; �) =

1

��

1

1 + (x� �)

2

=�

2

(3.28)

or in its `standard' form with � = 0 and � = 1,

C(x; 0; 1) =

1

�

1

1 + x

2

(3.29)

It looks something like a Gaussian, but with bigger tails.

-

6

�

�

�9

N

�

�

�=

C

x

f(x)

It is usually en
ountered in physi
s in a

slightly di�erent form as the Breit-Wigner

(or Lorentz) fun
tion whi
h gives the dis-

tribution of parti
les of mass m due to a

resonan
e of mass M and width �:

f(m;M;�) =

1

2�

�

(m�M)

2

+ (

�

2

)

2

M is the mode and � the full width at half

maximum (FWHM) of the distribution.

The Cau
hy p.d.f. is a pathologi
al distribution. Let us try to 
al
ulate the

mean:

E [x℄ =

1

��

Z

+1

�1

x

1 +

(x��)

2

�

2

dx =

1

��

Z

+1

�1

(x� �) + �

1 +

(x��)

2

�

2

dx

=

�

�

Z

+1

�1

z

1 + z

2

dz +

�

�

Z

+1

�1

1

1 + z

2

dz , z =

x��

�

=

�

2�

ln(1 + z

2

)

�

+1

�1

+

�

�

� = +1�1+ �

whi
h is indeterminate. The mean does not exist! However, noting that the p.d.f.

is symmetri
 about �, we 
an de�ne the mean as

lim

L!1

Z

�+L

��L

xC(x;�; �) dx = �

All higher moments are also divergent, and no su
h tri
k will allow us to de�ne

them. In a
tual physi
al problems the distribution is trun
ated, e.g., by energy


onservation, and the resulting distribution is well-behaved.

The 
hara
teristi
 fun
tion of the Cau
hy p.d.f. is

�(t) = e

��jtj+{�t

The reprodu
tive property of the Cau
hy p.d.f. is rather unusual: x =

1

n

P

x

i

is

distributed a

ording to the identi
al Cau
hy p.d.f. as are the x

i

. (The proof is left

as an exer
ise.)
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3.12 The �

2

p.d.f.

Let x be a ve
tor of n independent r.v.'s, x

i

, ea
h distributed normally with mean

�

i

and varian
e �

2

i

. Then the joint p.d.f. is

f(x;�; �) =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

i

�

i

�

2

#

= exp

"

�

1

2

n

X

i=1

�

x

i

� �

i

�

i

�

2

#

n

Y

i=1

1

p

2��

i

The variable �

2

is de�ned:

�

2

(n) =

n

X

i=1

�

x

i

� �

i

�

i

�

2

(3.30)

Being a fun
tion of r.v.'s, �

2

is itself a r.v. The �

2

has a parameter n, whi
h is


alled the number of degrees of freedom (d.o.f.), sin
e ea
h of the r.v.'s, x

i

, is free

to vary independently of the others. Note that �

2

is regarded as the variable, not

the square of a variable; one does not usually refer to � =

p

�

2

.

�

2

with 1 d.o.f.

For example, for n = 1, letting z = (x� �)=�, the p.d.f. for z is N(z; 0; 1) and the

probability that z � Z � z + dz is

f(z) dz =

1

p

2�

e

�

1

2

z

2

dz

Let Q = Z

2

. (We use Q here instead of �

2

to emphasize that this is the variable.)

This is not a one-to-one transformation; both +Z and �Z go into +Q.

-

6

0 z

f(z)

�jZj +jZj

-

-

6

q

f(q)f(q)

Q

The probability that Q is between q and q + dq is the sum of the probability that

Z is between z and z + dz around z =

p

q and the probability that Z is between z

and z � dz around z = �

p

q. Therefore, we must add the p.d.f. obtained from the

+Z ! q transformation to that obtained from the �Z ! q transformation. The
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Ja
obians for these two transformations are (
f. se
tion 2.2.6)

J

�

=

d(�z)

dq

= �

1

2

p

q

f(q) dq =

1

p

2�

e

�

1

2

q

(jJ

+

j+ jJ

�

j) dq =

1

p

2�

e

�

1

2

q

 

dq

2

p

q

+

dq

2

p

q

!

=

1

p

2�q

e

�

1

2

q

dq

Now Q was just �

2

. Hen
e the p.d.f. for �

2

with 1 d.o.f. is

�

2

(1) = f(�

2

; 1) =

1

p

2��

2

e

�

1

2

�

2

(3.31)

It may be 
onfusing to use the same symbol, �

2

, for both the r.v. and its p.d.f., but

that's life!

�

2

with 3 degrees of freedom

For n = 3, using standardized normal variables z

i

=

�

x

i

��

i

�

i

�

, let

R

2

= �

2

= z

2

1

+ z

2

2

+ z

2

3

The joint probability is then

g(z

1

; z

2

; z

3

) dz

1

dz

2

dz

3

=

1

(2�)

3=2

e

�R

2

=2

dz

1

dz

2

dz

3

Think ofR as the radius of a sphere in 3-dimensional spa
e. Then, 
learly, dz

1

dz

2

dz

3

=

R

2

dR d 
os � d�. To get the marginal p.d.f. for R, we integrate over 
os � and �,

whi
h gives a fa
tor 4�. Hen
e, the probability that R is between R and R+ dR is

f(R) dR =

2

p

2�

R

2

e

�R

2

=2

dR

Now �

2

= R

2

. Hen
e, d�

2

= 2R dR and dR = d�

2

=2

p

�

2

. Hen
e,

f(�

2

; 3) d�

2

=

2

p

2�

�

2

e

��

2

=2

d�

2

2

p

�

2

�

2

(3) = f(�

2

; 3) =

(�

2

)

1=2

p

2�

e

��

2

=2

(3.32)

�

2

with n degrees of freedom

For n degrees of freedom, the p.d.f. of �

2

is

�

2

(n) = f(�

2

;n) =

(�

2

)

n

2

�1

e

��

2

=2

�(

n

2

) 2

n=2

(3.33)
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Properties:

mean � = E [�

2

(n)℄ = n

varian
e V [�

2

(n)℄ = �

2

�

2

(n)

= 2n

mode (max.) at �

2

(n) =

�

n� 2 n � 2

0 n � 2

skewness 


1

= 2

q

2

n

kurtosis 


2

= 12=n


hara
teristi
 fun
tion �(t) = (1� 2{t)

�n=2

Reprodu
tive property: Let �

2

i

be a set of variables whi
h are distributed as �

2

(n

i

).

Then

P

�

2

i

is distributed as �

2

(

P

n

i

). This is obvious from the de�nition of �

2

:

The variables �

2

1

and �

2

2

are, by de�nition,

�

2

1

(n

1

) =

n

1

X

i=1

z

2

i

and �

2

2

(n

2

) =

n

1

+n

2

X

i=n

1

+1

z

2

i

Hen
e, their sum is

�

2

n

1

+n

2

= �

2

n

1

+ �

2

n

2

=

n

1

+n

2

X

i=1

z

2

i

whi
h from the de�nition is a �

2

of (n

1

+ n

2

) degrees of freedom.

Sin
e the expe
tation of a �

2

(n) is n, the expe
tation of �

2

(n)=n is 1. The

quantity �

2

(n)=n is 
alled a \redu
ed �

2

".

Asymptoti
ally (for large n), the �

2

p.d.f. approa
hes the normal distribution

with mean n and varian
e 2n:

f(�

2

;n) = �

2

(n) �! N(�

2

;n; 2n) (3.34)

A faster 
onvergen
e o

urs for the variable

p

2�

2

:

f(

q

2�

2

;n) = �

2

(�

2

;n)

q

2�

2

�! N(

q

2�

2

;

p

2n� 1; 1) (3.35)

This approximation is good for n greater than about 30.

General de�nition of �

2

If the n Gaussian variables are not independent, we 
an 
hange variables su
h that

the 
ovarian
e matrix is diagonalized. Sin
e this is a unitary transformation, it

does not 
hange the 
ovarian
e ellipse G = k. In the diagonal 
ase G � �

2

. Hen
e,

�

2

= G also in the 
orrelated 
ase. Thus we 
an take

�

2

= (x� �)

T

V

�1

(x� �) (3.36)

as the general de�nition of the random variable �

2

.
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3.13 Student's t distribution

Consider an r.v., x, normally distributed with mean � and standard deviation �.

Then z =

x��

�

is normally distributed with mean 0 and standard deviation 1. In

the normal p.d.f., the mean determines the origin and the standard deviation the

s
ale. By transforming to the standard variable z, both dependen
es are removed.

In analyzing data we may not know the � of the p.d.f. We may then remove the

s
ale dependen
e by using the sample standard deviation, �̂, instead of the parent

standard deviation. We may also not know the parent mean and will use the sample

mean, �x, instead. For N independent x

i

(
f. equations 8.3, 8.7),

�̂

2

=

1

N

N

X

i=1

(x

i

� �)

2

; using � (3.37a)

�̂

2

=

1

N � 1

N

X

i=1

(x

i

� �x)

2

; using �x =

1

N

P

x

i

(3.37b)

In either 
ase, n�̂

2

=�

2

is a �

2

(n), i.e., is distributed a

ording to the �

2

distribution

for n = N � k degrees of freedom, where k is 0 if � is used and is 1 if �x is used,

sin
e in the latter 
ase only N � 1 of the terms in the sum are independent. This

is dis
ussed in more detail in se
tion 8.2.1.

We now seek the p.d.f. for the r.v.

t =

x� �

�̂

=

(x� �)=�

q

(n�̂

2

=�

2

)=n

=

z

q

�

2

=n

(3.38)

Now z is a standard normal r.v. and �

2

is a �

2

(n). A Student's t r.v. is thus the

ratio of a standard normal r.v. to the square root of a redu
ed �

2

r.v. The joint

p.d.f. for z and �

2

is then (equation 3.33)

f(z; �

2

;n) dz d�

2

= N(z; 0; 1)�

2

(�

2

;n) dz d�

2

=

e

�z

2

=2

p

2�

(�

2

)

n

2

�1

e

��

2

=2

�(

n

2

) 2

n=2

dz d�

2

where we have assumed that z and �

2

are independent. This is 
ertainly so if the

x has not been used in determining �̂, and asymptoti
ally so if n is large. Making

a 
hange of variable, we transform this distribution to one for t and �

2

:

f(t; �

2

;n) dt d�

2

=

1

p

2�n�(

n

2

) 2

n=2

(�

2

)

n�1

2

e

�

�

2

2

(1+

t

2

n

)

dt d�

2

Integrating this over all �

2

, we arrive �nally at the p.d.f. for t, 
alled Student's

t distribution,

t(n) = f(t;n) =

1

p

�n

�(

n+1

2

)

�(

n

2

)

1

(1 +

t

2

n

)

(n+1)=2

(3.39)
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Properties:

mean � = E [t℄ = 0 ; n > 1

varian
e V [t℄ = �

2

t

=

n

n�2

; n > 2

skewness 


1

= 0

kurtosis 


2

=

6

n�4

; n > 4

moments �

r

=

8

>

>

<

>

>

:

n

2r

�

(

r+1

2

)

�

(

n�r

2

)

�(

1

2

)�(

n

2

)

; r even and r < n

0 ; r odd and r � n

does not exist ; otherwise.

t(t;n)

t

n =1

-

n = 5

-

n = 2

-

n = 10

�

n = 3

�

n = 1

�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

Student's t distribution is thus

the p.d.f. of a r.v., t, whi
h is the

ratio of a standard normal vari-

able and the square root of a nor-

malized �

2

r.v., i.e.,

q

�

2

(n)=n,

of n degrees of freedom. It was

dis
overed

29

by W. S. Gossett, a


hemist working for the Guinness

brewery in Dublin, who in his

spare time wrote arti
les on statis-

ti
s under the pseudonym

�

\Stu-

dent". The number of degrees

of freedom, n, is not required to

be an integer. The t-distribution

with non-integral n > 0 is useful

in 
ertain appli
ations, whi
h is,

however, beyond the s
ope of this


ourse.

Student's t distribution is

symmetri
 about t = 0. It approa
hes the standard normal distribution as the

number of degrees of freedom, n, approa
hes in�nity. For n = 1 it is identi
al to

the standard Cau
hy p.d.f. As n ! 1, it approa
hes the standard normal distri-

bution. It thus has larger tails and a larger varian
e than the Gaussian, but not so

large as the Cau
hy distribution.

We have 
onstru
ted t from a single observation, x. In a similar way, a r.v. t 
an

be 
onstru
ted for the mean of a number of r.v.'s ea
h distributed normally with

mean � and standard deviation �. We know from the reprodu
tive property of the

normal p.d.f. that �x is also normally distributed with mean � but with a standard

deviation of �=

p

N . Thus z =

�x��

�

p

N is a standard normal r.v. and hen
e

t =

�x� �

�̂

p

N (3.40)

�

In order to prevent 
ompetitors from learning about pro
edures at Guinness, it was the poli
y

of Guinness that arti
les by its employees be published under a pseudonym.
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is distributed as Student's t with n degrees of freedom. It 
an be shown

3

that �x

and �̂

2

are independent.

3.14 The F -distribution

Consider two random variables, �

2

1

and �

2

2

, distributed as �

2

with �

1

and �

2

degrees

of freedom, respe
tively. We de�ne a new r.v., F , as the ratio of the two redu
ed

�

2

:

F =

�

2

1

=�

1

�

2

2

=�

2

(3.41)

The p.d.f. of F may be derived by a method similar to that used for Student's t

distribution: Start with the joint p.d.f. of the independent variables �

2

1

, �

2

2

; make

a 
hange of variables to F , v = �

2

2

; and integrate out the v dependen
e. The result

is

2

f(F ; �

1

; �

2

) =

q

�

�

1

1

�

�

2

2

�(

�

1

+�

2

2

)

�(

�

1

2

)�(

�

2

2

)

F

�

1

2

�1

(�

2

+ �

1

F )

�

1

+�

2

2

(3.42)

This distribution is known by many names: Fisher-Snede
or distribution, Fisher

distribution, Snede
or distribution, varian
e ratio distribution, and F -distribution.

We 
ould, of 
ourse, have written equation 3.41 with the ratio the other way

around. By 
onvention, one usually puts the larger value on top so that F � 1.

Properties:

mean � = E [F ℄ =

�

2

�

2

��

1

; �

2

> 2

varian
e V [F ℄ =

2�

2

2

(�

1

+�

2

�2)

�

1

(�

2

�2)

2

(�

2

�4)

; �

2

> 4

The distribution is positively skew and tends to mormality as �

1

; �

2

�! 1, but

only slowly (�

1

; �

2

> 50).

The p.d.f. for Z =

1

2

lnF has a mu
h faster approa
h to a Gaussian with a mean

of

1

2

(

1

�

2

�

1

�

1

) and varian
e

1

2

(

1

�

2

+

1

�

1

).

The F -distribution is useful in various hypothesis tests (
f. se
tions 10.4.3 and

10.7.4). However, for the tests it may be more 
onvenient to use

U =

�

1

F

�

2

+ �

1

F

(3.43)

whi
h is a monotoni
 fun
tion of F and has a beta distribution (
f. se
tion 3.15).

3.15 Beta distribution

This is a basi
 distribution for random variables bounded on both sides. Without

loss of generality the bounds are here taken as 0 � x � 1. It has two parameters

(not ne
essarily integers): n;m > 0. The p.d.f. is

f(x;n;m) =

�(n+m)

�(n)�(m)

x

m�1

(1� x)

n�1

; 0 � x � 1 (3.44)
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= 0 ; otherwise

Properties:

mean � = E [x℄ =

m

m+n

varian
e V [x℄ =

mn

(m+n)

2

(m+n+1)

For m = n = 1 this be
omes the uniform p.d.f.

Do not 
onfuse the beta distribution with the beta fun
tion,

�(y; z) =

�(y)�(z)

�(y + z)

=

Z

1

0

x

y�1

(1� x)

z�1

dx ; real y; z > 0

to whi
h it is related, and from whi
h the normalization of the p.d.f. is easily derived.

3.16 Double exponential (Lapla
e) distribution

This distribution is symmetri
 about the mean. Its tails fall o� less sharply than

the Gaussian, but faster than the Cau
hy distribution. Note that its �rst derivative

is dis
ontinuous at x = �.

f(x;�; �) =

�

2

exp (��jx� �j) (3.45)

Properties:

mean � = E [x℄ = �

varian
e V [x℄ = 2=�

2

skewness 


1

= 0

kurtosis 


2

= 3


hara
teristi
 fun
tion �(t) = {t�+

�

2

�

2

+t

2

It 
an also be written

f(x;�; �

2

) =

1

p

2�

2

exp

 

�

p

2

jx� �j

�

!

(3.46)

3.17 Weibull distribution

Originally invented to des
ribe failure rates in ageing lightbulbs, it des
ribes a wide

variety of 
omplex phenomena.

f(t;�; �) = ��(�t)

��1

e

�(�t)

�

real t � 0 and �; � > 0 (3.47)

Properties:

mean � = E [x℄ =

1

�

�

�

1

�

+ 1

�

varian
e V [x℄ =

1

�

2

�

�

�

2

�

+ 1

�

�

h

�

�

1

�

+ 1

�i

2

�

The exponential distribution (equation 3.10) is a spe
ial 
ase (� = 1), when the

probability of failure at time t is independent of t.



Chapter 4

Real p.d.f.'s

There are, of 
ourse, many other distributions whi
h we have not dis
ussed in the

previous se
tion. We may introdu
e a few more later when needed. Now let us turn

to some 
ompli
atons whi
h we will en
ounter in trying to use these distributions.

4.1 Compli
ations in real life

So far we have treated probability and handled some ideal p.d.f.'s. Given the

p.d.f. for the physi
al pro
ess we want to study, we 
an, in prin
iple, 
al
ulate the

probability of a given experimental result. There are, however, some 
ompli
ations:

� In real life the p.d.f. is quite likely not one of the ideal distributions we have

studied. It may be diÆ
ult to 
al
ulate. Or it may not even be known.

� The range of variables is never the �1 to +1 we have so blithely assumed.

Either it is limited by physi
s, e.g., 
onservation of energy, or by our appara-

tus, e.g., a given radio teles
ope only works in a 
ertain range of frequen
ies,

in whi
h 
ase we must use the 
onditional p.d.f., f(xjx

min

� x � x

max

).

While trun
ation is usually a 
ompli
ation, making the p.d.f. more diÆ
ult

to 
al
ulate (e.g., we must renormalize, whi
h frequently 
an only be done

by numeri
al integration), o

asionally it is wel
ome, e.g., the Cau
hy p.d.f.

be
omes well-behaved if trun
ated at �� a:

C(x;� = 0; � = 1) =

1

�

1

1 + x

2

�!

C(x; 0; 1)

R

+a

�a

C(x; 0; 1) dx

=

1

2 ar
tan a

�

1

1 + x

2

whi
h has a �nite varian
e (re
all that the Cau
hy p.d.f. did not):

V [x℄ =

1

ar
tan a

Z

+a

�a

x

2

1 + x

2

dx =

a

ar
tan a

� 1

57
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� The physi
al p.d.f. may be modi�ed by the response of the dete
tor. This

response must then be 
onvoluted with the physi
al p.d.f. to obtain the p.d.f.

whi
h is a
tually sampled.

\Now we see in a mirror dimly ...

Now I know in part ..."

|1 Corinthians 13:12

4.2 Convolution

Experimentally we often measure the sum of two (or more) r.v.'s. For example,

in the de
ay n ! pe

�

�

e

we want to measure the energy of the ele
tron, whi
h is

distributed a

ording to a p.d.f. given by the theory of weak intera
tions, f

1

(E

1

).

But we measure this energy with some apparatus, whi
h has a 
ertain resolution.

Thus we do not re
ord the a
tual energy E

1

of the ele
tron but E

1

+ Æ, where Æ

is distributed a

ording to the resolution fun
tion (p.d.f.) of the apparatus, f

2

(Æ).

What is then the p.d.f., f(E), of the quantity we re
ord, i.e., E = E

1

+ Æ? This

f(E) is 
alled the (Fourier) 
onvolution of f

1

and f

2

.

Assume E

1

and Æ to be independent. This may seem reasonable sin
e E

1

is from

the physi
al pro
ess (n de
ay) and Æ is something extra added by the apparatus,

whi
h has nothing at all to do with the de
ay itself. Then the joint p.d.f. is

f

12

(E

1

; Æ) = f

1

(E

1

) f

2

(Æ)

The 
.d.f. of E = E

1

+ Æ is then

F (E) =

Z

E

1

+ Æ � E

Z

f

1

(E

1

)f

2

(Æ) dE

1

dÆ

=

Z

+1

�1

dE

1

f

1

(E

1

)

Z

E�E

1

�1

dÆ f

2

(Æ)

=

Z

+1

�1

dE

1

f

1

(E

1

)F

2

(E � E

1

)

or =

Z

+1

�1

dÆ f

2

(Æ)F

1

(E � Æ)

The p.d.f. 
an then be 
al
ulated from the 
.d.f.:

f(E) =

dF (E)

dE

=

Z

+1

�1

f

1

(E

1

)f

2

(E � E

1

) dE

1

or =

Z

+1

�1

f

2

(Æ)f

1

(E � Æ) dÆ
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The 
hara
teristi
 fun
tion is parti
ularly useful in evaluating 
onvolutions:

�

f

(t) =

Z

e

{tE

f(E) dE

=

Z

e

{tE

Z

f

1

(E

1

)f

2

(E � E

1

) dE

1

dE

=

Z Z

e

{tE

1

f

1

(E

1

)e

{t(E�E

1

)

f

2

(E � E

1

) dE

1

dE

sin
e E = E

1

+ (E � E

1

)

= �

f

1

(t) �

f

2

(t) (4.1)

Thus, assuming that the r.v.'s are independent, the 
hara
teristi
 fun
tion of a


onvolution is just the produ
t of the individual 
hara
teristi
 fun
tions. (This

probably looks rather familiar. We have already seen it in 
onne
tion with the

reprodu
tive property of distributions; in that 
ase f

1

and f

2

were the same p.d.f.)

Re
all that the 
hara
teristi
 fun
tion is a Fourier transform. Hen
e, a 
onvolution,

E = E

1

+ Æ, where Æ is independent of E, is known as a Fourier 
onvolution.

Another type of 
onvolution, 
alled the Mellin 
onvolution, involves the produ
t

of two random variables, e.g., E = E

1

R

1

. As we shall see, the Fourier 
onvolution

is easily evaluated using the 
hara
teristi
 fun
tion, whi
h is essentially a Fourier

transform of the p.d.f. Similarly, the Mellin 
onvolution 
an be solved using the

Mellin transformation, but we shall not 
over that here.

In the above example we have assumed a dete
tor response independent of what

is being measured. In pra
ti
e, the distortion of the input signal usually depends

on the signal itself. This 
an o

ur in two ways:

1. Dete
tion eÆ
ien
y. The 
han
e of dete
ting an event with our apparatus

may depend on the properties of the event itself. For example, we want to

measure the frequen
y distribution of ele
tromagneti
 radiation in
ident on

the earth. But some of this radiation is absorbed by the atmosphere. Let

f(x) be the p.d.f. for the frequen
y, x, of in
ident radiation and let e(x) be

the probability that we will dete
t a photon of frequen
y x in
ident on the

earth. Both f and e may depend on other parameters, y, e.g., the dire
tion

in spa
e in whi
h we look. The p.d.f. of the frequen
y of the photons whi
h

we dete
t is

g(x) =

R

f(x; y)e(x; y) dy

R R

f(x; y)e(x; y) dxdy

2. Resolution. To 
ontinue with the above example, suppose the dete
tor re
ords

frequen
y x

0

when a photon of frequen
y x is in
ident. Let r(x

0

; x) be the p.d.f.

that this will o

ur. Then

g(x

0

) =

Z

r(x

0

; x)f(x) dx

In the 
ase that r is just a fun
tion of x � x

0

we get the simple 
onvolution

handled above. Note that resolution e�e
ts 
an lead to values of x

0

whi
h lie
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outside the physi
al range of x, e.g., an energy of a parti
le whi
h is larger

than the maximum energy allowed by energy 
onservation. The Central Limit

Theorem (
hapter 5) will tell us that the dete
tor response, or resolution

fun
tion, is usually normally distributed for a given input to the dete
tor:

r(x

0

; x) =

1

p

2��

exp

"

�

1

2

(x

0

� x)

2

�

2

#

= N(x

0

; x; �

2

) if � is 
onstant

However in pra
ti
e � often depends on x, in whi
h 
ase r(x

0

; x) may still have

the above form, but is not really a Gaussian.

If the resolution fun
tion is Gaussian and if the physi
al p.d.f., f(x), is also

Gaussian, f(x) = N(x;�; �

2

), then you 
an show, by using the reprodu
tive

property of the Gaussian (exer
ise 19) or by evaluating the 
onvolution using

the 
hara
teristi
 fun
tion (equation 4.1), that the p.d.f. for x

0

is also normal:

g(x

0

) =

Z

+1

�1

f(x) r(x

0

; x) dx = N

�

x

0

;�; �

2

+ �

2

�



Chapter 5

Central Limit Theorem

5.1 The Theorem

This is a very important theorem; you 
ould 
all it the `
entral' theorem of statisti
s.

It states:

Given n independent variables, x

i

, distributed a

ording to p.d.f.'s, f

i

, having

mean �

i

and varian
e V

i

= �

2

i

, then the p.d.f. for the sum of the x

i

, S �

P

x

i

, has

expe
tation (mean) E [S℄ =

P

�

i

and varian
e V [S℄ =

P

V

i

=

P

�

2

i

and approa
hes

the normal p.d.f. N (S;

P

�

i

;

P

�

2

i

) as n!1:

lim

n!1

f(S)! N

 

S;

n

X

i=1

�

i

;

n

X

i=1

�

2

i

!

; S =

n

X

i=1

x

i

(5.1)

It must be emphasized that the mean and varian
e must exist.

It is left as an exer
ise to show that

�

S

=

X

�

i

(5.2)

and �

2

S

= V [S℄ =

X

V

i

=

X

�

2

i

(5.3)

Proving the C.L.T. in the general 
ase is a bit too diÆ
ult for us. We will only

demonstrate it for the restri
ted 
ase where all the p.d.f's are the same, f

i

= f .

Without loss of generality we 
an let � = 0. Then �

2

= E [x

2

℄. We also assume not

only that the mean and varian
e of f are �nite, but also that the expe
tations of

higher powers of x are �nite su
h that we 
an expand the 
hara
teristi
 fun
tion

of f (equation 2.31):

�

x

(t) = E

h

e

{tx

i

= 1 +

({t)

2

2

�

2

+

({t)

3

3!

E

h

x

3

i

+ : : :

= 1�

�

2

t

2

2

+ : : :

Let u =

x

�

p

n

. The p.d.f. for u has varian
e

1

=

n

. Then

�

u

(t) = E

h

e

{tu

i

= 1�

t

2

2n

+ : : :
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62 CHAPTER 5. CENTRAL LIMIT THEOREM

Now re
all that the 
hara
teristi
 fun
tion of a sum of independent r.v.'s is the

produ
t of the individual 
hara
teristi
 fun
tions. Therefore, the 
hara
teristi


fun
tion of S

u

=

P

u

i

is

�

S

u

(t) = [�

u

(t)℄

n

=

"

1�

t

2

2n

+ : : :

#

n

whi
h in the limit n!1 is just an exponential:

�

S

u

(t) = exp

 

�

t

2

2

!

But this is just the 
hara
teristi
 fun
tion of the standard normal N(S

u

; 0; 1). Sin
e

S

u

=

P

u

i

=

1

�

p

n

S, the p.d.f. for

P

x

i

is the normal p.d.f. N(S;n�; n�

2

).

A 
orallary of the C.L.T.: Under the 
onditions of the C.L.T., the p.d.f. of S=n

approa
hes the normal p.d.f. as n!1:

lim

n!1

f

�

S

n

�

= N

 

S

n

;

P

�

i

n

;

P

�

2

i

n

2

!

; S =

n

X

i=1

x

i

(5.4)

or in the 
ase that all the f

i

are the same:

lim

n!1

f

�

S

n

�

= N

 

S

n

;�;

�

2

n

!

; S =

n

X

i=1

x

i

(5.5)

5.2 Impli
ations for measurements

The C.L.T. shows why the Gaussian p.d.f. is so important. Most of what we measure

is in fa
t the sum of many r.v.'s. For example, you measure the length of a table with

a ruler. The length you measure depends on a lot of small e�e
ts: opti
al parallax,


alibration of the ruler, temperature, your shaking hand, et
. A digital meter has

ele
troni
 noise at various pla
es in its 
ir
uitry. Thus, what you measure is not

only what you want to measure, but added to it a large number of (hopefully) small


ontributions. If this number of small 
ontributions is large the C.L.T. tells us that

their total sum is Gaussian distributed. This is often the 
ase and is the reason

resolution fun
tions are usually Gaussian. But if there are only a few 
ontributions,

or if a few of the 
ontributions are mu
h larger than the rest, the C.L.T. is not

appli
able, and the sum is not ne
essarily Gaussian.

Consider the passage of parti
les, e.g., an � parti
le, through matter. Usually the

� undergoes a large number of small-angle s
atters produ
ing a small net de
e
tion.

This net de
e
tion is Gaussian distributed sin
e it results from a large number of

individual s
atters. However o

asionally there is a large-angle s
attering; usually

not, but sometimes 1 and very rarely 2. The distribution of the s
attering angle �

when there has been one or more large-angle s
atters will not be Gaussian, sin
e
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1 or 2 is not a large number. Instead, the p.d.f. for � will be the 
onvolution of

the Gaussian for the net de
e
tion from many small-angle s
atters with the a
tual

p.d.f. for the large-angle s
atters. It will look something like:

-

6

�

Adding this to the Gaussian p.d.f. for the mu
h more likely 
ase of no large-angle

s
atters will give a p.d.f. whi
h looks almost like a Gaussian, but with larger tails:

-

6

�

Nearly Gaussian.

Many small-angle,

no large-angle s
atters.

Z

Z

Z~

Long tails. Many small-angle

s
atterings giving Gaussian tails.

Plus some large-angle

s
atterings giving a

non-Gaussian p.d.f.

�

�

�

�

�

��

This illustrates that the further you go from the mean, the worse the Gaussian

approximation is likely to be.

The C.L.T. also shows the e�e
t of repeated measurements of a quantity. For

example, we measure the length of a table with a ruler. The varian
e of the p.d.f.

for 1 measurement is �

2

; the varian
e of the p.d.f. for an average of n measurements

is

�

2

n

. Thus � is redu
ed by

p

n.

If a r.v. is the produ
t of many fa
tors, then its logarithm is a sum of equally

many terms. Assuming that the CLT holds for these terms, then the r.v. is asymp-

toti
ally distributed as the log-normal distribution.

\You 
an . . . never foretell what any one man

will do, but you 
an say with pre
ision what an

average number will be up to. Individuals vary,

but per
entages remain 
onstant."

|Arthur Conan Doyle: Sherlo
k Holmes in

\The Sign of Four"
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Chapter 6

Monte Carlo

The termMonte Carlo is used for 
al
ulational te
hniques whi
h make use of random

numbers. These te
hniques represent the solution of a problem as a parameter of

a hypotheti
al population, and use a random sequen
e of numbers to 
onstru
t a

sample of the population, from whi
h statisti
al estimates of the parameter are

obtained.

The Monte Carlo solution of a problem thus 
onsists of three parts:

1. 
hoi
e of the p.d.f. whi
h des
ribes the hypotheti
al population;

2. generation of a random sample of the hypotheti
al population using a random

sequen
e of numbers; and

3. statisti
al estimation of the parameter in question from the random sample.

It is no a

ident that these three steps 
orrespond to the three parts of these le
tures.

P.d.f.'s have been 
overed in part I; this part will 
over the generation of a Monte

Carlo sample a

ording to a given p.d.f.; and part III will treat statisti
al estimation,

whi
h is done in the same way for Monte Carlo as for real samples.

If the solution of a problem is the number F , the Monte Carlo estimate of F

will depend on, among other things, the random numbers used in the 
al
ulation.

The introdu
tion of randomness into an otherwise well-de�ned problem may seem

rather strange, but we shall see that the results 
an be very good.

After a short treatment of random numbers (se
tion 6.1) we will treat a 
ommon

appli
ation of the Monte Carlo method, namely integration (se
tion 6.2) for whi
h

the statisti
al estimation is parti
ularly simple. Then, in se
tion 6.3 we will treat

methods to generate a Monte Carlo sample whi
h 
an then be used with any of the

statisti
al methods of part III.

6.1 Random number generators

Random number generators may be 
lassi�ed as true random number generators or

as pseudo-random number generators.
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6.1.1 True random number generators

True random number generators must be based on random physi
al pro
esses, e.g.,

� the potential a
ross a resistor, whi
h arises from thermal noise.

� the time between the arrival of two 
osmi
 rays.

� the number of radioa
tive de
ays in a �xed time interval.

An example of how we 
ould use this last possibility is to turn on a 
ounter for

a �xed time interval, long enough that the average number of de
ays is large. If

the number of dete
ted de
ays is odd, we re
ord a 1; if it is even, we re
ord a 0.

We repeat this the number of times ne
essary to make up the fra
tion part of our


omputer's word (assuming a binary 
omputer). We then have a random number

between 0 and 1.

Unfortunately, this pro
edure does not produ
e a uniform distribution if the

probability of an odd number of de
ays is not equal to that of an even number. To

remove this bias we 
ould take pairs of bits: If both bits are the same, we reje
t

both bits; if they are di�erent, we a

ept the se
ond one. The probability that we

end up with a 1 is then the probability that we �rst get a zero and se
ond a one;

the probability that we end up with a zero is the probability that we �rst get a

one and se
ond a zero. Assuming no 
orrelation between su

essive trials, these

probabilities are equal and we have a
hieved our goal.

The main problem with su
h generators is that they are very slow. Not wanting

to have too dangerous a sour
e, i.e., not too mu
h more than the natural ba
kground

(
osmi
 rays are about 200 m

�2

s

�1

), nor too large a dete
tor, it is 
lear that we will

have 
ounting times of the order of millise
onds. For a 24-bit fra
tion, that means

24 
ounting intervals per real random number, or 96 intervals if we remove the bias.

Thus we 
an easily spend of the order of 1 se
ond to generate 1 random number!

They are also not, by their very nature, reprodu
ible, whi
h 
an be a problem

when debugging a program.

6.1.2 Pseudo-random number generators

A pseudo-random number generator produ
es a sequen
e of numbers 
al
ulated

by a stri
tly mathemati
al pro
edure, whi
h nonetheless appears random by some

statisti
al tests. Sin
e the sequen
e is not really random, there will 
ertainly exist

some other statisti
al test for whi
h it will fail to appear random.

Several algorithms have been used to produ
e pseudo-random generators,

30

de-

s
riptions of whi
h are beyond the s
ope of this 
ourse. In FORTRAN77, generators

have usually been introdu
ed as fun
tions with names su
h as RAN. The statement X

= RAN(0) assigns the next number in the random number sequen
e to the variable

X. The argument of the fun
tion is a dummy argument whi
h is not used. The

generation pro
eeds from a `seed', ea
h number in the sequen
e a
ting as the seed
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for the next. Usually there is a provision allowing the user to set the seed at the

start of his program and to �nd out what the seed is at the end. This feature allows

a new run to be made starting where the previous run left o�. In FORTRAN90 this

is standardized by providing an intrinsi
 subroutine, random number(h), whi
h �lls

the real variable (or array) h with pseudo-random numbers in the interval [0; 1).

A subroutine random seed is also provided to input a seed or to inquire what the

seed is at any point in the 
al
ulation. However, no requirements are made on the

quality of the generated sequen
e, whi
h will therefore depend on the 
ompiler used.

In 
riti
al appli
ations one may therefore prefer to use some other generator.

Re
ently, new methods have been developed resulting in pseudo-random number

generators far better than the old ones.

31

In parti
ular the short periods, i.e., that

the sequen
e repeats itself, of the old generators has been greatly lengthened. For

example the generator RANMAR has a period of the order of 10

43

. The new generators

are generally written as subroutines returning an array of random numbers rather

than as a fun
tion, sin
e the time to 
all a subroutine or invoke a fun
tion is of the

same order as the time to generate one number, e.g., CALL RANMAR (RVEC,90) to

obtain the next 90 numbers in the sequen
e in the array RVEC, whi
h of 
ourse must

have a dimension of at least 90.

Some pseudo-random number generators generate numbers in the 
losed interval

[0; 1℄ rather than the open interval. Although it o

urs very infrequently (on
e in

2

24

on a 32-bit 
omputer), the o

uren
e of an exa
t 0 
an be parti
ularly annoying

if you happen to divide by it. The open interval is therefore re
ommended.

Any one who 
onsiders arithmeti
al methods of produ
ing

random digits is, of 
ourse, in a state of sin.

| John von Neumann

6.2 Monte Carlo integration

Mu
h of this se
tion has been taken from James

30

and Lyons

8

.

We want to evaluate the integral

I =

Z

b

a

y(x) dx (6.1)

We will dis
uss several Monte Carlo methods to do so.

6.2.1 Crude Monte Carlo

A trivial (
ertainly not the best) numeri
al method is to divide the interval (a; b)

into n subintervals and add up the areas of ea
h subinterval using the value of y at

the middle of the interval:

I =

b� a

n

n

X

i=1

y(x

i

) ; x

i

= a+

�

i�

1

2

�

b� a

n
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An obvious Monte Carlo method, 
alled 
rude Monte Carlo, is to do the same

sum, but with

x

i

= a+ r

i

(b� a)

where the r

i

are random numbers uniformly distributed on the interval (0; 1).

More formally, the expe
tation of the fun
tion y(x) given a p.d.f. f(x) whi
h is

non-zero in (a; b) is given by

�

y

= E [y℄ =

Z

b

a

y(x)f(x) dx

Sin
e the available pseudorandom number generators sample a uniform distribution,

we take f(x) to be the uniform p.d.f. f(x) = 1=(b� a), a � x � b. Then

�

y

= E [y℄ =

1

b� a

Z

b

a

y(x) dx =

I

b� a

�

2

y

= V [y℄ =

1

b� a

Z

b

a

(y � �

y

)

2

dx =

1

b� a

Z

b

a

y

2

dx� �

2

y

Let us emphasize that �

y

and �

2

y

are the expe
tation and varian
e of the fun
tion

y(x) for a uniform p.d.f. Do not 
onfuse them with the mean and varian
e of a

p.d.f.|y(x) is not a p.d.f.

Let y

i

= y(x

i

) where the x

i

are distributed a

ording to f(x), i.e., uniformly.

Then, by the C.L.T., the average of the n values y

i

approa
hes the normal distri-

bution for large n:

N

 

P

y

i

n

;�

y

;

�

2

y

n

!

= N

 

P

y

i

n

;

I

b� a

;

�

2

y

n

!

We shall see in statisti
s (se
t. 8.3) that an expe
tation value, e.g., E [y℄, 
an be

estimated by the sample mean of the quantity, �y =

P

y

i

=n.

Thus by generating n values x

i

distributed uniformly in (a; b) and 
al
ulating

the sample mean, we determine the value of I=(b� a) to an un
ertainty �

y

=

p

n:

I =

b� a

n

n

X

i=1

y(x

i

) � (b� a)

�

y

p

n

(6.2)

In pra
ti
e, if we do not know

R

y dx, it is unlikely that we know

R

y

2

dx, whi
h

is ne
essary to 
al
ulate �

y

. However, we shall see that this too 
an be estimated

from the Monte Carlo points (eq. 8.7):




�

2

=

1

n� 1

n

X

i=1

(y

i

� �y)

2

Sin
e n is large, we 
an repla
e n� 1 by n. Multiplying out the sum we then get




�

2

= (y

2

� �y

2

)



6.2. MONTE CARLO INTEGRATION 71

Hen
e the integral is estimated by

I =

Z

b

a

y(x) dx = (b� a)

 

�y �

1

p

n

q

y

2

� �y

2

!

(6.3)

Generalizing to more than one dimension is straightforward: Points are gen-

erated uniformly in the region of integration. The Monte Carlo estimate of the

integral is still given by equation 6.3 if the length of the interval, (b�a), is repla
ed

by the volume of the region of integration.

6.2.2 Hit or Miss Monte Carlo

Another method to evaluate the integral

(6.1) is by hit or miss Monte Carlo. In this

method two random numbers are required

per evaluation of y(x). Let R[x; y℄ be a

random number uniformly distributed on

(x; y). Then generate a point in the re
tan-

gle de�ned by the minimum and maximum

values of y and the limits of integration, a

and b:

x

i

= R[a; b℄

y

i

= R[y

min

; y

max

℄

-

y(x)

y

max

y

min

6

xa b

If you do not know y

min

and y

max

, you must guess `safe' values. The generated point

is 
alled a

`hit' if y

i

< y(x

i

)

`miss' if y

i

> y(x

i

)

Then an estimate of I is given by the fra
tion of points whi
h are hits:

I =

n

hits

n

(b� a)(y

max

� y

min

) + y

min

(b� a)

Sin
e hit or miss is a binomial situation, the number of hits follows the binomial

p.d.f. with expe
tation E [n

hits

℄ = np and varian
e V [n

hits

℄ = np(1� p), where p is

the probability of a hit. V [I℄ is trivially related to V [n

hits

℄:

V [I℄ =

1

n

2

V (n

hits

)(b� a)

2

(y

max

� y

min

)

2

=

1

n

p(1� p)(b� a)

2

(y

max

� y

min

)

2

The probability p, of a hit 
an be estimated from the result: p̂ = n

hits

=n. Thus

I =

n

hits

n

(b� a)(y

max

� y

min

) + y

min

(b� a)

�

p

n

hits

n

s

�

1�

n

hits

n

�

(b� a) (y

max

� y

min

) (6.4)
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Here too, the generalization to more than one dimension is straightforward:

Points are generated uniformly in the region of integration and the fun
tion value

is tested for a hit. The integral is then given by equation 6.4 with (b� a) repla
ed

by the volume of the region in whi
h points were generated.

6.2.3 Bu�on's needle, a hit or miss example

An early (1777) appli
ation of the Monte Carlo te
hnique was to estimate the value

of �. This 
al
ulation, known as Bu�on's needle,

32

pro
eeds as follows: Parallel lines

separated by distan
e d are drawn on the 
oor. A needle of length d is dropped on

the 
oor su
h that its position (distan
e of the 
enter of the needle to the nearest

line) and its orientation (angle, �, between the needle and a perpendi
ular to the

lines) are both distributed uniformly. If the needle lies a
ross a line we have a hit,

otherwise a miss.

For a given �, the 
han
e of a hit is given by the 
onditional p.d.f.

f(hitj�) =

proje
ted length of needle on a perpendi
ular

distan
e between lines

=

d 
os �

d

= 
os �

The 
han
e of a hit irrespe
tive of � is then

p =

Z

�=2

0

f(hitj�)f(�) d� =

Z

�=2

0


os �

1

�

2

� 0

| {z }

f(�)

d� =

2

�

Thus an estimate of 2=� is given by the estimator of p, namely p̂ = n

hits

=n and an

estimate of � by 2n=n

hits

.

6.2.4 A

ura
y of Monte Carlo integration

The un
ertainty of the Monte Carlo integration de
reases, for both 
rude and hit

or miss Monte Carlo, with the number of points, n, as n

�1=2

. However 
rude Monte

Carlo is usually more a

urate than the hit or miss method. For example, take the

integral involved in Bu�on's needle. In 
rude Monte Carlo,

�

y

= E [y℄ =

I

b� a

=

2

�

Z

�=2

0


os � d� =

2

�

V [y℄ =

1

b� a

Z

�=2

0


os

2

� d� � �

2

y

=

1

2

�

�

2

�

�

2

= 0:0947

The un
ertainty of the estimation of I is then

p

0:0947=

p

n = 0:308=

p

n.

On the other hand, hit or miss yields, using p = 2=�:

V [I℄ =

1

n

p(1� p)

�

�

2

�

2

=

0:571

n
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The un
ertainty of the estimation of I is then

p

0:571=

p

n = 0:756=

p

n, whi
h is


onsiderably larger (more than a fa
tor 2) than for 
rude Monte Carlo.

The un
ertainty of Monte Carlo integration is 
ompared with that of numeri
al

methods in the following table:

un
ertainty in I 
al
ulated from n points

method 1 dimension d dimensions

Monte Carlo n

�1=2

n

�1=2

trapezoidal rule n

�2

n

�2=d

Simpson's rule n

�4

n

�4=d

m-point Gauss rule n

�(2m�1)

n

�(2m�1)=d

Thus we see that Monte Carlo integration 
onverges mu
h more slowly than

other methods, parti
ularly for low numbers of dimensions. Only for greater than

8 dimensions does Monte Carlo 
onverge faster than Simpson's rule, and there is

always a Gauss rule whi
h 
onverges faster than Monte Carlo.

However, there are other 
onsiderations besides rate of 
onvergen
e: The �rst is

the question of feasibility. For example, in 38 dimensions a 10-point Gauss method


onverges at the same rate as Monte Carlo. However, in the Gauss method, the

number of points is �xed, n = m

d

, whi
h in our example is 10

38

. The evaluation

of even a very simple fun
tion requires on the order of mi
rose
onds on a fast


omputer. So 10

38

is 
learly not feasible. (10

32

se
: � � � 10

24

years, while the age

of the universe is only of order 12 Gyr.)

Another problem with numeri
al methods is the boundary of integration. If the

boundary is 
ompli
ated, numeri
al methods be
ome very diÆ
ult. This is, how-

ever, easily handled in Monte Carlo. One simply takes the smallest hyperre
tangle

that will surround the region of integration and integrates over the hyperre
tangle,

throwing away the points that fall outside the region of integration. This leads to

some ineÆ
ien
y, but is straightforward. This is one of the 
hief advantages of the

Monte Carlo te
hnique. An example is given by phase spa
e integrals in parti
le

physi
s. Consider the de
ay n ! pe

�

�

e

, the neutron at rest. Cal
ulations for this

de
ay involve 9 variables, p

x

; p

y

; p

z

for ea
h of the 3 �nal-state parti
les. However

these variables are not independent, being 
onstrained by energy and momentum


onservation,

P

p

x

=

P

p

y

=

P

p

z

= 0, and

P

E = m

n




2

, where the energy of a

parti
le is given by, E =

q

m

2




4

+ p

2

x




2

+ p

2

y




2

+ p

2

z




2

. This 
ompli
ated boundary

makes an integration by numeri
al methods diÆ
ult; it be
omes pra
ti
ally im-

possible for more than a few parti
les. However Monte Carlo integration is quite

simple: one generates points uniformly in the integration variables, 
al
ulates the

energy and momentum 
omponents for ea
h parti
le and tests whether momentum

and energy are 
onserved. If not, the point is simply reje
ted.

Another pra
ti
al issue might be termed the growth rate. Suppose you have

performed an integration and then de
ide that it is not a

urate enough. With
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Monte Carlo you just have to generate some more points (starting your random

number generator where you left o� the previous time). However, with the Gauss

rule, you have to go to a higher order m. All the previous points are then useless

and you have to start over.

6.2.5 A 
rude example in 2 dimensions

One of the advantages of Monte Carlo is the ease

with whi
h irregular integration regions 
an be

handled. Consider a two-dimensional integral

over a triangular region:

I =

Z

b

a

dx

Z

x

a

dy g(x; y)

We give �ve ways of estimating this integral us-

ing 
rude Monte Carlo:

-

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

y(x)

a

b

xa b

1. The obvious way:

(a) Choose x

i

= R[a; b℄.

(b) Choose y

i

= R[a; x

i

℄.

(
) Sum the g(x

i

; y

i

): I =

(b�a)

2

2n

P

n

i=1

g(x

i

; y

i

)

This method, although obvious, is in
orre
t. This is be
ause the points

(x

i

; y

i

) are not uniformly distributed over the region of integration. There

are (approximately) the same number of points for a < x < (a + b)=2 as for

(a+ b)=2 < x < b, while the areas di�er by a fa
tor 3.

2. Reje
tion method:

(a) Choose x

i

= R[a; b℄ and y

i

= R[a; b℄.

(b) De�ne a new fun
tion z(x; y) whi
h is de�ned on the entire region for

whi
h points are generated, but whi
h has the same integral as g:

z

i

=

�

0; if y

i

> x

i

,

g(x

i

; y

i

); if y

i

< x

i

.

Or, equivalently, reje
t the point if it does not lie in the region of inte-

gration, i.e., if y

i

> x

i

.

(
) Then sum the z

i

:

I =

(b� a)

2

n

n

X

i=1

z

i
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3. Reje
tion method (area of region of integration known): The above reje
tion

method results in a perhaps needlessly large error sin
e we are using Monte

Carlo to estimate the integral of z, even where we know that z = 0. Another

way of looking at it is that we are using Monte Carlo to estimate what fra
tion,

f

a

, of the area of point generation is taken up by the area of integration.

Hen
e, if we know this fra
tion we 
an remove this 
ontribution to the error

by simply reje
ting the points not in the area of integration. We pro
eed as

follows:

(a) Choose x

i

= R[a; b℄ and y

i

= R[a; b℄.

(b) Reje
t the point if it does not lie in the region of integration, i.e., if

y

i

> x

i

.

(
) Then sum the g(x

i

; y

i

) repla
ing the area of point generation by the area

of the region of integration, f

a

(b � a)

2

. In this example we know that

f

a

=

1

2

. The result is then

I =

1

2

(b� a)

2

n

0

n

0

X

i=1

g(x

i

; y

i

)

where n

0

is the number of generated points lying in the region of inte-

gration.

Both reje
tion methods are 
orre
t, but ineÆ
ient|both use only half of the

points. Sometimes this ineÆ
ien
y 
an be over
ome by a tri
k:

4. Folding method (a tri
k):

(a) Choose u

i

= R[a; b℄ and v

i

= R[a; b℄.

(b) Let x

i

= max(u

i

; v

i

) and y

i

= min(u

i

; v

i

).

(
) Then sum the g

i

:

I =

(b� a)

2

2n

n

X

i=1

g(x

i

; y

i

)

This is equivalent to generating points uniformly over the whole square and

then folding the square about the diagonal so that all the points fall in the

triangular region of integration. The density of points remains uniform.

5. Weighting method. We generate points as in the \obvious", but wrong,

method:

(a) Choose x

i

= R[a; b℄.

(b) Choose y

i

= R[a; x

i

℄.

(
) But we make a weighted sum, the weight 
orre
ting for the unequal
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density of points (density �

1

(x�a)

):

I =

b� a

n

n

X

i=1

(x

i

� a) g(x

i

; y

i

) (6.5)

The derivation of this formula is left as an exer
ise (27).

This method is, in fa
t, an appli
ation of the te
hnique of importan
e sampling

(
f. se
tion 6.2.6) It may, or may not, be more eÆ
ient than folding, depending

on the fun
tion g. In parti
ular, it will be more eÆ
ient when the varian
e of

(x� a)g is smaller than that of g.

6.2.6 Varian
e redu
ing te
hniques

As we have seen, Monte Carlo integration 
onverges rather slowly with n 
ompared

to the better numeri
al te
hniques. There are, however, several methods of redu
ing

the varian
e of the Monte Carlo estimation:

Strati�
ation

In this approa
h we split the region of integration into two or more subregions.

Then the integral is just the sum of the integrals over the subregions, e.g., for two

subregions,

I =

Z

b

a

y(x) dx =

Z




a

y(x) dx+

Z

b




y(x) dx

The varian
e of I is just the sum of the varian
es of the subregions. A good 
hoi
e

of subregions and number of points in ea
h region 
an result in a dramati
 de
rease

in V [I℄. However, to make a good 
hoi
e requires knowledge of the fun
tion. A

poor 
hoi
e 
an in
rease the varian
e.

Some improvement 
an always be a
hieved by simply splitting the region into

subregions of equal size and generating the same number of points for ea
h subre-

gion. We illustrate this, using 
rude Monte Carlo, for the 
ase of two subregions:

For the entire region the varian
e is (from equation 6.2)

V

1

(I) =

(b� a)

2

n

�

2

y

=

(b� a)

2

n

2

4

1

b� a

Z

b

a

y

2

dx�

 

1

b� a

Z

b

a

y dx

!

2

3

5

For two equal regions, the varian
e is the sum of the varian
es of the two regions:

V

2

(I) =

[(b� a)=2℄

2

n=2

("

2

b� a

Z




a

y

2

dx�

�

2

b� a

Z




a

y dx

�

2

#

+

2

4

2

b� a

Z

b




y

2

dx�

 

2

b� a

Z

b




y dx

!

2

3

5

9

=

;

=

(b� a)

2

2n

8

<

:

2

b� a

Z

b

a

y

2

dx�

4

(b� a)

2

2

4

�

Z




a

y dx

�

2

+

 

Z

b




y dx

!

2

3

5

9

=

;
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The improvement in varian
e is given by

V

1

(I)� V

2

(I) = �

1

n

 

Z

b

a

y dx

!

2

+

2

n

2

4

�

Z




a

y dx

�

2

+

 

Z

b




y dx

!

2

3

5

Substituting A =

Z




a

y dx and B =

Z

b




y dx

V

1

(I)� V

2

(I) =

1

n

h

� (A+B)

2

+ 2

�

A

2

+B

2

�i

=

1

n

(A�B)

2

� 0

Thus some improvement in the varian
e is attained, although it may be arbitrarily

small. This improvement 
an be qualitatively understood as due to an in
reased

uniformity of the distribution of points.

Importan
e Sampling

We have seen that (in 
rude Monte Carlo) the varian
e of the estimate of the integral

is proportional to the varian
e of the fun
tion being integrated (eq. 6.2). Thus the

less variation in y, i.e., the more 
onstant y(x) is, the more a

urate the integral.

We 
an e�e
tively a
hieve this by generating more points in regions of large y and


ompensating for the higher density of points by redu
ing the value of y (i.e., giving

a smaller weight) a

ordingly. This was also the motivation for strati�
ation.

In importan
e sampling we 
hange variable in order to have an integral with

smaller varian
e:

I =

Z

b

a

y(x) dx =

Z

b

a

y(x)

g(x)

g(x) dx =

Z

G(b)

G(a)

y(x)

g(x)

dG(x)

where G(x) =

Z

x

a

g(x) dx

Thus we must �nd a fun
tion g(x) su
h that

� g(x) is a p.d.f., i.e., everywhere positive and normalized su
h that G(b) = 1.

� G(x) is known analyti
ally.

� Either G(x) 
an be inverted (solved for x) or a random number generator is

available whi
h generates points (x) a

ording to g(x).

� The ratio y(x)=g(x) is as nearly 
onstant as possible and in any 
ase more


onstant than y(x), i.e., �

y=g

< �

y

.

We then 
hoose values of G randomly between 0 and 1; for ea
h G solve for x; and

sum y(x)=g(x). The weighting method of se
tion 6.2.5 was really an appli
ation of

importan
e sampling.
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Although importan
e sampling is a useful te
hnique, it su�ers in pra
ti
e from

a number of drawba
ks:

� The 
lass of fun
tions g whi
h are integrable and for whi
h the integral 
an

be inverted analyti
ally is small|essentially only the trigonometri
 fun
tions,

exponentials, and polynomials. The inversion 
ould in prin
iple be done nu-

meri
ally, but this introdu
es ina

ura
ies whi
h may be larger that the gain

made in redu
ing the varian
e.

� It is very diÆ
ult in more than one dimension. In pra
ti
e one usually uses a

g whi
h is a produ
t of one-dimensional fun
tions.

� It 
an be unstable. If g be
omes small in a region, y=g be
omes very big and

hen
e the varian
e also. It is therefore dangerous to use a fun
tion g whi
h is

0 in some region or whi
h approa
hes 0 rapidly.

� Clearly y(x) must be rather well known in order to 
hoose a good fun
tion g.

On the other hand, an advantage of this method is that singularities in y(x) 
an be

removed by 
hoosing a g(x) having the same singularities.

Control Variates

This is similar to importan
e sampling ex
ept that instead of dividing by g(x), we

subtra
t it:

I =

Z

y(x) dx =

Z

[y(x)� g(x)℄ dx +

Z

g(x) dx

Here,

R

g(x) dx must be known, and g is 
hosen su
h that y � g has a smaller

varian
e than y. This method does not risk the instability of importan
e sampling.

Nor is it ne
essary to invert the integral of g(x).

Antitheti
 Variates

So far, we have always used Monte Carlo points whi
h are independent. Here we

deliberately introdu
e a 
orrelation. Re
all that the varian
e of the sum of two

fun
tions is

V [y

1

(x) + y

2

(x)℄ = V [y

1

(x)℄ + V [y

2

(x)℄ + 2 
ov[y

1

(x); y

2

(x)℄

Thus, if we 
an write

I =

Z

b

a

y dx =

Z

b

a

(y

1

+ y

2

) dx

su
h that y

1

and y

2

have a large negative 
orrelation, we 
an redu
e the varian
e of

I. Clearly, we must understand the fun
tion y(x) in order to do this. It is diÆ
ult

to give general methods, but we will illustrate it with an example:

Suppose that we know that y(x) is a monotoni
ally in
reasing fun
tion of x.
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Then let y

1

=

1

2

y(x) and y

2

=

1

2

y (b� (x� a)). Clearly the integral of (y

1

+ y

2

) is

just the integral of y. However, sin
e y is monotoni
ally in
reasing, y

1

and y

2

are

negatively 
orrelated; when y

1

is small, y

2

is large and vi
e versa. If this negative


orrelation is large enough, V [y

1

+ y

2

℄ < V [y℄.

6.3 Monte Carlo simulation

Referen
es for this se
tion are James

30

and Lyons.

8

For further details and additional

topi
s 
onsult Rubinstein.

33

Monte Carlo problems are usually 
lassi�ed as either integration or simulation.

We shall be 
on
erned with simulating experiments in physi
s. This begins with

a theory or hypothesis about the physi
al pro
ess, i.e., with the assumption of

an underlying p.d.f., g(x

0

), whi
h may then be modi�ed by the response fun
tion,

r(x; x

0

), of the experimental apparatus. The expe
ted p.d.f. of the observations is

then given by

f(x) =

Z

g(x

0

) r(x; x

0

) dx

0

The purpose of the simulation is to produ
e a set of n simulated or `fake' data

points distributed a

ording to f(x). These 
an be 
ompared with the real data to

test the hypothesis. They 
an also be used in the planning stage of the experiment

to help in its design, e.g., to 
ompare the use of di�erent apparatus, and to test

software to be used in the analysis of the experiment.

Sin
e these fake points are distributed a

ording to f(x), they are in fa
t just

the points generated for the Monte Carlo integration of

R

f(x) dx. Simulation is

thus, formally at least, equivalent to integration. The purpose is, however, usually

di�erent. This means that often a di�erent Monte Carlo method will be preferred

for simulation than for integration.

Although we will 
ontinue to use the term p.d.f. for f(x), for the purposes

of simulation the normalization is unimportant (at least if we are 
areful). It is,

however, essential that the fun
tion not be negative.

The p.d.f. that we wish to simulate, f(x), 
an be extremely 
ompli
ated. The

underlying physi
al p.d.f., g(x

0

), may itself involve integrals whi
h will be evaluated

by Monte Carlo in the 
ourse of the simulation, and the dete
tor des
ription may


onsist of various stages, ea
h depending on the previous one.

Monte Carlo simulation of su
h 
omplex pro
esses breaks them down into a

series of steps. At ea
h step a parti
ular out
ome is 
hosen from a set of possi-

ble out
omes a

ording to a given p.d.f., f(x). In other words, the out
ome of

the step is a (pseudo-)random number generated a

ording to f(x). But random

number generators generally produ
e uniformly distributed numbers. We therefore

must transform the uniformly distributed random numbers into random numbers

distributed a

ording to the desired p.d.f. There are three basi
 methods to do this:
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6.3.1 Weighted events

This method is analogous to that of 
rude Monte Carlo for integration. For a p.d.f.,

f(x), de�ned on the interval (a; b), points are generated uniformly in x and given

a weight, w. An event then 
onsists of the values x

i

and w

i

= f(x

i

)(b � a). The

integral of f(x) over any subinterval of (a; b), e.g., (
; d) with a � 
 < d � b, is then

given by the sum of the weights of the events in that interval:

Z

d




f(x) dx =

1

n

X


<x<d

w

i

In parti
ular, a weighted histogram of the x

i

(
 and d are then the various bin

limits), represents the p.d.f. and 
an be dire
tly 
ompared with the data.

We have seen that integration by 
rude Monte Carlo gives a smaller varian
e

than the hit-or-miss method, and is therefore generally preferable. However in sim-

ulation it is usually deemed preferable not to have weighted events. One prefers to

have the Monte Carlo events as mu
h as possible like the real events. In parti
ular,

it is usually desirable that the Monte Carlo sample behave statisti
ally like the real

event sample, e.g., the varian
e of the average of nMonte Carlo points should result

in the same varian
e as that of the average of n real points. This is not the 
ase

with weighted events. The density of Monte Carlo points where f(x) is small is

the same as where f(x) is large, whereas in the real data the density of points is

proportional to f(x).

6.3.2 Reje
tion method

This method is analogous to the hit-or-miss

method of Monte Carlo integration. As in

hit-or-miss Monte Carlo, we generate points

uniformly in x and in f(x)

x

i

= R[a; b℄

r

i

= R[0; f

max

℄

where f

max

is the maximum value of f(x) in

(a; b). Points for whi
h f(x

i

) < r

i

are then

reje
ted.

-

x

0

f(x)

f

max

6

a b
d

The integral over a subinterval (
; d) is then

Z

d




f(x) dx =

n


<x<d

n

(b� a)f

max

In hit-or-miss Monte Carlo we also introdu
ed an f

min

. Sin
e we knew the

integral

R

b

a

f

min

dx, it was not ne
essary to evaluate it by Monte Carlo. It was
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therefore better (more eÆ
ient) to use all the Monte Carlo points to evaluate

R

b

a

(f�

f

min

) dx. But here we want to generate all the events for f , not just for (f � f

min

).

The diÆ
ulty with this method lies in knowing f

max

. If we do not know it, then

we must guess a `safe' value, i.e., a value whi
h we are sure is larger than f

max

. If

we 
hoose f

max

too safe, the method be
omes ineÆ
ient. This method 
an be made

more eÆ
ient by 
hoosing di�erent values of f

max

in di�erent regions.

This method is the easiest method to use for 
ompli
ated fun
tions in many

dimensions.

6.3.3 Inverse transformation method

Continuous p.d.f.

This is like importan
e sampling with g(x) = f(x). The resulting integrand is just

the uniform distribution. We transform from f(x) to F :

f(x) dx = dF

where F (x) is just the 
.d.f. of f(x),

F (x) =

Z

x

a

f(x) dx

Instead of generating points uniform in x, we generate points uniformly distributed

in F between F (a) and F (b), whi
h are 0 and 1, respe
tively, if f(x) is a p.d.f.

normalized on (a; b):

u

i

= R [F (a); F (b)℄

and 
al
ulate the 
orresponding value of x,

x

i

= F

�1

(u

i

)

-

0

F (x)

1

u

6

xa

x = F

�1

(u)

The x

i

are then distributed as f(x). To see this, re
all the results on 
hanging vari-

ables (se
t. 2.2.6): For a transformation u! x = v(u) with inverse transformation

u = w(x), the p.d.f. for x is given by the p.d.f. for u, g(u), times the Ja
obian, i.e.,

p.d.f. for x = g(u)

�

�

�

�

�

�u

�x

�

�

�

�

�

= g (w(x))

�

�

�

�

�

�w(x)

�x

�

�

�

�

�
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Here, u = F (x), x = F

�1

(u) and u is distributed uniformly, i.e., g(u) = 1. The

p.d.f. for x is then

�

�

�

�

�

�u

�x

�

�

�

�

�

=

�

�

�

�

�

�F (x)

�x

�

�

�

�

�

= f(x)

Hen
e, if g(u) is a uniform distribution, the p.d.f. for x is f(x), as desired.

The diÆ
ulties with this method are integrating f(x) to obtain F (x) and in-

verting F (x) to obtain F

�1

(u). But if this 
an be done, this is usually the best

method.

If F is not one-to-one, we de�ne

x = F

�1

min

(u) = min(x for whi
h F (x) � u)

F (x)

xa

0

x = F

�1

min

(u)

-

6

u

Dis
rete p.d.f.

For a dis
rete p.d.f., we 
an always use this method, sin
e the 
.d.f. is always easily


al
ulated. The probability of X = x

k

is P (X = x

k

) = f(x

k

). Then the 
.d.f. is

F

k

= P (X � x

k

) =

k

X

i=1

f(x

k

)

Taking u uniformly distributed between 0 and 1,

P (F

k�1

< u � F

k

) =

Z

F

k

F

k�1

du

= F

k

� F

k�1

= f(x

k

)

Thus, to generate a point, we

1. generate u

i

= R[0; 1℄

2. �nd the value of k su
h that

F

k�1

< u

i

� F

k

Then x

k

is the desired value of x.

F (x)

xa

0

-

6

F

k�1

x

k�1

F

k

x

k

1

Step 2 of this pro
edure 
an involve a lot of steps. You 
an usually save 
omputer

time by starting the 
omparison somewhere in the middle of the x-range, say at the

mean or mode, and then working up or down in x depending on u and F

k

.
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This is of interest not only for situations with a dis
rete p.d.f., but also for


ases where the p.d.f. is 
ontinuous, but not known analyti
ally. The resolution

fun
tion of an apparatus is often determined experimentally and the resulting p.d.f.

expressed as a histogram.

6.3.4 Composite method

It may be advantageous to de
ompose the desired p.d.f. into a sum of p.d.f.'s whi
h

are easier to generate:

f(x) =

X

f

k

(x) (6.6)

Let

�

k

=

R

b

a

f

k

(x) dx

P

j

R

b

a

f

j

(x) dx

(6.7)

Then

P

�

i

= 1, and �

k

is the fra
tion of the points to be generated a

ording to

f

k

.

In generating the points, we regard the index k as a dis
rete r.v. with probability

�

k

. We �rst generate u = R[0; 1℄ and use it to sele
t k. Then we generate a value

x

i

a

ording to f

k

(x) using one of the previous methods.

You might ask why not skip the �rst step and just generate exa
tly �

k

n points

a

ording to f

k

for ea
h k, where n is the total number of points. This was a method

(strati�
ation) to improve the varian
e in Monte Carlo integration. The answer is

that the varian
e of the Monte Carlo sample would then be di�erent from that of

a sample of n real events, while the purpose of simulation is usually to obtain a

Monte Carlo sample having the same statisti
al properties as real events.

6.3.5 Example

As an example of the above methods, we take the p.d.f.

f(x) = 1 + x

2

in the region (�1; 1). This 
ould be an angular distribution with x = 
os �. We

note that f(x) is not normalized. We 
ould, of 
ourse, normalize it, but 
hoose not

to do so. For as we shall see, for the purpose of generating events the normalization

is not ne
essary.

Weighted events

This is 
ompletely trivial. We generate x

i

= R[�1; 1℄ and assign weight w

i

= 1+x

2

i

.

Reje
tion method
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2

1

0

�1

0

+1

We have f

max

= 2, a = �1, b = +1. There-

fore, we generate

x

i

= R[�1;+1℄ = 2R[0; 1℄� 1

r

i

= R[0; 2℄ = 2R[0; 1℄

and reje
t the point if r

i

> 1 + x

2

i

.

Note that the eÆ
ien
y of the genera-

tion is

R

1

�1

(1+x

2

) dx

(b�a)f

max

=

2

3

, i.e.,

1

/

3

of the points are reje
ted.

Inverse transformation method

We have

F (x) =

Z

x

�1

(1 + x

2

) dx = x +

x

3

3

#

x

�1

= x+

x

3

3

+

4

3

Hen
e F (�1) = 0 and F (1) = 8=3. Therefore generate u = R[0; 1℄. Then

8

3

u

is uniformly distributed on [F (�1); F (+1)℄. The 
orresponding value of x is the

solution of

8

3

u = F (x) = x +

x

3

3

+

4

3

The solution is

x

i

= A+B, where A = (4u� 2 + s)

1=3

B = (4u� 2� s)

1=3

; s =

q

1 + 4(1� 2u)

2

Note that this requires 
al
ulating one square root and two 
ube roots per point.

Composite method

We write f(x) as the sum of simpler fun
tions. In this 
ase an obvious 
hoi
e is

f(x) = f

a

(x) + f

b

(x) with f

a

(x) = 1 and f

b

(x) = x

2

The integrals of these fun
tions are

A

a

=

Z

+1

�1

f

a

(x) dx = 2 and A

b

=

Z

+1

�1

f

b

(x) dx =

x

3

3

#

+1

�1

=

2

3

Hen
e we want to generate from f

a

with probability

2

2+

2

3

=

3

4

and from f

b

with

probability

1

4

.

The �rst step is therefore to generate v = R[0; 1℄

� If v �

3

4

we generate from f

a

:

u

i

= R[0; 1℄

x

i

= 2u

i

� 1
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� If v >

3

4

we generate from f

b

:

1. either by the reje
tion method:

x

i

= 2R[0; 1℄� 1

r

i

= R[0; f

bmax

℄ = R[0; 1℄

repeating until we �nd a point for whi
h r

i

� x

2

i

.

Note that the eÆ
ien
y is

R

1

�1

x

2

dx

(b�a)f

bmax

=

1

3

for the points generated here

(

1

/

4

of the points). But it was 1 for the points distributed a

ording to

f

a

. The net eÆ
ien
y is thus

1

3

�

1

4

+ 1 �

3

4

=

5

6

, a small improvement over

the

2

/

3

of the simple reje
tion method.

2. or by the inverse transformation method:

F

b

(x) =

Z

x

�1

x

2

dx =

x

3

3

#

x

�1

=

x

3

3

+

1

3

F

b

(�1) = 0 F

b

(1) =

2

3

We generate u

i

= R[0; 1℄. Then x

i

is the solution of

2

3

u

i

=

x

3

i

3

+

1

3

Hen
e, x

i

= (2u

i

� 1)

1=3

Note that we only have to 
al
ulate one 
ube root; and that only for

1

/

4

of the events. This is � 12 times faster that the simple inverse trans-

formation method (assuming that square and 
ube roots take about the

same time).

In this example, the 
omposite reje
tion method turned out to be the fastest

with the simple reje
tion method only slightly slower. The 
omposite inverse trans-

formation method was mu
h faster than the simple inverse transformation method,

but still mu
h slower than the reje
tion method. These results should not be re-

garded as general. Whi
h method is faster depends on the fun
tion f .

6.3.6 Gaussian generator

The Gaussian distribution is one of the most important in physi
s and statisti
s.

Many methods have been proposed to generate normally distributed points.

Using the Central Limit Theorem

By the C.L.T., the average of a large number of r.v.'s distributed a

ording to almost

any p.d.f. will be normally distributed. In parti
ular, for n r.v.'s, u

i

, distributed

uniformly between 0 and 1, the quantity, g,

g =

P

n

i=1

u

i

�

n

2

q

n

12
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is approximately distributed as N(g; 0; 1) for large n. Proof of this is left to the

reader (exer
ise 26).

While simple to program, this generator is not parti
ularly fast and has the

feature that the tails are trun
ated at �n�, whi
h is usually undesirable. If the

absen
e of long tails is tolerable, this method is usually satisfa
tory for as few as

n = 12, where g redu
es to

g

+

=

12

X

i�1

u

i

� 6

Another disadvantage of this method is that it puts severe requirements on the 
or-

relations between su

essive points of the random number generator, in parti
ular

on 
orrelations within groups of n su

essive values of u

i

.

A word of 
aution is perhaps appropriate for 
lever students who have undoubt-

edly noti
ed that instead of summing 12 u

i

and subtra
ting 6, we 
ould have used

g

�

=

6

X

i=1

u

i

�

12

X

i=7

u

i

So far, so good. But if you try to save 
omputer time by generating both g

+

and

g

�

with the same 12 values of u

i

, you are in trouble: g

+

and g

�

are then highly


orrelated.

A transformation method

Sin
e the Gaussian p.d.f. 
annot be integrated in terms of the usually available fun
-

tions, it is not straightforward to �nd a transformation from uniformly to Gaussian

distributed variables. There is, however, a 
lever method, whi
h we give without

proof, to transform two independent variables, u

1

and u

2

, uniformly distributed on

(0,1) to two independent variables, g

1

and g

2

, whi
h are normally distributed with

� = 0 and �

2

= 1:

g

1

= 
os(2�u

2

)

q

�2 lnu

1

g

2

= sin(2�u

2

)

q

�2 lnu

1

This method is exa
t, but its speed 
an be improved upon by e�e
tively gener-

ating the sine and 
osine by a reje
tion method:

1. Generate uniform random numbers u

1

and u

2

on (0,1)

2. Cal
ulate r

2

= (2u

1

� 1)

2

+ (2u

2

� 1)

2

.

3. If r

2

> 1, then reje
t u

1

and u

2

and go ba
k to step 1.
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4. Otherwise,

g

1

= (2u

1

� 1)

s

�2 ln r

2

r

2

g

2

= (2u

2

� 1)

s

�2 ln r

2

r

2

This saves the time of evaluating a sine and a 
osine at the slight expense of reje
ting

about 21% of the uniformly generated points.
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Statisti
s
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Chapter 7

Statisti
s|What is it/are they?

So far, we have 
onsidered probability theory. On
e we have de
ided whi
h p.d.f. is

appropriate to the problem, we 
an make dire
t 
al
ulations of the probability of any

set of out
omes. Apart from possible un
ertainty about whi
h p.d.f. is appropriate,

this is a straight-forward and mathemati
ally well de�ned pro
edure.

The problem we now address is the inverse of this. We have a set of data

whi
h have been sampled from some parent p.d.f. We wish to infer from the data

something about the parent p.d.f. Note that here we are assuming that the data

are independent, i.e., that the value of a parti
ular datum does not depend on

the values of other data, and that all of the data sample the same p.d.f. The

statisti
ian speaks of a sample of independent identi
ally distributed iid random

variables. Usually this will be the 
ase, and some of our methods will depend on

this.

The study of 
al
ulations using probability is sometimes 
alled dire
t probability.

Statisti
al inferen
e is sometimes 
alled inverse probability, parti
ularly in the 
ase

of Bayesian methods.

We may think we know what the p.d.f. is apart from one or more parameters,

e.g., we think it is a Gaussian but want to determine its mean and standard devia-

tion. This is 
alled parameter estimation. It is also 
alled �tting sin
e we want to

determine the value of the parameter su
h that the p.d.f. best `�ts' the data.

On the other hand, we may think we know the p.d.f. and want to know whether

we are right. This is 
alled hypothesis testing. Usually both parameter estimation

and hypothesis testing are involved, sin
e it makes little sense to try to determine the

parameters of an in
orre
t p.d.f. And frequently an hypothesis to be tested involves

some unknown parameter. Nevertheless, we will �rst treat these as separate topi
s.

A third topi
 is de
ision theory or 
lassi�
ation.

For all of these topi
s we shall use statisti
al methods (or \statisti
s"), so-
alled

�

It is perhaps interesting to note that the stat in statisti
s is the same as in state. Statists

(advo
ates of statism, e
onomi
 
ontrol and planning by a highly 
entralized state), 
olle
ted data

to better enable the state to run the e
onomy. Su
h data, and quantities 
al
ulated from them,


ame to be 
alled statisti
s.
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be
ause they, statisti
al methods, make (it, statisti
s, makes) use of one or more

statisti
s.

�

A de�nition: A statisti
 is any fun
tion of the observations in a sample,

whi
h does not depend on any of the unknown 
hara
teristi
s of the population

(parent p.d.f.). An example of a statisti
 is the sample mean, �x =

P

x

i

=n. Ea
h

observation, x

i

, is, in fa
t, itself a statisti
. In other words, if you 
an 
al
ulate it

from the data plus known quantities, it is a statisti
. \Statisti
s" is the bran
h of

applied mathemati
s whi
h deals with statisti
s as just de�ned. Whether the word

statisti
s is singular or plural, thus depends on whi
h meaning you intend.

We have seen in se
tion 2.4 that there are two 
ommon interpretations of prob-

ability, whi
h we have 
alled frequentist and Bayesian. They give rise to two ap-

proa
hes to statisti
al inferen
e, usually 
alled 
lassi
al or frequentist statisti
s (or

inferen
e) and Bayesian inferen
e. The word 
lassi
al is something of a misnomer,

sin
e the Bayesian interpretation is older (Bayes, Lapla
e). However, in the se
ond

half of the 19

th


entury s
ien
e be
ame more quantitative and obje
tive, even in

su
h �elds as biology (Darwin, evolution, heredity, Galton). This gave rise to the

frequentist interpretation and the development of frequentist statisti
s. By about

1935 frequentist statisti
s, whi
h 
ame to be known as 
lassi
al statisti
s, had 
om-

pletely repla
ed Bayesian thinking. Sin
e around 1960, however, Bayesian inferen
e

has been making a 
omeba
k.

Probably most physi
ists would profess to being frequentists, and re
e
ting this,

as well as my own personal bias, the emphasis in the rest of this 
ourse will be on


lassi
al statisti
s. However, there are situations where 
lassi
al statisti
s is very

diÆ
ult, or even impossible, to use and where Bayesian statisti
s is 
omparatively

simple to apply. So, intermixed with 
lassi
al statisti
s you will �nd some Bayesian

methods. This is rather un
onventional; most books are �rmly in one of the two


amps, and dis
ussions between frequentists and Bayesians often take on aspe
ts of

holy war. It also runs the risk of 
onfusing the student|it is important to know

whi
h you are doing.

To understand God's thoughts we must study statisti
s,

for these are the measure of His purpose.

|Floren
e Nightingale



Chapter 8

Parameter estimation

8.1 Introdu
tion

In everyday spee
h, \estimation" means a rough and impre
ise pro
edure leading

to a rough and impre
ise result. You estimate when you 
annot measure exa
tly.

This last senten
e is also true in statisti
s, but only be
ause you 
an never measure

anything exa
tly; there is always some un
ertainty. In statisti
s, estimation is a

pre
ise pro
edure leading to a result whi
h may be impre
ise, but the extent of the

pre
ision is, in prin
iple, known. Estimation in statisti
s has nothing to do with

approximation.

The goal of parameter estimation is then to make some sort of statement like

� = a � b where a is, on the basis of the data, the `best' (in some sense) value

of the parameter � and where it is `highly probable' that the true value of � lies

somewhere between a � b and a + b. We often 
all b the estimated error on a. If

we make a plot, this is represented by a point at � = a with a bar running through

it from a � b to a + b, the `error bar'. It is usually assumed that the estimate of

� is normally distributed, i.e., that the values of a obtained from many identi
al

experiments would form a normal distribution 
entered about the true value of �

with standard deviation equal to b. The meaning of � = a � b is then that a is,

in some sense (to be dis
ussed more fully later), the most likely value of � and

that in any 
ase there is, again in some sense, a

R

a+b

a�b

N(x; a; b

2

) = 68:3% 
han
e

that the true value of � lies in the interval (a� b; a + b).

y

This is a spe
ial 
ase of

a 68.3% `
on�den
e interval' (
f. 
hapter 9), i.e., an interval within whi
h we are

68.3% 
on�dent that the true value lies. We shall see that error bars, or 
on�den
e

intervals may be diÆ
ult to estimate. Just as our estimate of � has an `error', so

too does our estimate of this `error'.

Suppose now that we have a set of numbers x

i

whi
h are the result of our

experiment. This 
ould, e.g., be n measurements of some quantity. Let � be the

y

Note that this is di�erent from what an engineer usually means by a� b, namely that b is the

toleran
e on a, i.e., that the true value is guaranteed to be within (a� b; a+ b).
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true value of that quantity. The x

i

are 
lustered about � in some way that depends

on the measuring pro
ess. We often assume that they are distributed normally

about the true value with a width given by the a

ura
y of the measurement.

It is worth noting the distin
tion many authors, e.g., Bevington

10

, make be-

tween the words a

ura
y and pre
ision, whi
h in normal usage are synonymous.

A

ura
y refers to how 
lose a result is to the true value, whereas pre
ision refers

to how reprodu
ible the measurements are. Thus, a poorly 
alibrated apparatus

may result in measurements of high pre
ision but poor a

ura
y. Other authors,

e.g., Eadie et al.,

4

and James

5

prefer to avoid these terms altogether sin
e neither

term is well de�ned, and to speak only of the varian
e of the estimates.

Similarly, a distin
tion is sometimes

�

made between error, the di�eren
e be-

tween the estimate and the true value, and the un
ertainty, the square root of the

varian
e of the estimate. Thus a

urate means small error and pre
ise means small

un
ertainty. However, the use of the word `error' to mean un
ertainty is deeply

ingrained, and we (like most books) will not make the distin
tion. Note that with

the above distin
tion, the a

ura
y and the error are usually unknown, sin
e the

true value is usually unknown.

So, we wish to estimate �. To do this we need an estimator whi
h is a fun
tion

of the measurements.

As stated in 
hapter 7, a statisti
 is, by de�nition, any fun
tion of the obser-

vations in a sample, �(x

i

), whi
h does not depend on any of the unknown 
hara
-

teristi
s of the population (parent p.d.f.). An example of a statisti
 is the sample

mean, �x =

P

x

i

=n. In other words, if you 
an 
al
ulate it from the data plus known

quantities, it is a statisti
.

Sin
e a statisti
 is 
al
ulated from random variables, it is itself a r.v., but a

r.v. whose value depends on the parti
ular sample, or set of data. Like all random

variables, it is distributed a

ording to some p.d.f. Sin
e the value of the statisti


depends on the sample, its p.d.f. is sometimes referred to as the sampling distri-

bution or sampling p.d.f. in order to distinguish it from the population or parent

p.d.f.

An estimator is (de�nition) a statisti
, the value of whi
h we will give as our

determination of some 
onstant, �, whi
h is a property of the parent population

or parent p.d.f. We will generally denote an estimator of a variable by adding a


ir
um
ex (̂ ) to the symbol of the variable. Thus

^

� is an estimator of �.

There are in general numerous estimators that one 
an 
onstru
t for any �. Here

are several estimators of the mean, �, of the parent p.d.f., assuming nmeasurements,

x

i

:

1. �̂ = �x =

1

n

P

n

i=1

x

i

The sample mean. This is probably the most

often used estimator of the mean, but it 
an be

sensitive to mismeasured data.

�

This is re
ommended by the International Standards Organization

34

.
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2. �̂ =

1

10

P

10

i=1

x

i

The sample mean of the �rst 10 points, ignoring

the rest.

3. �̂ =

1

n�1

P

n

i=1

x

i

n=(n� 1) times the sample mean.

4. �̂ = 5 Throw away all the data and give the estimate

as 5.

5. �̂ =

n

q

Q

n

i=1

x

i

6. Make a histogram of the x

i

and take �̂ as the

midpoint of the bin 
ontaining the most events,

i.e., a sort of sample mode. Note that the value

will depend on the bin size.

7. �̂ = [min(x

i

) + max(x

i

)℄ =2 The midrange, i.e., the average of the smallest

and the largest x

i

. This is very sensitive to the

tails of the distribution but may be the best es-

timator if the p.d.f. is nearly uniform.

8. �̂ =

2

n

P

n=2

i=1

x

2i

The sample mean of the even numbered points,

ignoring the odd numbered points.

9. �̂ = ��

trimmed

Dis
ard the smallest and largest y% (e.g., 10%)

of the data and then average. This is relatively

insensitive to the tails of the distribution, but

has a larger varian
e than the sample mean if

there are no problems in the tails.

10. �̂ = sample median This is less sensitive to statisti
al 
u
tuations in

the tails, but it has a larger varian
e than the

sample mean if the p.d.f. is a Gaussian.

Ea
h of these is, by our de�nition, an estimator. Yet some are 
ertainly better

than others. However, whi
h is `best' depends on the p.d.f. Whi
h is `best' may

also depend on the use we want to make of it. How do we 
hoose whi
h estimator

to use? In general we shall prefer an estimator whi
h is `unbiased', `
onsistent', and

`eÆ
ient'. We will dis
uss these and other properties of estimators in the following

se
tion. In su

eeding se
tions we will treat three general methods of 
onstru
ting,

or 
hoosing, estimators.

Nothing is easier than to invent

methods of estimation.

|R. A. Fisher



96 CHAPTER 8. PARAMETER ESTIMATION

8.2 Properties of estimators

8.2.1 Bias

Sin
e a statisti
 is a fun
tion of r.v.'s, it is itself a r.v. Therefore, it is distributed

a

ording to some p.d.f., and we 
an speak of its expe
tation value, E

h

^

�

i

. For an

estimator, making use of n observations, the bias b

n

is de�ned as the di�eren
e

between the expe
tation of the estimator and the true value of the parameter:

b

n

(

^

�) = E

h

^

�

i

� � = E

h

^

� � �

i

(8.1)

An estimator is unbiased if, for all n and �, b

n

(

^

�) = 0, i.e., if E

h

^

�

i

= �. We

in
lude n in this de�nition sin
e we shall see that some estimators are unbiased

only asymptoti
ally, i.e., only for n!1.

Mean In general, the sample mean, no. 1 in our list above, is an unbiased esti-

mator of the parent (true) mean:

E [�̂℄ = E [�x℄ = E

�

1

n

X

x

i

�

=

1

n

X

E [x

i

℄ =

1

n

nE [x℄ = E [x℄ = � (8.2)

On the other hand, the third estimator in our list is biased:

E [�̂℄ = E

�

1

n� 1

X

x

i

�

=

n

n� 1

�

although the bias,

b

n

(�̂) =

n

n� 1

�� � =

�

n� 1

! 0 , for large n.

This estimator is thus asymptoti
ally unbiased.

If we know the bias, we 
an 
onstru
t a new estimator by 
orre
ting the old

one for its bias. For example, from no. 3 and its bias we 
onstru
t no. 1 simply by

multiplying no. 3 by (n� 1)=n.

La
k of bias is a reason to prefer no. 1 to no. 3. However, nos. 2 and 8 are also

unbiased. The trimmed mean (no. 9) is unbiased if the parent p.d.f. is symmetri


about its mean. The sample median (no. 10) is also unbiased if the parent median

equals the parent mean. Similarly, nos. 6 and 7 will be unbiased for 
ertain p.d.f.'s.

Varian
e Now suppose we want to estimate the varian
e of the parent p.d.f.

Assume that we know the true mean, �. Usually this is not the 
ase, but 
ould be,

e.g., if we know that the p.d.f. is symmetri
 about some value. Then following our

above experien
e with the sample mean, we might expe
t the sample varian
e,

s

2

1

=

1

n

n

X

i=1

(x

i

� �)

2

(8.3)
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to be a good estimator of the parent varian
e, �

2

. (N.b., do not 
onfuse the standard

deviation, �, of the parent p.d.f. with the `error' on �̂.) Assume that the parent

varian
e, �

2

, is �nite (exists). Then

E

h

s

2

1

i

=

1

n

E

h

X

(x

i

� �)

2

i

=

1

n

E

h

X

�

x

2

i

� 2x

i

�+ �

2

�i

=

1

n

E

h

X

x

2

i

� 2�

X

x

i

+

X

�

2

i

=

1

n

h

E

h

X

x

2

i

i

� 2�E

h

X

x

i

i

+ n�

2

i

=

1

n

h

nE

h

x

2

i

� 2n�E [x℄ + n�

2

i

= E

h

x

2

i

� 2�

2

+ �

2

= �

2

+ �

2

� 2�

2

+ �

2

, sin
e �

2

= E [x

2

℄� �

2

= �

2

Thus




�

2

= s

2

1

is an unbiased estimator of the varian
e of the parent p.d.f., �

2

, if �

is known.

But usually � is not known. We therefore try using our estimate of �, �̂ = �x,

instead of �:

s

2

x

=

1

n

X

(x

i

� �x)

2

=

1

n

X

x

2

i

� �x

2

= x

2

� �x

2

(8.4)

This has the expe
tation,

E

h

s

2

x

i

= E

"

P

x

2

i

n

�

�

P

x

i

n

�

2

#

=

1

n

�

E

h

X

x

2

i

i

�

1

n

E

�

�

X

x

i

�

2

��

(8.5)

The x

i

are independent. Hen
e E [

P

x

2

i

℄ = nE [x

2

℄. Also,

�

2

= E

h

x

2

i

� �

2

and V

h

X

x

i

i

= E

h

(

X

x

i

)

2

i

�

�

E

h

X

x

i

i�

2

Substituting in (8.5), gives

E

h

s

2

x

i

=

1

n

�

n

�

�

2

+ �

2

�

�

1

n

�

V

h

X

x

i

i

+

�

E

h

X

x

i

i�

2

��

Using V

h

X

x

i

i

=

X

V [x

i

℄ = nV [x℄ = n�

2

and E

h

X

x

i

i

= nE [x℄ = n�

we �nd

E

h

s

2

x

i

=

1

n

�

n�

2

+ n�

2

�

1

n

�

n�

2

+ (n�)

2

�

�

=

1

n

(n� 1) �

2

(8.6)
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Thus s

2

x

is a biased estimator of �

2

. The reason

is that, not knowing �, we used our estimate of

the mean, �̂ = �x, the sample mean. The spread

of the data about the sample mean is 
learly

less than its spread about the true mean. Sin
e

the varian
e is the spread about the true mean,

s

2

x

underestimates the true varian
e.

-

�x � x

This bias is easily removed. An unbiased estimator for the parent varian
e when

the parent mean is unknown is

s

2

=

n

n� 1

s

2

x

=

n

n� 1

�

x

2

� �x

2

�

=

1

n� 1

X

(x

i

� �x)

2

(8.7)

Note that the above 
al
ulations did not depend at all on what the parent p.d.f.

was, not even on the C.L.T.

If the p.d.f. is Gaussian or if n is large enough that the C.L.T. applies, let

z

i

=

x

i

� �x

�

Then

X

z

2

i

=

1

�

2

X

(x

i

� �x)

2

is distributed as �

2

(se
tion 3.12). There is one relationship among the z

i

's:

X

z

i

=

1

�

X

(x

i

� �x) =

1

�

�

X

x

i

� n�x

�

= 0

whi
h follows from the de�nition of �x. Hen
e, the p.d.f. for

P

z

2

i

is a �

2

of n � 1

degrees of freedom. Re
all that E [�

2

(n� 1)℄ = n�1. This is another way of seeing

that

E

h

s

2

i

= E

"

�

2

n� 1

X

z

2

i

#

= E

"

�

2

n� 1

�

2

#

= �

2

1

n� 1

E

h

�

2

i

= �

2

i.e., that




�

2

= s

2

is an unbiased estimator of �

2

when � is unknown.

This use of �

2

is of more than passing interest: In general, if we have n mea-

surements, x

i

, of a quantity, with k � n relationships (
onstraints) among them,

then the �

2


onstru
ted from the

P

x

2

i

will have n� k degrees of freedom.

The (n�1) instead of n in s

2

also makes sense in the limit n = 1. With only one

measurement of x, you have an estimate �̂ = x of �, but no estimate of the width

of the distribution. This is 
onsistent with s

2

=

1

1�1

(x � �̂)

2

=

0

0

= indeterminate.

However, if � is known you do not have to use the measurement to estimate �; you


an use it instead to estimate �

2

. Hen
e s

1


ontains n instead of (n� 1).
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8.2.2 Consisten
y

If we take more data, we should expe
t a better (more a

urate) estimate of the

parameters. An estimator whi
h 
onverges to the true value with in
reasing n is

termed 
onsistent.

De�nition: An estimator,

^

�, of � is 
onsistent if for any � > 0 (no matter how small),

lim

n!1

P (j

^

� � �j � �) = 0 (8.8)

This is rather analogous to the de�nition of 
onvergen
e of a series ex
ept that

here it is the probability of the deviation from the true value whi
h approa
hes 0

rather than the deviation itself. This is therefore sometimes 
alled 
onvergen
e in

probability.

If

^

� is an average of data whi
h are distributed a

ording to a p.d.f. for whi
h

the C.L.T. applies, then

^

� is a 
onsistent estimator, sin
e the width of the p.d.f.,

N(�x;�;

�

2

n

) approa
hes 0 for n!1.

In our list of estimators of the mean no. 2 is 
learly in
onsistent. Nos. 1, 3,

and 8 are obviously 
onsistent if the C.L.T. applies. No. 10 is 
onsistent only if the

mean and median of the parent p.d.f. are equal. Likewise, the 
onsisten
y of nos.

6, 7 and 9 depends on the p.d.f.

The usual example of an in
onsistent estimator is the sample mean for the

Cau
hy p.d.f., whi
h, as we have seen, does not have a �nite varian
e. The C.L.T.

does not then apply, and in fa
t �x is distributed just like x. Thus, �x does not


onverge to anything! This illustrates the fa
t that an unbiased estimator is not

ne
essarily 
onsistent.

8.2.3 Varian
e of an estimator, eÆ
ien
y

An estimator is 
alled eÆ
ient if it has a small varian
e, in parti
ular if it has the

smallest possible varian
e (see the following se
tion).

Repetition of an experiment generally results in a di�erent value of our (
onsis-

tent) estimator. If the varian
e of the sampling p.d.f. of the estimator, whi
h, for


onvenien
e, we will 
all the varian
e of the estimator, is small, these values will


luster 
losely about the true value, or, if the estimator is biased, about the biased

(i.e., wrong) value. We will see that in general the varian
e of an estimator depends

on the parent p.d.f., in parti
ular, on the varian
e (�

2

) of the parent p.d.f.

For example, 
onsider the varian
e of the sample mean. As we have seen (
hap-

ter 5 and exer
ise 23),

V

�

�x =

1

n

X

x

i

�

=

1

n

2

X

V [x

i

℄ =

1

n

2

nV [x℄ =

�

2

n

(8.9)

Now 
onsider the sample varian
e, whi
h was de�ned in equation 8.7. Assuming

that the x

i

follow a normal p.d.f. (or that n is large and the C.L.T. applies), the
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sample varian
e has varian
e

V

h

s

2

i

= V

"

1

n� 1

�

2

X

(x

i

� �x)

2

�

2

#

=

"

�

2

n� 1

#

2

V

h

X

z

2

i

i

where z

i

=

x

i

��x

�

. As we have seen (se
tion 8.2.1),

P

n

i=1

z

2

i

is distributed as �

2

(n�1).

Thus,

V

h

X

z

2

i

i

= V

h

�

2

(n� 1)

i

= 2(n� 1)

Hen
e,

V

h

s

2

i

=

2(�

2

)

2

n� 1

(8.10)

We see that the expressions for the varian
e of �x and s

2

both 
ontain �

2

, the

varian
e of the parent p.d.f., whi
h we may not know. (If we do know it we 
ertainly

will not be interested in estimating it.) The usual pro
edure is to use instead our

estimate of �

2

, s

2

. Then the estimated varian
es of our estimates are

b

V [�x℄ =

s

2

n

,

b

V

h

s

2

i

=

2(s

2

)

2

n� 1

(8.11)

Sometimes you do know �

2

. We give two examples: (1) You average many mea-

surements of a quantity, e.g., the length of a table. The p.d.f. is then a 
onvolution

of a Æ-fun
tion about the true length with a resolution fun
tion for the measuring

apparatus, whi
h is just a Gaussian 
entered about the true length with � equal to

the resolution. But you have 
alibrated the measuring apparatus by measuring a

standard length a great many times. From this 
alibration you know �

2

. So you

only need to estimate �. (2) You are designing an experiment and you want to know

how many measurements you need to make in order to attain a given a

ura
y. You

then make reasonable assumptions about the p.d.f. and 
al
ulate what V will be

for the di�erent assumptions about �, �

2

, and n.

To summarize, assuming that we do not know � or �

2

, they are estimated by

�̂ = �x�

q

V [�x℄ and




�

2

= s

2

�

q

V [s

2

℄ (8.12a)

= �x�

s

s

2

n

= s

2

�

s

2

n� 1

s

2

(8.12b)

Note that the `error' on �̂ has itself an error. By `error propagation', whi
h will

be 
overed in se
tion 8.3.6,

V [s

2

℄ =

�

ds

2

ds

�

2

V [s℄ = (2s)

2

V [s℄

Hen
e, V [s℄ =

1

4s

2

V [s

2

℄ =

1

4s

2

2(s

2

)

2

n�1

=

s

2

2(n�1)

and

q

V [s℄ =

p

s

2

p

2(n�1)
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The error on the error on �̂ is then (with Æ indi
ating `error')

Æ(Æ�̂) =

q

V [Æ�̂℄ =

v

u

u

u

t

V

2

4

s

s

2

n

3

5

=

s

1

n

V

h

p

s

2

i

=

p

s

2

q

2n(n� 1)

=

Æ�̂

q

2(n� 1)

Thus for n not too small, the error on the error on �̂ is negligible.

8.2.4 Interpretation of the Varian
e

We usually interpret V [q̂℄ = �

2

as the \square of the expe
ted error" of q̂ and we

write q = q̂�Æq where Æq = �. If the p.d.f. of q̂ is a Gaussian with varian
e �

2

, then

the 
han
e, in some sense, that the true value of q, q

t

, is within q̂ � � � q

t

� q̂ + �

is

P (q̂ � � � q

t

� q̂ + �) =

Z

q̂+�

q̂��

N(q; q̂; �

2

) dq � 0:68

In exa
tly what sense this is so will be dis
ussed in se
tion 9.

We 
ould have used some other quantity to indi
ate the `error', e.g., the average

of the absolute deviation jq̂ � qj, instead of

q

(q̂ � q)

2

. The varian
e is 
onventional

for a number of reasons:

� It is low order and hen
e easy to 
al
ulate.

� It is suÆ
ient in the 
ase of a Gaussian, being one of the two parameters of

the Gaussian, and the Gaussian is, by the C.L.T., often the asymptoti
 limit

of the p.d.f.

� It is easily 
onverted to a 
on�den
e interval in the Gaussian limit (
f. 
hap-

ter 9).

When the p.d.f. of q̂ is non-Gaussian one must be 
areful. If the p.d.f. is skewed,

this 
an be indi
ated by stating asymmetri
 errors. But that is not foreseen in the

propagation of errors. Also, for a non-Gaussian P (q̂ � � � q

t

� q̂ + �) is usually

not 68%. Nor is the probability of being within, e.g., 2� the same in the non-

Gaussian 
ase as in the Gaussian 
ase. Nor do the errors even have to be symmetri
.

The propagation of errors (
f. se
tion 8.3.6) is usually the least trustworthy

when there is a dependen
e on 1=q. Going to higher orders in the expansion does

not ne
essarily help be
ause the resulting error, though perhaps more a

urate, still

has the same problems resulting from skewness and the probability 
ontent of �2�.

These questions are often 
onveniently investigated by Monte Carlo methods. As

previously stated, the best 
ure for these problems is to rewrite the p.d.f. in terms

of the parameters you want to estimate.

We shall return to these questions when dis
ussing 
on�den
e intervals (
hapter

9) and hypothesis testing (
hapter 10).
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8.2.5 Information and Likelihood

The 
on
epts `information' and `likelihood' will be useful in dis
ussing the varian
e

of estimators. We introdu
e them now:

There are several di�erent de�nitions of information. They are named after

the person who introdu
ed them. We will use that of R. A. Fisher, whi
h is then

referred to as the information of R. A. Fisher. However, sin
e we will only treat this

one de�nition of information, we will simply refer to it as information. But bear in

mind that the word 
an have other de�nitions. We will see that Fisher's de�nition

meets the following requirements, whi
h we �nd ne
essary for what we would like

the word `information' to mean:

1. The information should in
rease if we make more observations.

2. Data, whi
h are irrelevant to the estimation of the parameters we wish to

estimate or to the hypothesis we wish to test, should 
ontain no information.

Of 
ourse the same data may 
ontain information for other parameters or

other tests.

3. The pre
ision of the estimation or test should be greater if we have more

information.

Present-day, large-s
ale experiments usually produ
e a great amount of data of

whi
h only a small part is useful for a given measurement or test. The information


ontained in a datum 
an be used to de
ide whether to reje
t it in order to redu
e

the amount of data to a manageable size. (It is diÆ
ult to work with data on 100

magneti
 tapes; working with just one tape, or a small disk �le is mu
h easier.)

A good 
riterion for data redu
tion is to reje
t the maximum of data with the

minimum loss of information. This is usually a 
ompromise, although the reje
tion

of some data may a
tually result in no loss of information.

Likelihood fun
tion: We observe a real random variable, X, sampled from a

p.d.f., f(x; �), where � is a parameter. The set of allowed values of X is denoted by




�

, the subs
ript emphasizing the possible dependen
e on the parameter. Both X

and � 
ould be sets of values X and �, not ne
essarily of the same dimension.

Consider a set of n independent observations of X, x

i

. The joint p.d.f. of the x

i

is, sin
e they are independent,

L(x; �) = L(x

1

; x

2

; : : : ; x

n

; �) =

n

Y

i=1

f(x

i

; �) (8.13)

The fun
tion L depends on both the measurements x

i

and on the parameters �.

However, after having done the experiment, the x

i

are �xed. Then L 
an be regarded

as a fun
tion of � only. L is 
alled the likelihood fun
tion. We also de�ne its

logarithm,

` � lnL(x

1

; : : : ; x

n

; �) =

n

X

i=1

ln f(x

i

; �) (8.14)
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Information: The information (of R. A. Fisher) given about a parameter � by

an observation of the r.v. x is de�ned as the expe
tation

I

x

(�) = E

2

4

 

� lnL(x; �)

��

!

2

3

5

= E

2

4

 

�`

��

!

2

3

5

(8.15)

=

Z




�

 

� lnL(x; �)

��

!

2

L(x; �) dx

In the 
ase where there are k parameters, the information is a k � k matrix:

h

I

x

(�)

i

ij

= E

"

� lnL(x; �)

��

i

� lnL(x; �)

��

j

#

=

Z




�

� lnL(x; �)

��

i

� lnL(x; �)

��

j

L(x; �) dx

This de�nition of information may seem rather arbitrary, but we shall see that

it satis�es the three requirements stated above.

S
ore: Notation be
omes more 
ompa
t by introdu
ing the s
ore. We de�ne the

s
ore of one measurement as

S

1

�

�

��

ln f(x; �) (8.16)

Note that the s
ore, being a fun
tion of r.v.'s, is itself a r.v. The s
ore of the entire

sample is then de�ned to be the sum of the s
ores of ea
h observation:

S(x; �) �

n

X

i=1

S

1

(x

i

; �) (8.17)

Then

S(x; �) =

n

X

i=1

�

��

ln f(x

i

; �)

=

�

��

n

X

i=1

ln f(x

i

; �)

=

� lnL(x; �)

��

Summarizing,

S(x; �) =

� lnL(x; �)

��

=

n

X

i=1

S

1

(x

i

; �) =

�

��

n

X

i=1

ln f(x

i

; �) (8.18)

This result 
ombined with equation 8.15 shows that we 
an write the information

of the sample x on the parameter � as the expe
tation of the square of the s
ore:

I

x

(�) = E

h

(S(x; �))

2

i

(8.19)
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If 


�

is independent of �, we 
an show that the expe
tation of the s
ore is zero

and we 
an derive another relation between the information and the s
ore. Let us

assume that

1. 


�

is independent of �, and

2. L(x; �) is regular enough that we 
an inter
hange the order of

�

2

��

i

��

j

and

R

dx.

If 
ondition (1) holds, 
ondition (2) will also generally hold for distributions en-


ountered in physi
s. Now,

E [S

1

(x; �)℄ = E

"

�

��

ln f(x; �)

#

=

Z

"

�

��

ln f(x; �)

#

f(x; �) dx

=

Z

1

f(x; �)

"

�

��

f(x; �)

#

f(x; �) dx

=

Z

�

��

f(x; �) dx

Inter
hanging the order of integration and di�erentiation (assumption 2),

E [S

1

(x; �)℄ =

�

��

Z

f(x; �) dx =

�

��

1 = 0 (8.20)

sin
e f(x; �) is normalized for all values of �. Hen
e,

E [S(x; �)℄ =

X

E [S

1

(x

i

; �)℄ = 0 (8.21)

Using the fa
t that the varian
e of a quantity is given by V [a℄ = E [a

2

℄�(E [a℄)

2

,

we see from equations 8.19 and 8.21 that

I

x

(�) = V [S(x; �)℄ (8.22)

We have shown above (equation 8.19) that in general the information on � is

equal to the expe
tation of the square of the s
ore. Under the above two assumptions

you 
an show (exer
ise 31) that the information is also given by

I

x

(�) = �E

"

�S(x; �)

��

#

(8.23)

These results (equations 8.21 and 8.23) are very useful, but do not forget the as-

sumptions on whi
h they depend.
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Does I satisfy the requirements? We 
an now show that the information

in
reases with the number of independent observations. For n observations,

I(�) = E

2

4

 

n

X

i=1

S

1

(x

i

; �)

!

2

3

5

= V

"

n

X

i

S

1

(x

i

; �)

#

+

(

E

"

n

X

i

S

1

(x

i

; �)

#)

2

where we have used the fa
t that V [a℄ = E [a

2

℄ � (E [a℄)

2

. The se
ond term is

zero under the assumptions that 


�

is independent of � and that the order of

di�erentiation and integration 
an be inter
hanged as in the previous paragraph

(eq. 8.21). However, let us now relax these assumptions.

Sin
e the x

i

are independent, the varian
e of the sum is just the sum of the

varian
es. And sin
e all the x

i

are sampled from the same p.d.f., the varian
e is the

same for all i. A similar argument applies to the se
ond term. Hen
e,

I(�) = nV [S

1

(x; �)℄ + n

2

fE [S

1

(x; �℄g

2

(8.24)

Following the same steps for n = 1 gives the same expression with n = 1. Hen
e,

the information in
reases with the number of observations, our �rst requirement for

information.

If the assumptions of the previous paragraph apply, the se
ond term in the above

equation is zero by equation 8.20. Then,

I(�) = n I

1

(�) (8.25)

and the information of n independent observations is just n times the information

of one observation. If the assumptions are not true, the se
ond term may not be

zero but will still be positive; hen
e I will still in
rease with n.

For data whi
h are irrelevant for the estimation of �, the p.d.f. will not depend

on � and the s
ore will, from its de�nition (equations 8.16 and 8.17), be zero. This

implies that the information will also be zero, whi
h was our se
ond requirement

for information.

We now turn to the third requirement, the 
onne
tion between the pre
ision of

an estimator and the information.

8.2.6 Minimum Varian
e Bound

It turns out that there is a lower limit to the varian
e of an estimator under 
ertain

general 
onditions.

Rao-Cram�er inequality: Suppose that we have an estimator

^

� of � with bias

b

n

(

^

�) = E

h

^

�

i

� �, that the varian
e V

h

^

�

i

is �nite, and that the range of X does
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not depend on �. Then

E

h

^

� S(x; �)

i

=

Z

: : :

Z

^

�

"

�

��

lnL(x; �)

#

L(x; �) dx

1

: : : dx

n

=

Z

: : :

Z

^

�

"

1

L(x; �)

�

��

L(x; �)

#

L(x; �) dx

1

: : : dx

n

=

Z

: : :

Z

^

�

"

�

��

L(x; �)

#

dx

1

: : : dx

n

=

Z

: : :

Z

^

�

�

��

"

n

Y

i=1

f(x

i

; �) dx

i

#

=

Z

: : :

Z

�

��

"

^

�

n

Y

i=1

f(x

i

; �) dx

i

#

The last step follows be
ause

^

� is a statisti
 and therefore does not depend on �.

Assuming that we 
an inter
hange the order of di�erentiation and integration, we

�nd

E

h

^

� S(x; �)

i

=

�

��

Z

: : :

Z

^

�

n

Y

i=1

[f(x

i

; �) dx

i

℄

=

�

��

E

h

^

�

i

=

�

��

h

� + b

n

(

^

�))

i

= 1 +

�

��

b

n

(

^

�)

Both

^

� and S(x; �) are r.v.'s. Their 
ovarian
e is


ov

h

S(x; �);

^

�(x)

i

= E

h

S(x; �)

^

�(x)

i

� E [S(x; �)℄

| {z }

=0; eq. 8.21

E

h

^

�(x)

i

= 1 +

�

��

b

n

(

^

�)

Therefore, their 
orrelation 
oeÆ
ient is

�

2

=

n


ov

h

S;

^

�

io

2

V [S℄ V

h

^

�

i

=

h

1 +

�

��

b

n

(

^

�)

i

2

I(�)V

h

^

�

i

Sin
e �

2

� 1, we have

�

2

(

^

�) = V

h

^

�

i

�

h

1 +

�

��

b

n

(

^

�)

i

2

I(�)

(8.26)

Thus, there is a lower bound on the varian
e of the estimator. For a given set

of data and hen
e a given amount of information, I(�), on �, we 
an never �nd an

estimator with a lower varian
e.
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The more information we have, the lower this bound is, in a

ordan
e with our

third requirement for information.

If the estimator is a 
onstant,

^

� = 
, then the bias is b = 
� � and the minimum

varian
e is 0, whi
h is not a very interesting bound sin
e the varian
e of a 
onstant

is always 0.

The inequality (8.26) is usually known as the Rao-Cram�er inequality or the

Fre
het inequality. It was dis
overed independently by a number of people in
luding

Rao,

35

Cram�er,

15

and Fre
het. The �rst were Aitken and Silverstone.

36

Although we

have assumed that the range of X is independent of � and that we 
ould inter
hange

the order of di�erentiation and integration, the result (8.26) 
an be obtained with

somewhat more general assumptions.

11,13

In general, we prefer unbiased estimators. In that 
ase the inequality redu
es to

�

2

(

^

�) � 1=I(�). This is also the 
ase if the bias of the estimator does not depend

on the true value of �. For more than one parameter this result generalizes to

�

2

(

^

�

i

) �

h

I

�1

(�)

i

ii

(8.27)

the diagonal element of the inverse of the information matrix.

We de�ne the eÆ
ien
y of the estimator as

�(

^

�) =

�

2

min

(

^

�)

�

2

(

^

�)

� 1 (8.28)

whi
h, for unbiased estimators, is just

�(

^

�) =

1

�

2

(

^

�) I(�)

� 1 (8.29)

An estimator whose varian
e is equal to the minimum varian
e given by equa-

tion 8.26, i.e., has �(

^

�) = 1, is termed eÆ
ient. It is not always possible to


onstru
t an eÆ
ient estimator.

Examples:

Gaussian with known mean. We have seen (se
tion 8.2.1) that




�

2

=

P

(x

i

�

�)

2

=n is an unbiased estimator of the varian
e of a Gaussian of known mean. It is

easy to show (exer
ise 32) that it is also an eÆ
ient estimator.

Exponential. Consider n independent observations from an exponential p.d.f.,

f(x;�) =

1

�

e

�x=�

; � > 0

We wish to estimate �. We note that

ln f(x;�) = � ln��

x

�
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The s
ore of one observation is then

S

1

(x;�) =

�

��

 

� ln��

x

�

!

= �

1

�

+

x

�

2

The information of one observation is then, using equation 8.19 or 8.23, the latter

being appli
able sin
e the range of X is independent of �,

I

1

(�) = E

h

(S

1

(x;�))

2

i

= �E

"

�S

1

(x;�)

��

#

= �E

"

1

�

2

�

2x

�

3

#

= �

1

�

2

+

2

�

2

=

1

�

2

And the total information of the sample is

I(�) = nI

1

(�) =

n

�

2

If �̂ is unbiased, its minimum varian
e is then 1=I = �

2

=n. We try the sample mean

as an estimator: �̂ = �x. We know (equation 8.2) that the sample mean is always

an unbiased estimator of the mean. The varian
e of the sample mean is

V [�x℄ =

1

n

V [x℄ =

1

n

�

E

h

x

2

i

� �

2

�

=

1

n

Z

1

0

x

2

1

�

e

�x=�

dx

| {z }

=2�

2

�

�

2

n

=

�

2

n

whi
h is just the minimum varian
e found above. Thus the sample mean is an

eÆ
ient estimator of the mean of an exponential p.d.f.

Note that the s
ore is

S(x;�) =

n

X

i=1

S

1

(x

i

;�) = �

n

�

+

P

x

i

�

2

= �I(�) (�� �̂)

Thus the s
ore is a linear fun
tion of the estimator. This is not a 
oin
iden
e, but

a general feature of unbiased eÆ
ient estimators, as we show in the next se
tion.

8.2.7 EÆ
ient estimators|the Exponential family

In this se
tion we shall show that an eÆ
ient estimator 
an be found if and only if

the p.d.f. is a member of a quite general 
lass of fun
tions known as the exponential

family.

The minimum varian
e bound was found using

�

2

=

n


ov

h

S;

^

�

io

2

V

h

S

i

V

h

^

�

i

� 1
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The equality � = �1 
orresponds to a linear relationship between the variables

(exer
ise 7), i.e., a straight line on a graph of S vs.

^

�. Thus, assuming that the


onditions of the minimum varian
e bound hold, an estimator

^

� 
an be eÆ
ient if

and only if it is a linear fun
tion of S, with the possible ex
eption of regions where

the probability is zero.

Let A(�) and B(�) be fun
tions of �, but not of x, and A

0

, B

0

be their derivatives

with respe
t to �. Then we 
an write the linear relationship as

�

��

ln f(x; �) � S = A

0

(�)

^

�(x) +B

0

(�) (8.30)

Sin
e

^

� is a statisti
 and hen
e depends only on x, integration over � gives

ln f(x; �) = A(�)

^

�(x) +B(�) +K(x) (8.31)

where the integration 
onstant K may depend on x but not on �. Then, where the

required normalization is in
luded in B and/or K,

f(x; �) = exp

h

A(�)

^

�(x) +B(�) +K(x)

i

(8.32)

Any p.d.f. of the above form is said to belong to the exponential family. What

we have shown is that an eÆ
ient estimator 
an be found if and only if the p.d.f. is

of the exponential family where the estimator enters the exponent in the way shown

in equation 8.32.

Note that the eÆ
ient estimator is not ne
essarily unique sin
e the produ
t A �

^

�


an often be fa
tored in more than one way. The estimator

^

� will be an unbiased

estimator for some quantity, although not ne
essarily for the quantity we want to

estimate. It may also not be an estimator whi
h we will be able to use. Let us now


al
ulate the expe
tation of

^

� and see for what quantity it is an unbiased estimator:

From equation 8.30,

^

� =

S(x; �)

A

0

(�)

�

B

0

(�)

A

0

(�)

Sin
e A

0

and B

0

do not depend on x, the expe
tation is then

E

h

^

�

i

=

1

A

0

(�)

E [S(x; �)℄�

B

0

(�)

A

0

(�)

Sin
e E [S(x; �)℄ = 0, we have

E

h

^

�

i

= �

�B(�)

��

�A(�)

��

(8.33)

This is the quantity for whi
h the

^

� in equation 8.32 is an unbiased, eÆ
ient esti-

mator.
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If there are k parameters, �, equation 8.32 generalizes to

f(x; �) = exp

h

A(�) �

^

�(x) +B(�) +K(x)

i

(8.34)

The s
ore for the i

th

parameter is then

S(x; �

i

) =

�

��

i

ln f(x; �) =

X

j

^

�

j

(x)

�A

j

(�)

��

i

+

�B(�)

��

i

Taking the expe
tation, we arrive at the generalization of equation 8.33, whi
h is a

set of k equations:

E

h

^

�

i

i

= �

�B(�)

��

i

+

P

j 6=i

E

h

^

�

j

i

�A

j

(�)

��

i

�A

i

(�)

��

i

(8.35)

Examples:

Gaussian. As an example we take the normal p.d.f., N(x;�; �

2

), whi
h has

two parameters � =

�

�

�

2

�

. We write N(x;�; �

2

) in an exponential form:

N(x;�; �

2

) =

1

p

2�

p

�

2

exp

"

�

1

2

(x� �)

2

�

2

#

= exp

"

�

�

2

x�

1

2�

2

x

2

�

1

2

 

�

2

�

2

+ ln(2��

2

)

!#

For n independent observations the p.d.f. be
omes

n

Y

i=1

N(x

i

;�; �

2

) = exp

"

n�

�

2

�x�

n

2�

2

x

2

�

n

2

 

�

2

�

2

+ ln(2��

2

)

!#

from whi
h we see that we 
an 
hoose (in equation 8.34)

A

1

(�) =

n�

�

2

^

�

1

(x) = �x

A

2

(�) = �

n

2�

2

^

�

2

(x) = x

2

B(�) = �

n

2

�

�

2

�

2

+ ln(2��

2

)

�

K(x) = 0

Then (from equation 8.35)

�A

1

��

=

n

�

2

�A

2

��

= 0

�B

��

= �n

�

�

2

Thus

^

�

1

= �x is an eÆ
ient and unbiased estimator of

�

�n�=�

2

n=�

2

= �

�A

1

��

2

=

n�

�

4

�A

2

��

2

=

n

2�

4

�B

��

2

=

n�

2

2�

4

�

n

2�

2

Thus

^

�

2

= x

2

is an eÆ
ient and unbiased estimator of

�

2

+ �

2

. Hen
e, x

2

� �

2

= (x� �)

2

is an eÆ
ient and

unbiased estimator of �

2

. However, this is of use to us

only if we know �.
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Note the role of the number of observations n. The likelihood fun
tion, L, is

just the p.d.f. with ea
h term in the exponent repla
ed by a sum of n terms. Thus

L 
an be obtained from f by the repla
ements: x! �x, x

2

! x

2

, et
. and A! nA,

B ! nB, and K ! nK. But �

�B=��

�A=��

is un
hanged by these substitutions. Thus

we 
an work with f instead of L, just repla
ing any fun
tion of x by its average in

the expression for

^

�.

Binomial. Dis
rete p.d.f.'s 
an also belong to the exponential family. As an

example we take the binomial p.d.f.,

f(k;n; �) =

 

n

k

!

�

k

(1� �)

n�k

whi
h 
an be written

f(k;n; �) = exp

"

k ln

 

�

1� �

!

+ n ln(1� �) + ln

 

n

k

!#

With n �xed, there is just one parameter to estimate, �.

A(�) = ln

�

�

1��

�

^

�(k) = k

B(�) = n ln(1� �) K(k) = ln

�

n

k

�

The expe
tation of the estimator is

E

h

^

�

i

= �

�B=��

�A=��

= n�

Thus k is an eÆ
ient, unbiased estimator of n�, or k=n is an eÆ
ient, unbiased

estimator of �.

Whi
h estimator is the best? Returning to the list of 10 estimators for the

mean at the start of the se
tion, we 
an ask whi
h of the 10 is the best. Unfor-

tunately, there is no unique answer. In general we prefer unbiased, 
onsistent and

eÆ
ient estimators. We 
an 
learly reje
t nos. 2, 3, 4, 5 and 8. Nor is no. 6, the

sample mode, a good 
hoi
e, even when the parent mode equals the parent mean,

sin
e it uses so little of the information. However, whi
h of the others is `best'

depends on the parent p.d.f.

The sample mean is eÆ
ient for a normal p.d.f. However, for a uniform p.d.f.

(f(x; a; b) =

1

b�a

) where the limits (a; b) are unknown, estimator no. 7,

1

2

x

min

+

1

2

x

max

, has a smaller varian
e that �x.

No. 10, the sample median, has a larger varian
e that the sample mean for

a Gaussian p.d.f., but for a `large-tailed Gaussian' it 
an be smaller. No. 9, the

trimmed sample mean, throws away information but may still be best, in parti
ular

if we think that points in the tails are largely due to mismeasurement.
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8.2.8 SuÆ
ient statisti
s

A statisti
 T (x) is said to be suÆ
ient for the parameter � if the 
onditional p.d.f. of

x, given T , f(xjT ), is independent of �. (T and � may of 
ourse be multidimensional

and of di�erent dimensions.) In other words, T is suÆ
ient if T 
ontains all the

information on �.

Clearly, T = x is a suÆ
ient statisti
 sin
e that is all the information we have|

on � or on anything else. But this doesn't help us very mu
h. The importan
e

of suÆ
ien
y is in data redu
tion. If we have a suÆ
ient statisti
, T , of a smaller

dimension than the data, x, we 
an redu
e the amount of data. This 
an be of

enormous pra
ti
al advantage.

From n independent observations x

i

, one 
an 
onstru
t m � n independent

statisti
s t; t

1

; t

2

; : : : ; t

m�1

(in an in�nite number of ways). From the de�nition of

marginal and 
onditional p.d.f.'s we 
an write the p.d.f. of these statisti
s as (
f.

equation 2.28)

f(t; t

1

; t

2

; : : : ; t

m�1

; �) = g(t; �) h(t

1

; t

2

; : : : ; t

m�1

; �jt) (8.36)

where g(t; �) is the marginal p.d.f. of t and h is the 
onditional p.d.f. Now if

h is independent of �, then 
learly the t

1

; t

2

; : : : ; t

m�1


ontribute nothing to our

knowledge of �. If this is true for any set of t

i

and any m < n then t 
learly


ontains all the information on �. We therefore de�ne a suÆ
ient statisti
 t as: t is

a suÆ
ient statisti
 for � if for any 
hoi
e of t

1

; t

2

; : : : ; t

m�1

(whi
h are independent

of t),

f(t; t

1

; t

2

; : : : ; t

m�1

; �) = g(t; �) h(t

1

; t

2

; : : : ; t

m�1

jt) (8.37)

Now, what does this mean in terms of the likelihood? The likelihood fun
tion

is the p.d.f. for x and is thus related to the f of equation 8.37 by a 
oordinate

transformation. Starting from equation 8.37, let t

i

= x

i

for i = 1; 2; : : : ; n � 1.

Then

f(t; x

1

; x

2

; : : : ; x

n�1

; �) = g(t; �) h(x

1

; x

2

; : : : ; x

n�1

jt)

The p.d.f. in terms of x is then

L(x; �) = g(t; �) h(x

1

; x

2

; : : : ; x

n�1

jt)

�

�

�

�

�

J

 

x

1

; : : : ; x

n

x

1

; : : : ; x

n�1

; t

!

�

�

�

�

�

whi
h is, sin
e the Ja
obian does not involve �, of the form

L(x; �) = g(t; �) k(x) (8.38)

Conversely, starting from equation 8.38, we make the transformation

t = t(x

1

; : : : ; x

n

)

t

i

= t

i

(x

1

; : : : ; x

n

) ; i < m

t

i

= x

i

; i = m; : : : ; n� 1
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L(x; �) dx then transforms to

g(t; �) k(x)

�

�

�

�

�

J

 

t; t

1

; : : : ; t

n�1

x

1

; : : : ; x

n

!

�

�

�

�

�

dt

n

Y

i=1

dt

i

whi
h we integrate over dt

m

: : : dt

n�1

to obtain the p.d.f. f(t; t

1

; : : : ; t

m�1

). Neither

k nor J depend on �. However, the integration limits for t

m

; : : : ; t

n�1

(x

m

; : : : ; x

n�1

)


ould depend on �. If not, it is 
lear that we obtain the form of equation 8.37. It

turns out

11,13

that this is also true even when the integration limits do depend on

�.

Thus equations 8.37 and 8.38 are equivalent. If we 
an �nd a statisti
 t su
h that

the likelihood fun
tion 
an be written in the form of equation 8.38, t is a suÆ
ient

statisti
 for �.

The suÆ
ient statisti
s for � having the smallest dimension are 
alled minimal

suÆ
ient statisti
s for �. One usually prefers a minimal suÆ
ient statisti
 sin
e

that gives the greatest data redu
tion.

We have seen that if we 
an write the p.d.f. in the exponential form of equa-

tion 8.34,

f(x; �) = exp

h

A(�) �

^

�(x) +B(�) +K(x)

i

then

^

� is an eÆ
ient estimator. Su
h a p.d.f. 
learly fa
torizes like equation 8.38

with

g(

^

�; �) = exp

h

A(�) �

^

�(x) +B(�)

i

k(x) = exp [K(x)℄

Thus, if the range of x does not depend on �,

^

�(x) is not only an eÆ
ient estimator

of �, but also a suÆ
ient statisti
 for �. If the range of x depends on �, the

situation is more 
ompli
ated. The reader is referred to Kendall and Stuart

11,13

for

the 
onditions of suÆ
ien
y.

8.3 Substitution methods

Now that we know something about the properties of estimators, let us turn to

the problem of 
onstru
ting, or 
hoosing, an estimator. There are three general

methods of estimation, whi
h we will examine in turn. We begin with substitution

methods.

8.3.1 Frequen
y substitution

This is the simplest method. It is useful when the parameter to be estimated is

a frequen
y or the fun
tion of a frequen
y. It 
onsists of simply estimating the

population (parent) frequen
y by the experimentally observed (sample) frequen
y.
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Su
h estimators are also known as plug-in estimators, sin
e the data are simply

\plugged into" the parameter de�nition.

For example, if the underlying p.d.f. is a binomial, B(x;n; p) =

�

n

x

�

p

x

(1� p)

n�x

,

we would estimate p by p̂ = x=n. This is unbiased sin
e E [x℄ = np. It is also

eÆ
ient sin
e B is a member of the exponential family of p.d.f.'s, as we saw in

se
tion 8.2.7. And we would estimate a fun
tion of p, g(p), by g(p̂) = g(x=n). This

method works well for large samples where the C.L.T. assures us that the di�eren
e

between E [x℄ and np is a small fra
tion of np.

Advantages of this method are simpli
ity and the fa
t that the estimator is

usually 
onsistent. Disadvantages are that the estimator may be biased and that it

may not have minimum varian
e. However, if it is biased, we may be able to redu
e

the bias, or at least estimate its size by a series expansion:

Suppose that

^

� is an unbiased estimator of �. We wish to estimate some fun
tion

of �, g(�). Following the above pres
ription, we use ĝ = g(

^

�). Then, expanding ĝ

about the true value of �, �

t

, assuming that the ne
essary derivatives exist,

ĝ = g(

^

�) = g(�

t

) + (

^

� � �

t

)

�g(�)

��

�

�

�

�

�

�=�

t

+

1

2

(

^

� � �

t

)

2

�

2

g(�)

��

2

�

�

�

�

�

�=�

t

+ : : :

Now we take the expe
tation. Sin
e

^

� is assumed unbiased, this gives simply,

E [ĝ℄ = g(�

t

) +

1

2

E

h

(

^

� � �

t

)

2

i

�

2

g(�)

��

2

�

�

�

�

�

�=�

t

+ : : :

Not knowing the true value �, we 
an not 
al
ulate E

h

(

^

� � �

t

)

2

i

. But we 
an

estimate it by V

h

^

�

i

. In the same spirit, we evaluate the derivative at � =

^

� instead

of at � = �

t

. Thus, to lowest order, there is a bias of approximately

1

2

V

h

^

�

i

�

2

g(�)

��

2

�

�

�

�=

^

�

.

In the 
ase of more than one parameter, �, this be
omes

ĝ = g(

^

�) = g(�

t

) +

X

i

(

^

�

i

� �

ti

)

�g

��

i

�

�

�

�

�

�=�

t

+

1

2

X

i

X

j

(

^

�

i

� �

ti

)(

^

�

j

� �

tj

)

�

2

g

��

i

��

j

�

�

�

�

�

�=�

t

+ : : :

E [ĝ℄ = g(�

t

) +

1

2

X

i

X

j

V

ij

(

^

�)

�

2

g

��

i

��

j

�

�

�

�

�

�=

^

�

+ : : :

from whi
h we dedu
e that

ĝ

1

= ĝ �

1

2

X

i;j

V

ij

�

2

g

��

i

��

j

�

�

�

�

�

�=

^

�

(8.39)

has redu
ed bias, provided that the 
orre
tion term is not large or rapidly varying.

If that is not true, it is not obvious that going to higher order terms in the expansion

would help, sin
e the problem may 
ome from using

^

� instead of the true value in

the expansion. In that 
ase more detailed investigation is needed, perhaps employ-

ing Monte Carlo te
hniques to test the behavior of the estimators under di�erent

assumptions for �.
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8.3.2 Method of Moments

The method

This is another substitution method. To estimate a fun
tion q of the parameter �,

we write q(�) as a fun
tion of the moments of the p.d.f.:

q(�) = g(m

1

; m

2

; : : :)

where m

j

= E [x

j

℄. This 
an, of 
ourse, only be done if all the ne
essary moments

exist. We then estimate q(�) by repla
ing all the parent (population) moments, m

j

,

in g by the 
orresponding sample (experimental) moments. Thus,

q̂ = g(




m

1

;




m

2

; : : :) ;




m

j

= x

j

=

1

n

X

i

x

j

i

(8.40)

In this notation m

1

= �, the parent mean, and




m

1

= �x, the sample mean.

For example, to estimate the parent varian
e, V [x℄, we write the varian
e in

terms of the moments: V [x℄ = �

2

= m

2

�m

2

1

. We then estimate the moments by

the 
orresponding sample moments:




�

2

=




m

2

�




m

2

1

=

1

n

X

x

2

i

� �x

2

=

1

n

X

(x

i

� �x)

2

As we have previously seen (equation 8.6), this estimator, whi
h we have 
alled s

2

x

(equation 8.4), is biased. Thus the method of moments does not ne
essarily give

unbiased estimators.

As a se
ond example, take the Poisson p.d.f. For this p.d.f., the population mean

and the population varian
e are equal, � = V [x℄. Therefore, we 
ould estimate the

mean and the varian
e either

by

^

� =




m

1

= �x

or by

^

� =




m

2

�




m

2

1

=

1

n

P

(x

i

� �x)

2

Thus the method of moments does not ne
essarily provide a unique estimator.

Varian
e of sample moments

Of 
ourse, a moment estimator, like any estimator, is rather useless unless we

also estimate its un
ertainty. It 
an be easily shown (exer
ise 35) that in general,

assuming that the moments exist,

V [




m

k

℄ = V

�

1

n

X

x

k

i

�

=

1

n

�

m

2k

�m

2

k

�

(8.41)


ov [




m

j

;




m

k

℄ =

1

n

(m

j+k

�m

j

m

k

) (8.42)

We 
an estimate these varian
es and 
ovarian
es by repla
ing the moments by their

estimators and 1=n by 1=(n� 1) to remove the bias.
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By the C.L.T. the average tends to its expe
tation under the assumption that

the varian
e is �nite. Moments estimators, being averages, are therefore 
onsistent.

A word of 
aution is in order: If it is ne
essary to use higher order moments, you

should be 
autious. They are very sensitive to the tails of the distribution, whi
h

is the part of the distribution whi
h is usually the most a�e
ted by experimental

diÆ
ulties.

8.3.3 Des
riptive statisti
s

Moments provide a simple way to des
ribe the data without making any assumption

about the parent p.d.f. Sin
e the amount of data in present-day experiments is

usually far too large to publish, it is ne
essary to redu
e it to a reasonable volume,

but in su
h a way that it remains useful.

In some 
ases we have a theory whi
h is in agreement with the data and it is

enough that the experimental data agree with the expe
tation. In other 
ases we

have no theory and the purpose of the experiment is to provide data whi
h 
an point

the way to a theory. The experimental moments of a distribution up to a 
ertain

(not too high) order provide a set of numbers with whi
h some future theory 
an

easily be 
ompared.

8.3.4 Generalized method of moments

Instead of the moments m

i

= E [x

i

℄, whi
h are moments of the fun
tions x

i

, we


an use moments of some other set of fun
tions, u

j

(x). These moments, E [u

j

℄, are

given by

E [u

j

℄ =

Z

u

j

(x)f(x; �) dx

Thus we have a number of equations for E [u

j

℄ in terms of �. We solve them for the

� in terms of the E [u

j

℄ and substitute the sample moments, �u

j

, for the expe
tations

to obtain our estimate of �. We will always need at least as many equations, and

hen
e at least as many fun
tions u

j

, as there are parameters to be estimated.

We take as an example the angular distribution of the de
ay of a ve
tor meson

into two pseudo-s
alar mesons. The angles � and � of the de
ay produ
ts in the

rest system of the ve
tor meson are distributed as

f(
os �; �) =

3

4�

�

1

2

(1� �

00

) +

1

2

(3�

00

� 1) 
os

2

� � �

1;�1

sin

2

� 
os 2�

�

p

2Re�

10

sin 2� 
os�

�

where the �'s are parameters to be estimated. The data 
onsist of measurements

of the angles, �

i

and �

i

, for n de
ays. From inspe
tion of the above expression for

f , we 
hoose three fun
tions to estimate the three parameters. The 
hoi
e is not

unique, but an obvious 
hoi
e is as follows. We then 
ompute the expe
tation of
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ea
h of the fun
tions:

fun
tion expe
tation

u

1

= 
os

2

� E [u

1

℄ =

1

5

(1 + 2�

00

)

u

2

= sin

2

� 
os 2� E [u

2

℄ = �

4

5

�

1;�1

u

3

= sin 2� 
os� E [u

3

℄ = �

4

5

p

2Re�

10

Repla
ing E [u

j

℄ by the sample mean �u

j

=

1

n

P

u

j

(
os �

i

; �

i

) gives, e.g.,

�

4

5

p

2Re�̂

10

= �u

3

=

1

n

n

X

i=1

sin 2�

i


os�

i

whi
h we solve for Re�̂

10

.

This method is most elegant when the fun
tions u

j

form an orthonormal set.

Then

f(x) =

1

X

i=0

a

i

u

i

(x) and

Z

u

�

j

(x)u

k

(x) dx = Æ

jk

The expe
tations are then

E [u

�

k

(x)℄ =

Z

u

�

k

(x)f(x) dx = a

k

Thus the estimate of the 
oeÆ
ient of the k

th

term is just the sample mean of the

(
omplex 
onjugate of the) k

th

fun
tion,

â

k

= u

�

k

This estimator is unbiased and, by the C.L.T., asymptoti
ally normally distributed

about a

k

.

8.3.5 Varian
e of moments

The varian
e of the k

th

sample moment, generalized or not, is

V

kk

� V [�u

k

℄ =

1

n

2

V

"

n

X

i=1

u

k

(x

i

)

#

=

1

n

V [u

k

(x)℄

=

1

n

E

�

�

u

k

(x)� E [u

k

(x)℄

�

2

�

(8.43)

whi
h redu
es to equation 8.41 for ordinary moments, u

k

(x) = m

k

= x

k

. This is

estimated by repla
ing the expe
tations by the sample means to give

b

V

kk

=

1

n

1

n� 1

n

X

i=1

�

u

k

(x

i

)� �u

k

(x)

�

2

=

1

n� 1

�

u

2

k

� �u

2

k

�

(8.44)
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where we have used

1

n�1

instead of

1

n

in order to have an unbiased estimate. The

general element of the 
ovarian
e matrix is estimated by

b

V

jk

[�u℄ =

1

n

1

n� 1

n

X

i=1

�

u

j

(x

i

)� �u

j

(x)

��

u

k

(x

i

)� �u

k

(x)

�

(8.45)

=

1

n� 1

(u

j

u

k

� �u

j

�u

k

) (8.46)

8.3.6 Transformation of the 
ovarian
e matrix under a 
hange

of parameters

Frequently it is not one of the moments that we want to estimate, but rather

some fun
tion of the moments, e.g., �̂

00

= (5�u

1

� 1)=2. We now examine how the


ovarian
e matrix for the �u

k

transforms under su
h a 
hange of parameter. This

topi
 is usually known as propagation of errors. This is, of 
ourse, appli
able to

fun
tions of any estimator, not just to moments.

We want to estimate � whi
h we write as a fun
tion of q, �(q). We �rst �nd

an estimate of q, q̂, and an estimate of its varian
e,

b

V [q̂℄. To avoid possible mis-

understanding, we denote the true (unknown) value of q by q

t

. The true value of

� is then �(q

t

). Our estimate of q, q̂, being a r.v., is of 
ourse distributed about

q

t

a

ording to some p.d.f. We wish to (approximately) evaluate the varian
e of

^

�

from the varian
e of q̂. We assume that q̂ is an unbiased estimator of q, whi
h is

true, at least asymptoti
ally (C.L.T.), if q̂ is a moment.

We expand

^

� about the true value of q. Then

^

� = �(q̂) = �(q

t

) +

��

�q

�

�

�

�

�

q=q

t

(q̂ � q

t

) + : : :

and E

h

^

�

i

= �(q

t

) +

��

�q

�

�

�

�

�

q=q

t

E [(q̂ � q

t

)℄ + : : :

Sin
e q̂ is unbiased, E [(q̂ � q

t

)℄ = 0. Thus, to �rst order, E

h

^

�

i

= �(q

t

). Subtra
ting

the se
ond equation from the �rst gives, to �rst order,

^

� � E

h

^

�

i

=

��

�q

�

�

�

�

�

q=q

t

(q̂ � q

t

)

Hen
e,

V

h

^

�

i

� E

�

�

^

� � E

h

^

�

i�

2

�

=

 

��

�q

!

2

q=q

t

E

h

(q̂ � q

t

)

2

i

=

 

��

�q

!

2

q=q

t

V [q̂℄ (8.47)
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This 
an be estimated by substituting q̂ for q

t

and our estimate

b

V [q̂℄ for V [q̂℄:

b

V

h

^

�

i

=

 

��

�q

!

2

q=q̂

b

V [q̂℄ (8.48)

This te
hnique works well only when se
ond and higher order terms are small and

when q̂ is unbiased.

We give a simple example, a fun
-

tion linear in q. The result is

then, in fa
t, exa
t sin
e the se
-

ond and higher order derivatives

are zero.

�(q) = A +Bq

��

�q

= B

V

h

^

�

i

= B

2

V [q̂℄ (8.49)

The general 
ase is similar to our treatment of 
hange of variables (se
tion

2.2.6). Indeed, it is in prin
iple better to transform the p.d.f. to a new p.d.f. in

terms of the parameter we want to estimate, e.g., f(x; q) ! g(x; �). In parti
ular

it is ni
e if we 
an transform to a p.d.f. having � as its mean (or other low order

moment), sin
e sample moments are unbiased estimators. However, in pra
ti
e

su
h a transformation may be diÆ
ult and it may be easier to estimate q than to

estimate � dire
tly.

6

-

q

�

E [q̂℄

�

1

dq

d�

f(q̂)

g(

^

�)

� = �(q)

Consider now the p.d.f.'s for the estima-

tors q̂ and

^

�. If the transformation � = �(q)

is non-linear, the shape of the p.d.f. g(

^

�) is


hanged from that of f(q̂) by the Ja
obian

(j�q=��j in one dimension), as illustrated

in the �gure. In regions where d� < dq,

the probability piles up faster for � than

for q. Thus in the example the peak in

g(

^

�) o

urs below �

1

= g (E [q̂℄).

In parti
ular, if f(q̂) is normal, g(

^

�) is

not normal, ex
ept for a linear transforma-

tion. This is a sour
e of bias, whi
h in the

�gure manifests itself as a long tail for g(

^

�) resulting in E

h

^

�

i

> �

1

.

Now let us treat the multidimensional 
ase, where q is of dimension n and � is

of dimension m. Note that m � n; otherwise not all �

i

will be independent and

there will be no unique solution. An example would be a p.d.f. for (x; y) for whi
h

we want only to estimate some parameter of the (marginal) distribution for r. In

this 
ase, n = 2 and m = 1.

We 
an then expand ea
h

^

�

i

about its true value in the same manner as for the

one-dimensional 
ase, ex
ept that we now must introdu
e a sum over all parameters:

^

�

i

� �

i

(q̂) = �

i

(q

t

) +

n

X

k=1

��

i

�q

k

�

�

�

�

�

q=q

t

(q̂

k

� q

t k

) + : : :
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Assuming that q̂

i

is unbiased, its expe
tation is equal to the true value so that to

�rst order,

�

^

�

i

� E

h

^

�

i

i� �

^

�

j

� E

h

^

�

j

i�

=

n

X

k=1

n

X

l=1

��

i

�q

k

�

�

�

�

�

q=q

t

��

j

�q

l

�

�

�

�

�

q=q

t

(q̂

k

� q

t k

) (q̂

l

� q

t l

)

Taking expe
tations, and writing in matrix notation, we arrive at the generalization

of equation 8.47:

V

h

^

�

i

= D

T

(�)V

h

q̂

i

D(�) (8.50)

where,

D(�) =

0

B

B

B

B

B

�

��

1

�q

1

��

2

�q

1

: : :

��

m

�q

1

��

1

�q

2

��

2

�q

2

: : :

��

m

�q

2

.

.

.

.

.

.

.

.

.

.

.

.

��

1

�q

n

��

2

�q

n

: : :

��

m

�q

n

1

C

C

C

C

C

A

q=q

t

(8.51)

As in the one-dimensional 
ase we estimate this varian
e by repla
ing true values

by their estimates to arrive at the generalization of equation 8.48:

b

V

h

^

�

i

=




D

T

(�)

b

V

h

q̂

i




D(�) (8.52)

where,




D(�) =

0

B

B

B

B

B

�

��

1

�q

1

��

2

�q

1

: : :

��

m

�q

1

��

1

�q

2

��

2

�q

2

: : :

��

m

�q

2

.

.

.

.

.

.

.

.

.

.

.

.

��

1

�q

n

��

2

�q

n

: : :

��

m

�q

n

1

C

C

C

C

C

A

q=q̂

(8.53)

Warning: D is not symmetri
.

8.4 Maximum Likelihood method

This method of parameter estimation is very general. It is often the simplest method

to use, parti
ularly in 
omplex 
ases, and maximum likelihood estimators have


ertain desirable properties.

8.4.1 Prin
iple of Maximum Likelihood

We have already met the likelihood fun
tion in se
tion 8.2.5. We repeat its de�-

nition here: The likelihood fun
tion is the joint p.d.f. for n measurements x given

parameters �:

L(x; �) = L(x

1

; x

2

; : : : ; x

n

; �) (8.54)
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If the x

i

are independent, this is just the produ
t of the p.d.f.'s for the individual

x

i

:

L(x; �) =

n

Y

i=1

f

i

(x

i

; �) (8.55)

where we have in
luded a subs
ript i on f sin
e it is not ne
essary that all the x

i

have the same p.d.f.

In probability theory this p.d.f. expresses the probability that an experiment

identi
al to ours would result in the n observations x whi
h we observed. In prob-

ability theory we know � and the fun
tions f

i

, and we 
al
ulate the probability of


ertain results. In statisti
s this is turned around. We have done the experiment;

so we know a set of results, x. We (think we) know the p.d.f.'s, f

i

(x; �). We want

to estimate �.

We emphasize that L is not a p.d.f. for �; if it were we would use the expe
tation

value of � for

^

�. Instead we take eq. 8.54, repla
e � by

^

� and solve for

^

� under the


ondition that L is a maximum. In other words, our estimate,

^

�, of � is that value of

� whi
h would make our experimental results the most likely of all possible results.

This is the Prin
iple of Maximum Likelihood: The best estimate of a pa-

rameter � is that value whi
h maximizes the likelihood fun
tion. This 
an not be

proved without de�ning `best'. It 
an be shown that maximum likelihood (ml)

estimators have desirable properties. However, they are often biased. Whether the

ml estimator really is the `best' estimator depends on the situation.

It is usually more 
onvenient to work with

` = lnL (8.56)

sin
e the produ
t in eq. 8.55 be
omes a sum in eq. 8.56. For independent x

i

this is

` =

n

X

i=1

`

i

, where `

i

= ln f

i

(x

i

; �) (8.57)

Sin
e L > 0, both L and ` have the same extrema, whi
h are found from

S

i

�

�`

��

i

=

1

L

�L

��

i

= 0 (8.58)

where S

i

is the s
ore fun
tion (se
tion 8.2.5)

6

-

�

`

largest

max.

H

H

Hj

lo
al

max.

?

�

�

�

�

�R

 physi
al range of � !

The maximum likelihood 
ondi-

tion (8.58) �nds an extremum whi
h

may be a minimum; so it is important

to 
he
k. There may also be more

than one maximum, in whi
h 
ase

one usually takes the highest max-

imum. The maximum may also be

at a physi
al boundary, in whi
h 
ase
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eq. (8.58) may not �nd it. Usually

su
h problems do not o

ur for suÆ-


iently large samples. However, this

is not always the 
ase.

Note that for the purpose of �nding the maximum of L, it is not ne
essary

that L be normalized. Any fa
tors not depending on � 
an be thrown away. This

in
ludes fa
tors whi
h depend on x but not on �.

Example: n independent x

i

, ea
h distributed normally.

L =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

i

�

i

�

2

#

` =

n

X

i=1

"

�

1

2

ln(2�)� ln�

i

�

(x

i

� �

i

)

2

2�

2

i

#

Suppose that all the �

i

are the same, �

i

= �, but that the �

i

are di�erent, but

known. This is the 
ase if we make n measurements of the same quantity, ea
h

with a di�erent pre
ision, e.g., using di�erent apparatus. The maximum likelihood


ondition (8.58) is then

�`

��

=

X

x

i

� �

�

2

i

=

X

x

i

�

2

i

�

X

�

�

2

i

= 0

The solution of this equation is the ml estimate of �:

�̂ =

P

(x

i

=�

2

i

)

P

(1=�

2

i

)

(8.59)

whi
h is a weighted average, ea
h x

i

weighted by

1

/

�

2

i

.

The expe
tation of �̂ is

E [�̂℄ = E

"

P

(x

i

=�

2

i

)

P

(1=�

2

i

)

#

=

P

(E [x

i

℄ =�

2

i

)

P

(1=�

2

i

)

=

P

(�=�

2

i

)

P

(1=�

2

i

)

=

�

P

(1=�

2

i

)

P

(1=�

2

i

)

= �

from whi
h we 
on
lude that this estimate is unbiased. The varian
e of �̂ is

V [�̂℄ = E

h

�̂

2

i

�

�

E [�̂℄

�

2

= E

h

�̂

2

i

��

2

=

E

"

�

P

x

i

�

2

i

�

2

#

�

P

�

1

�
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i

��
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��
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=

E

�

P

i

P

j

x

i

x

j

�

2

i

�

2

j

�

�

P

�

1

�

2

i

��

2

��

2

Sin
e the x

i

are independent,

E [x

i

x

j

℄ =

(

E [x

i

℄E [x

j

℄ = �

i

�

j

= �

2

if i 6= j

E [x

2

i

℄ = �

2

i

+ �

2

if i = j
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Therefore, having written the expe
tation of sums as the sum of expe
tations and

having split the double sum into two parts,

V [�̂℄ =

 

1

P

(1=�

2

i

)

!

2
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�

X

i

�

2

i
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2
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�
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j
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2

i

+ �

2

X

i

1

�
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j 6=i
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�
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j
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+ �
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�

P

i

1

�
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i

+

P

i

P

j 6=i

1

�

2

i

�

2

j

(

P

(1=�

2

i

))

2

1

A

| {z }

=1

��

2

=

1

P

(1=�

2

i

)

(8.60)

It is 
urious that in this example V [�̂℄ does not depend on the x

i

, but only on the

�

i

. This is not true in general.

We have seen (se
tion 8.2.6) that the Rao-Cram�er inequality sets a lower limit

on the varian
e of an estimator. For an unbiased estimator the bound is 1=I, where

I is the information. For �,

I(�) = �E

"

�S(�)

��

#

= �E

"

�

2

`

��

2

#

= �E

"

�

��

 

X

x

i

�

2

i

�

X

�

�

2

i

!#

= �E

"

�

X

1

�

2

i

#

=

X

1

�

2

i

Thus V [�̂℄ = I

�1

(�); the varian
e of �̂ is the smallest possible. The ml estimator

is eÆ
ient. This is in fa
t a general property of ml estimators: The ml estimator

is eÆ
ient if an eÆ
ient estimator exists. We will now demonstrate this.

Properties of maximum likelihood estimators

We have seen in se
tion 8.2.7 that an eÆ
ient, unbiased estimator is linearly related

to the s
ore fun
tion. Assume that su
h an estimator of � exists; 
all it T (x). Then

S(x; �) = C(�)T (x) +D(�) (8.61)

From the maximum likelihood 
ondition, S(x;

^

�) = 0, where

^

� is the ml estimator

of �. Hen
e the unbiased, eÆ
ient estimator T (x) is related to the ml estimator

^

�

by

T (x) = �

D(

^

�)

C(

^

�)

(8.62)
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We have also seen in se
tion 8.2.6, equation 8.21, that E [S(x; �)℄ = 0 under

quite general 
onditions on f . Therefore, taking the expe
tation of equation 8.61,

E [S(x; �℄ = C(�)E [T (x)℄ +D(�) = 0

Hen
e,

E [T (x)℄ = �

D(�)

C(�)

(8.63)

This is true for any value of �; in parti
ular it is true for � =

^

�, i.e., if the true value

of � is equal to the ml estimate of �:

E

h

T (xj

^

�)

i

= �

D(

^

�)

C(

^

�)

= T (x) (8.64)

It may seem strange to write E

h

T (xj

^

�)

i

sin
e T (x) does not depend on the value of

�. However, the expe
tation operator does depend on the value of �. In fa
t, sin
e

T (x) is an unbiased estimator of �,

E [T (x)℄ =

Z

T (x) f(x; �) dx = � (8.65)

Hen
e,

E

h

T (xj

^

�)

i

=

^

�

Combining this with equation 8.64 gives

T (x) =

^

� (8.66)

Thus we have demonstrated that the ml estimator is eÆ
ient and unbiased if an

eÆ
ient, unbiased estimator exists.

If an unbiased, eÆ
ient estimator exists, we 
an derive the following properties:

1. From equations 8.63 and 8.65,

D(�) = �� C(�)

Substituting this and equation 8.66 in equation 8.61 yields

S(x; �) = C(�)

h

^

� � �

i

(8.67)

2. Assuming that the estimator is eÆ
ient means that the Rao-Cram�er inequal-

ity, equation 8.26, be
omes an equality. Colle
ting equations 8.19, 8.23, and

8.26, results in the varian
e of an unbiased, eÆ
ient estimator

^

� given by

V

h

^

�

i

=

1

I(�)

=

1

E [S

2

℄

= �

1

E

h

�S

��

i

= �

1

E

h

�

2

`

��

2

i
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From (8.67),

�S

��

= C

0

(�)

h

^

� � �

i

� C(�) (8.68)

Sin
e

^

� is unbiased, E

h

^

�

i

= �

t

, the true value of the parameter. Hen
e,

E

"

�S

��

#

= �C(�

t

)

and V

h

^

�

i

=

1

C(�

t

)

(8.69)

Hen
e, C(�

t

) > 0.

3. From equation 8.68, we also see that

�

2

`

��

2

�

�

�

�

�

�=

^

�

=

�S

��

�

�

�

�

�

�=

^

�

= �C(

^

�)

Sin
e C(�) > 0 in the region of the true value, this 
on�rms that the extremum

of `, whi
h we have used to determine

^

�, is in fa
t a maximum.

4. From equation 8.67 and the maximum likelihood 
ondition (equation 8.58),

we see that the ml estimator is the solution of

0 = S(x; �) = C(�)

�

^

� � �

�

Sin
e C(�) > 0 in the region of the true value, this equation 
an have only one

solution, namely

^

�. Hen
e, the maximum likelihood estimator

^

� is unique.

Let us return to the Gaussian example. But now assume not only that all �

i

= �

but also all �

i

= �. Unlike the previous example, we now assume that � is unknown.

The likelihood 
ondition gives

�`

��

!

�̂;�̂

=

X

 

x

i

� �̂

�̂

!

= 0

�`

��

!

�̂;�̂

=

X

 

�

1

�̂

+

(x

i

� �̂)

2

�̂

3

!

= 0

The �rst equation gives

�̂ =

1

n

X

x

i

= �x

Using this in the se
ond equation gives

�̂

2

=

1

n

X

(x

i

� �x)

2

whi
h, as we have previously seen (eq. 8.6), is a biased estimator of �

2

. This

illustrates an important, though often forgotten, feature of ml estimators: They

are often biased.

To summarize this se
tion: The ml estimator is eÆ
ient and unbiased if su
h

an estimator exists. Unfortunately, that is not always the 
ase.
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8.4.2 Asymptoti
 properties

Although, as we have seen in the previous se
tion, the maximum likelihood esti-

mator is eÆ
ient and unbiased if an eÆ
ient, unbiased estimator exists, in general

the ml estimator is neither unbiased nor eÆ
ient. However, asymptoti
ally, i.e.,

for a large number of independent measurements, it (usually) is both unbiased and

eÆ
ient. To see this we expand the s
ore about

^

�:

S(x; �) =

�

��

X

ln f(x

i

; �) � S(x;

^

�) +

�S

��

�

�

�

�

�

^

�

�

� �

^

�

�

+ : : :

By the maximum likelihood prin
iple, S(x;

^

�) = 0. We assume that as n ! 1

higher order terms 
an be negle
ted. We are then left with

S(x; �) �

�S

��

�

�

�

�

�

^

�

�

� �

^

�

�

=

�

��

X

S

1

(x

i

; �)

�

�

�

�

�

^

�

�

� �

^

�

�

=

X

�S

1

(x

i

; �)

��

�

�

�

�

�

^

�

�

� �

^

�

�

Repla
ing the sum by n times the sample mean,

S(x; �) � n

�S

1

��

�

�

�

�

�

^

�

�

� �

^

�

�

= n

�

2

��

2

ln f(x

i

; �)

�

�

�

�

�

^

�

�

� �

^

�

�

Sin
e the sample mean approa
hes the expe
tation as n ! 1 provided only that

the varian
e is �nite (C.L.T.), asymptoti
ally

S(x; �) � nE

"

�S

1

��

�

�

�

�

�

^

�

#

�

� �

^

�

�

= nE

"

�

2

��

2

ln f(x

i

; �)

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

��

X

S

1

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

2

��

2

X

ln f(x

i

; �)

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�S

��

�

�

�

�

�

^

�

#

�

� �

^

�

�

= E

"

�

2

`

��

2

�

�

�

�

�

^

�

#

�

� �

^

�

�

= �I(

^

�)

�

� �

^

�

�

(8.70)

the last step following from equation 8.23.

There are several 
onsequen
es of equation 8.70:

� First we note that asymptoti
ally, I(�) = I(

^

�):

I(�) = �E

"

�S

��

#

= E

h

I(

^

�)

i

= I(

^

�)

where the se
ond step follows from equation 8.70 and the last step follows

sin
e I(

^

�) is itself an expe
tation and the expe
tation of an expe
tation is

just the expe
tation itself.
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� The result, equation 8.70, that

^

� is linearly related to the s
ore fun
tion,

implies (se
tion 8.2.7) that

^

� is unbiased and eÆ
ient. This is an important

asymptoti
 property of ml estimators.

� Further, we 
an integrate equation 8.70,

�

��

lnL = S(x; �) � �I(

^

�)(� �

^

�)

over � to �nd

` = lnL � �

I(

^

�)

2

�

^

� � �

�

2

+ ln k (8.71)

where the integration 
onstant, k, is just k = L(

^

�) = L

max

. Exponentiating,

L(�) � L

max

exp

�

�

1

2

I(

^

�)(

^

� � �)

2

�

/ N

�

�;

^

�; I

�1

(

^

�)

�

(8.72)

Thus, asymptoti
ally, L is proportional to a Gaussian fun
tion of � with mean

^

� and varian
e 1=I(

^

�).

Instead of starting with equation 8.70, we 
ould use equation 8.67, whi
h ex-

presses the linear dependen
e of S on

^

� for any eÆ
ient, unbiased estimator. Inte-

grating equation 8.67 leads to

L(�) = L

max

exp

�

�

1

2

C(�)(

^

� � �)

2

�

whi
h looks formally similar to equation 8.72 but is not, in fa
t, a Gaussian fun
tion

sin
e C depends on �. Only asymptoti
ally must C(�) approa
h a 
onstant, C(�)!

I(

^

�). Nevertheless, C(�)may be 
onstant for �nite n, as we have seen in the example

of using �x to estimate � of a Gaussian (
f. se
tion 8.2.7).

We emphasize again that, despite the form of equation 8.72, L is not a p.d.f.

for �. It is an experimentally observed fun
tion. Nevertheless, the prin
iple of

maximum likelihood tells us to take the maximum of L to determine

^

�, i.e., to

take

^

� equal to the mode of L. In this approximation the mode of L is equal to

the mean, whi
h is just

^

�. In other words the ml estimate is the same as what we

would �nd if we were to regard L as a p.d.f. for � and use the expe
tation (mean)

of L to estimate �.

Sin
e asymptoti
ally the ml estimator is unbiased and eÆ
ient, the Rao-Cram�er

bound is attained and V

h

^

�

i

= I

�1

(�). Thus the varian
e is also that whi
h we would

have found treating L as a p.d.f. for �.

We have shown that the ml estimator is, under suitable 
onditions, asymptot-

i
ally eÆ
ient and unbiased. Let us now spe
ify these 
onditions (without proof)

more pre
isely:
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1. The true value of � must not be at the

boundary of its allowed interval su
h that

the maximum likelihood 
ondition would

not be satis�ed, i.e.,

�L

��

must be zero at the

maximum.

-

6

�

max

�

L

�L

��

6= 0

X

Xz

2. The p.d.f.'s de�ned by di�erent values of � must be distin
t, i.e., two values

of � must not give p.d.f.'s whose ratio is not a fun
tion of �. Otherwise there

would be no way to de
ide between them.

3. The �rst three derivatives of ` = lnL must exist in the neighborhood of

^

�.

4. The information, I(�) must be �nite and positive de�nite.

8.4.3 Change of parameters

It is important to understand the di�eren
e between a 
hange of parameters and a


hange of variable. L(x; �) is a p.d.f. for the random variable x. Under a 
hange

of variable, x �! y(x) and L(x; �) �! L

0

(y; �), the probability must be 
onserved.

Hen
e, L(x; �) dx = L

0

(y; �) dy. This requirement results (
f. se
tion 2.2.6) in

L

0

(y; �) = L(w(y); �) jJ j

where w is the inverse of the transformation x �! y and J is the Ja
obian of the

transformation.

However, for a 
hange of parameters, � �! g(�), the requirement that prob-

ability be 
onserved means that L(x; �) dx = L

0

(x; g) dx and 
onsequently that

L(x; �) = L

0

(x; g). Thus the value of L is un
hanged by the transformation from

� to g(�) and L

0

is obtained from L simply be repla
ing � by h(g) where h is the

inverse of the transformation �! g. There is no Ja
obian involved.

As in frequen
y substitution, the ml estimator of a fun
tion, g, of the parameter

� is just that fun
tion for the ml estimator, i.e.,

ĝ(�) = g(

^

�)

This o

urs be
ause, assuming

��

�g

exists,

�L

�g

=

�L

��

��

�g

Then the maximum likelihood 
ondition for �,

�L

��

= 0, implies that

�L

�g

= 0, whi
h

is just the maximum likelihood 
ondition for g.
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-

6

�

g

��

�g

= 0

If

��

�g

is zero at some value of �, this 
an intro-

du
e additional solutions to the likelihood 
ondi-

tion for g. This will not usually happen if g is a

single-valued fun
tion of � unless there are points

of in
e
tion.

Note that

^

� unbiased does not imply that

ĝ = g(

^

�) is unbiased and vi
e versa. Asymptoti-


ally, both

^

� and ĝ be
ome unbiased and eÆ
ient

(previous se
tion), but they usually approa
h this at di�erent rates.

In the 
ase of more than one parameter, g(�), the above generalizes to

�L

�g

k

=

X

i

�L

��

i

��

i

�g

k

=

 

�L

��

!

T

 

��

�g

k

!

(8.73)

and the information matrix transforms as

I

jk

(g) =

 

�g

j

��

!

T

I(�)

 

�g

k

��

!

(8.74)

It is not ne
essary that � and g have the same dimensions.

8.4.4 Maximum Likelihood vs. Bayesian inferen
e

Re
all Bayes' theorem (se
tion 2.3). Assume that the parameter �, whi
h we wish

to estimate, 
an have only dis
rete values, �

1

; �

2

; : : : ; �

k

. Applied to the estimation

of �, Bayes' theorem 
an be stated (
f. se
tion 2.4.3)

P

posterior

(�

i

j x) =

P (x j �

i

)

P (x)

P

prior

(�

i

) (8.75)

and it would seem reasonable to 
hoose as our estimate of

^

� that value �

i

having

the largest P

posterior

, i.e., the mode of the posterior probability.

�

Sin
e P

posterior

is

normalized, i.e.,

P

i

P

posterior

(�

i

jx) = 1, we see that P (x) =

P

i

P (xj�

i

)P

prior

(�

i

) is

the 
onstant whi
h serves to normalize P

posterior

. We also see that P (xj�

i

) is just

the likelihood, L(x; �

i

), apart from normalization.

In the absen
e of prior knowledge (belief) of �, Bayes' postulate tells us to assume

all values equally likely, i.e., P

prior

(�

i

) =

1

k

. Then the right-hand side of equation 8.75

is exa
tly L(x; �

i

) (apart from normalization) and maximizing P

posterior

is the same

as maximizingL. Thus, Bayesian statisti
s leads to the same estimator as maximum

likelihood.

In the more usual 
ase of a 
ontinuous parameter, equation 8.75 must be rewrit-

�

The mode is not the only 
hoi
e. A Bayesian 
ould also 
hoose the mean or the median, or

some other property of the posterior probability distribution. Asymptoti
ally, of 
ourse, P

posterior

will be Gaussian, in whi
h 
ase the mode, mean, and median are the same.
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ten in terms of probability densities:

f

posterior

(� j x) =

f(x j �)

R

f(x j �) f

prior

(�) d�

f

prior

(�) (8.76)

Assuming Bayes' postulate, f

prior

= 
onstant, and again Bayesian statisti
s is equiv-

alent to maximum likelihood.

But now what happens if we want to estimate the parameter g = g(�) rather

than �? Assume that the transformation g(�) is one-to-one. Then in the dis
rete


ase we just repla
e �

i

by g

i

= g(�

i

) in equation 8.75. Bayes' postulate again tells

us that P

prior

=

1

k

and the same maximum is found resulting in ĝ = g(

^

�). However

in the 
ontinuous 
ase, the 
hange of parameter (
f. se
tions 2.2.6, 8.4.3) involves

a Ja
obian, sin
e in Bayesian statisti
s f is a p.d.f. for �, or in other words, the ml

parameter is regarded as the variable of the p.d.f. Hen
e,

f

posterior

(g j x) = f

posterior

(� j x) jJ j

where J is the Ja
obian of the transformation � ! g. But sin
e the likelihood

fun
tion is a p.d.f. for x, not for �, there is no Ja
obian involved in rewriting L

using g instead of �, i.e., L(x; g(�)) = L(x; �). Thus, assuming Bayes' postulate

for g, f

prior

(g) = 
onstant, the value of g whi
h maximizes f

posterior

(g j x) is that

whi
h maximizes L(x; �)jJ j rather than L(x; �). Bayesian statisti
s and maximum

likelihood thus give di�erent estimates of g. To obtain the same result in ml, the

Bayesian would have to use f

prior

(g) = f

prior

(�)jJ j rather than the uniform f

prior

(g)

suggested by Bayes' postulate. In other words, Bayes' postulate 
an only be applied

to � or g, not simultaneously to both (ex
ept when � and g are linearly related).

But how does one 
hoose whi
h?

�

This is one of the grounds whi
h would 
ause

most physi
ists to prefer maximum likelihood to Bayesian parameter estimation.

8.4.5 Varian
e of maximum likelihood estimators

We have seen that the varian
e of an eÆ
ient estimator is given by the Rao-Cram�er

bound (equation 8.26). Assuming that

^

� is eÆ
ient, substituting

^

� for � in this

equation gives an estimate of V

h

^

�

i

. If, in addition,

^

� is unbiased (or at least that

the bias does not depend on �), this just be
omes V

h

^

�

i

= 1=I(

^

�). We re
all that the

ml estimator is eÆ
ient if an eÆ
ient estimator exists, but that this is not always

the 
ase. Nor is the ml estimator always unbiased.

If the estimator is unbiased and eÆ
ient

However, asymptoti
ally the ml estimator is both unbiased and eÆ
ient. Assuming

this to be the 
ase, and also assuming that the range of x does not depend on �,

we 
an estimate the varian
e as follows:

�

There are arguments for the 
hoi
e of non-uniform priors (see, e.g., Je�reys

37

) in 
ertain



8.4. MAXIMUM LIKELIHOOD METHOD 131

1. Using equation 8.19, I(�) = E [S

2

℄,

V

�1

h

^

�

i

= I(�) = E

h

S

2

i

= E

2

4

 

�`

��

!

2

3

5

whi
h, for more than one parameter generalizes to

V

�1

jk

h

^

�

i

= E

"

�`

��

j

�`

��

k

#

(8.77)

If the sample 
onsists of n independent events distributed a

ording to the

p.d.f.'s f

i

(x

i

; �), the s
ore is just the sum of the s
ores for the individual events

and

V

�1

h

^

�

i

= E

2

4

 

n

X

i=1

S

1

(x

i

; �)

!

2

3

5

Performing the square and using the fa
t that the expe
tation of a sum is the

sum of the expe
tations, we get

V

�1

h

^

�

i

=

n

X

i=1

E

h

S

2

1

(x

i

; �)

i

+

n

X

i=1

n

X

j=1

i6=j

E [S

1

(x

i

; �)S

1

(x

j

; �)℄

However, the 
ross terms are zero, whi
h follows from the fa
t that for indepen-

dent x

i

the expe
tation of the produ
t equals the produ
t of the expe
tations

and from E [S

1

(x; �)℄ = 0 (equation 8.20). Therefore, generalizing to more

than one parameter,

V

�1

jk

h

^

�

i

=

n

X

i=1

E

"

� ln f

i

(x

i

; �)

��

j

� ln f

i

(x

i

; �)

��

k

#

(8.78)

Not knowing the true value of �, we estimate this by evaluating it at � =

^

�.

If all the f

i

are the same, equation 8.78 redu
es to

V

�1

jk

h

^

�

i

= nE

"

� ln f(x; �)

��

j

� ln f(x; �)

��

k

#

(8.79)

Rather than 
al
ulating the expe
tation and evaluating it at

^

�, we 
an estimate

the expe
tation value by the sample mean evaluated at

^

�:

d

V

�1

jk

h

^

�

i

=

n

X

i=1

� ln f(x

i

; �)

��

j

�

�

�

�

�

^

�

� ln f(x

i

; �)

��

k

�

�

�

�

�

^

�

(8.80)


ir
umstan
es. However, they are not 
ompletely 
onvin
ing and remain 
ontroversial.
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2. I is also given by equation 8.23:

I(�) = �E

"

�S

��

#

= �

�S

�

^

�

�

�

�

�

�

^

�=�

= �

�

2

`

�

^

�

2

�

�

�

�

�

^

�=�

(8.81)

where the se
ond step follows from the linear dependen
e of S on

^

� (equa-

tion 8.30) for an unbiased, eÆ
ient estimator. The varian
e is then estimated

by evaluating the derivative at � =

^

�:

d

V

�1

h

^

�

i

= �

�

2

`

��

2

�

�

�

�

�

^

�

(8.82)

In the 
ase of more than one parameter, this be
omes

V

�1

jk

h

^

�

i

= I

jk

(�) = �E

"

�

2

`

��

j

��

k

#

(8.83)

whi
h is estimated by

d

V

�1

jk

h

^

�

i

= I

jk

(

^

�) = �

�

2

`

��

j

��

k

�

�

�

�

�

^

�

(8.84)

whi
h is the Hessian matrix

�

of �`. For n independent events, all distributed

as f(x; �), the expe
tations in equations 8.81 and 8.83 
an be estimated by a

sample mean evaluated at

^

�. Thus

d

V

�1

jk

h

^

�

i

= �

n

X

i=1

�

2

ln f(x

i

; �)

��

j

��

k

�

�

�

�

�

^

�

= �n

�

2

ln f(x; �)

��

j

��

k

�

�

�

�

�

^

�

(8.85)

The expe
tation forms (8.77, 8.78, 8.79 and 8.84) are useful for estimating the error

we expe
t before doing the experiment, e.g., to de
ide how many events we need to

have in order to a
hieve a 
ertain pre
ision under various assumptions for �. Both

the expe
tation and the sample mean forms (8.80 and 8.85) may be used after the

experiment has been done. It is diÆ
ult to give general guidelines on whi
h method

is most reliable.

Example: Let us apply the two methods to the example of n independent x

i

distributed normally with the same � but di�erent �

i

. Assume that the �

i

are

known. Re
all that in this 
ase

` =

n

X

i=1

2

4

�

1

2

ln(2�)� ln�

i

�

1

2

 

(x

i

� �)

�

i

!

2

3

5

�

Mathemati
ally it is 
onditions on the �rst derivative ve
tor, �`=�

^

�, and on the Hessian matrix
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1. From equation 8.78,

V

�1

[�̂℄ =

n

X

i=1

E

2

4

 

� ln f

i

(x

i

;�; �

i

)

��

!

2

3

5

=

n

X

i=1

E

2

4

 

�

1

2

�

��

�

x

i

� �

�

i

�

2

!

2

3

5

=

n

X

i=1

E

"

1

�

2

i

�

x

i

� �

�

i

�

2

#

=

n

X

i=1

1

�

2

i

E

"

�

x

i

� �

�

i

�

2

#

sin
e �

i

is just a parameter of f

i

, hen
e a 
onstant

=

n

X

i=1

1

�

2

i

sin
e this expe
tation is 1 for the normal p.d.f.

2. Sin
e

�`

��

=

P

n

i=1

x

i

��

�

2

i

, equation 8.84 yields

V

�1

[�̂℄ = �

�

2

`

��

2

=

n

X

i=1

1

�

2

i

Thus both methods give V [�̂℄ = 1=

P

�

1

�

2

i

�

. This is the same result we found in

se
tion 8.4.1, equation 8.60, where we 
al
ulated the varian
e expli
itly from the

de�nition. This was, of 
ourse, to be expe
ted sin
e in this example �̂ is unbiased

and eÆ
ient and the range of x is independent of �.

Varian
e using Bayesian inferen
e

We have emphasized that L is the p.d.f. for x given � and not the p.d.f. for � given

x. However, using the Bayesian interpretation of probability (se
tions 2.4.3 and

8.4.4), these two 
onditional p.d.f.'s are related: By Bayes' theorem,

f

posterior

(�jx) / f(xj�) f

prior

(�)

and f(xj�) is just the likelihood fun
tion L(x; �). If we are willing to a

ept Bayes'

postulate (for whi
h there is no mathemati
al justi�
ation) and take the prior p.d.f.

for �, f

prior

(�), as uniform in � (within possible physi
al limits), we have

f

posterior

(�jx) =

L(x; �)

R

L(x; �) d�

(8.86)

where the expli
it normalization in the denominator is needed to normalize f

posterior

,

sin
e L is normalized by

R

L dx = 1. Sin
e, in Bayesian inferen
e L is regarded as

a p.d.f. for �, the 
ovarian
e matrix of

^

�,

V

jk

h

^

�

i

= E

h�

^

�

j

� �

j

� �

^

�

k

� �

k

�i

(8.87)

that de�ne the maximum of ` or the minimum of �`. The Hessian matrix is positive (negative)

de�nite at a minimum (maximum) of the fun
tion and inde�nite at a saddle point.
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is given by

V

jk

h

^

�

i

=

R

�

^

�

j

� �

j

� �

^

�

k

� �

k

�

L d�

R

L d�

(8.88)

If the integrals in equation 8.88 
an not be easily performed analyti
ally, we 
ould

use Monte Carlo integration. Alternatively, we 
an estimate the expe
tation (8.87)

from the data. This is similar to Monte Carlo integration, but instead of Monte

Carlo points � we use the data themselves. Assuming n independent observations

x

i

, we estimate ea
h parameter for ea
h observation separately, keeping all other

parameters �xed at

^

�. Thus,

^

�

j(i)

is the value of

^

�

j

that would be obtained from

using only the i

th

event. In other words,

^

�

j(i)

is the solution of

�f

i

(x

i

; �)

��

j

�

�

�

�

�

�

k

=

^

�

k

;k 6=j

= 0

With L regarded as a p.d.f. for �, the

^

�

j(i)

are r.v.'s distributed a

ording to L.

Their varian
e about � thus estimates the varian
e of

^

�. However, not knowing �

we must use our estimate of it. This leads to the following estimate of the 
ovarian
e,

where in equation 8.87 the expe
tation has been repla
ed by an average over the

observations,

^

� by the estimate from one observation

^

�

j(i)

, and �

j

by our estimate

^

�

j

:

d

V

jk

h

^

�

i

=

1

n

n

X

i=1

�

^

�

j(i)

�

^

�

j

� �

^

�

k(i)

�

^

�

k

�

(8.89)

Equation 8.88 is parti
ularly easy to evaluate when L is a Gaussian. We have

seen that asymptoti
ally L is a Gaussian fun
tion of � (equation 8.72) and hen
e

that ` is paraboli
 (equation 8.71):

L = L

max

e

�

1

2

Q

2

; Q

2

=

(

^

� � �)

2

�

2

; ` = lnL = lnL

max

�

1

2

Q

2

(8.90)

Then, using the Bayesian interpretation, it follows from equation 8.88 that V

h

^

�

i

=

�

2

= I

�1

(

^

�).

However, in the asymptoti
 limit it is not ne
essary to invoke the Bayesian

interpretation to obtain this result, sin
e we already know from the asymptoti


eÆ
ien
y of the ml estimator that V

h

^

�

i

= I

�1

(�) = I

�1

(

^

�).

A graphi
al method

-

6

�

`(�)

^

�

`

max

�

1

`

1

�

2

`

2

In any 
ase, if L is Gaussian, the values of

� for whi
h Q

2

=

(

^

���)

2

�

2

= 1, i.e., the values

of � 
orresponding to 1 standard deviation

\errors",

^

� � � = ��, are just those values,

�

1

, for whi
h ` di�ers from `

max

by

1

/

2

. This
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provides another way to estimate the un
er-

tainty, Æ

^

� =

r

V

h

^

�

i

, on

^

�: Find the value of

�, �

1

, for whi
h

`

1

= `(�

1

) = `

max

�

1

2

The error is then Æ

^

� = j

^

�� �

1

j This 
ould be done graphi
ally from a plot of ` vs. �.

Similarly, two-standard deviation errors (Q

2

= 4) 
ould be found using `

2

= `

max

�2,

et
. (The 
hange in ` 
orresponding to Q standard deviations is Q

2

=2.)

But, what do we do if L is not Gaussian? We 
an be Bayesian and use equa-

tion 8.87 or 8.88. Not wanting to be Bayesian, we 
an use the following approa
h.

The two approa
hes will in general give di�erent estimates of the varian
e, the

di�eren
e being smallest when L is nearly of a Gaussian form.

Re
all that for eÆ
ient, unbiased estimators L 
an be Gaussian even for �nite n.

Imagine a one-to-one transformation g(�) from the parameter � to a new parameter

g and suppose that ĝ is eÆ
ient and unbiased and hen
e that L(g) is normal. Su
h

a g may not exist, but for now we assume that it does. We have seen that ĝ = g(

^

�).

Let h be the inverse transformation, i.e., � = h[g(�)℄. Sin
e, by assumption, L(g)

is Gaussian, Æg is given by a 
hange of

1

/

2

in `(g).

But, as we have seen in se
tion 8.4.3, L(�jx) = L(g(�)jx) for all �; there is no

Ja
obian involved in going from L(�) to L(g). This means that sin
e we 
an �nd

Æg from a 
hange of

1

/

2

in `(g), Æ� will be given by the same 
hange.

-

6

g

`(g)

ĝ

`

max

g

1

`

1

g

2

`

2

-

6

�

`(�)

^

� �

1

�

2

L(�) need not be a symmetri
 fun
tion of �, in whi
h 
ase the errors on

^

� are

asymmetri
.

Note that we do not a
tually need to use the parameter g. We 
an �nd Æ�

dire
tly.

A problem is that su
h a g may not exist. Asymptoti
ally both L(g) and L(�) are

Gaussian. However, in general, L(g) and L(�) will approa
h normality at di�erent

rates. It is therefore plausible that there exists some g whi
h is at least nearly
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normally distributed for �nite n. Sin
e we never a
tually have to use g, we 
an only

adopt it as an assumption, realizing that the further away L for the `best' g is from

normality, the less a

urate will be our estimation of Æ�.

This method of error estimation is easily extended to the 
ase of more than

one parameter. If all estimators are eÆ
ient, L will be a multivariate normal. We

show the example of two parameters, �

1

and �

2

. The 
ondition of a 
hange of

1

/

2

in `, i.e., Q

2

= 1, gives an ellipse of 
onstant L in �

2

vs. �

1

. A distin
tion must be

made, however, between the `error' and the `redu
ed' or `
onditional error', whi
h

is the error if the values of the other parameters are all assumed to be equal to their

estimated values.

-

6

�

1

�

2

^

�

1

^

�

2

 �

1

!

 �




1

!

"

�

2

#

"

�




2

#

If, for example, �

2

is held �xed at

^

�

2

and ` varied by

1

/

2

, the 
onditional er-

ror, �




1

is found rather than the error �

1

,

whi
h is the error that enters the multi-

variate normal distribution. In pra
ti
e,

the maximum of `, as well as the vari-

ation of ` by

1

/

2

, are usually found on a


omputer using a sear
h te
hnique. How-

ever, sin
e it is easier (faster), the pro-

gram may 
ompute �




rather than �. If

the parameters are un
orrelated, �




= �.

If parameters are 
orrelated, the 
orrela-

tion should be stated along with the errors, or in other words, the 
omplete 
ovari-

an
e matrix should be stated, e.g., as �

1

, �

2

, and �, the 
orrelation 
oeÆ
ient.

8.4.6 Summary

� If the sample is large, maximum likelihood gives a unique, unbiased, minimum

varian
e estimate under 
ertain general 
onditions. However `large' is not well

de�ned. For �nite samples the ml estimate may not be unique, unbiased, or

of minimum varian
e. In this 
ase other estimators may be preferable.

� Maximum likelihood estimators are often the easiest to 
ompute, espe
ially

for 
omplex problems. In many pra
ti
al 
ases maximum likelihood is the

only tra
table approa
h.

� Maximum likelihood estimators are suÆ
ient, i.e., they use all the information

about the parameter that is 
ontained in the data. In parti
ular, for small

samples ml estimators 
an be mu
h superior to methods whi
h rely on binned

data.

� Maximum likelihood estimators are not ne
essarily robust. If you use the

wrong p.d.f., the ml estimate may be worse than that from some other

method.
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� The maximum likelihood method gives no way of testing the validity of the

underlying theory, i.e., whether or not the assumed p.d.f. is the 
orre
t one.

In pra
ti
e this is not so bad: You 
an always follow the maximum likelihood

estimation by a goodness-of-�t test. Su
h tests will be dis
ussed in se
tion

10.6.

And �nally, a pra
ti
al point: In 
omplex situations, the likelihood 
ondition

�`

��

i

= 0 
an not be solved analyti
ally. You then must 
ode the likelihood fun
tion

and use 
omputer routines to �nd its maximum. Very 
lever programs exist as

pre-pa
kaged routines for �nding the minimum or maximum of a fun
tion. Do not

be tempted to write your own; take one from a good software library, e.g., that of

the Numeri
al Algorithms Group (NAG) or the MINUIT

38

program from CERN.

Note that su
h programs usually sear
h for a minimum instead of a maximum, so

put a minus sign before your `. One usually writes a subroutine whi
h 
al
ulates

the fun
tion for values of � 
hosen by the program. The program needs a starting

value for �. It evaluates the fun
tion at numerous points in � spa
e, determines

the most likely dire
tion in this spa
e to �nd the minimum (or maximum), and

pro
eeds to sear
h until the minimum is found. The sear
h 
an usually be speeded

up by also supplying a subroutine to 
al
ulate the derivatives of ` with respe
t to

the �

i

; otherwise the program must do this numeri
ally.

8.4.7 Extended Maximum Likelihood

Applied to n independent events from the same p.d.f., the likelihood method, as

dis
ussed so far, is a method to determine parameters governing the shape of the

p.d.f. The number of events in the sample is not regarded as a variable.

Fermi proposed to extend the maximum likelihood method by in
luding the

number of events as a parameter to be estimated. His motivation was the grand


anoni
al ensemble of statisti
al me
hani
s. In the 
anoni
al ensemble the number

of atoms or mole
ules is regarded as �xed while in the grand 
anoni
al ensemble

the number is free to vary.

To in
orporate a variable number of events, the ordinary likelihood fun
tion is

multiplied by the Poisson p.d.f. expressing the probability of obtaining n events

when the expe
ted number of events is �. This expe
ted number of events is then

another parameter to be estimated from the data. The likelihood be
omes

L(x; �) =

n

Y

i=1

f(x

i

; �) �! L

E

(x; �; �) =

e

��

�

n

n!

n

Y

i=1

f(x

i

; �) (8.91)

`(x; �) =

n

X

i=1

ln f(x

i

; �) �! `

E

(x; �; �) =

n

X

i=1

ln f(x

i

; �)� � + n ln � � lnn!

`

E

(x; �; �) =

n

X

i=1

ln �f(x

i

; �)� � � lnn!
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Or, `

E

(x; �; �) =

n

X

i=1

ln g(x

i

; �)� � (8.92)

where g = �f is the p.d.f. normalized to � rather than to 1 and where we have

dropped the 
onstant term lnn! sin
e 
onstant terms are irrelevant in �nding the

maximum and the varian
e of estimators.

Just as the grand 
anoni
al ensemble 
an be used even for situations where the

number of mole
ules is in fa
t 
onstant (non-permeable walls), so also the extended

maximum likelihood method. In parti
ular, if there is no fun
tional relationship

between � and �, the likelihood 
ondition �`

E

=�� = 0 will lead to �̂ = n. Also,

�`

E

=��

j

= �`=��

j

, whi
h leads to identi
al estimators

^

�

j

as in the ordinary max-

imum likelihood method. Nevertheless, we may still prefer to use the extended

maximum likelihood method. It 
an happen that the p.d.f., f , is very diÆ
ult to

normalize, e.g., involving a lengthy numeri
al integration. Then, even though the

number of events is �xed, we 
an use the extended maximum likelihood method,

allowing the maximum likelihood prin
iple to �nd the normalization. In this 
ase,

the resulting estimate of � should turn out to be the a
tual number of events n times

the normalization of f and the estimate of the other parameters to be the same as

would have been found using the ordinary maximum likelihood method. However,

the errors on the parameters will be overestimated sin
e the method assumes that

� 
an have 
u
tuations. This overestimation 
an be removed (
f. se
tion 3.9) by

1. inverting the 
ovarian
e matrix,

2. removing the row and 
olumn 
orresponding to �,

3. inverting the resulting matrix.

This 
orresponds to �xing � at the best value, �̂. Thus we 
ould also �x � = �̂ and

�nd the errors on

^

� by the usual ml pro
edure.

An example: Suppose we have an angular distribution 
ontaining N events, F

in the forward hemisphere and B = N � F in the ba
kward hemisphere. In the

ordinary maximum likelihood method N is regarded as �xed. The p.d.f. for the

division of N events into F forward and B ba
kward is the binomial p.d.f.:

L(F ; p) = B(F ; p;N) =

N !

F !B!

p

F

(1� p)

B

`(F ; p) = F ln p+ B ln(1� p) + lnN !� lnF !B!

The likelihood 
ondition is then

�`

�p

=

F

p

�

B

1� p

= 0 �! p̂ =

F

F +B

=

F

N
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Its varian
e is given by

V [p̂℄ = �

"

�

2

`

�p

2

#

�1

= �

"

F

p

2

+

B

(1� p)

2

#

�1

whi
h we estimate by repla
ing p by p̂:

b

V [p̂℄ = �

"

F

p̂

2

+

B

(1� p̂)

2

#

�1

= �

"

N

p̂

+

N

(1� p̂)

#

�1

= �

"

N

p̂(1� p̂)

#

�1

=

p̂(1� p̂)

N

The estimated numbers of forward and ba
kward events, i.e., the estimate of the

expe
tation of the numbers of forward and ba
kward events if the experiment were

repeated, are then

b

F = Np̂ = F and

b

B = N(1� p̂) = B

with varian
e

V

h

^

F

i

= V [Np̂℄ = N

2

V [p̂℄

whi
h is estimated by repla
ing V by

b

V :

b

V

h

^

F

i

= N

2

b

V [p̂℄ = Np̂(1� p̂) = N

F

N

B

N

=

FB

N

Similarly,

V

h

^

B

i

= V [N(1� p̂)℄ = V [Np̂℄

b

V

h

^

B

i

=

FB

N

Further,

^

F ,

^

B are 
ompletely anti
orrelated.

In extended maximum likelihood N is not 
onstant, but Poisson distributed.

Hen
e,

L

E

=

e

��

�

N

N !

L =

e

��

�

N

N !

N !

F !B!

p

F

(1� p)

B

`

E

= �� +N ln � � lnN ! + F ln p+B ln(1� p) + lnN !� lnF !B!

�`

E

��

= 1 +

N

�

= 0 �! �̂ = N

The likelihood 
ondition for p,

�`

E

�p

= 0 gives p̂ =

F

N

, the same as in ordinary

likelihood. The varian
e of p̂ is also the same. For �̂, the varian
e is found as

follows:

�

2

`

E

��

2

= �

N

�

2

�! V [�̂℄ =

�

2

N

Estimating the varian
e by repla
ing � with �̂ gives

b

V (�̂) = N . Further,

�

2

`

E

���p

= 0 �! p̂ and �̂ are un
orrelated.
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The estimate of the number of forward events is

^

F = p̂�̂ = F , with the varian
e

found by error propagation:

V

h

^

F

i

= p̂

2

V [�̂℄ + �̂

2

V [p̂℄ =

F

2

N

2

N +N

2

p̂(1� p̂)

N

=

F

2

N

+N

F

N

B

N

= F

The result for

^

B is similar. Thus,

^

F = F �

p

F and

^

B = B �

p

B

Alternatively, we 
an write the p.d.f. as a produ
t of Poisson p.d.f.'s, one for

forward events and one for ba
kward events (see exer
ise 13). Again, N is not

�xed. The parameters are now the expe
ted numbers of forward, �, and ba
kward,

�, events. Then

L

E

=

e

��

�

F

F !

e

��

�

B

B!

whi
h leads to the same result:

^

F =

^

� = F �

p

F and

^

B =

^

� = B �

p

B

again with un
orrelated errors.

The 
onstraint of �xed N leads to smaller, but 
orrelated, errors in the ordi-

nary maximum likelihood method. The estimates of the numbers of forward and

ba
kward events are, however, the same. Whi
h method is 
orre
t depends on the

question we are asking. To �nd the fra
tion of ba
kward events we should use ordi-

nary maximum likelihood. To �nd the number of ba
kward events that we should

expe
t in repetitions of the experiment where the number of events 
an vary, we

should use extended maximum likelihood.

8.4.8 Constrained parameters

It often happens that the parameters to be estimated are 
onstrained, for instan
e

by a physi
al law. The imposition of 
onstraints always implies adding some in-

formation, and therefore the errors of the parameters are in general redu
ed. One

should therefore be 
areful not to add in
orre
t information. One should always test

that the data are indeed 
ompatible with the 
onstraints. For example, before �xing

a parameter at its theoreti
al value one should perform the �t with the parameter

free and 
he
k that the resulting estimate is 
ompatible with the theoreti
al value.

Even if the theory is true, the data may turn out to give an in
ompatible value

be
ause of some experimental bias. Testing the 
ompatibility is usually a good way

to dis
over su
h experimental problems. How to do this will be dis
ussed in se
tions

10.4 and 10.6.

The 
onstraints may take the form of a set of equations

g(

^

�) = 0 (8.93)
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The most eÆ
ient method to deal with su
h 
onstraints is to 
hange parameters

su
h that these equations be
ome trivial. For example, if the 
onstraint is

g(�) = �

1

+ �

2

� 1 = 0

we simply repla
e �

2

by 1� �

1

in the likelihood fun
tion and maximize with respe
t

to �

1

.

Similarly, boundaries on a parameter, e.g., �

l

< � < �

h

, 
an be imposed by the

transformation

� = �

l

+

1

2

(sin + 1)(�

h

� �

l

)

and maximizing L with respe
t to  .

When the �

i

are fra
tional 
ontributions, subje
t to the 
onstraints

0 � �

i

� 1 ;

k

X

i=1

�

i

= 1

one 
an use the following transformation:

�

1

= �

1

�

2

= (1� �

1

)�

2

�

3

= (1� �

1

)(1� �

2

)�

3

.

.

. =

.

.

.

�

k�1

= (1� �

1

)(1� �

2

)(1� �

3

) � � � (1� �

k�2

)�

k�1

�

k

= (1� �

1

)(1� �

2

)(1� �

3

) � � � (1� �

k�2

)(1� �

k�1

)

where the �

i

are bounded by 0 and 1 using the method given above:

�

i

=

1

2

(sin 

i

+ 1)

L is then maximized with respe
t to the k � 1 parameters  

i

. A drawba
k of this

method is that the symmetry of the problem with respe
t to the parameters is lost.

In general, the above simple methods may be diÆ
ult to apply. One then turns

to the method of Lagrangian multipliers. Given the likelihood fun
tion L(x; �) and

the 
onstraints g(�) = 0, one �nds the extremum of

F (x; �; �) = lnL(x; �) + �

T

g(�) (8.94)

with respe
t to � and �. The likelihood 
ondition (equation 8.58) be
omes

�F

��

i

�

�

�

�

�

�=

^

�

�=�̂

=

�`

��

i

�

�

�

�

�

�=

^

�

+ �̂

T

�g(�)

��

i

�

�

�

�

�

�=

^

�

= 0 (8.95)



142 CHAPTER 8. PARAMETER ESTIMATION

�F

��

j

�

�

�

�

�

�=

^

�

�=�̂

= g(

^

�) = 0 (8.96)

The estimators of � found in this way 
learly satisfy the 
onstraints (equation 8.93).

They also have all the usual properties of maximum likelihood estimators.

To �nd the varian
es, we 
onstru
t the matrix of the negative of the se
ond

derivatives:

I � �E

0

B

B

B

�

�

2

F

����

0

�

2

F

����

 

�

2

F

����

!

T

�

2

F

��

2

1

C

C

C

A

= �E

0

B

B

B

�

�

2

`

����

0

�g

��

 

�g

��

!

T

0

1

C

C

C

A

�

�

A B

B

T

0

�

(8.97)

It 
an be shown

4,5

that the 
ovarian
e matrix of the estimators is then given by

V

h

^

�

i

= A

�1

� A

�1

B V [�̂℄ B

T

A

�1

(8.98)

V [�̂℄ =

�

B

T

A

�1

B

�

�1

(8.99)

The �rst term of V

h

^

�

i

is the ordinary un
onstrained 
ovarian
e matrix; the se
ond

term is the redu
tion in varian
e due to the additional information provided by the


onstraints. We have impli
itly assumed that I is not singular. This may not be the


ase, e.g., when the 
onstraint is ne
essary to de�ne the parameters unambiguously.

One then adds another term to F ,

F

0

= F � g

2

(�)

and pro
eeds as above. The resulting inverse 
ovarian
e matrix is usually non-

singular.

4,5

Computer programs whi
h sear
h for a maximum will generally perform better

if the 
onstraints are handled 
orre
tly, rather than by some tri
k su
h as setting the

likelihood very small when the 
onstraint is not satis�ed, sin
e this will adversely

a�e
t the program's estimation of derivatives. Also, use of Lagrangian multipliers

may not work with some programs, sin
e the extremum 
an be a saddle point rather

than a maximum: a maximum with respe
t to �, but a minimum with respe
t to �.

In su
h a 
ase, \hill-
limbing" methods will not be 
apable of �nding the extremum.

8.5 Least Squares method

8.5.1 Introdu
tion

We begin this subje
t by starting from maximum likelihood and treating the exam-

ple of n independent x

i

, ea
h distributed normally with the same mean but di�erent
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�

i

. To estimate � when all the �

i

are known we have seen that the likelihood fun
-

tion is

L =

n

Y

i=1

1

p

2��

i

exp

"

�

1

2

�

x

i

� �

�

i

�

2

#

` = �

n

2

ln(2�) +

n

X

i=1

"

� ln�

i

�

(x

i

� �)

2

2�

2

i

#

To maximize L, or `, is equivalent to minimizing

P

n

i=1

(x

i

��)

2

�

2

i

. If � were known, this

quantity would be, assuming ea
h point independent, a �

2

(n). Sin
e � is unknown

we repla
e it by an estimate of �, �̂. There is then one relationship between the

terms of the �

2

and therefore

�

2

=

n

X

i=1

(x

i

� �̂)

2

�

2

i

(8.100)

is a �

2

not of n, but of n� 1 degrees of freedom.

The method of least squares takes as the estimator of a parameter that value

whi
h minimizes �

2

. The least squares estimator is thus given by

��

2

��

�

�

�

�

�

�=�̂

= �2

n

X

i=1

x

i

� �̂

�

2

i

= 0

whi
h gives the same estimator as did maximum likelihood (equation 8.59):

�̂ =

P

x

i

�

2

i

P

1

�

2

i

(8.101)

Although in this example the least squares and maximum likelihood methods

result in the same estimator, this is not true in general, in parti
ular if the p.d.f.

is not normal. We will see that although we arrived at the least squares method

starting from maximum likelihood, least squares is mu
h more solidly based than

maximum likelihood. It is, perhaps as a 
onsequen
e, also less widely appli
able.

The method of least squares is a spe
ial 
ase of a more general 
lass of methods

whereby one uses some measure of distan
e, d

i

(x

i

; �), of a data point from its

expe
ted value and minimizes the sum of the distan
es to obtain the estimate of �.

Examples of d, in the 
ontext of our example, are

1: d

i

(x

i

; �) = jx

i

� �̂j

�

2: d

i

(x

i

; �) =

 

jx

i

� �̂j

�

i

!

�

The di�eren
e between these two is that in the se
ond 
ase the distan
e is s
aled by

the square root of the expe
ted varian
e of the distan
e. If all these varian
es, �

2

i

,



144 CHAPTER 8. PARAMETER ESTIMATION

are the same, the two de�nitions are equivalent. It 
an be shown

11,13

that the �rst

distan
e measure with � = 1 leads to �̂ given by the sample median. The se
ond

distan
e measure with � = 2 is just �

2

.

The �rst publi
ation in whi
h least squares was used is by Legendre. In an

1805 paper entitled \Nouvelles m�ethodes pour la determination des orbites des


om�etes" he writes:

Il faut ensuite, lorsque toutes les 
onditions du problême sont exprim�ees


onvenablement, determiner les 
o�eÆ
iens de mani�ere �a rendre les er-

reurs les plus petites qu'il est possible. Pour 
et e�et, la m�ethode qui

me parâ�t la plus simple et la plus g�en�erale, 
onsiste �a rendre minimum

la somme des quarr�es des erreurs.

Least squares was not the only method in use in those days (or now). In 1792

Lapla
e minimized the sum of absolute errors, although he later swit
hed to least

squares. Bessel and En
ke also used least squares. In 1831, Cau
hy suggested,

\que la plus grande de toutes les erreurs, abstra
tion faite du signe, devienne un

minimum", i.e., to minimize the maximum of the absolute values of the deviations,

max jx

i

� �̂j. This `minimax' prin
iple gives a very robust estimation but is not

very eÆ
ient.

4,5

We have noted that the �

2

of equation 8.100 is a �

2

of n� 1 degrees of freedom.

Thus, if we were to repeat the identi
al experiment many times, the values of �

2

obtained would be distributed as �

2

(n � 1), provided that the assumed p.d.f. of

the x

i

is 
orre
t. We would not expe
t then to get a value of �

2

whi
h would be

very improbable if the assumed p.d.f. were 
orre
t. This 
ould provide a reason for

de
iding that the assumed p.d.f. is in
orre
t. This built-in test of the validity of the

assumed p.d.f. is a feature whi
h was missing in the maximum likelihood method.

We will return to this and other hypothesis tests in se
tions 10.4 and 10.6.

In the example we assumed that the x

i

were normally distributed about � with

standard deviation �

i

. If this were not the 
ase, the distribution of the quantity �

2

for repetitions of the experiment would not follow the expe
ted �

2

(n� 1) distribu-

tion. Consequently, the 
han
e of getting a parti
ular value of �

2

would not be that

given by the �

2

distribution. In other words, the quantity that we have 
alled �

2

is

a �

2

r.v. only if our assumption that the x

i

are distributed normally is 
orre
t.

Assuming that we have not reje
ted the p.d.f., we need to estimate the varian
e

of �̂. First we 
an use error propagation (se
tion 8.3.6) to 
al
ulate the varian
e of

�̂, given by equation 8.101, from the varian
es of the x

i

. In our example �̂ is linear

in the x

i

; hen
e the method is exa
t (equation 8.49):

V [�̂℄ =

X

 

��̂

�x

i

!

2

V [x

i

℄ =

 

1

P

(1=�

i

)

2

!

2

X

V [x

i

℄

�

4

i

=

1

P

1

�

2

i

whi
h agrees with the varian
e found in the maximum likelihood method (equa-

tion 8.60).
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We see that in this example (although not in general true) the varian
e of the

estimator does not depend on the value of �

2

. However, it does depend on the

shape of �

2

(�):

�

2

(�) =

X

�

x

i

� �

�

i

�

2

��

2

��

�

�

�

�

�

�̂

= �

X

2(x

i

� �̂)

�

2

i

= 0

�

2

�

2

��

2

�

�

�

�

�

�̂

= 2

X

1

�

2

i

=

2

V [�̂℄

-

6

�̂

�

2

min

�

�

2

(�)

All higher order derivatives are zero, a 
on-

sequen
e of the eÆ
ien
y of the estimator and

the linear relationship between �

2

and `. Thus

the �

2

is a parabola:

�

2

(�) = �

2

(�̂) +

(�̂� �)

2

V [�̂℄

Corresponding to what we did in the maxi-

mum likelihood method, we 
onstru
t the er-

ror on �̂ by �nding that value of � for whi
h �

2

(�) � �

2

(�̂) has a parti
ular

value. From the above equation we see that a �

2

-di�eren
e of 1 o

urs when

(�̂� �)

2

= V [�̂℄, i.e., for those values of � whi
h are one standard deviation from

�̂, or more generally a value of � for whi
h �

2

(�) = �

2

(�̂) = n

2


orresponds to an

n standard deviation di�eren
e from �̂.

8.5.2 The Linear Model

In the pre
eding example we had a number of measurements of a �xed quantity.

Now let us suppose that we have a number of measurements y

i

of a quantity y whi
h

depends on some other quantity x. Assume, for now, that the values x

i

are known

exa
tly, i.e., without error. For ea
h x

i

, y is measured to be y

i

with expe
ted error

�

i

. We assume that �

i

does not depend on y

i

.

One of the reasons for doing a �t to a 
urve is to enable us to predi
t the

most likely value of future measurements at a spe
i�ed x. For example, we wish to


alibrate an instrument. Then the predi
tor variable x would be the value that the

instrument reads. The response variable y would be the true value. A �t averages

out the 
u
tuations in the individual readings as mu
h as possible. This only works,

of 
ourse, if the form used for the 
urve in the �t is at least approximately 
orre
t.

Although we will use a one-dimensional predi
tor variable x, the generalization to

more dimensions is straightforward: x! x.

Assume now that we have a model for y vs. x in terms of 
ertain parameters �

whi
h are 
oeÆ
ients of known fun
tions of x:

y(x) = �

1

h

1

(x) + �

2

h

2

(x) + �

3

h

3

(x) + : : :+ �

j

h

j

(x) (8.102)
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This is the 
urve whi
h we �t to the data. There are k parameters, �

j

, to be

estimated. The important features of this model are that the h

j

are known, distin-

guishable, fun
tions of x, single-valued over the range of x, and that y is linear in

the �

j

. The word `linear' in the term `linear model' thus refers to the parameters �

j

and not to the variable x. In some 
ases the linear model is just an approximation

arrived at by retaining only the �rst few terms of a Taylor series. The fun
tions h

j

must be distinguishable, i.e., no h

j

may be expressible as a linear 
ombination of

the other h

j

; otherwise the 
orresponding �

j

will be indeterminate.

We want to determine the values of the �

j

for whi
h the model (eq. 8.102) best

�ts the measurements. We assume that any deviation of a point y

i

from this 
urve

is due to measurement error or some other unbiased e�e
ts beyond our 
ontrol, but

whose distribution is known from previous study of the measuring pro
ess to have

varian
e �

2

i

. It need not be a Gaussian. We take as our measure of the distan
e of

the point y

i

from the hypothesized 
urve the squared distan
e in units of �

i

, as in

our example above.

The general term for this �tting pro
edure is `Regression Analysis'. This term

is of histori
al origin and like many su
h terms it is not parti
ularly appropriate;

nothing regresses. The term is not mu
h used in physi
s, where we prefer to speak of

least squares �ts, but is still in 
ommon use in the so
ial s
ien
es and in statisti
s

books. Some authors make a distin
tion between regression analysis and least

squares, reserving the term regression for the 
ase where the y

i

(and perhaps the

x

i

) are means (or other des
riptive statisti
s) of some random variable, e.g., y the

average height and x the average weight of Dut
h male university students. The

mathemati
s is, however, the same.

-

6

x

y

true 
urve

�

p.d.f. of y

i

at x

i

�

x

i

y(x

i

)

y

i

1

1

We assume that the a
tual measurements are des
ribed by

y

i

= y(x

i

) + �

i

=

k

X

j=1

�

j

h

j

(x

i

) + �

i

(8.103)

where the unknown error on y

i

has the properties: E [�

i

℄ = 0, V [�

i

℄ = �

2

i

, and �

2

i

is

known. The �

i

do not have to be normally distributed for most of what we shall do;

where a Gaussian assumption is needed, we will say so. Note that if at ea
h x

i

the

y

i

does not have a normal p.d.f., we may be able to transform to a set of variables

whi
h does.
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Further, we assume for simpli
ity that ea
h y

i

is an independent measurement,

although 
orrelations 
an easily be taken into a

ount by making the error matrix

non-diagonal, as will be dis
ussed. The x

i

may be 
hosen any way we wish, in
luding

several x

i

whi
h are equal. However, we shall see that we need at least k distin
t

values of x to determine k parameters �

j

.

Estimator

The problem is now to determine the `best' values of k parameters, �

j

, from n

measurements, (x

i

; y

i

). The deviations from the true 
urve are �

i

. Therefore the

\�

2

" is

Q

2

=

n

X

i=1

�

2

i

�

2

i

(8.104)

=

n

X

i=1

 

y

i

� y(x

i

)

�

i

!

2

=

n

X

i=1

1

�

2

i

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

2

(8.105)

This is a true �

2

, i.e., distributed as a �

2

p.d.f., only if the �

i

are normally dis-

tributed. To emphasize this we use the symbol Q

2

instead of �

2

.

We do not know the a
tual value of Q

2

, sin
e we do not know the true values

of the parameters �

j

. The least squares method estimates � by that value

^

� whi
h

minimizes Q

2

. This is found from the k equations (l = 1; : : : ; k)

�Q

2

��

l

= 2

n

X

i=1

1

�

2

i

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

(�h

l

(x

i

)) = 0

whi
h we rewrite as

n

X

i=1

h

l

(x

i

)

�

2

i

k

X

j=1

^

�

j

h

j

(x

i

) =

n

X

i=1

y

i

�

2

i

h

l

(x

i

) (8.106)

This is a set of k linear equations in k unknowns. They are 
alled the normal

equations. It is easier to work in matrix notation. We write

y =

0

B

�

y

1

.

.

.

y

n

1

C

A

; � =

0

B

�

�

1

.

.

.

�

k

1

C

A

; � =

0

B

�

�

1

.

.

.

�

n

1

C

A

H =

0

B

B

B

B

�

h

1

(x

1

) h

2

(x

1

) : : : h

k

(x

1

)

h

1

(x

2

) h

2

(x

2

) : : : h

k

(x

2

)

.

.

.

.

.

.

.

.

.

.

.

.

h

1

(x

n

) h

2

(x

n

) : : : h

k

(x

n

)

1

C

C

C

C

A
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Then

H � =

0

B

B

B

B

�

P

k

j=1

�

j

h

j

(x

1

)

P

k

j=1

�

j

h

j

(x

2

)

.

.

.

P

k

j=1

�

j

h

j

(x

2

)

1

C

C

C

C

A

and the model (eq. 8.103) 
an be rewritten

y = H � + � (8.107)

Sin
e E [�℄ = 0, we obtain E

h

y

i

= H �. In other words, the expe
tation value of

ea
h measurement is exa
tly the value given by the model.

The errors �

2

i


an also be in
orporated in a matrix, whi
h is diagonal given our

assumption of independent measurements,

V [y℄ =

0

B

�

�

2

1

: : : 0

.

.

.

.

.

.

.

.

.

0 : : : �

2

n

1

C

A

If the measurements are not independent, we in
orporate that by setting the o�-

diagonal elements to the 
ovarian
es of the measurements. In this matrix notation,

the equations for Q

2

(equations 8.104 and 8.105) be
ome

Q

2

= �

T

V

�1

� (8.108)

=

�

y �H �

�

T

V

�1

�

y �H �

�

(8.109)

To �nd the estimates of � we solve

�Q

2

��

= �2H

T

V

�1

�

y �H �

�

= 0 (8.110)

whi
h gives the normal equations 
orresponding to equations 8.106, but now in

matrix form:

H

T

V

�1

H

^

� = H

T

V

�1

y

(k�n) (n�n) (n�k) (k�1) (k�n) (n�n) (n�1)

(8.111)

where we have indi
ated the dimension of the matri
es. The normal equations are

solved by inverting the square matrix H

T

V

�1

H, whi
h is a symmetri
 matrix sin
e

V is symmetri
. The solution is then

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y (8.112)

It is useful to note that the a
tual sizes of the errors �

2

i

do not have to be known

to �nd

^

�; only their relative sizes. To see this, write V = �

2

W , where �

2

is an

arbitrary s
ale fa
tor and insert this in equation 8.112. The fa
tors �

2


an
el; thus

�

2

need not be known in order to determine

^

�.
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Now let us evaluate the expe
tation of

^

�:

E

h

^

�

i

= E

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

y

�

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

E

h

y

i

=

�

H

T

V

�1

H

�

�1

�

H

T

V

�1

H

�

� = �

Thus

^

� is unbiased, assuming that the model is 
orre
t. This is true even for small

n. (Re
all that maximum likelihood estimators are often biased for �nite n.)

Pro
edures exist for solving the normal equations without the intermediate step

of matrix inversion. Su
h methods are usually preferable in that they usually su�er

less from round-o� problems.

In some 
ases, it is more 
onvenient to solve these equations by numeri
al ap-

proximation methods. As dis
ussed at the end of se
tion 8.4.6, programs exist to

�nd the minimum of a fun
tion. For simple 
ases like the linear problem we have


onsidered, use of su
h programs is not very wasteful of 
omputer time, and its

simpli
ity de
reases the probability of an experimenter's error and probably saves

his time as well. If the problem is not linear, a 
ase whi
h we shall shortly dis
uss,

su
h an approa
h is usually best.

We have stated that there must be no linear relationship between the h

j

. If

there is, then the 
olumns of H are not all independent, and sin
e V is symmetri
,

H

T

V

�1

H will be singular. The best approa
h is then to eliminate some of the h's

until the linear relationships no longer exist. Also, there must be at least k distin
t

x

i

; otherwise the same matrix will be singular.

Note that if the number of parameters k is equal to the number of distin
t values

of x, i.e., n = k assuming all x

i

are distin
t, then

�

H

T

V

�1

H

�

�1

= H

�1

V

�

H

T

�

�1

Substituting in equation 8.112 yields

^

� = H

�1

y, assuming that H

T

V

�1

H is not

singular. Thus

^

� is independent of the errors. The 
urve will pass through all the

points, if that is possible. It may not be possible; the assumed model may not be


orre
t.

Varian
e

The 
ovarian
e matrix of the estimators is given by

V

h

^

�

i

=

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

| {z }

V

h

y

i

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

T

| {z }

(k�k) (k�n) (n�n) (n�k)

(8.113)

This 
an be demonstrated by working out a simple example. Alternatively, it follows

from propagation of errors (se
tion 8.3.6): Sin
e we are 
onverting from errors on
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y to errors on

^

�, the matrix D (equation 8.53) is

D(

^

�) =

0

B

B

B

B

B

B

�

�

^

�

1

�y

1

�

^

�

2

�y

1

: : :

�

^

�

k

�y

1

�

^

�

1

�y

2

�

^

�

2

�y

2

: : :

�

^

�

k

�y

2

.

.

.

.

.

.

.

.

.

.

.

.

�

^

�

1

�y

n

�

^

�

2

�y

n

: : :

�

^

�

k

�y

n

1

C

C

C

C

C

C

A

The elements of D are found by di�erentiating equation 8.112, whi
h gives

D

T

ij

= D

ji

=

�

^

�

i

�y

j

=

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

ij

(8.114)

or

D =

�

�

H

T

V

�1

H

�

�1

H

T

V

�1

�

T

(8.115)

The 
ovarian
e (equation 8.113) then follows from equation 8.52, V

h

^

�

i

= D

T

V

h

y

i

D.

What we here 
all V

h

y

i

is what we previously just 
alled V . It is a square,

symmetri
 matrix. Hen
e V

�1

is also square and symmetri
 and therefore (V

�1

)

T

=

V

�1

. For the same reason

�

�

H

T

V

�1

H

�

�1

�

T

=

�

H

T

V

�1

H

�

�1

. Therefore, equation

8.113 
an be rewritten:

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

V V

�1

H

�

H

T

V

�1

H

�

�1

=

�

H

T

V

�1

H

�

�1

H

T

V

�1

H

�

H

T

V

�1

H

�

�1

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

(8.116)

Equation 8.112 for the estimator

^

� and equation 8.116 for its varian
e 
onstitute

the 
omplete method of linear least squares.

�

2

unknown

If V (y) is only known up to an overall 
onstant, i.e., V = �

2

W with �

2

unknown,

it 
an be estimated from the minimum value of Q

2

: De�ning Q

2

in terms of W , its

minimum value is given by equation 8.108 with � =

^

�:

Q

2

min

=

�

y �H

^

�

�

T

W

�1

�

y �H

^

�

�

(8.117)

If the �

i

are normally distributed, Q

2

= �

2

�

2

where the �

2

has n � k degrees of

freedom. The expe
tation of Q

2

is then

E

h

Q

2

i

= E

h

�

2

�

2

i

= �

2

(n� k)
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Therefore,




�

2

=

Q

2

min

n� k

(8.118)

is an unbiased estimate of �

2

. It 
an be shown

�

that this result is true even when

the �

i

are not normally distributed.

Interpolation

Having found

^

�, we may wish to 
al
ulate the value of y for some parti
ular value

of x. In fa
t, the reason for doing the �t is often to be able to interpolate or

extrapolate the data points to other values of x. This is done by substituting the

estimators in the model. The varian
e is found by error propagation, reversing the

pro
edure used above to �nd the varian
e of

^

�. The estimate ŷ

0

of y at x = x

0

and

its varian
e are therefore given by

ŷ

0

= H

0

^

� (8.119)

V [ŷ

0

℄ = H

0

V (

^

�)H

T

0

= H

0

�

H

T

V

�1

h

y

i

H

�

�1

H

T

0

(8.120)

where H

0

= (h

1

(x

0

) h

2

(x

0

) : : : h

k

(x

0

) ), i.e., the H-matrix for the single point

x

0

.

8.5.3 Derivative formulation

We 
an derive the above results in another way. The 
ovarian
e matrix 
an be

found from the derivatives of Q

2

: Starting from equation 8.109,

�Q

2

��

�

�

�

�

�

�=

^

�

= �2H

T

V

�1

�

y �H

^

�

�

(8.121)

�

2

Q

2

��

2

�

�

�

�

�

�=

^

�

= +2H

T

V

�1

H = 2V

�1

h

^

�

i

(8.122)

This is a very useful way to 
al
ulate the 
ovarian
e, whi
h we have already seen in

our simple example of repeated measurements of a �xed quantity in the introdu
tion

(se
tion 8.5.1).

In fa
t, the solution

^

� 
an be written in terms of the derivatives of Q

2

making

it unne
essary to 
onstru
t H, V , and the asso
iated matrix produ
ts. To see this

we substitute the se
ond derivative, equation 8.122, in equation 8.112. Sin
e we are

trying to �nd

^

�, we do not yet know it, and we 
an not evaluate the derivative at

� =

^

�. We therefore evaluate it at some guessed value, �

0

. Thus,

^

� = 2

0

�

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

1

A

�1

H

T

V

�1

y

�

See Kendall & Stuart

11

, vol. II, se
tion 19.9 and exer
ise 19.5.
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=

0
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��
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�=�
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A

�1
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4

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

� �

0

�

�Q

2

��

�

�

�

�

�

�=�

0

3

5

= �

0

�

0

�

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

1

A

�1

�

�Q

2

��

�

�

�

�

�

�=�

0

(8.123)

This is the Newton-Raphson method of solving the equations

�Q

2

��

= 0. It is exa
t,

i.e., independent of the 
hoi
e of �

0

for the linear model where the form of Q

2

is a

parabola. In the non-linear 
ase, the method 
an still be used, but iteratively; its

su

ess will depend on how 
lose �

0

is to

^

� and on how non-linear the problem is.

The derivative formulation for the least squares solution is frequently the most


onvenient te
hnique in pra
ti
al problems. The derivatives we need are

�Q

2

��

i

=

�

��

i

X

m

�

2

m

�

2

m

= 2

X

m

�

m

�

2

m

��

m

��

i

and

�

2

Q

2

��

i

��

j

= 2

X

m

1

�

2

m

��

m

��

i

��

m

��

j

+ 2

X

m

�

m

�

2

m

�

2

�

m

��

i

��

j

In the linear 
ase,

�

2

�

m

��

i

��

j

= 0, and

��

m

��

i

= �h

i

(x

m

). Thus, the ne
essary derivatives

are easy to 
ompute.

Finally, we note that the minimum value of Q

2

is given by

Q

2

(

^

�) = Q

2

(�

0

) +

�Q

2

��

�

�

�

�

�

�=�

0

� (

^

� � �

0

) +

1

2

(

^

� � �

0

)

T

�

2

Q

2

��

2

�

�

�

�

�

�=�

0

(

^

� � �

0

) (8.124)

where we have expanded Q

2

(

^

�) about �

0

. Third and higher order terms are zero for

the linear model.

Just as in the example in the introdu
tion to least squares, we 
an show, by

expanding Q

2

about

^

� that the set of values of � given by Q

2

(�) = Q

2

min

+ 1 de�ne

the one standard deviation errors on

^

�. This is the same as the geometri
al method

to �nd the errors in maximum likelihood analysis (se
tion 8.4.5), ex
ept that here

the di�eren
e in Q

2

is 1 whereas the di�eren
e in ` was

1

/

2

. This is be
ause the


ovarian
e matrix here is given by twi
e the inverse of the se
ond derivative matrix,

whereas it was equal to the inverse of the se
ond derivative matrix in the maximum

likelihood 
ase.

So far we have made no use of the assumption that the �

i

are Gaussian dis-

tributed. We have only used the 
onditions E(�

i

) = 0 and V [�

i

℄ = �

2

i

known and

the linearity of the model.

8.5.4 Gauss-Markov Theorem

This is the theorem whi
h provides the method of least squares with its �rm mathe-

mati
al foundation. In 1812 Lapla
e showed that the method of least squares gives
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unbiased estimates, irrespe
tive of the parent distribution. Nine years later Gauss

proved that among the 
lass of estimators whi
h are both linear 
ombinations of

the data and unbiased estimators of the parameters, the method of least squares

gives estimates having the least possible varian
e. This was treated more gener-

ally by Markov in 1912. It was extended in 1934 by Aitken to the 
ase where the

observations are 
orrelated and have di�erent varian
es.

We will simply state the theorem without proof:

�

If E [�

i

℄ = 0 and the 
ovarian
e

matrix of the �

i

, V [�℄ is �nite and �xed, i.e., independent of � and y, (it does not

have to be diagonal), then the least squares estimate,

^

� is unbiased and has the

smallest varian
e of all linear (in y), unbiased estimates, regardless of the p.d.f. for

the �

i

.

Note that

� This theorem 
on
erns only linear unbiased estimators. It may be possible,

parti
ularly if � is not normally distributed, to �nd a non-linear unbiased

estimator with a smaller varian
e. Biased estimators with a smaller varian
e

may also exist.

� Least squares does not in general give the same result as maximum likelihood

(unless the �

i

are Gaussian) even for linear models. In this 
ase, linear least

squares is often to be preferred to linear maximum likelihood where appli-


able and 
onvenient, sin
e linear least squares is unbiased and has smallest

varian
e. An ex
eption may o

ur in small samples where the data must be

binned in order to do a least squares analysis, 
ausing a loss of information.

� The assumptions are important: The measurement errors must have zero

mean and they must be homos
edasti
 (the te
hni
al name for 
onstant vari-

an
e). Non-zero means or heteros
edasti
 varian
es may reveal themselves in

the residuals, y

i

� f(x

i

), 
f. se
tion 10.6.8.

8.5.5 Examples

A Straight-Line Fit

As an example of linear least squares we do a least squares �t of independent

measurements y

i

at points x

i

assuming the model y = a+ bx. Thus,

� =

�

a

b

�

; h =

�

1

x

�

; H =

0

B

B

B

�

1 x

1

1 x

2

.

.

.

.

.

.

1 x

n

1

C

C

C

A

and y = H � + �

�

For a proof, see for example, Kendall & Stuart

11

, 
hapter 19 (Stuart et al.

13

, 
hapter 29), or

Eadie et al.

4

(or James

5

).
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Sin
e the measurements are independent, the 
ovarian
e matrix is diagonal with

V

ii

(y) = V

ii

(�) = �

2

i

and Q

2

= �

T

V

�1

� =

n

X

i=1

�

2

i

�

2

i

=

n

X

i=1

 

y

i

� a� bx

i

�

i

!

2

Hen
e, using the derivative method,

�Q

2

�a

= 0 �! â =

1

P

n

i=1

1

�

2

i

n

X

i=1

y

i

�

^

bx

i

�

2

i

�Q

2

�b

= 0 �!

^

b =

1

P

n

i=1

x

2

i

�

2

i

n

X

i=1

x

i

y

i

� âx

i

�

2

i

Solving, we �nd

^

b =

�

P

x

i

y

i

�

2

i

��

P

1

�

2

i

�

�

�

P

y

i

�

2

i

��

P

x

i

�

2

i

�

�

P

x

2

i

�

2

i

��

P

1

�

2

i

�

�

�

P

x

i

�

2

i

�

2

whi
h 
an in turn be substituted in the expression for â.

Alternatively, we 
an solve the matrix equation,

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y

whi
h, of 
ourse, gives the same result.

Note that if all �

i

are the same, �

i

= �, then

â = �y �

^

b�x and

^

b =

xy � �x�y

x

2

� �x

2

(8.125)

These are the formulae whi
h are programmed into many po
ket 
al
ulators. As

su
h, they should only be used when the �

i

are all the same. These formulae are,

however, also appli
able to the 
ase where not all �

i

are the same if the sample

average indi
ated by the bar is interpreted as meaning a weighted sample average

with weights given by 1=�

2

i

, e.g., �y =

P

y

i

=�

2

i

P

1=�

2

i

. The proof is left as an exer
ise

(ex. 40).

Note that at least two of the x

i

must be di�erent. Otherwise, the denominator

in the expression for

^

b is zero. This illustrates the general requirement that there

must be at least as many distin
t values of x

i

as there are parameters in the model;

otherwise the matrix H

T

V

�1

H will be singular.

The errors on the least squares estimates of the parameters are given by equation

8.122 or 8.116. With all �

i

the same, equation 8.116 gives

V

h

^

�

i

=

�

H

T

V

�1

H

�

�1

=

�

H

T
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�1

�
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= �
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2
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�

1 : : : 1

x
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: : : x
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1 x
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1 x
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= �
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�

n
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i
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�
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=
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i

� (

P

x

i
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�
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�
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n

�
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n
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� �x)
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P
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i

�

P

x
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�

P

x

i
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�
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Thus,

 

V [â℄ 
ov(â;

^

b)


ov(â;

^

b) V

h

^

b

i

!

=

�

2

n

�

x

2

� �x

2

�

�

x

2

��x

��x 1

�

(8.126)

Note that by translating the x-axis su
h that �x be
omes zero, the estimates of the

parameters be
ome un
orrelated.

Here too, it is possible to use this formula for the 
ase where not all �

i

are the

same. Besides taking the bar as a weighted average, one must also repla
e �

2

by

its weighted average,

�

2

=

P

�

2

i

=�

2

i

P

1=�

2

i

=

n

P

1=�

2

i

(8.127)

Note that the errors are smallest for the largest spread in the x

i

. Thus we will

attain the best estimates of the parameters by making measurements only at the

extreme values of x. This pro
edure is, however, seldom advisable sin
e it makes it

impossible to test the validity of the model, as we shall see.

Having found â and

^

b, we 
an 
al
ulate the value of y for any value of x by

simply substituting the estimators in the model. The estimate ŷ

0

of y at x = x

0

is

therefore given by

ŷ

0

= â+

^

bx

0

(8.128)

We note in passing that this gives ŷ

0

= �y for x

0

= �x. The varian
e of ŷ

0

is found

by error propagation:

V [ŷ

0

℄ = V [â℄ + x

2

0

V

h

^

b

i

+ 2x

0


ov(â;

^

b)

Substituting from equation 8.126 gives

V [ŷ

0

℄ =

�

2

n

2

4

1 +

(x

0

� �x)

2

�

x

2

� �x

2

�

3

5

(8.129)

Thus, the 
loser x

0

is to �x, the smaller the error in ŷ

0

.

A Polynomial Fit

To �t a parabola

y = a

0

+ a

1

x+ a

2

x

2

the matrix H is

H =

0

B

B

B

B

�

1 x

1

x

2

1

1 x

2

x

2

2

.

.

.

.

.

.

.

.

.

1 x

n

x

2

n

1

C

C

C

C

A

Assuming that all the �

i

are equal, equation 8.112 be
omes
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P
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P
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P

i

x

4

i

1

C

A

�1

0

B

�

P

i

y

i

P

i

x

i

y

i

P

i

x

2

i

y
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The extension to higher order polynomials is obvious. Unfortunately, there is no

simple method to invert su
h matri
es, even though the form of the matrix appears

very regular and symmetri
. Numeri
al inversion su�ers from rounding errors when

the order of the polynomial is greater than six or seven.

One 
an hope to mitigate these problems by 
hoosing a set of orthogonal poly-

nomials, e.g., Legendre or T
heby
he� (Chebyshev) polynomials, instead of powers

of x. The o�-diagonal terms then involve produ
ts of orthogonal fun
tions summed

over the events. The expe
tation of su
h produ
ts is zero, and hen
e the sum of

their produ
ts over a large number of events should be nearly zero. The matrix is

then nearly diagonal and less prone to numeri
al problems.

Even better is to �nd fun
tions whi
h are exa
tly orthogonal over the measured

data points, i.e., fun
tions, �, for whi
h

n

X

i=1

�

j

(x

i

)�

k

(x

i

)(V

�1

)

jk

= Æ

jk

The matrix whi
h has to be inverted, H

T

V

�1

H, is then simply the unit matrix. An

additional feature of su
h a parametrization is that the estimates of the parameters

are independent; the 
ovarian
e matrix for the parameters is diagonal. Su
h a set of

fun
tions 
an always be found, e.g., using S
hmidt's orthogonalization method

�

or,

more simply, using Forsythe's method.

40

Its usefulness is limited to 
ases where we

are merely seeking a parametrization of the data (for the purpose of interpolation

or extrapolation) rather than seeking to estimate the parameters of a theoreti
al

model.

8.5.6 Constraints in the linear model

If the parameters to be estimated are 
onstrained, we 
an, as in the maximum

likelihood 
ase (se
tion 8.4.8), try to write the model in terms of new parameters

whi
h are un
onstrained. Alternatively, we 
an use the more general method of

Lagrangian multipliers, whi
h we will now dis
uss for least squares �ts.

Suppose the model is y = H �+� for n observations y

i

and k parameters �

j

. The

H

ij

may take any form, e.g., H

ij

= x

j�1

i

for a polynomial �t to the observations y

i

taken at points x

i

as in the previous se
tion.

Suppose that the deviations �

i

have 
ovarian
e matrix V and that the parameters

� are subje
t to m linear 
onstraints,

k

X

j=1

`

ij

�

j

= R

i

; i = 1; : : : ; m (8.130)

or, in matrix notation,

L � = R (8.131)

�

See, e.g., Margenau & Murphy

39

.
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The least squares estimate of � is then found using a k-
omponent ve
tor of La-

grangian multipliers, 2�, by �nding the extremum of

Q

2

=

�

y �H �

�

T

V

�1

�

y �H �

�

+ 2�

T

(L � � R) (8.132)

where the �rst term is the usual Q

2

and the se
ond term represents the 
onstraints.

Di�erentiating with respe
t to � and with respe
t to �, respe
tively, yields the

normal equations

H

T

V

�1

H

^

� + L

T

^

� = H

T

V

�1

y (8.133a)

L

^

� = R (8.133b)

whi
h 
an be 
ombined to give

�

C L

T

L 0

��

^

�

^

�

�

=

�

S

R

�

(8.134)

where

C = H

T

V

�1

H (8.135)

S = H

T

V

�1

y (8.136)

Assuming that both C and LC

�1

L

T


an be inverted, the normal equations 
an be

solved for

^

� and

^

� giving

3{5

�

^

�

^

�

�

=

�

F G

T

G E

��

S

R

�

(8.137)

where

�

W =

�

LC

�1

L

T

�

�1

(8.138)

F = C

�1

� C

�1

L

T

W LC

�1

=

�

1� C

�1

L

T

W L

�

C

�1

(8.139)

G = W LC

�1

(8.140)

E = �W (8.141)

The solutions 
an then be written

^

� = F S +G

T

R = F H

T

V

�1

y +G

T

R (8.142)

^

� = GS + E R = GH

T

V

�1

� (8.143)

The 
ovarian
e matrix 
an be shown

3{5

to be given by

V

h

^

�

i

= F (8.144)

V

h

^

�

i

= W (8.145)


ov

�

^

�;

^

�

�

= 0 (8.146)

�

Note that Eadie et al.

4


ontains a misprint in these equations.
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In the un
onstrained 
ase the solution was

^

� = C

�1

S with 
ovarian
e matrix

V

h

^

�

i

= C

�1

. These results are re
overed from the above equations by setting terms

involving L or R to zero. From equations 8.139 and 8.144 we see that the 
onstraints

redu
e the varian
e of the estimators, as should be expe
ted sin
e introdu
ing 
on-

straints adds information. We also see that the 
onstraints introdu
e (additional)


orrelations between the

^

�

i

.

It 
an be shown

4,5

that the

^

� are unbiased, and that E

h

^

�

i

= 0 as expe
ted.

8.5.7 Improved measurements through 
onstraints

An important use of 
onstraints in the linear model is to improve measurements.

As an example, suppose that one measures the three angles of a triangle. We know,

of 
ourse, that the sum of the three angles must be 180

Æ

. However, be
ause of the

resolution of the measuring apparatus, it probably will not be. In parti
le physi
s

one often applies the 
onstraints of energy and momentum 
onservation to the

measurements of the energies and momenta of parti
les produ
ed in an intera
tion.

�

By using this knowledge we 
an obtain improved values of the measurements.

To do this, we make use of the linear model with 
onstraints as developed in the

previous se
tion. We assume that there is just one measurement of ea
h quantity.

If there is more than one, they 
an be averaged and the average used in the �t. The

model is here the simplest imaginable, y = �, i.e., what we want to estimate is the

response variable itself. The measurements are then des
ribed by (equation 8.103)

y

i

=

n

X

j=1

�

i

Æ

ij

+ �

i

= �

i

+ �

i

Thus the matrix H is just the unit matrix, and, in the absen
e of 
onstraints, the

normal equations have the trivial (and obvious) solution (equation 8.112)

^

� =

�

H

T

V

�1

H

�

�1

H

T

V

�1

y = y

The best value of a measurement (

^

�

i

) is just the measurement itself (y

i

).

With m linear 
onstraints (equation 8.130 or 8.131) the solution follows imme-

diately from the previous se
tion by setting H = 1. The improved values of the

measurements are then the

^

�

i

. Note that the 
onstraints introdu
e a 
orrelation

between the measurements.

8.5.8 Linear Model with errors in both x and y

So far we have 
onsidered the x

i

to be known exa
tly. Now let us drop this restri
tion

and allow the x

i

as well as the y

i

to have errors: �

x i

and �

y i

, respe
tively.

�

In parti
le physi
s this pro
edure is known as kinemati
al �tting sin
e the 
onstraints usually

express the kinemati
s of energy and momentum 
onservation.
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We begin by treating the 
ase of a

straight-line �t, y = a + bx, from se
tion

8.5.5.

As before, we take Q

2

as the sum of

the squares of the distan
es between the

�t line and the measured point s
aled by

the error on this distan
e. However, this

distan
e is not unique. This is illustrated

in the �gure where the ellipse indi
ates

the errors on x

i

and y

i

. For a point on

the line, P

j

, the distan
e to D is P

j

D and

the error is the distan
e along this line from the point D to the error ellipse, R

j

D:

d

j

=

P

j

D

R

j

D

Sin
e we want the minimum of Q

2

, we also want to take the minimum of the d

j

,

i.e., the minimum of

d

2

i

=

(x� x

i

)

2

�

2

xi

+

(y � y

i

)

2

�

2

yi

(8.147)

where we have assumed that the errors on x

i

and y

i

are un
orrelated. Substituting

y = a+ bx and setting

dd

i

dx

= 0 results in the minimum distan
e being given by

d

2

imin

=

(y

i

� a� bx

i

)

2

�

2

y i

+ b

2

�

2

x i

This same result 
an be found by taking the usual de�nition of the distan
e,

d

2

i

=

 

y

i

� y(x

i

)

�

i

!

2

=

 

y

i

� a� bx

i

�

i

!

2

where �

i

is no longer just the error on y

i

, �

y i

, but is now the error on y

i

� a� bx

i

and is found by error propagation to be

�

2

i

= �

2

y i

+ b

2

�

2

x i

Here the error propagation is exa
t sin
e y

i

� a� bx

i

is linear in x

i

.

We must now �nd the minimum of

Q

2

=

n

X

i=1

(y

i

� a� bx

i

)

2

�

2

y i

+ b

2

�

2

x i

(8.148)

The easiest method is to program it and use a minimization program. However,

lets see how far we 
an get analyti
ally.
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Di�erentiating with respe
t to a gives

�Q

2

�a

= �2

n

X

i=1

y

i

� a� bx

i

�

2

y i

+ b

2

�

2

x i

Setting this to zero and solving for a results in

â =

P

n

i=1

y

i

�

^

bx

i

�

2

y i

+

^

b

2

�

2

x i

P

n

i=1

1

�

2

y i

+

^

b

2

�

2

x i

We note that if all �

x i

= 0 this redu
es to the expression found in se
tion 8.5.5.

Unfortunately, the di�erentiation with respe
t to b is more 
ompli
ated. In pra
ti
e

it is most easily done numeri
ally by 
hoosing a series of values for

^

b, 
al
ulating â

from the above formula and using these values of â and

^

b to 
al
ulate Q

2

, repeating

the pro
ess until the minimum Q

2

is found.

The errors on â and

^

b are most easily found from the 
ondition thatQ

2

�Q

2

min

= 1


orresponds to one standard deviation errors.

If all �

x i

are the same and also all �

y i

are the same, the situation simpli�es


onsiderably. The above expression for â be
omes

â = �y �

^

b�x (8.149)

and di�erentiation with respe
t to b leads to

�Q

2

�b

= �2

n

X

i=1

y

i

� â�

^

bx

i

�

2

y

+ b

2

�

2

x

+

^

b�

2

x

P

n

i=1

(y

i

� â�

^

bx

i

)

2

�

2

y

+ b

2

�

2

x

= 0

Substituting the expression for â into this equation then yields

^

b

2

�

2

x

�xy �

^

b (�

2

x

�y

2

� �

2

y

�x

2

)� �

2

y

�xy = 0 (8.150)

where

�x

2

= x

2

� �x

2

�y

2

= y

2

� �y

2

�xy = xy � �x�y

This is a quadrati
 equation for

^

b. Of the two solutions it turns out that the one

with a negative sign before the square root gives the minimum Q

2

; the one with

the plus sign gives the maximum Q

2

of all straight lines passing through the point

(�x; �y). We note that these solutions for â and

^

b redu
e to those found in se
tion

8.5.5 when there is no un
ertainty on x (�

x

= 0).
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In general

Now let us 
onsider a more 
ompli
ated 
ase. Let us represent a data point by the

ve
tor z

i

=

�

x

i

y

i

�

. If the model is a more 
ompli
ated fun
tion than a straight

line, or if there is a non-zero 
orrelation between x

i

and y

i

, the distan
e measure d

i

de�ned in equation 8.147 be
omes

d

2

i

= (z




i

� z

i

)

T

V

i

�1

(z




i

� z

i

)

where V

i

is the 
ovarian
e matrix for data point i, V

i

=

�

�

2

x i


ov(x

i

; y

i

)


ov(x

i

; y

i

) �

2

y i

�

and the point on the 
urve 
losest to z

i

is represented by z




i

=

�

x




i

y




i

�

. The 
om-

ponents of z




i

are related by the model: y




i

= H

T

(x




i

) �, whi
h 
an be regarded as


onstraints for the minimization of Q

2

. We then use Lagrangian multipliers and

minimize

Q

2

=

n

X

i=1

h

(z




i

� z

i

)

T

V

i

(z




i

� z

i

) + �

i

�

y




i

�H

T

(x




i

)�

�i

(8.151)

with respe
t to the unknowns:

k parameters �

n unknowns x




i

n unknowns y




i

n unknowns �

i

by setting the derivatives of Q

2

with respe
t to ea
h of these unknowns equal to

zero. The solution of these 3n+ k equations is usually quite messy and a numeri
al

sear
h for the minimum Q

2

is more pra
ti
al.

8.5.9 Non-linear Models

For simpli
ity we again assume that the x

i

are exa
tly known.

If the deviations of the measurements y

i

from the true value y(x

i

) are normally

distributed, the likelihood fun
tion is

L(y; �) =

n

Y

i=1

1

p

2��

i

exp

2

4

�

1

2

 

y

i

� y(x

i

; �)

�

i

!

2

3

5

` = lnL = �

n

2

ln(2�) +

n

X

i=1

2

4

� ln�

i

�

1

2

 

y

i

� y(x

i

; �)

�

i

!

2

3

5

and L is maximal when

Q

2

=

n

X

i=1

 

y

i

� y(x

i

; �)

�

i

!

2
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is minimal. Thus the least squares method yields the same estimates as the maxi-

mum likelihood method, and a

ordingly has the same desirable properties.

When the deviations are not normally distributed, the least squares method may

still be used, but it does not have su
h general optimal properties as to be useful for

small n. Even asymptoti
ally, the estimators need not be of minimum varian
e.

4,5

In pra
ti
e, the minimum of Q

2

is usually most easily found numeri
ally using

a sear
h program su
h as MINUIT. However, an iterative solution

3,6

of the normal

equations (subje
t to 
onstraints) may yield 
onsiderable savings in 
omputer time.

8.5.10 Summary

The most important properties of the least squares method are

� In the linear model, it follows from the Gauss-Markov theorem that least

squares estimators have optimal properties: If the measurement errors have

zero expe
tation and �nite, �xed varian
e, then the least squares estimators

are unbiased and have the smallest varian
e of all linear, unbiased estimators.

� If the errors are Gaussian, least squares estimators are the same as maximum

likelihood estimators.

� If the errors are Gaussian, the minimum value of Q

2

provides a test of the

validity of the model, at least in the linear model (
f. se
tions 10.4.3 and

10.6.3).

� If the model is non-linear in the parameters and the errors are not Gaussian,

the least squares estimators usually do not have any optimal properties.

The least squares method dis
ussed so far does not apply to histograms or other

binned data. Fitting to binned data is treated in se
tion 8.6.

8.6 Estimators for binned data

The methods of parameter estimation treated so far were developed and applied

either to points (events) sampled from some p.d.f. (moments and maximum likeli-

hood) or to measurements, i.e., the results of some previous analysis (least squares

and maximum likelihood). Here we want to apply a least squares method to a

sample of events in order to estimate parameters of the underlying p.d.f., mu
h as

we did with maximum likelihood.

8.6.1 Minimum Chi-Square

The astute reader will have noti
ed that the least squares method requires measure-

ments y

i

with varian
e V [y

i

℄ for values x

i

of the predi
tor variable. What do we
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do when the data are simply observations of the values of x for a sample of events?

This was easily treated in the maximum likelihood method. For a least squares

type of estimator we must transform this set of observations into estimates of y at

various values of x.

To do this we 
olle
t the observations into mutually ex
lusive and exhaustive


lasses de�ned with respe
t to the variable x. (The extension to more than one

variable is straightforward.) An example of su
h a 
lassi�
ation is a histogram and

we shall sometimes refer to the 
lasses as bins, but the 
on
ept is more general than

a histogram. Assume that we have k 
lasses and let �

i

be the probability, 
al
ulated

from the assumed p.d.f., that an observation falls in the i

th


lass. Then

k

X

i=1

�

i

= 1

and the distribution of observations among the 
lasses is a multinomial p.d.f. Let

n be the total number of observations and n

i

the number of observations in the i

th


lass. Then p

i

= n

i

=n is the fra
tion of observations in the i

th


lass.

The minimum 
hi-square method 
onsists of minimizing Pearson's

53

�

2

, whi
h

we refer to here as Q

2

1

,

Q

2

1

= n

k

X

i=1

(p

i

� �

i

)

2

�

i

=

k

X

i=1

(n

i

� n�

i

)

2

n�

i

(8.152)

= n

 

k

X

i=1

p

2

i

�

i

� 1

!

The estimators

^

�

j

are then the solutions of

�Q

2

1

��

j

= n

k

X

i=1

�Q

2

1

��

i

��

i

��

j

= �n

k

X

i=1

�

p

i

�

i

�

2

��

i

��

j

= 0 (8.153)

This appears rather similar to the usual least squares method. The `measure-

ment' is now the observed number of events in a bin, and the model is that there

should be n�

i

events in the bin. Re
all (se
tion 3.3) that the multinomial p.d.f.

has for the i

th

bin the expe
tation �

i

= n�

i

and varian
e �

2

i

= n�

i

(1 � �

i

). For a

large number of bins, ea
h with small probability �

i

, the varian
e is approximately

�

2

i

= n�

i

and the 
ovarian
es, 
ov(n

i

; n

j

) = �n�

i

�

j

, i 6= j, are approximately zero.

The `error' used in equation 8.152 is thus that expe
ted from the model and is

therefore a fun
tion of the parameters. In the least squares method we assumed,

as a 
ondition of the Gauss-Markov theorem, that �

2

i

was �xed. Sin
e that is here

not the 
ase, the Gauss-Markov theorem does not apply to minimum �

2

.

This use of the error expe
ted from the model may seem rather surprising, but

nevertheless this is the de�nition of Q

2

1

. We note that in least squares the error

was a
tually also an expe
ted error, namely the error expe
ted from the measuring

apparatus, not the error estimated from the measurement itself.
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In pra
ti
e, Q

2

1

may be diÆ
ult to minimize owing to the dependen
e of the

denominator on the parameters. This 
onsideration led to the modi�ed minimum


hi-square method where one minimizes Q

2

2

(Neyman's �

2

), whi
h is de�ned using

an approximation of the observed, i.e., estimated, error, �

2

i

� n

i

, whi
h is valid for

large n

i

:

Q

2

2

= n

k

X

i=1

(p

i

� �

i

)

2

p

i

=

k

X

i=1

(n

i

� n�

i

)

2

n

i
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= n

 

k

X

i=1

�

2

i

p

i

� 1

!

The estimators

^

�

j

are then the solutions of

�Q

2

2

��

j

= n

k

X

i=1

�Q

2

2

��

i

��

i

��

j

= 2n

k

X

i=1

 

�

i

p

i

!

��

i

��

j

= 0 (8.155)

From the approximations involved, it is 
lear that neither Q

2

is a true �

2

for

�nite n. However, both be
ome a �

2

(k � s) asymptoti
ally, where s is the number

of parameters whi
h are estimated. Also, it 
an be shown

11

that the estimators

found by both methods are `best asymptoti
ally normal' (BAN) estimators, i.e.,

that the estimators are 
onsistent, asymptoti
ally normally distributed, eÆ
ient (of

minimum varian
e), and that

�

^

�

�p

i

exists and is 
ontinuous for all i. Both Q

2

1

and Q

2

2

thus lead asymptoti
ally to estimators with optimal properties.

8.6.2 Binned maximum likelihood

Alternatively, one 
an use the maximum likelihood method on the binned data.

The multinomial p.d.f. (eq. 3.3) in our present notation is

f =

n!

n

1

!n

2

! : : : n

k

!

�

n

1

1

�

n

2

2

: : : �

n

k

k

= n!

k

Y

i=1

�

n

i

i

n

i

!

Dropping fa
tors whi
h are independent of the parameters, the log-likelihood whi
h

is to be maximized is given by

` = lnL =

k

X

i=1

n

i

ln�

i

(8.156)

Note that in the limit of zero bin width this is identi
al to the usual log-likelihood

of equation 8.57. The estimators

^

�

j

are the values of � for whi
h ` is maximum and

are given by

�`

��

j

=

k

X

i=1

n

i

� ln�

i

��

i

��

i

��

j

= n

k

X

i=1

�

p

i

�

i

�

��

i

��

j

= 0 (8.157)
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These maximum likelihood estimators are also BAN.

This formulation assumes that the total number of observations, n =

P

n

i

, is

�xed, as did the minimum 
hi-square methods of the previous se
tion. If this is

not the 
ase, the binned maximum likelihood method is easily extended. As in

se
tion 8.4.7, the joint p.d.f. is multiplied by a Poisson p.d.f. for the total number

of observations. Equivalently (
f. exer
ise 13), we 
an write the joint p.d.f. as a

produ
t of k Poisson p.d.f.'s:

f =

k

Y

i=1

�

n

i

i

e

��

i

n

i

!

where �

i

is the expe
ted number of observations in bin i. This leads to

`

E

=

k

X

i=1

n

i

ln �

i

�

k

X

i=1

�

i

(8.158)

In terms of the present notation, �

i

= �

tot

�

i

. But now �

tot

=

P

�

i

is not ne
essarily

equal to n.

8.6.3 Comparison of the methods

Asymptoti
ally, all three of these methods are equivalent. How do we de
ide whi
h

one to use? In a parti
ular problem, one method 
ould be easier to 
ompute.

However, given the 
omputer power most physi
ists have available, this is seldom

a problem. The question is then whi
h method has the best behavior for �nite n.

� Q

2

1

requires a large number of bins with small �

i

for ea
h bin in order to

negle
t the 
orrelations and to approximate the varian
e by n�

i

. Assuming

that the model is 
orre
t, this will mean that all n

i

must be small.

� In addition, Q

2

2

requires all n

i

to be large in order that

p

n

i

be a good estimate

of the varian
e. Thus the n

i

must be neither too large nor too small. In

parti
ular, an n

i

= 0 
auses Q

2

2

to blow up.

� The binned maximum likelihood method does not su�er from su
h problems.

In view of the above, it is perhaps not surprising that the maximum likelihood

method usually 
onverges faster to eÆ
ien
y. In this respe
t the modi�ed minimum


hi-square (Q

2

2

) is usually the worst of the three methods.

11

One may still 
hoose to minimize Q

2

1

or Q

2

2

, perhaps be
ause the problem is

linear so that the equations

�Q

2

��

j

= 0 
an be solved simply by a matrix inversion

instead of a numeri
al minimization. One must then ensure that there are no small

n

i

, whi
h in pra
ti
e is usually taken to mean that all n

i

must be greater than 5 or

10. Usually one attains this by 
ombining adja
ent bins. However, one 
an just as

well 
ombine non-adja
ent ones. Nor is there any requirement that all bin widths

be equal. One must simply 
al
ulate the �

i

properly, i.e., as the integral of the
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p.d.f. over the bin, whi
h is not always adequately approximated by the bin width

times the value of the p.d.f. at the 
enter of the bin.

Sin
e the maximum likelihood method is usually preferred, we 
an ask why we

bin the data at all. Although binning is required in order to use a minimum 
hi-

square method, we 
an perfe
tly well do a maximum likelihood �t without binning.

Although binning loses information, it may still be desirable in the maximum like-

lihood method in order to save 
omputing time when the data sample is very large.

In 
hoosing the bin sizes one should pay parti
ular attention to the amount of in-

formation that is lost. Large bins lose little information in regions where the p.d.f.

is nearly 
onstant. Nor is mu
h information lost if the bin size is small 
ompared to

the experimental resolution in the measurement of x. It would seem best to try to

have the information 
ontent of the bins approximately equal. However, even with

this 
riterion the 
hoi
e of binning is not unique. It is then wise to 
he
k that the

results do not depend signi�
antly on the binning.

\There are nine and sixty ways of 
onstru
ting tribal lays.

And { every { single { one { of { them { is { right!"

|Rudyard Kipling

8.7 Pra
ti
al 
onsiderations

In this se
tion we try to give some guidan
e on whi
h method to use and to treat

some 
ompli
ations that arise in real life.

8.7.1 Choi
e of estimator

Criteria

Fa
ed with di�erent methods whi
h lead to di�erent estimators we must de
ide

whi
h estimator to use. Eadie et al.

4

and James

5

give the following order of impor-

tan
e of various 
riteria for the estimators:

1. Consisten
y. The estimator should 
onverge to the true value with in
reasing

numbers of observations. If this is not the 
ase, a pro
edure to remove the

bias should be applied.

2. Minimum loss of information. When an estimator summarizes the results of

an experiment in a single number, it is of vital interest to subsequent users of

the estimate that no other number 
ould 
ontain more information about the

parameter of interest.
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3. Minimum varian
e (eÆ
ien
y). The smaller the varian
e of the estimator, the

more 
ertain we are that it is near the true value of the parameter (assuming

it is unbiased).

4. Robustness. If the p.d.f. is not well known, or founded on unsafe assumptions,

it is desirable that the estimate be independent of, or insensitive to, departures

from the assumed p.d.f. In general, the information 
ontent of su
h estimates

is less sin
e one 
hooses to ignore the information 
ontained in the form of

the p.d.f.

5. Simpli
ity. When a physi
ist reads the published value of some parameter,

he usually presumes that the estimate of the parameter is unbiased, normally

distributed, and un
orrelated with other estimates. It is therefore desirable

that estimators have these simple properties. If the estimate is not simple,

it should be stated how it deviates from simpli
ity and not given as just a

number � an error.

6. Minimum 
omputer time. Although not fundamental, this may be of pra
ti
al


on
ern.

7. Minimum loss of physi
ist's time. This is also not fundamental; its importan
e

is frequently grossly overestimated.

Compromising between these 
riteria

The order of the desirable properties above re
e
ts a general order of importan
e.

However, in some situations a somewhat di�erent order would be better. For ex-

ample, the above list pla
es more importan
e on minimum loss of information than

on minimum varian
e. These two 
riteria are related. The minimum varian
e is

bounded by the inverse of the information. However this limit is not always attain-

able. In su
h 
ases it is possible that two estimates t

1

and t

2

of � are su
h that

I

2

(�) > I

1

(�) but V [t

1

℄ < V [t

2

℄. The re
ommendation here is to 
hoose t

2

, the esti-

mate with the greater information. The reason is that, having more information, it

will be more useful later when the result of this experiment is 
ombined with results

of other experiments. On the other hand, if de
isions must be made, or 
on
lusions

drawn, on the basis of just this one experiment, then it would be better to 
hoose

t

1

, the estimate with the smaller varian
e.

Obtaining simpli
ity

It may be worth sa
ri�
ing some information to obtain simpli
ity.

Estimates of several parameters 
an be made un
orrelated by diagonalizing the


ovarian
e matrix and �nding the 
orresponding linear 
ombinations of the param-

eters. But the new parameters may la
k physi
al meaning.

Te
hniques for bias removal will be dis
ussed below (se
tion 8.7.2).
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When suÆ
ient statisti
s exist, they should be used, sin
e they 
an be estimated

optimally (
f. se
tion 8.2.8).

Asymptoti
ally, most usual estimators are unbiased and normally distributed.

The question arises how good the asymptoti
 approximation is in any spe
i�
 
ase.

The following 
he
ks may be helpful:

� Che
k that the log-likelihood fun
tion or �

2

is a paraboli
 fun
tion of the

parameters.

� If one has two asymptoti
ally eÆ
ient estimators, 
he
k that they give 
on-

sistent results. An example is the minimum 
hi-square estimate from two

di�erent binnings of the data.

� Study the behavior of the estimator by Monte Carlo te
hniques, i.e., make

a large number of simulations of the experiment and apply the estimator to

ea
h Monte Carlo simulation in order to answer questions su
h as whether the

estimate is normally distributed. However, this 
an be expensive in 
omputer

time.

A 
hange of parameters 
an sometimes make an estimator simpler. For instan
e

the estimate of �

2

= g(�

1

) may be simpler than the estimate of �

1

. However, it is in

general impossible to remove both the bias and the non-normality of an estimator

in this way

4,5

.

E
onomi
 
onsiderations

E
onomy usually implies fast 
omputing. Optimal estimation is frequently iterative,

requiring mu
h 
omputer time. The following three approa
hes seek a 
ompromise

between eÆ
ien
y (minimum varian
e) and e
onomi
 
ost.

� Linear methods. The fastest 
omputing is o�ered by linear methods, sin
e

they do not require iteration. These methods 
an be used when the expe
ted

values of the observations are linear fun
tions of the parameters. Among linear

unbiased estimators, the least squares method is the best, whi
h follows from

the Gauss-Markov theorem (se
tion 8.5.4).

When doing empiri
al �ts, rather than �ts to a known (or hypothesized) p.d.f.,


hoose a p.d.f. from the exponential family (se
tion 8.2.7) if possible. This

leads to easy 
omputing and has optimal properties.

� Two-step methods. Some 
omputer time 
an be saved by breaking the prob-

lem into two steps:

1. Estimate the parameters by a simple, fast, ineÆ
ient method, e.g., the

moments method.

2. Use these estimates as starting values for an optimal estimation, e.g.,

maximum likelihood.
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Although more physi
ist's time may be spent in evaluating the results of the

�rst step, this might also lead to a better understanding of the problem.

� Three-step method.

1. Extra
t from the data a 
ertain number of statisti
s whi
h summarize

the observations 
ompa
tly, and if possible in a way whi
h in
reases in-

sight into the problem. For example, one 
an make a histogram, whi
h

redu
es the number of observations to the number of bins in the his-

togram. Another example is the summary of an angular distribution by

the 
oeÆ
ients of the expansion of the distribution in spheri
al harmon-

i
s. These 
oeÆ
ients are rapidly estimated by the moments method

(se
tion 8.3.2) and their physi
al meaning is 
lear.

2. Estimate the parameters of interest using this summary data. If the

summary data have an intuitive physi
al meaning this estimation may

be greatly simpli�ed.

3. Use the preliminary estimates from the se
ond step as starting values for

an optimal estimation dire
tly from the original data.

The third step should not be forgotten. It is parti
ularly important when the

information in the data is small (`small statisti
s'). Be
ause of the third step,

the se
ond step does not have to be exa
t, but only approximate.

8.7.2 Bias redu
tion

We have already given a pro
edure for bias redu
tion in se
tion 8.3.1 for the 
ase

of an estimator ĝ whi
h is 
al
ulated from an unbiased estimator

^

� by a 
hange of

variable ĝ = g(

^

�). Now let us 
onsider two general methods.

Exa
t distribution of the estimate known

If the p.d.f. of the estimator is exa
tly known, the bias b = E

h

^

�

i

� � 
an be 
al
u-

lated. If b does not depend on the parameters, we 
an use the unbiased estimator

^

�

0

=

^

�� b instead of the biased estimator

^

�. The varian
es of

^

�

0

and

^

�, are the same

sin
e b is exa
tly known.

However, b is usually not exa
tly known sin
e it usually depends on some of

the parameters of the p.d.f. It must therefore be estimated. Assuming that we 
an

make an unbiased estimate of the bias,

^

b, the unbiased estimator of the parameter

is

^

�

0

=

^

� �

^

b, whi
h results in a larger varian
e for

^

�

0

than for

^

�.

Exa
t distribution of the estimate unknown

There is a straightforward method

4,5

to use in the 
ase that the p.d.f. is not well

known or no unbiased estimate of b is possible. Suppose that

^

� is a biased estimator
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whi
h is asymptoti
ally unbiased (as maximum likelihood estimators frequently

are). Express

^

� as a power series in

1

N

, where N is the number of events. The

leading term is then �, independent of N . The N

�1

term is the leading bias term.

Now split the data into two samples, ea
h of

N

2

events. Let the estimate from the

two

N

2

samples be

^

�

1

and

^

�

2

. The expe
tation of the above expansion will be

E

h

^

�

i

= � +

1

N

� +O

�

1

N

2

�

E

h

^

�

1

i

= E

h

^

�

2

i

= � +

2

N

� +O

�

1

N

2

�

Thus,

E

�

2

^

� �

1

2

(

^

�

1

+

^

�

2

)

�

= � +O

�

1

N

2

�

and we see that we have a method to redu
e the bias from O

�

1

N

�

to O

�

1

N

2

�

. The

varian
e is, however, in general in
reased by a term of order

1

N

.

A generalization of this method,

11,13

known as the ja
kknife,

�

estimates � by

^

� = N

^

�

N

� (N � 1)

^

�

N�1

(8.159)

where

^

�

N

is the estimator using all N events and

^

�

N�1

is the average of the N

estimates possible using N � 1 events:

^

�

N�1

=

N

X

i=1

^

�

i

=N (8.160)

where

^

�

i

is the estimate obtained using all events ex
ept event i.

A more general method, of whi
h the ja
kknife is an approximation, is the

bootstrap method introdu
ed by Efron.

41{43

Instead of using ea
h subset of N � 1

observations, it uses samples of size M � N randomly drawn, with repla
ement,

from the data sample itself. For details, see, e.g., Referen
e 43.

8.7.3 Varian
e of estimators|Ja
kknife and Bootstrap

The ja
kknife and the bootstrap of the previous se
tion provide methods, albeit


omputer intensive, to evaluate the varian
e of estimators, whi
h may be used in

situations where the usual methods are unreliable, e.g., small statisti
s where the

asymptoti
 properties of ml estimators are questionable, non-Gaussian errors in

least-squares �ts,, or non-linear transformations of parameters (
f. se
tion 8.3.6).

�

Named after a large folding po
ket knife, this pro
edure, like its namesake, serves as a handy

tool in a variety of situations where spe
ialized te
hniques may not be available.
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The ja
kknife estimation of the varian
e of an estimator

^

� is given by

43,44

^

V

h

^

�

i

J

=

N � 1

N

N

X

i=1

�

^

�

i

�

^

�

N�1

�

2

(8.161)

where the notation is the same as in the previous se
tion.

While the ja
kknife is often a good method to estimate the varian
e of an es-

timator, it 
an fail miserably when the value of the estimator does not behave

smoothly to small 
hanges in the data. An example of su
h an estimator is the

median. Suppose the data 
onsist of 13 points: 5 values smaller than 9; the values

9, 11, and 13; and 5 values larger than 13. The sample median is 11. Removing any

one of the smallest 6 values results in a median of 12 (midway between 11 and 13),

while removing any one of the largest 6 values results in a median of 10. Removal

of the middle value results in 11. There are only 3 di�erent ja
kknife values; the

estimate does not 
hange smoothly with 
hanges in the data, but only in large steps.

This failure of the ja
kknife 
an be over
ome by removing more points to make the

ja
kknife samples. This is known as the delete-d ja
kknife; the interested reader

is referred, e.g., to Referen
e 43.

For bootstrap sample size, M , equal to the data sample size, N , there are

N

N

distin
t samples possible, whi
h is very large even for moderate N . Then the

bootstrap sampling distribution for an estimator is a good approximation of the true

sampling distribution, 
onverging to it as N !1 under fairly general 
onditions.

This method is something like Monte Carlo, but uses the data themselves instead

of a known (or hypothesized) distribution. The varian
e of

^

� is then estimated by

the following pro
edure:

1. Sele
t B independent bootstrap samples, ea
h 
onsisting of N data, drawn

with repla
ement from the real data sample. Usually B in the range 25{200

will suÆ
e,

43

but this 
an be 
he
ked by repeating for large values of B until

the improvement is negligible.

2. Evaluate

^

� for ea
h bootstrap sample, giving B values,

^

�

b

.

3. The bootstrap estimate of the varian
e of

^

� is then

^

V

h

^

�

i

B

=

1

B � 1

B

X

b=1

�

^

�

b

�

^

�

b

�

2

(8.162)

where

^

�

b

=

B

X

b=1

^

�

b

=B

Note that these two methods are appli
able to non-parametri
 estimators as well

as parametri
. If the estimators are the result of a parametri
 �t, e.g., ml, the B

bootstrap samples 
an be generated from the �tted distribution fun
tion, i.e., the
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parametri
 estimate of the population, rather than from the data. The estimation

of the varian
e is again given by equation 8.162.

Limitation: It should be 
lear that the non-parametri
 bootstrap will not be

reliable when the estimator depends strongly on the tail of the distribution, as is

the 
ase, e.g., with high-order moments. A bootstrap sample 
an never 
ontain

points larger than the largest point in the data.

8.7.4 Robust estimation

When the form of the p.d.f. is not exa
tly known, the following questions arise:

1. What kind of parameters 
an be estimated without any assumption about the

form of the p.d.f.? Su
h estimators are usually 
alled `distribution-free'. This

term may be misleading, for although the estimate itself does not depend on

the assumption of a p.d.f., its properties, e.g., the varian
e, do depend on the

a
tual (unknown) p.d.f.

2. How reliable are the estimates if the assumed form of the p.d.f. is not quite


orre
t?

Center of a symmetri
 distribution

There is relatively little known about robust estimation. The only 
ase treated ex-

tensively in the literature is the estimation of the 
enter of an unknown, symmetri


distribution. The 
enter of a distribution may be de�ned by a `lo
ation parameter'

su
h as the mean, the median, the mode, the midrange, et
. Several of these esti-

mators were mentioned in se
tion 8.1. The sample mean is the most obvious and

most often used estimator of lo
ation be
ause

� By the 
entral limit theorem it is 
onsistent whenever the varian
e of the p.d.f.

is �nite.

� It is optimal (unbiased and minimum varian
e) when the p.d.f. is a Gaussian.

However, if the distribution is not normal, the sample mean may not be the best

estimator. For symmetri
 distributions of �nite range, e.g., the uniform p.d.f. or a

triangular p.d.f., the lo
ation is determined by spe
ifying the end points of the dis-

tribution. The midrange is then an ex
ellent estimator. However, for distributions

of in�nite range, the midrange is a poor estimator.

The following table

4,5

shows asymptoti
 eÆ
ien
ies, i.e., the ratio of the min-

imum varian
e bound to the varian
e of the estimator, of lo
ation estimators for

various p.d.f.'s.
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Distribution Sample Sample Sample

median mean midrange

Normal 0.64 1.00 0.00

Cau
hy 0.82 0.00 0.00

Double exponential 1.00 0.50 0.00

Uniform 0.00 0.00 1.00

None of these three estimators is asymptoti
ally eÆ
ient for all four distribu-

tions. Nor has any of these estimators a non-zero asymptoti
 eÆ
ien
y for all four

distributions. As an example take a distribution whi
h is the sum of a normal

distribution and a Cau
hy distribution having the same mean:

f(x) = � N(x;�; �

2

) + (1� �)C(x;�; �) ; 0 � � � 1

Be
ause of the Cau
hy admixture, the sample mean has in�nite varian
e, as we

see in the table, while the sample median has at worst (� = 1) a varian
e of

1=0:64 = 1:56 times the minimum varian
e bound. This illustrates that the median

is generally more robust than the mean.

Other methods to improve robustness involve `trimming', i.e., throwing away

the highest and lowest points before using one of the above estimators. This is

parti
ularly useful when there are large tails whi
h 
ome mostly from experimental

problems. Su
h methods are further dis
ussed by Eadie et al.

4,5

Center of an asymmetri
 distribution

Consider the estimation of the 
enter of a narrow `signal' distribution superim-

posed on an unknown but wider `ba
kground' distribution. The asymmetry of the

ba
kground makes it diÆ
ult to use any of the above-mentioned estimators.

A 
ommon te
hnique is to parametrize the signal and ba
kground in some arbi-

trary way and to do a maximum likelihood or least squares �t to obtain optimum

values of the parameters, in
luding the lo
ation parameter of interest. This is

a non-robust method be
ause the lo
ation estimate depends on the ba
kground

parametrization and on 
orrelations with other parameters.

A robust te
hnique for this problem is to estimate the mode of the observed

distribution. The mode is nearly invariant under variations of a smooth ba
kground.

An obvious way to estimate the mode is to histogram the data and take the 
enter

of the most populated bin. Su
h a method depends on the binning used. A better

method is given by the following pro
edure: Find the two observations whi
h are

separated by the smallest distan
e, and 
hoose the one whi
h has the 
loser next

nearest neighbor. The estimate of the mode is then taken as the position of this

observation. A generalization of this method is that of k nearest neighbors, where

the density of observations at a given point is estimated by the re
ipro
al of the

distan
e between the smallest and largest of the k observations 
losest to the point.
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8.7.5 Dete
tion eÆ
ien
y and Weights

We are often not able to observe dire
tly the phenomenon we wish to study. The

apparatus generally introdu
es some distortion or bias, the e�e
t of whi
h must be

taken into a

ount. Su
h distortion may take the form of a dete
tion eÆ
ien
y,

i.e., the apparatus may not dete
t all events and the eÆ
ien
y of dete
tion may

depend on the values of the variables being measured. This problem has already

been mentioned in se
tion 4.2.

The method used to a

ount for this distortion depends on the severity of the

problem. If the dete
tion eÆ
ien
y varies greatly over the range of the variables, it

will be ne
essary to treat the problem exa
tly in order to avoid losing a great deal

of information. On the other hand, if the dete
tion eÆ
ien
y is nearly uniform (say

to within 20%), an approximate method will suÆ
e.

Maximum likelihood|ideal method

As already mentioned in se
tion 4.2, the p.d.f. of the observations is the produ
t of

the underlying physi
al p.d.f. and the eÆ
ien
y fun
tion. It often happens that the

physi
al p.d.f. 
an be written as the produ
t of two p.d.f.'s where the parameters

we want to estimate o

ur in only one of the two. For example, 
onsider the

produ
tion of parti
les in an intera
tion. The energies of the produ
ed parti
les

will not depend on where the intera
tion took pla
e. The p.d.f. is then a produ
t of

a p.d.f. for the pla
e where the intera
tion takes pla
e and a p.d.f. for the intera
tion

itself. A

ordingly we write the physi
al p.d.f. as

f(x; y; �;  ) = p(x; �) q(y; )

where the p.d.f.'s p and q are, as usual, normalized:

R

p dx =

R

q dy = 1. Let e(x; y)

be the dete
tor eÆ
ien
y, i.e., the p.d.f. des
ribing the probability that an event is

observed. Then the p.d.f. of the a
tual observations is

g(x; y; �;  ) =

p(x; �) q(y; ) e(x; y)

R

p(x; �) q(y; ) e(x; y) dx dy

Note that the eÆ
ien
y may depend on both x and y. The likelihood of a given set

of observations is then

L(x

1

; : : : x

N

; y

1

: : : y

N

; �;  ) =

N

Y

i=1

g(x

i

; y

i

; �;  ) =

N

Y

i=1

g

i

Hen
e, ` = lnL =W +

N

X

i=1

ln(e

i

q

i

) (8.163)

where W =

N

X

i=1

ln p

i

�N ln

Z

pqe dx dy (8.164)

and where p

i

= p(x

i

; �)



8.7. PRACTICAL CONSIDERATIONS 175

Suppose now that we are not interested in estimating  , but only �. Then the se
ond

term of equation 8.163 does not depend on the parameters and may be ignored. The

estimates

^

� and their varian
es are then found in the usual way treating W as the

log-likelihood.

In pra
ti
e, diÆ
ulties arise when pqe is not analyti
ally normalized, but must

be normalized numeri
ally by time-
onsuming Monte Carlo. Moreover, the results

depend on the form of q, whi
h may be poorly known and of little physi
al interest.

For these reasons one prefers to �nd a way of eliminating q from the expressions.

Sin
e this will ex
lude information, it will in
rease the varian
es, but at the same

time make the estimates more robust.

Troll, to thyself be true|enough.

|Ibsen, \Peer Gynt"

Maximum likelihood|approximate method

We repla
e W in equation 8.164 by

W

0

=

N

X

i=1

�

1

e

i

ln p

i

�

(8.165)

Intuitively, the observation of an event with eÆ
ien
y e

i


orresponds, in some

sense, to w

i

= 1=e

i

events having a
tually o

urred. Then the likelihood for all of

the events, i.e., the one whi
h is observed and the ones whi
h are not, is p

w

i

i

, whi
h

results in W

0

.

Whatever the validity of this argument, it turns out

4,5

that the estimate

^

�

0

obtained by maximizingW

0

is, like the usual maximum likelihood estimate, asymp-

toti
ally normally distributed about the true value. However, 
are must be taken

in evaluating the varian
e. Using the se
ond derivative matrix of W

0

is wrong sin
e

it assumes that

N

X

i=1

w

i

= N

events have been observed. One approa
h to 
uring this problem is to renormalize

the weights by using w

0

i

= Nw

i

=

P

w

i

instead of w

i

. However, this is only satisfa
-

tory if the weights are all nearly equal.

The 
orre
t pro
edure, whi
h we will not derive, results in

4,5

V

�

^

�

0

�

= H

�1

H

0

H

�1

(8.166)

where the matri
es H and H

0

are given by

H

jk

= E

"

1

e

 

� ln p

��

j

! 

� ln p

��

k

!#
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H

0

jk

= E

"

1

e

2

 

� ln p

��

j

! 

� ln p

��

k

!#

whi
h may be estimated by the sample mean:

^

H

jk

=

1

N

N

X

i=1

1

e

i

p

2

i

 

�p

i

��

j

! 

�p

i

��

k

!

(8.167a)

^

H

0

jk

=

1

N

N

X

i=1

1

e

2

i

p

2

i

 

�p

i

��

j

! 

�p

i

��

k

!

(8.167b)

evaluated at � =

^

�

0

. If e is 
onstant, this redu
es to the usual estimator of the


ovarian
e matrix given in equations 8.78 and 8.80.

Alternatively, one 
an estimate the matrix elements from the se
ond derivatives:

H

jk

= �

�

2

W

0

��

j

��

k

�

�

�

�

�

�=

^

�

;

^

H

jk

= �

1

N

N

X

i=1

"

1

e

i

�

2

ln p

i

��

j

��

k

#

�=

^

�

(8.168a)

H

0

jk

= �

1

e

�

2

W

0

��

j

��

k

�

�

�

�

�

�=

^

�

;

^

H

jk

= �

1

N

N

X

i=1

"

1

e

2

i

�

2

ln p

i

��

j

��

k

#

�=

^

�

(8.168b)

If e is 
onstant, this redu
es to the usual estimator of the 
ovarian
e matrix given

in equations 8.84 and 8.85.

To summarize: Find the estimates

^

�

0

by maximizing W

0

(eq. 8.165). If possible


ompute H and H

0

by equation 8.167 or 8.168; if the derivatives are not known an-

alyti
ally, use equation 8.168, evaluating

�

2

W

0

��

j

��

k

numeri
ally. The 
ovarian
e matrix

is then given by equation 8.166.

It is 
lear from the above formulae that the appearan
e of one event with a

very large weight will ruin the method, sin
e it will 
ause W

0

(equation 8.165) to

be dominated by one term and will make the varian
e very large. A

ordingly, a

better estimate may be obtained by reje
ting events with very large weights.

Minimum 
hi-square|approximate method

Consider a histogram with k bins 
ontaining n

i

events in the i

th

bin. Suppose that a

model predi
ts the normalization n =

P

n

i

as well as the shape of the distribution.

Denote the expe
ted number of events in the i

th

bin by

a

i

(�) = A(�)

R

i

pqe dx

R

pqe dx

(8.169)

where A(�) =

P

a

i

is the predi
ted total number of events and

R

i

indi
ates an

integral over bin i.

The minimum 
hi-square and modi�ed minimum 
hi-square formulae (se
tion
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8.6.1) be
ome

Q

2

1

=

k

X

i=1

(n

i

� a

i

)

2

a

i

;

�Q

2

1

��

= �

k

X

i=1

"

�

n

i

a

i

�

2

� 1

#

�a

i

��

Q

2

2

=

k

X

i=1

(n

i

� a

i

)

2

n

i

;

�Q

2

2

��

= �2

k

X

i=1

�

1�

a

i

n

i

�

�a

i

��

So far, this is exa
t. Now let us introdu
e the approximate method by removing

the dependen
e on q from equation 8.169. Let b

i

be the predi
ted number of events in

bin i when e = 1. We want to 
orre
t the numbers b

i

using the known experimental

eÆ
ien
y to obtain numbers 


i

su
h that

E [


i

℄ = a

i

(8.170)

From its de�nition, b

i

is given by

b

i

= B(�)

R

i

pq dx

R

pq dx

= A(�)

R

i

pq dx

R

pqe dx

where B(�) is the total number of events predi
ted when e = 1. Combining this

equation with equation 8.169, we �nd

a

i

= b

i

R

i

pqe dx

R

i

pq dx

The inverse of this ratio of integrals 
an be rewritten as

R

i

pqew dx

R

i

pqe dx

= E

i

[w℄

where w =

1

e

is the weight. This expe
tation 
an be estimated by the sample mean

of the weights of the events in the bin:

d

E

i

[w℄ =

P

n

i

j=1

w

ij

n

i

where w

ij

is the weight (1=e

i

) of the j

th

event in the i

th

bin.

We now de�ne




i

=

b

i

n

i

P

n

i

j=1

w

ij

From the pre
eding equations it is 
lear that this 


i

satis�es equation 8.170.

The expressions for Q

2

then use 


i

instead of a

i

. Writing �

2

i

for a

i

in the 
ase of

Q

2

1

and for n

i

in the 
ase of Q

2

2

, both may be written as

Q

2

=

k

X

i=1

1

�

2

i

 

n

i

� b

i

n

i

P

j

w

ij

!

2

=

k

X

i=1

1

�

02

i

0

�

X

j

w

ij

� b

i

1

A

2
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where

1

�

02

i

=

1

�

2

i

 

n

i

P

j

w

ij

!

2

The `error', �

0

i

, is then given by

�

02

i

= E

2

6

4

0

�

n

i

X

j=1

w

ij

� b

i

1

A

2

3

7

5

= E

2

6

4

0

�

n

i

X

j=1

w

ij

1

A

2

3

7

5

� b

2

i

sin
e E

h

P

n

i

j=1

w

ij

i

= b

i

. Further, one 
an show that

E

2

6

4

0

�

n

i

X

j=1

w

ij

1

A

2

3

7

5

= E

2

4

n

i

X

j=1

w

2

ij

3

5

+ E

2

6

4

n

i

X

j=1

n

i

X

k=1

k 6=j

w

ij

w

ik

3

7

5

� E [n

i

℄E

h

w

2

i

i

+ b

2

i

E [w

2

i

℄ 
an be estimated by the sample mean

d

E [w

2

i

℄ =

1

n

i

n

i

X

j=1

w

2

ij

E [n

i

℄ 
an be estimated in two ways: from the model, whi
h gives the minimum


hi-square method; or from the data, whi
h gives the modi�ed minimum 
hi-square

method. The resulting expressions for Q

2

are

d

E [n

i

℄ = 


i

; Q

02

1

=

k

X

i=1

2

6

6

4

�

P

n

i

j=1

w

ij

� b

i

�

2

b

i

P

n

i

j=1

w

2

ij

P

n

i

j=1

w

ij

3

7

7

5

(8.171)

d

E [n

i

℄ = n

i

; Q

02

2

=

k

X

i=1

2

6

4

�

P

n

i

j=1

w

ij

� b

i

�

2

P

n

i

j=1

w

2

ij

3

7

5

(8.172)

Clearly both Q

0

approa
h the 
orresponding Q as the weights all approa
h 1. As in

the unweighted 
ase, the minimum 
hi-square method (Q

1

) is better justi�ed than

the modi�ed minimum 
hi-square method (Q

2

). However, if b

i

is a linear fun
tion

of the parameters, the solution of the modi�ed method 
an in prin
iple be written

expli
itly, whi
h is mu
h faster than a numeri
al minimization.

But who 
an dis
ern his errors?

Clear thou me from hidden faults.

|Psalm 19.12

8.7.6 Systemati
 errors

If a meter has a random error, then its readings are distributed in some way about

the true value. If the error distribution is not spe
i�ed further, you expe
t it to
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be Gaussian. Thus if it is simply stated that the error is 1%, you expe
t that this

distribution will be a Gaussian distribution with a standard deviation of 1% of the

true value. The standard deviation of a single reading will be 1% of that reading.

But by making many (N) readings and averaging them, you obtain an estimate of

the true value whi
h has a mu
h smaller varian
e. Usually, the varian
e is redu
ed

by a fa
tor 1=N , whi
h follows from the 
entral limit theorem.

If the meter has a systemati
 error su
h that it 
onsistently reads 1% too high,

the situation is di�erent. The readings are thus 
orrelated. Averaging a large

number of readings will not de
rease this sort of error, sin
e it a�e
ts all the readings

in the same way. With more readings, the average will not 
onverge to the true

value but to a value 1% higher. It is as though we had a biased estimator.

Systemati
 errors 
an be very diÆ
ult to dete
t. For example, we might measure

the voltage a
ross a resistor for di�erent values of 
urrent. If the systemati
 error

was 1 Volt, all the results would be shifted by 1 Volt in the same dire
tion. If we

plotted the voltages against the 
urrents, we would �nd a straight line, as expe
ted.

However, the line would not pass through the origin. Thus, we 
ould in prin
iple

dis
over the systemati
 e�e
t. On the other hand, with a systemati
 error of 1% on

the voltage, all points would be shifted by 1% in the same dire
tion. The voltages

plotted against the 
urrents would lie on a straight line and the line would pass

through the origin. The voltages would thus appear to be 
orre
tly measured.

But the slope of the line would be in
orre
t. This is the worst kind of systemati


error|one whi
h 
annot be dete
ted statisti
ally. It is truly a `hidden fault'.

The size of a systemati
 error may be known. For example, 
onsider temperature

measurements using a thermo
ouple. You 
alibrate the thermo
ouple by measuring

its output voltages V

1

and V

2

for two known temperatures, T

1

and T

2

, using a volt-

meter of known resolution. You then determine some temperatures T by measuring

voltages V and using the proportionality of V to T to 
al
ulate T :

T =

T

2

� T

1

V

2

� V

1

(V � V

1

) + T

1

The error on T will in
lude a systemati
 
ontribution from the errors on V

1

and V

2

as well as a random error on V . In this example the systemati
 error is known.

In other 
ases the size of the systemati
 error is little more than a guess. Suppose

you are studying gases at various pressures and you measure the pressure using a

mer
ury manometer. A
tually it only measures the di�eren
e in pressure between

atmospheri
 pressure and that in your vessel. For the value of the atmospheri


pressure you rely on that given by the nearest meteorologi
al station. But how big

is the di�eren
e in the atmospheri
 pressure between the station at the time the

atmospheri
 pressure was measured and your laboratory at the time you did the

experiment?

Or, suppose you are measuring a (Gaussian) signal on top of a ba
kground. The

estimate of the signal (position, width, strength) may depend on the fun
tional

form 
hosen for the ba
kground. If you do not know what this form is, you should
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try various forms and assign systemati
 errors based on the resulting variations in

the estimates.

Experimental tips

To 
lear your experiment of `hidden faults' you should begin in the design of the

experiment. Estimate what the systemati
 errors will be, and, if they are too large,

design a better experiment.

Build 
onsisten
y 
he
ks into the experiment, e.g., 
he
k the 
alibration of an

instrument at various times during the 
ourse of the experiment.

Try to 
onvert a systemati
 error into a random error. Many systemati
 e�e
ts

are a fun
tion of time. Examples are ele
troni
s drifts, temperature drifts, even

psy
hologi
al 
hanges in the experimenter. If you take data in an orderly sequen
e,

e.g., measuring values of y as a fun
tion of x in the order of in
reasing x, su
h drifts

are systemati
. So mix up the order. By making the measurements in a random

order, these errors be
ome random.

The 
orre
t pro
edure depends on what you are trying to measure. If there are

hysteresis e�e
ts in the apparatus, measuring or setting the value of a quantity,

e.g., a magneti
 �eld strength, from above generally gives a di�erent result than

setting it from below. Thus, if the absolute values are important su
h adjustments

should be done alternatively from above and from below. On the other hand, if

only the di�eren
es are important, e.g., you are only interested in a slope, then all

adjustments should be made from the same side, as the systemati
 e�e
t will then


an
el.

Error propagation with systemati
 errors

Having eliminated what systemati
 e�e
ts you 
an, you must evaluate the rest.

Di�erent independent systemati
 errors are, sin
e independent, added in quadra-

ture.

�

Sin
e random and systemati
 errors are independent, they too 
an be added

in quadrature to give the total error. Nevertheless, the two types of error are often

quoted separately, e.g.,

R = �1:9� 0:1� 0:4

where (
onventionally) the �rst error is statisti
al and the se
ond systemati
. Su
h a

statement is more useful to others, parti
ularly if they want to 
ombine your result

with other results whi
h may have the same systemati
 errors. For this reason,

the various 
ontributions to the systemati
 errors should also be given separately,

parti
ularly those whi
h 
ould be 
ommon to other experiments. One also sees in

this example that more data would not help sin
e the systemati
 error is mu
h

larger than the statisti
al error.

Error propagation is done using the 
ovarian
e matrix in the usual way ex
ept

�

This assumes that the errors are normally distributed. If you know this not to be the 
ase,

you should try to 
ombine the errors using the 
orre
t p.d.f.'s.
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that we keep tra
k of the statisti
al and systemati
 
ontributions to the error.

Suppose that we have two `independent' measurements x

1

and x

2

with statisti
al

errors �

1

and �

2

and with a 
ommon systemati
 error s. For pedagogi
al purposes

we 
an think of the x

i

as being 
omposed of two parts, x

i

= x

R

i

+ x

S

i

, where x

R

i

has

only a random statisti
al error, �

i

, and x

S

i

has only a systemati
 error, s. Then x

R

1

and x

R

2

are 
ompletely independent and x

S

1

and x

S

2

are 
ompletely 
orrelated. The

varian
e of x

i

is then

V [x

i

℄ = E

h

x

2

i

i

� (E [x

i

℄)

2

= E

�

�

x

R

i

+ x

S

i

�

2

�

�

�

E

h

x

R

i

+ x

S

i

i�

2

= �

2

i

+ s

2

The 
ovarian
e is


ov(x

1

; x

2

) = E [x

1

x

2

℄� E [x

1

℄E [x

2

℄

= E

h�

x

R

1

+ x

S

1

� �

x

R

2

+ x

S

2

�i

� E

h

x

R

1

+ x

S

1

i

E

h

x

R

2

+ x

S

2

i

Ea
h term involves four produ
ts. Those involving an x

R

i


an
el leaving


ov(x

1

; x

2

) = 
ov(x

S

1

; x

S

2

) = s

2

Thus the 
ovarian
e matrix is

V =

�

�

2

1

+ s

2

s

2

s

2

�

2

2

+ s

2

�

So far we have 
onsidered systemati
 errors whi
h are 
onstants. They also

o

ur as fra
tions or per
entages. The systemati
 error s is then not a 
onstant but

proportional to the measurement (a
tually to the true value, but for small errors

the di�eren
e is by de�nition negligible): s = �x with, e.g., � = 0:01 for a 1% error.

The above analysis is still valid: x

S

1

and x

S

2

are still 
ompletely 
orrelated. The

resulting 
ovarian
e matrix is

V =

�

�

2

1

+ �

2

x

2

1

�

2

x

1

x

2

�

2

x

1

x

2

�

2

2

+ �

2

x

2

2

�

Generalization is rather obvious. If there are several independent sour
es of

systemati
 error then they are added in quadrature. If there are more variables the

matrix is larger. For example, 
onsider three variables with independent statisti
al

errors, a 
ommon systemati
 error s and in addition an independent systemati


error t whi
h is shared by x

1

and x

2

but not x

3

. The 
ovarian
e matrix is then

V =

0

B

�

�

2

1

+ s

2

+ t

2

s

2

+ t

2

s

2

s

2

+ t

2

�

2

2

+ s

2

+ t

2

s

2

s

2

s

2

�

2

3

+ s

2

1

C

A
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Least squares �t with systemati
 errors

Consider a least squares �t where the y-values have not only a statisti
al error �,

but also a 
ommon systemati
 error s. The 
ovarian
e matrix for y is then

V

ij

h

y

i

= Æ

ij

�

2

+ s

2

This is just the 
ovarian
e matrix previously 
onsidered in se
tion 8.5.5 with the

addition of s

2

to every element. As an example, 
onsider a �t to a straight line,

y = a + bx. Using this V and � = y � a � bx, in Q

2

= �

T

V � and solving

�Q

2

�a

= 0

and

�Q

2

�b

= 0 leads to the same expressions for the estimators as before (equation

8.125). A 
ommon systemati
 shift of all points up or down 
learly has no e�e
t

on the slope, and therefore we expe
t the same varian
e for

^

b as before. However,

a systemati
 shift in y will a�e
t the inter
ept; 
onsequently, we expe
t a larger

varian
e for â.



Chapter 9

Con�den
e intervals

In the previous 
hapter we have dis
ussed methods to estimate the values of un-

known parameters. As the un
ertainty, or \error", Æ

^

�, on the estimate,

^

�, we have

been 
ontent to state the standard deviations and 
orrelation 
oeÆ
ients of the

estimate as found from the 
ovarian
e matrix or the estimated 
ovarian
e matrix.

This is inadequate in 
ertain 
ases, parti
ularly when the sampling p.d.f., i.e., the

p.d.f. of the estimator is non-Gaussian. In this 
hapter our interest is to �nd the

range

�

a

� � � �

b

whi
h 
ontains the true value �

t

of � with \probability" �. We shall see that when

the sampling p.d.f. is Gaussian, the interval [�

a

; �

b

℄ for � = 68:3% is the same as

the interval of �1 standard deviation about the estimated value.

9.1 Introdu
tion

In parameter estimation we found an estimator for a parameter

^

� and its varian
e

�

2

^

�

= V

h

^

�

i

and we wrote the result as � =

^

� � �

^

�

. Assuming a normal distribution

for

^

�, one is then tempted to say, as we did in se
tion 8.2.4, that the probability is

68.3% that

^

� � �

^

�

� �

t

�

^

� + �

^

�

(9.1)

Now, what does this statement mean? If we interpret it as 68.3% probability that

the value of �

t

is within the stated range, we are using Bayesian probability (
f.

se
tion 2.4.4) with the assumption of uniform prior probability. This assumption is

not always justi�able and often is wrong, as is illustrated in the following example:

An empty dish is weighed on a balan
e. The result is 25:31 � 0:14 g. A sample

of powder is pla
ed on the dish, and the weight is again determined. The result is

25:51� 0:14 g. By subtra
tion and 
ombination of errors, the weight of the powder

is found to be 0:20 � 0:20 g. Our �rst 
on
lusion is that the s
ientist should have

used a better balan
e. Next we try to determine some probabilities. From the

183
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normal distribution, there is a probability of about 16% that a value lies lower than

� � �. In this example that means that there is a 
han
e of about 16% that the

powder has negative weight (an anti-gravity powder!). The problem here is Bayes'

postulate of uniform prior probability. We should have in
orporated in the prior

knowledge the fa
t that the weight must be positive, but we didn't.

Let us avoid the problems of Bayesian prior probability and sti
k to the fre-

quentist interpretation. This will lead us to the 
on
ept of 
on�den
e intervals,

developed largely by Neyman,

45

whi
h give a purely frequentist interpretation to

equation 9.1. We shall return to the Bayesian interpretation in se
tion 9.9.

Suppose we have a p.d.f. f(x; �) whi
h depends on one parameter �. The prob-

ability 
ontent � of the interval [a; b℄ in X-spa
e is

� = P (a � X � b) =

Z

b

a

f(x; �) dx (9.2)

Common 
hoi
es for � are 68.3% (1�), 95.4% (2�), 99.7% (3�), 90% (1.64�), 95%

(1.96�), and 99% (2.58�), where the 
orresponden
e between per
ent and a number

of standard deviations (�) assumes that f is a Gaussian p.d.f.

If the fun
tion f and the parameter � are known we 
an 
al
ulate � for any a

and b. If � is unknown we try to �nd another variable z = z(x; �) su
h that its

p.d.f., g(z), is independent of �. If su
h a z 
an be found, we 
an 
onstru
t an

interval [z

a

; z

b

℄, where z

x

= z(x; �), su
h that

� = P (z

a

� Z � z

b

) =

Z

z

b

z

a

g(z) dz (9.3)

It may then be possible to use this equation together with equation 9.2 to �nd an

interval [�

�

; �

+

℄ su
h that

P (�

�

� �

t

� �

+

) = � (9.4)

The meaning of this last equation must be made 
lear. Contrast the following

two quite similar statements:

1. The probability that �

t

is in the interval [�

�

; �

+

℄ is �.

2. The probability that the interval [�

�

; �

+

℄ 
ontains �

t

is �.

The �rst sounds like �

t

is the r.v. and that the interval is �xed. This is in
orre
t|

we are frequentists here, and so �

t

is not a r.v. The se
ond statement sounds like a

statement about �

�

and �

+

, whi
h is the 
orre
t meaning of equation 9.4. �

�

and

�

+

are the results of the experiment, and hen
e r.v.'s. To put it slightly di�erently:

Performing the experiment as we have done, we have the probability, �, of �nding

an interval, [�

�

; �

+

℄, whi
h 
ontains the (unknown) true value of �, �

t

. If we were to

repeat the experiment many times, a fra
tion � of the experiments would yield an

interval 
ontaining the true value, i.e., an interval whi
h \
overs" the true value.

Turned around, this means that if we assert on the basis of our experiment that

the true value of � lies in the interval [�

�

; �

+

℄, we will be right in a fra
tion � of
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the 
ases. Thus, � expresses the degree of 
on�den
e (or belief) in our assertion;

hen
e the name 
on�den
e interval. The quantity � is known by various names:


on�den
e 
oeÆ
ient, 
overage probability, 
on�den
e level. However, the

last term, \
on�den
e level", is inadvisable, sin
e it is also used for a di�erent


on
ept, whi
h we will en
ounter in goodness-of-�t tests (
f. se
tion 10.6).

The interval [�

�

; �

+

℄ 
orresponding to a 
on�den
e 
oeÆ
ient � is in general not

unique; many di�erent intervals exist with the same probability 
ontent.

We 
an, of 
ourse, 
hoose to state any one of these intervals. Commonly used


riteria to remove this arbitrariness are

1. Symmetri
 interval:

^

� � �

�

= �

+

�

^

�.

2. Shortest interval: �

+

� �

�

is the smallest possible, given �.

3. Central interval: the probability 
ontent below and above the interval are

equal, i.e., P (� < �

�

) = P (� > �

+

) = (1� �)=2.

For a symmetri
 distribution having a single maximum these 
riteria are equivalent.

We usually prefer intervals satisfying one (or more) of these 
riteria. However, non-


entral intervals will be preferred when there is some reason to be more 
areful on

one side than on the other, e.g., the amount of tritium emitted from a nu
lear power

station.

Normally distributed estimators. To illustrate the above pro
edure: Let t(x)

be an estimator of a parameter having true value �. As we have seen in the previous


hapter, many estimators are (at least asymptoti
ally) normally distributed about

the true value. Then t is a r.v. distributed as N(t; �; �

2

). Equation 9.2 is then

� = P (a � T � b) =

Z

b

a

N(t; �; �

2

) dt = erf

 

b� �

�

!

� erf

 

a� �

�

!

(9.5)

sin
e the 
.d.f. of the normal p.d.f. is the error fun
tion (
f. se
tion 3.7).

If � is not known, we 
an not evaluate the integral. Instead, assuming that � is

known, we transform to the r.v. z = t � �. The interval [
; d℄ for z 
orresponds to

the interval [� + 
; � + d℄ for t. Hen
e, equation 9.3 be
omes

� = P (� + 
 � T � � + d) =

Z

�+d

�+


N(t; �; �

2

) dt = erf

 

d

�

!

� erf

 




�

!

(9.6)

We 
an, for a given �, now 
hoose an interval [�+ 
; �+ d℄ satisfying this equation.

Now t � � + d implies that � � t� d and t � � + 
 implies that t� 
 � �. Hen
e,

the above interval in t-spa
e 
orresponds to the interval [t�d; t� 
℄ in �-spa
e, and

we have the desired 
on�den
e interval for �:

� = P (t� d � � � t� 
) (9.7)
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Again, we emphasize that although this looks like a statement 
on
erning the proba-

bility that � is in this interval, it is not, but instead means that we have a probability

� of being right when we assert that � is in this interval.

If neither � or � is known, one 
hooses the standardized variable z =

t��

�

. The

probability statement about Z is

� = P (
 � Z � d) =

Z

d




N(z; 0; 1) dz = erf(d)� erf(
) (9.8)

whi
h 
an be 
onverted into a probability statement for �:

� = P (t� d� � � � t+ 
�) (9.9)

For the normal distribution this 
onversion is easy, due to the symmetry of the

distribution between Z and �. Note however that equation 9.9 does not help us

very mu
h sin
e we do not know �. We will dis
uss this further in se
tion 9.4.2

9.2 Con�den
e belts

Now let us see how we 
onstru
t 
on�den
e intervals for an arbitrary p.d.f.

45

Suppose

that t(x) is an estimator of the parameter � with p.d.f. f(tj�). For a given value of

�, there will be values of t, t

�

(�) and t

+

(�) su
h that

� = P (t

�

� T � t

+

) =

Z

t

+

t

�

f(tj�) dt (9.10)

These values of t then de�ne an interval in t-spa
e, [t

�

; t

+

℄, with probability 
ontent

�. Usually the 
hoi
e of t

�

and t

+

is not unique, but may be �xed by an additional


riterion, e.g., by requiring a 
entral interval:

Z

t

�

�1

f(tj�) dt =

1� �

2

=

Z

+1

t

+

f(tj�) dt (9.11)

6

-

t

�

�

�

(

^

t)

�

+

(

^

t)

�

t

^

tt

�

(�

t

) t

+

(�

t

)

t

�

(�)

or �

+

(t)

t

+

(�)

or �

�

(t)

We do not, of 
ourse, know the

true value of �, and hen
e we are

unable to solve this equation for t

�

and t

+

. Nevertheless, we 
an make

a plot of t

�

(�) and t

+

(�) vs. �,

whi
h 
an also be viewed as a plot

of, respe
tively, �

+

(t) and �

�

(t) vs.

t. The region between the t

�

and

t

+


urves is known as a 
on�den
e

belt.

For an unbiased, normally dis-

tributed estimator, as in the previ-

ous se
tion, f(tj�) = N(t; �; �

2

) and the lines for � = 0:683 would be, from equation

9.11, t

�

(�) = � � � and t

+

(�) = � + �.
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For any value of �, the 
han
e of �nding a value of t in the interval [t

�

(�); t

+

(�)℄

is �, by 
onstru
tion. Conversely, having done an experiment giving a value t =

^

t,

the values of �

�

and �

+


orresponding to t

+

=

^

t and t

�

=

^

t 
an be read o� of the

plot as indi
ated. The interval [�

�

; �

+

℄ is then a 
on�den
e interval of probability


ontent � for �. This 
an be seen as follows:

Suppose that �

t

is the true value of �. A fra
tion � of experiments will then

result in a value of t in the interval [t

�

(�

t

); t

+

(�

t

)℄. Any su
h value of t would yield,

by the above-indi
ated method, an interval [�

�

; �

+

℄ whi
h would in
lude �

t

. On the

other hand, the fra
tion 1� � of experiments whi
h result in a value of t not in the

interval [t

�

(�

t

); t

+

(�

t

)℄ would yield an interval [�

�

; �

+

℄ whi
h would not in
lude �

t

.

Thus the probability 
ontent of the interval [�

�

; �

+

℄ is also �.

To summarize, given a measurement

^

t, the 
entral � 
on�den
e interval (�

�

�

� � �

+

) is the solution of

Z

^

t

�1

f(tj�

+

) dt =

1� �

2

=

Z

+1

^

t

f(tj�

�

) dt (9.12)

If f(t) is a normal p.d.f., whi
h is often (at least asymptoti
ally, as we have seen in


hapter 8) the 
ase, this interval is identi
al for � = 68:3% to [

^

���

^

�

< � <

^

�+�

^

�

℄. If

f(t) is not Gaussian, the interval of �1� (�

2

the varian
e of

^

�) does not ne
essarily


orrespond to � = 68:3%. In this 
ase the un
ertainty should be given whi
h does


orrespond to � = 68:3%. Su
h an interval is not ne
essarily symmetri
 about

^

�.

In `pathologi
al' 
ases, the 
on�den
e belt may wiggle in su
h a way that the

resulting 
on�den
e interval 
onsists of several dis
onne
ted pie
es. While mathe-

mati
ally 
orre
t, the use of su
h dis
onne
ted intervals may not be very meaningful.

9.3 Con�den
e bounds

As mentioned above, the 
hoi
e of 
on�den
e interval is usually not unique. In

many 
ases we prefer a 
entral interval. But sometimes an extremely non-
entral

interval is preferable from a physi
al standpoint. In parti
ular, 
on�den
e bounds,

i.e., upper or lower limits, are useful when the `best' value of a parameter is found

to be 
lose (or perhaps beyond) a physi
al boundary.

For an upper limit, t

+

(�) is 
hosen in�nite (or equal to the maximum allowed

value of t). Then, the fun
tion t

�

(�) is de�ned (equation 9.10) by

� = P (T > t

�

) =

Z

+1

t

�

f(tj�) dt

For a measurement

^

t, �

+

is read from this t

�

(�) 
urve as in the previous se
tion. In

other words, the upper limit, �

+

is the solution of

� = P (� < �

+

) =

Z

+1

^

t

f(tj�

+

) dt (9.13)
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The statement is then that � < �

+

with 
on�den
e �, and su
h an assertion will be


orre
t in a fra
tion � of the 
ases.

Lower limits are de�ned analogously: The lower limit �

�

, for whi
h � > �

�

with


on�den
e �, is found from

� = P (� > �

�

) =

Z

^

t

�1

f(tj�

�

) dt (9.14)

Note that we have de�ned these limits as > and <, whereas we used � and �

for 
on�den
e intervals. Some authors also use � and � for 
on�den
e bounds. For


ontinuous estimators, this makes no di�eren
e. However, for dis
rete estimators,

e.g., a number of events, the integral over the p.d.f. of the estimator is repla
ed by

a sum, and then this di�eren
e is important. This will be dis
ussed further for the

Poisson p.d.f. (se
tion 9.6).

9.4 Normal 
on�den
e intervals

The example of a normally distributed estimator has already been dis
ussed in the

introdu
tion (se
tion 9.1). There we saw that the situation is di�erent depending

on whether � is or is not known.

9.4.1 � known

If the varian
e, �

2

, of the estimator is known, the 
on�den
e interval is easily 
al
u-

lated, as shown in the introdu
tion. Suppose we have n measurements of an exa
t

quantity, �, like the mass of a ball, using an apparatus of known resolution, �

a

. The

estimate, �̂ = �x, of the quantity is then normally distributed as N(�̂;�; �

2

= �

2

a

=n),

and 
on�den
e intervals (equation 9.7) are 
omputed using � and the error fun
tion

(equation 9.6). The 
entral 
on�den
e belt is de�ned by straight lines 
orrespond-

ing to t

�

= �� b�, where b is the number of standard deviations 
orresponding to

probability �.

9.4.2 � unknown

But suppose that we do not know the resolution of the apparatus. As shown in the

introdu
tion, it is still possible to give a 
on�den
e interval, but only in terms of �

(equations 9.8 and 9.9). Sin
e � is not known, this is not parti
ularly useful.

Rather, the approa
h is to estimate � from the data. In the simple example of a

set of n measurements of the same quantity, x, with an apparatus of 
onstant, but

unknown resolution, �, the mean is estimated by �̂ = �x. As we have seen (equation

8.7), the resolution is then estimated by

�̂ = s =

s

n

n� 1

(x� �x)

2
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and the varian
e of the estimator is estimated by

V [�̂℄ =

s

2

n

Although z =

x��

�

is distributed as a standard normal p.d.f., i.e., z

2

is distributed

as �

2

, the 
orresponding variable for the 
ase of unknown �,

t =

x� �

�̂

=

(x� �)=�

�̂=�

=

z

�̂=�

is not. Instead, it follows Student's t distribution (se
tion 3.13). It is therefore not


orre
t to determine a 
on�den
e interval for � from the normal p.d.f.

Qualitatively we 
an understand that the 
on�den
e region will be somewhat

larger with � unknown than with � known, sin
e the region must also take into

a

ount 
u
tuations of s from the true value of �. It 
an be shown

6,11,13

that the


entral �-
on�den
e interval is given by

�

�

= �̂� T (

1

2

(1 + �);n� 1)

q

V [�̂℄ (9.15)

The fa
tor T is derived from the 
.d.f. of Student's t distribution. It is the value of

t for whi
h the 
.d.f. is equal to

1

2

(1 + �):

Z

T

�1

t(x;n� 1) dx =

1

2

(1 + �) (9.16)

In the 
ase of a least squares �t to measurements y

i

, all having the same (un-

known) Gaussian error �, this generalizes to

�

i�

=

^

�

i

� T (

1

2

(1 + �);n� k)

r

V

h

^

�

i

i

(9.17)

where n is the number of points and k the number of parameters in the model.

9.5 Binomial 
on�den
e intervals

For a binomial p.d.f., B(n;N; p), for whi
h we want to estimate the parameter p, the

experimental observation is the number of su

esses, n, in N trials. The estimator

of p is then n=N .
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For a given number of trials and various

values of p, the 
on�den
e-belt diagram


an be 
onstru
ted as before using sums

instead of integrals. Sin
e the estimator of

p, t = n=N 
an take on only dis
rete val-

ues, the t

�

(p) and t

+

(p) 
urves will have a

stair
ase-like form. Also, it will not usu-

ally be possible to �nd an interval for �

exa
tly equal to say 95%. One normally

then takes the next higher possible value,

i.e., one takes an interval with probability


ontent slightly larger that 95%.

6

-

t = n=N

p

t

�

(p)

t

+

(p)

For example, to �nd the 95% 
entral 
on�den
e interval for p, given that we

observe n su

esses in N trials, we �rst �nd the regions p < p

+

and p > p

�

using

the dis
rete analogues of equations 9.13 and 9.14 to �nd 97.5% upper and lower

limits

P (p < p

+

) =

N

X

k=n+1

B(k;N; p

+

) � 0:975 (9.18a)

P (p > p

�

) =

n�1

X

k=0

B(k;N; p

�

) � 0:975 (9.18b)

The smallest value of p

+

and the largest value of p

�

satisfying these equations give

the 
entral 95% 
on�den
e interval [p

�

; p

+

℄. In other words, we �nd the upper and

lower limits for 1�

1��

2

and then ex
lude these regions.

Using the � in these equations rather than taking the values of p for whi
h the

equality is most nearly satis�ed means that if no value gives an equality, we take

the next larger value for p

+

and the next smaller value for p

�

. This is known as

being 
onservative. It implies that for some values of p we have over
overage,

whi
h means that for some values of p the 
overage probability is a
tually greater

than the 95% that we 
laim, i.e., that P (p

�

< p < p

+

) > 0:95 instead of = 0:95.

This is not desirable, but the alternative would be to have under
overage for other

values of p. Sin
e we do not know what the true value of p is|if we did know, we

would not be doing the experiment|the lesser of two evils is to a

ept over
overage

in order to rule under
overage 
ompletely out.

9.6 Poisson 
on�den
e intervals

9.6.1 Large N

If the number of observed events is large, the Poisson p.d.f. is well approximated

by a Gaussian, and the Gaussian p.d.f. may be used to determine the 
on�den
e
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interval.

9.6.2 Small N | Con�den
e bounds

If the number of events is smaller a 
on�den
e interval may be determined in the

same way as for the binomial p.d.f.

However, for very small numbers of events one frequently prefers to state upper

or lower limits. The Poisson p.d.f. is a parti
ularly important 
ase for su
h limits,

sin
e many random pro
esses follow the Poisson p.d.f. (se
tion 3.4).

Some experiments sear
h for rare or `forbidden' pro
esses and 
on
lude by stat-

ing upper limits for their o

urren
e. For example, we may sear
h for the de
ay

�! e
, whi
h is forbidden in the standard theory of weak intera
tions, but whi
h

would be allowed in various proposed generalizations of this theory. Dete
tion of

su
h a de
ay would show that the standard theory was only an approximate theory,

and the rate, i.e., the fra
tion of �'s whi
h de
ay through this mode, would help to


hoose among the various alternative theories. Usually su
h experiments �nd a few

events whi
h are 
onsistent with the sear
hed-for pro
ess, but whi
h are not ne
es-

sarily eviden
e for it be
ause of possible ba
kground pro
esses. The experimental

result is then stated as an upper limit for the pro
ess.

On the other hand, a theory may predi
t that some pro
ess must not be zero.

Then an experiment will seek to give a lower limit.

When n events have been observed, the � upper limit �

+

for the parameter �

of the Poisson p.d.f. is, from equation 9.13, the solution of

� = P (� < �

+

) =

1

X

k=n+1

P (k;�

+

) =

1

X

k=n+1

e

��

+

�

k

+

k!

= 1�

n

X

k=0

P (k;�

+

) = 1�

n

X

k=0

e

��

+

�

k

+

k!

(9.19)

The solution is easily found using the fa
t that the sum in the right-hand side of

equation 9.19 is related to the 
.d.f. of the �

2

-distribution for 2(n + 1) degrees of

freedom.

4,5,46

Thus,

1� � =

n

X

k=0

P (k;�

+

) = P

h

�

2

(2n+ 2) > 2�

+

)

i

=

Z

1

2�

+

�

2

(2n+ 2) d�

2

(9.20)

The upper limit �

+


an thus be found from a table of the 
.d.f. of �

2

(2n + 2).

La
king a table, equation 9.19 
an be solved by iteration.

Let us emphasize, perhaps unne
essarily, exa
tly what the upper limit means: If

the true value of � is really �

+

, the probability that a repetition of the experiment

will �nd a number of events whi
h is as small or smaller than n is 1� �; for a true

value of � larger than �

+

, the 
han
e is even smaller. Thus we say that we are

`� 
on�dent' that � is less than �

+

. In making su
h statements, we will be right in

a fra
tion � of the 
ases.
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Similarly, the � lower limit, �

�

, is the solution of

� =

n�1

X

k=0

P (k;�

�

) =

n�1

X

k=0

e

��

�

�

k

�

k!

(9.21)

whi
h 
an be found from the 
.d.f. of the �

2

-distribution for 2n degrees of freedom.

Thus,

� =

n�1

X

k=0

P (k;�

�

) = P

h

�

2

(2n) > 2�

�

)

i

=

Z

1

2�

�

�

2

(2n) d�

2

(9.22)

The fa
t that it is here 2n degrees of freedom instead of 2(n + 1) as for the upper

limit is be
ause there are only n terms in the sum of equation 9.22 whereas there

were n+ 1 terms in the upper limit 
ase, equation 9.20.

9.6.3 Ba
kground

As mentioned above, there is usually ba
kground to the signal. The ba
kground

is also Poisson distributed. The sum of the two Poisson-distributed quantities is

also Poisson distributed (se
tion 3.7), with mean equal to the sum of the means of

the signal and ba
kground, � = �

s

+ �

b

. Assume that �

b

is known with negligible

error. However, we do not know the a
tual number of ba
kground events, n

b

, in our

experiment. We only know that n

b

� n. If �

b

+�

s

is large we may approximate the

Poisson p.d.f. by a Gaussian and take the number of ba
kground events as n̂

b

� �

b

.

Then �̂

s

= n� n̂

b

= n� �

b

, with varian
e V [�̂

s

℄ = V [n℄ + V [n̂

b

℄ = n + �

b

.

An upper limit may be found by repla
ing �

+

in equation 9.19 by (�

+

+ �

b

). A

lower limit may be found from equation 9.21 by a similar substitution. The results

are

�

+

= �

+

(noba
kground)� �

b

(9.23)

�

�

= �

�

(noba
kground)� �

b

(9.24)

A diÆ
ulty arises when the number of observed events is not large 
ompared

to the expe
ted number of ba
kground events. The situation is even worse when

the expe
ted number of ba
kground events is greater than the number of events

observed. For small enough n and large enough �

b

, equation 9.23 will lead to a

negative upper limit. So, if you follow this pro
edure, you may end up saying

something like \the number of whatever-I-am-trying-to-�nd is less than �1 with

95% 
on�den
e." To anyone not well versed in statisti
s this sounds like nonsense,

and you probably would not want to make su
h a silly sounding statement. Of


ourse, 95% 
on�den
e means that 5% of the time the statement is false. This is

simply one of those times, but still it sounds silly. We will return to this point in

se
tion 9.12.
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9.7 Use of the likelihood fun
tion or �

2

We have seen in se
tion 8.4.5 how to estimate the varian
e of a maximum likelihood

estimator. Using the asymptoti
 normality of maximum likelihood estimators, we


an �nd 
on�den
e intervals as for any normally distributed quantity with known

varian
e (equations 9.6 and 9.7):

^

� � d � � �

^

� + 
 with 
on�den
e � = erf

 

d

�

^

�

!

� erf

 




�

^

�

!

With smaller samples it is usually most 
onvenient to use the likelihood ratio

(di�eren
e in log likelihood) to estimate the 
on�den
e interval. Then, relying on

the assumption that a 
hange of parameters would lead to a Gaussian likelihood

fun
tion (
f. se
tion 8.4.5), the region for whi
h ` > `

max

� a

2

=2, or equivalently

(
f. se
tion 8.5.1) �

2

< �

2

min

+ a

2

, 
orresponds to a probability 
ontent

� =

Z

+a

�a

N(z; 0; 1) dz = erf(a)� erf(�a)

In `pathologi
al' 
ases, i.e., 
ases where there is more than one maximum, as

pi
tured here, the situation is less 
lear. Applying the above pro
edure would lead

to dis
onne
ted intervals, whereas the interval for the transformed parameter would

give a single interval. It is sometimes said that it is nevertheless 
orre
t to state a

� 
on�den
e interval as

6

-

`

�

1

�

2

�

3

�

4

�

1

� � � �

2

or �

3

� � � �

4

However, this statement seems to be the

result of 
onfusing 
on�den
e intervals

with �du
ial intervals (se
tion 9.8). Be

that as it may, the usefulness of su
h in-

tervals is rather dubious, and in any 
ase

gives an in
omplete pi
ture of the situation. One should 
ertainly give more details

than just stating these intervals.

The appli
ation of other methods of estimating the varian
e of

^

� to �nding


on�den
e intervals for �nite samples is dis
ussed in some detail by Eadie et al.

4

and James

5

.

9.8 Fidu
ial intervals

Con�den
e intervals, as developed by Neyman and dis
ussed in the previous se
-

tions, use a fully frequentist approa
h to probability. R. A. Fisher, a few years

earlier, had followed a somewhat di�erent, also frequentist, approa
h to interval

estimation

24

. His intervals are 
alled �du
ial intervals. A third approa
h is the

mu
h older Bayesian one, whi
h will be presented in the next se
tion.
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Fisher's 
on
ept of information (se
tion 8.2.5) is intimately related to the like-

lihood fun
tion. So too is his �du
ial interval.

In se
tion 8.4.2 we saw that asymptoti
ally the likelihood fun
tion L(x; �) be-


omes (under rather general assumptions) a Gaussian fun
tion of the parameters

�. This does not mean (as we have repeatedly emphasized) that L is a p.d.f. for

�. That only happens in a Bayesian interpretation, whi
h we are not making here.

Re
all that the prin
iple of maximum likelihood, i.e., that the best estimate of �

is that value of � for whi
h the likelihood fun
tion is a maximum, was not derived,

but assumed on intuitive grounds. In the same way we go now a step further and

assume, again intuitively, that L represents our level of 
reden
e in a value of �. A

�du
ial interval for a degree of 
reden
e � is de�ned as an interval [�

1

; �

2

℄ su
h that

� =

R

�

2

�

1

L d�

R

+1

�1

L d�

(9.25)

This pro
edure is supported by the 
onne
tion we have seen (se
tion 8.4.2)

between the asymptoti
 Gaussian shape of L and the varian
e of the maximum

likelihood estimator. And just as with the maximum likelihood method, the attra
-

tiveness of �du
ial intervals is based on asymptoti
 properties.

As with 
on�den
e intervals, a supplementary 
riterium, su
h as a 
entral inter-

val, is needed in addition to equation 9.25 to uniquely de�ne a �du
ial interval.

Often the 
on�den
e interval and �du
ial interval approa
hes lead to the same

interval. However, the approa
h, and hen
e the meaning, is di�erent. The 
on�-

den
e approa
h says that if we assert that the true value is in a 95% interval we

will be right 95% of the time. However, in the �du
ial approa
h the same assertion

means that we are 95% sure that we are right this time. This shift in emphasis is

the same as in the meaning of the likelihood fun
tion itself: We 
an regard L(x; �)

as an elementary probability in whi
h � is �xed and x varies, i.e., as the p.d.f. for

the r.v. X. On the other hand, we 
an regard it as a likelihood in whi
h x is �xed

and � varies, as is done in the maximum likelihood method. Similarly, in interval

estimation, we 
an regard � as a 
onstant and set up 
ontaining intervals whi
h are

random variables (the 
on�den
e interval approa
h); or we 
an regard the observa-

tions as �xed and set up intervals based on some unde�ned intensity of belief in the

values of the parameter generating the observations (the �du
ial interval approa
h).

Today, �du
ial intervals are seldom used, sin
e they la
k a �rm mathemati
al

basis. If one is a frequentist, one generally prefers 
on�den
e intervals.

9.9 Credible (Bayesian) intervals

Con�den
e intervals are based on the frequentist interpretation of probability and

are statements about the probability of experimental results. Fidu
ial intervals are

also based on the frequentist interpretation of probability (the parameters � have

�xed true values) but represent our 
reden
e (or belief) about the values of the
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parameters. However, we may prefer to use Bayesian probability. In this 
ase we 
an


onstru
t intervals, [a; b℄, 
alled 
redible intervals, Bayesian 
on�den
e intervals,

or simply Bayesian intervals, su
h that � is the probability that parameter � is

in the interval:

� = P (a � � � b) =

Z

b

a

f(�jx) d� (9.26)

where f(�jx) is the Bayesian posterior p.d.f. As with 
on�den
e and �du
ial inter-

vals, supplementary 
onditions, su
h as 
entrality, are needed to uniquely spe
ify

the interval. We have seen in se
tion 8.4.5 that, assuming Bayes' postulate, f(�jx)

is just the likelihood fun
tion L(x; �), apart, perhaps, from normalization.

9.10 Dis
ussion of intervals

We have presented three approa
hes to interval estimation: 
on�den
e intervals,

�du
ial intervals, and 
redible (or Bayesian) intervals. In 
ases where the likelihood

fun
tion is a Gaussian fun
tion of the parameters, as is usually true asymptoti
ally,

these approa
hes (with a suitable 
hoi
e of prior in the Bayesian 
ase) all lead to the

same interval. Though this is 
omforting, we must realize that in less ideal 
ir
um-

stan
es the intervals given by the di�erent approa
hes may be di�erent. This does

not mean that any of the approa
hes is wrong, but rather that they are answering

di�erent questions or making di�erent assumptions.

The virtue of the 
on�den
e interval approa
h is its �rm grounding in frequentist

probability. The Bayesian approa
h is also �rmly grounded, but loses something

in obje
tivity by its subje
tive Bayesian interpretation of probability as a degree of

belief. Further, it su�ers from its need for an arbitrary 
hoi
e of prior probability

(Bayes' postulate). The �du
ial approa
h is well-grounded only where its results

are identi
al to the other approa
hes. Extension to other 
ases is more a question

of intuition.

We thus are in
lined to prefer the 
on�den
e interval approa
h even though it

is a very 
ompli
ated pro
edure 
ompared to the other approa
hes. However, the


on�den
e interval approa
h is unable to in
orporate prior information, as we will

see in the next se
tion.

9.11 Measurement of a bounded quantity

Let us return to the example in the introdu
tion (se
tion 9.1). A dish is weighed, a

sample is pla
ed on the dish and the 
ombination is weighed, and then the mass of

the sample is estimated by subtra
ting the mass of the dish from the mass of the

dish plus sample. If the mass of the sample is smaller than or 
omparable to the

resolution of the balan
e, the 
on�den
e interval [�1; 0℄ will have a non-negligible

probability 
ontent. This is 
learly ridi
ulous and 
omes about be
ause we have

not made use of our knowledge that the mass must be positive. Su
h a situation
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an also o

ur when we must subtra
t a number of ba
kground events from the

observed number of events to �nd the number of events in the signal; a number of

events also 
an not be negative.

The problem is how to in
orporate this 
onstraint (or prior knowledge) into

the 
on�den
e interval. In the 
on�den
e interval approa
h there is no way to

do this. The best we 
an do is to 
hoose an interval whi
h does not 
ontain the

forbidden region (< 0 in our example). Consider the �gure showing 
on�den
e

belts in se
tion 9.2. Suppose that we know that �

t

> �

min

. We 
an think of several

alternatives to the interval [�

�

; �

+

℄ when �

�

< �

+

:

1. [�

min

; �

+

℄. But this is the same interval we would have found using a 
on�den
e

belt with t

+

shifted upwards su
h that the t

+


urve passes through the point

(�

min

;

^

t ). This 
on�den
e belt 
learly has a smaller �. This pla
es us in the

position of stating the same 
on�den
e for two intervals, the one 
ompletely


ontained in, and smaller than, the other.

2. [�

min

; �

00

+

℄, where �

00

+

is the solution of t

min

(�) = t

min

, with t

min

= t

+

(�

min

). This

is the interval we would have stated had we found

^

t = t

+

(�

min

). So, apparently

the fa
t that we found a lower value of

^

t does not mean anything|any value of

^

t smaller than t

+

(�

min

) leads to the same 
on�den
e interval! This pro
edure

is 
learly unsatisfa
tory.

3. [�

min

; �

0

+

℄, where �

0

+

is determined from a new 
on�den
e belt 
onstru
ted

su
h that the t

+


urve passes through the point (�

min

;

^

t ). The t

�


urve is

taken as that 
urve whi
h together with this new t

+


urve gives the required

�. This approa
h seems better than the previous two. However, it is still

unsatisfa
tory sin
e it relies on the measurement to de�ne the 
on�den
e

belt.

The situation is even worse if not only �

�

(

^

t) < �

min

but also �

+

(

^

t) > �

max

. Then

we �nd ourselves in the absurd situation of, e.g., stating the 
on
lusion of our

experiment as �0:2 < � < 1:2 with 95% 
on�den
e when we know that 0 < � < 1|

we are only 95% 
on�dent that � is within its physi
al limits! The best pro
edure

to follow has been the subje
t of mu
h interest lately among high energy physi
ists,

parti
ularly those trying to measure the mass of the neutrino and those sear
hing

for hypotheti
al new parti
les. The most reasonable pro
edure seems to be

47

that of

Feldman and Cousins,

48

who redis
overed a pres
ription previously given by Kendall

and Stuart.

11

On the other hand, in the �du
ial approa
h physi
al boundaries are easily in-


orporated. The likelihood fun
tion is simply set to zero for unphysi
al values of

the parameters and renormalized. Equation 9.25 is thus repla
ed by

� =

R

�

2

�

1

L d�

R

�

max

�

min

L d�

(9.27)
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Also the Bayesian approa
h has no diÆ
ulty in in
orporating the physi
al limits.

They are naturally imposed on the prior probability. If the prior probability is

uniform within the physi
al limits, the result is the same interval as in the �du
ial

approa
h (equation 9.27).

Note, however, that in order to 
ombine with the results of other experiments,

the (nonphysi
al) estimate and its varian
e should be stated, as well as the 
on-

�den
e interval. This, in fa
t, should also be done for quantities whi
h are not

bounded.

9.12 Upper limit on the mean of a Poisson p.d.f.

with ba
kground

In se
tion 9.6.3 we introdu
ed the problem of measuring an upper limit on the

number of (Poisson distributed) events for a parti
ular pro
ess in the presen
e of

ba
kground. This is related to the problems of the previous se
tion. The number of

events 
an not be negative; it is a bounded quantity. Within the 
lassi
al 
on�den
e

limit approa
h, the most reasonable pro
edure here too is that of Feldman and

Cousins

48

.

Another approa
h is to determine an upper limit by an extension of the argument

of se
tion 9.6.

46,49

As in that se
tion, let n be the number of events observed, n

b

the

expe
ted number of ba
kground events, and �

+

the upper limit on �

s

. Then �

+

is

that value of �

s

su
h that any random repetition of the 
urrent experiment would,

if �

s

a
tually equals �

+

, result in more than n events and would also have n

b

� n,

all with probability �. Thus, in equation 9.19 the sum, whi
h is the probability of

� n events given � = �

+

, is repla
ed by the same probability given � = �

b

+ �

+

normalized to the probability that n

b

� n.

� = 1�

P (� n events)

P (� n ba
kground events)

= 1�

e

�(�

�

+

+b

)

P

n

k=0

(�

+

+�

b

)

k

k!

e

��

b

P

n

k=0

�

k

b

k!

(9.28)

This equation must be solved for �

+

. In pra
ti
e this is best done numeri
ally,

adjusting �

+

until the desired � is obtained. However, to in
orporate the probability

that n

b

� n, we have been Bayesian. The result is thus a 
redible upper limit rather

than a 
lassi
al upper limit.

When �

b

is not known to a negligible error, the same approa
h 
an be used.

However, we must integrate over the p.d.f. for n

b

. It is most 
onvenient to use a

Monte Carlo te
hnique. We generate a sample of Monte Carlo experiments taking �

b

randomly distributed a

ording to our knowledge of �

b

(usually normally) and with

a �xed �

s

. Experiments with n

b

> n are reje
ted. The sum in equation 9.19 or 9.21

is then estimated by the fra
tion of remaining Monte Carlo experiments satisfying
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the 
orresponding probability. The pro
ess is repeated for di�erent values of �

s

until the desired value of � is found.

50



\Whi
h way ought I to go to get from here?"

\That depends a good deal on where you want to get to," said the Cat.

\I don't mu
h 
are where|" said Ali
e.

\Then it doesn't matter whi
h way you go," said the Cat.

|Lewis Carroll, \Ali
e in Wonderland"

Chapter 10

Hypothesis testing

10.1 Introdu
tion

In 
hapter 8 we were 
on
erned with estimating parameters of a p.d.f. using a statis-

ti
 
al
ulated from observations assumed to be distributed a

ording to that p.d.f.

In 
hapter 9 we sought an interval whi
h we were 
on�dent (to some spe
i�ed de-

gree) 
ontained the true value of the parameter. In this 
hapter we will be 
on
erned

with whether some previously designated value of the parameter is 
ompatible with

the observation, or even whether the assumed p.d.f. is 
ompatible. In a sense, this

latter question logi
ally pre
edes the estimation of the value of a parameter, sin
e

if the p.d.f. is in
ompatible with the data there is little sense in trying to estimate

its parameters.

When the hypothesis under test 
on
erns the value of a parameter, the problems

of hypothesis testing and parameter testing are related and te
hniques of parameter

estimation will lead to analogous testing pro
edures. If little is known about the

value of a parameter, you will want to estimate it. However, if a theory predi
ts

it to have a 
ertain value, you may prefer to test whether the data are 
ompatible

with the predi
ted value. In either 
ase you should be 
lear whi
h you are doing.

That others are often 
onfused about this is no ex
use.

10.2 Basi
 
on
epts

The question here is thus one of hypothesis testing. We make some hypothesis

and want to use experimental observations to test whether it is 
orre
t. Not all

s
ienti�
 hypotheses 
an be tested statisti
ally. For instan
e, the hypothesis that

199
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every parti
le in the universe attra
ts every other parti
le 
an not be tested sta-

tisti
ally. Statisti
al hypotheses 
on
ern the distributions of observable random

variables. Suppose we have N su
h observations. We denote them by a ve
tor x

in an N -dimensional spa
e, 
, 
alled the sample spa
e (se
tion 2.1.2), whi
h is the

spa
e of all possible values of x, i.e., the spa
e of all possible results of an experi-

ment. A statisti
ally testable hypothesis is one whi
h 
on
erns the probability of a

parti
ular observation X, P (X 2 
).

Suppose that x 
onsists of a number of independent measurements of a r.v., x

i

.

Let us give four examples of statisti
al hypotheses 
on
erning x:

1. The x

i

are distributed normally with parti
ular values of � and �.

2. The x

i

are distributed normally with a parti
ular value of �.

3. The x

i

are distributed normally.

4. The results of two experiments, x

1i

and x

2i

are distributed identi
ally.

Ea
h of these hypotheses says something about the distribution of probability over

the sample spa
e and is hen
e statisti
ally testable by 
omparison with observations.

Examples 1 and 2 spe
ify a p.d.f. and 
ertain values for one or both of its pa-

rameters. Su
h hypotheses are 
alled parametri
 hypotheses. Example 3 spe
i�es

the form of the p.d.f., but none of its parameters, and example 4 does not even

spe
ify the form of the p.d.f. These are examples of non-parametri
 hypothe-

ses, i.e., no parameter is spe
i�ed in the hypothesis. We shall mainly 
on
entrate

on parametri
 hypotheses, leaving non-parametri
 hypotheses to se
tion 10.7.

Examples 1 and 2 di�er in that 1 spe
i�es all of the parameters of the p.d.f.,

whereas 2 spe
i�es only a subset of the parameters. When all of the parameters are

spe
i�ed the hypothesis is termed simple; otherwise 
omposite. If the p.d.f. has n

parameters, we 
an de�ne an n-dimensional parameter spa
e. A simple hypothesis

sele
ts a unique point in this spa
e. A 
omposite hypothesis sele
ts a subspa
e


ontaining more than one point. The number of parameters spe
i�ed exa
tly by

the hypothesis is 
alled the number of 
onstraints. The number of unspe
i�ed

parameters is 
alled the number of degrees of freedom of the hypothesis. Note the

similarity of terminology with that used in parameter estimation:

Parameter Estimation Hypothesis Testing

n = number of observations parameters

k = number of parameters parameters spe
i�ed

to be by the hypothesis

estimated (
onstraints)

n� k = number of degrees of freedom
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To test an hypothesis on the basis of a random sample of observations, we must

divide the sample spa
e 
 into two subspa
es. If the observation x lies in one of these

subspa
es, 
all it !, we shall reje
t the hypothesis; if x lies in the 
omplementary

region, !

�

= 
 � !, we shall a

ept the hypothesis. The subspa
e ! is 
alled the


riti
al region of the test, and !

�

is 
alled the a

eptan
e region.

A few words are in order regarding this terminology. In s
ien
e we 
an never


ompletely reje
t or a

ept an hypothesis. Nevertheless, the words \reje
t" and

\a

ept" are in 
ommon usage. They should be understood as meaning \the ob-

servations are unfavorable" or \favorable" to the hypothesis. Sin
e a

eptan
e or

reje
tion is never 
ertain, it is 
lear that we also need to be able to state our de-

gree of 
on�den
e in a

eptan
e or reje
tion, just as when 
onstru
ting 
on�den
e

intervals we did so with a spe
i�ed 
on�den
e.

The hypothesis being tested is generally designated H

0

and is 
alled the null

hypothesis. For the time being, we will assume that H

0

is a simple hypothesis,

i.e., it spe
i�es the p.d.f. 
ompletely. We 
an then 
al
ulate the probability that

a random observation will fall in the 
riti
al region, and we 
an 
hoose this region

su
h that this probability is equal to some pre-
hosen value, �,

P (x 2 !jH

0

) = � (10.1)

This value � is thus the probability of reje
ting H

0

if H

0

is true. It is 
alled the

size of the test or the level of signi�
an
e, although this latter term 
an be

misleading. For a dis
rete p.d.f. the possible values of � will also be dis
rete, while

for a 
ontinuous p.d.f. any value of � is possible.

In general, there will be many, often an in�nity, of subspa
es ! of the same size

�. Whi
h of them should we use? In other words, whi
h of all possible observations

should we regard as favoring and whi
h as disfavoring H

0

?

To de
ide whi
h subspa
e to take as !, we need to know what the alternatives

are. It is perfe
tly possible that an observation is unlikely under H

0

but even more

unlikely under an alternative hypothesis. For
ed to 
hoose between the two we

would not want to reje
t H

0

. Thus whether we a

ept or reje
t H

0

depends on

what the alternative hypothesis, usually designated H

1

, is.

It should now be 
lear that a 
riti
al region (or, synonymously, a test) must be

judged by its properties both when H

0

is true and when H

0

is false. We want to

a

ept H

0

if it is true and reje
t it if it is false. Our de
ision, i.e., a

eptan
e or

reje
tion, 
an be wrong in two ways:

1. Error of the �rst kind, or loss, or false negative: H

0

is true, but we

reje
t it.

2. Error of the se
ond kind, or 
ontamination, or false positive: H

0

is

false, but we a

ept it.

The probability of making an error of the �rst kind is equal to the size of the


riti
al region, �. The probability of making an error of the se
ond kind depends
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on the alternative hypothesis and is denoted

�

by �:

P (x 2 !

�

jH

1

) = � (10.2)

The 
omplementary probability,

P (x 2 !jH

1

) = 1� � (10.3)

is 
alled the power of the test of H

0

against H

1

. The spe
i�
ation of H

1

when

giving the power is 
learly essential sin
e � depends on H

1

.

Clearly, we would like a test to have small values of both � and �. However,

it is usually a trade-o�: de
reasing � frequently in
reases � and vi
e versa. Let us


onsider two examples where H

0

and H

1

are both simple hypotheses.

Example 1. Consider H

0

and H

1

both of whi
h hypothesize that the r.v. X

is normally distributed with standard deviation �. The di�eren
e between the

hypotheses lies in the value of �. For H

0

it is �

0

and for H

1

it is �

1

. We make two

independent observations x

1

and x

2

to test H

0

against H

1

.

The two observations 
an be represented by a point in 
, whi
h is a plane having

x

1

and x

2

as axes. The joint p.d.f. under H

0

is a bivariate normal distribution


entered at the point A, i.e., at x

1

= x

2

= �

0

. The density of points about A in

the �gure is meant to represent this p.d.f. Under H

1

the p.d.f. is the same ex
ept

that it is 
entered at the point B, x

1

= x

2

= �

1

.

A test of H

0


ould be made by de�ning ! by the line PQ with H

0

6
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to be reje
ted if the point representing

the observations lies above the line PQ.

Another possible 
riti
al region is that

between the lines CA and AD. Both of

these regions have the same probability

under H

0

and hen
e the same size, �.

However, the values of � are mu
h

di�erent. The �rst test will almost al-

ways reje
t H

0

when H

1

is true, while

the se
ond test will often wrongly a
-


ept H

0

. Thus � is mu
h larger for the

se
ond test, and hen
e the power of the

�rst test is larger. It should be obvious

that the more powerful test is prefer-

able.

Example 2. In the previous example the sample spa
e was only two dimensions.

When the dimensionality is larger, it is in
onvenient to formulate the test in terms of

the 
omplete sample spa
e. Rather, a small number

�

The symbols � and � are used by most authors for the probabilities of errors of the �rst and
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H

1

H

0

M

f(M)

0 M




M

�

0

�

H

H

�

�

�

(frequently one) of test statisti
s is

de�ned and the test is formulated in

terms of them. In fa
t, as we shall later

see, in some 
ases a single test statis-

ti
 provides the best test. Re
all that

a statisti
 is a fun
tion only of the ob-

servations and does not depend on any

assumptions about the p.d.f.

Suppose that we want to distin-

guish K

�

p elasti
 s
attering events

from inelasti
 s
attering events where

a �

0

is produ
ed. The hypotheses are

then

H

0

: K

�

p!K

�

p

H

1

: K

�

p!K

�

p�

0

If the experiment measures the mo-

menta and energies of 
harged parti
les

but does not dete
t neutral parti
les, a


onvenient test statisti
 is the missing

mass, the mass of the neutral system

in the �nal state. This is easily 
al
ulated from the energies and momenta of the

initial- and �nal-state 
harged parti
les. The true value of the missing mass is

M = 0 under H

0

, and M = 135 MeV/


2

under H

1

. We 
an 
hoose a 
riti
al region

M > M




. The 
orresponding loss and 
ontamination are shown in the �gure. The


hoi
e ofM




will be governed by balan
ing our interest in both small loss and small


ontamination.

Note that the a
tual 
ontamination in our sample of elasti
 events depends on

the a priori abundan
e of inelasti
 events produ
ed. If this is small 
ompared to

that of elasti
 events, we 
an tolerate a large value of �.

10.3 Properties of tests

In parameter estimation we were fa
ed with the problem of 
hoosing the best esti-

mator. Here a similar situation arises: we seek the best test. To aid us, we examine

some properties of tests.

10.3.1 Size

In the previous se
tion we de�ned (equation 10.1) the size, �, of a test as the

probability that the test would reje
t the null hypothesis when it is true. If H

0

is

a simple hypothesis, the size of a test 
an be 
al
ulated. In other 
ases it is not

se
ond kind. However, some authors use 1� � where we use �.



204 CHAPTER 10. HYPOTHESIS TESTING

always possible. Clearly a test of unknown size is worthless.

10.3.2 Power

We have de�ned (equation 10.3) the power, 1 � �, of a test of one hypothesis H

0

against another hypothesis H

1

as the probability that the test would reje
t H

0

when

H

1

is true. If H

1

is a simple hypothesis, the power of a test 
an be 
al
ulated. If

H

1

is 
omposite, the power 
an still be 
al
ulated, but is in general no longer a


onstant but a fun
tion of the parameters.

Suppose that H

0

and H

1

spe
ify the same p.d.f., the di�eren
e being the value

of the parameter �:

H

0

: � = �

0

H

1

: � 6= �

0

The 
ontamination, �, is then a fun
tion of �, as is the power:

p(�) = 1� �(�) (10.4)

Note that by de�nition, p(�

0

) = 1� �(�

0

) = �.

Tests may then be 
ompared on the basis of their power fun
tion. If H

0

and

H

1

are both simple, the best test of size (at signi�
an
e level) � is the test with

maximum power at � = �

1

, the value spe
i�ed by H

1

. In the �gure, test B has the

largest power for � > �

0

and in parti
ular at � = �

1

, whereas test C is more powerful

for �

0

< � < �

0

.

-

�

0

�

0

�

1

�

0

p(�)

1

�

B

A

C

If for a given value of � a test is

at least as powerful as any other

possible test of the same size, it

is 
alled a most powerful (MP)

test at that value of �, and its 
rit-

i
al region is 
alled a best 
riti-


al region (BCR). A test whi
h

is most powerful for all regions of �

under 
onsideration is 
alled a uni-

formly most powerful (UMP)

test. Clearly, if a test is MP at �

1

and the test is independent of �

1

, then it is UMP. It is frequently not possible to

�nd an UMP test, although we will see in se
tion 10.4.1 that if H

0

and H

1

are both

simple hypotheses, then an UMP test always exists. Unfortunately, in real life an

UMP test does not usually exist. An UMP test whi
h is also unbiased (se
tion

10.3.4) is 
alled UMPU.

10.3.3 Consisten
y

A highly desirable property of a test is that, as the number of observations in-


reases, it should distinguish better between the hypotheses. A test is termed
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-

�

0

�

0

p(�)

1

�

�

�

�

�

�

�I

N


onsistent if the power tends to

unity as the number of observations

in
reases:

lim

N!1

P (x 2 !jH

1

) = 1

where x is the set of N observations

and ! is the 
riti
al region under

H

0

. The power fun
tion thus tends

to a step fun
tion as N !1.

10.3.4 Bias

A test is biased if the power fun
-

tion is smaller at a value of � 
orresponding to H

1

than at the value, �

0

, spe
i�ed

by H

0

, i.e., when there exists a value � for whi
h

p(�) = 1� �(�) < � ; � 6= �

0

An example is test B at � = �

1

in the �gure. In su
h a 
ase the 
han
e of a

epting

H

0

is greater when � = �

1

than when � = �

0

, whi
h means we are more likely to

a

ept H

0

when it is false than when it is true. Su
h a test is 
learly undesirable in

general.

-

�

0

�

1

�

2

�

0

p(�)

1

�

BA

In some situations it may be

preferable to use a biased test. For

example, test B may be 
hosen

rather than test A if it is parti
u-

larly important to be able to dis-


riminate against � = �

2

, where test

B is more powerful than A. How-

ever, in so doing all dis
rimination

between H

0

and H

1

in the region of

�

1

is lost.

The de�nition of a biased test 
an be formulated in a way whi
h is also appli
able

for 
omposite hypotheses. Let H

0

spe
ify that � is in some interval �

0

. Then a test

is unbiased if

P (x 2 !j�)

�

� �; for all � 2 �

0

� �; for all � =2 �

0

In real life it is usually possible to �nd an unbiased test.

10.3.5 Distribution-free tests

Most of the time we do not invent our own tests, but instead use some standard

test. To be `standard', the distribution of the test statisti
, and hen
e the size of
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the 
riti
al region, must be independent of the p.d.f. spe
i�ed by H

0

. It 
an only

depend on whether H

0

is true. Su
h a test is 
alled distribution-free. An example

is the well-known Pearson's �

2

test, whi
h we shall meet shortly.

It should be emphasized that it is only the size or level of signi�
an
e of the

test whi
h does not depend on the distributions spe
i�ed in the hypotheses. Other

properties of the test do depend on the p.d.f.'s. In parti
ular, the power will depend

on the p.d.f. spe
i�ed in H

1

.

10.3.6 Choi
e of a test

Traditionally, the 
hoi
e of a test is done by �rst spe
ifying the loss � and then


hoosing the test on the basis of the power. This pro
edure assumes that the risk

of an error of the �rst kind (loss) is a given 
onstant, and that one only has to

minimize the risk of an error of the se
ond kind (
ontamination).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

1

1

�

��

1

A

A

B

B

C

N-P

However, this is frequently not the


ase. We want to have both kinds of

errors as small as possible. It is then

advantageous to take both � and � as

variables in 
omparing the tests. As-

sume, for simpli
ity, that both H

0

and

H

1

are simple, spe
ifying �

0

and �

1

, re-

spe
tively. Then, for a given test and

a given value of � = p(�

0

), one 
an de-

termine � = 1 � p(�

1

). Repeating for

di�erent values of �, a 
urve giving �

as a fun
tion of � 
an be 
onstru
ted,

as shown in the �gure.

The dashed line in the �gure 
orre-

sponds to 1 � � = �, so that all unbi-

ased test 
urves will lie entirely below this line, passing through the points (1,0)

and (0,1). Sin
e we desire to have both � and � small, test C in the �gure is 
learly

inferior to the others for all values of � and �. If both H

0

and H

1

are simple, there

always exists a test (the Neyman-Pearson test, 
f. se
tion 10.4.1) whi
h is at least

as good as any other test for all � and �. If this test is too 
ompli
ated, or in the


ase of 
omposite hypotheses, one 
ould be in the position of 
hoosing, for example,

between tests A and B. Clearly, test A should be 
hosen for � < �

1

and test B for

� > �

1

.

If the hypotheses are 
omposite, the �gure 
an be
ome a multidimensional dia-

gram with new axes 
orresponding to � or to other unspe
i�ed parameters. Or ea
h

test 
an be represented by a family of 
urves in the �-� plane.

A minor diÆ
ulty arises when dis
rete distributions are involved, sin
e only a

dis
rete set of �'s are then available, and the �-� 
urves are dis
ontinuous.

The above te
hniques allow one to 
hoose the best test. Whether it is good
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enough depends on the 
ost (in terms of su
h things as time and money) of making

an error, i.e., a wrong de
ision.

10.4 Parametri
 tests

10.4.1 Simple Hypotheses

The Neyman-Pearson test

When bothH

0

andH

1

are simple hypotheses, the problem of �nding the best 
riti
al

region (BCR), or most powerful (MP) test, of size � is parti
ularly straightforward,

as was shown by Neyman and Pearson.

51

We suppose that the r.v. x is distributed under H

0

as f(x; �

0

) and under H

1

as

g(x; �

1

). Then equations 10.1 and 10.3 
an be written

P (x 2 !

�

j H

0

) =

Z

!

�

f(x; �

0

) dx = � (10.5)

P (x 2 !

�

j H

1

) =

Z

!

�

g(x; �

1

) dx = 1� � (10.6)

We want to �nd the 
riti
al region !

�

whi
h, for a given value of �, maximizes

1� �. Rewriting equation 10.6, we have

1� � =

Z

!

�

g(x; �

1

)

f(x; �

0

)

f(x; �

0

) dx

= E

!

�

"

g(x; �

1

)

f(x; �

0

)

�

�

�

�

�

H

0

#

whi
h is the expe
tation of g(x; �

1

)=f(x; �

0

) in the region !

�

assuming that H

0

is

true. This will be maximal if we 
hoose the region !

�

as that region 
ontaining the

points x for whi
h this ratio is the largest. In other words, we order the points x

a

ording to this ratio and add these points to ! until ! has rea
hed the size �.

The BCR thus 
onsists of the points x satisfying

f(x; �

0

)

g(x; �

1

)

� 


�

where 


�

is 
hosen su
h that !

�

is of size � (equation 10.5).

This ratio is, for a given set of data, just the ratio of the likelihood fun
tions,

whi
h is known as the likelihood ratio. We therefore use the test statisti


� =

L(xjH

0

)

L(xjH

1

)

(10.7)

and

reje
t H

0

if � � 


�

a

ept H

0

if � > 


�

This is known as the Neyman-Pearson test.
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An Example

As an example, 
onsider the normal distribution treated in example 1 of se
tion

10.2. BothH

0

andH

1

hypothesize a normal p.d.f. of the same varian
e, but di�erent

means, �

0

underH

0

and �

1

underH

1

. The varian
e is, for both hypotheses, spe
i�ed

as �

2

. The 
ase where the varian
e is not spe
i�ed is treated in se
tion 10.4.3. The

likelihood fun
tion under H

i

for n observations is then

L(xjH

i

) = (2�)

�n=2

exp

2

4

�

1

2

n

X

j=1

(x

j

� �

i

)

2

�

2

3

5

= (2�)

�n=2

exp

�

�

n

2�

2

n

s

2

+ (�x� �

i

)

2

o

�

where �x and s

2

are the sample mean and sample varian
e, respe
tively. Hen
e, our

test statisti
 is (equation 10.7)

� =

L(xjH

0

)

L(xjH

1

)

= exp

�

n

2�

2

n

(�x� �

1

)

2

� (�x� �

0

)

2

o

�

= exp

�

n

2�

2

n

2�x(�

0

� �

1

) + (�

2

1

� �

2

0

)

o

�

and the BCR is de�ned by � � 


�

or

�x(�

0

� �

1

) +

1

2

(�

2

1

� �

2

0

) �

�

2

n

ln 


�

whi
h be
omes

�x �

1

2

(�

1

+ �

0

)�

�

2

n

ln 


�

�

1

� �

0

if �

1

> �

0

(10.8)

�x �

1

2

(�

1

+ �

0

) +

�

2

n

ln 


�

�

0

� �

1

if �

1

< �

0

(10.9)

Thus we see that the BCR is determined by the value of the sample mean. This

should not surprise us if we re
all that �x was an eÆ
ient estimator of � (se
tion

8.2.7).

In applying the test, we reje
t H

0

if �

1

> �

0

and �x is above a 
ertain 
riti
al

value (equation 10.8), or if �

1

< �

0

and �x is below a 
ertain 
riti
al value (equation

10.9).

To �nd this 
riti
al value, we re
all that �x itself is a normally distributed r.v.

with mean � and varian
e �

2

=n. (This is the result of the 
entral limit theorem,

but when the p.d.f. for x is normal, it is an exa
t result for all n.) We will treat the


ase of �

1

> �

0

and leave the other 
ase as an exer
ise for the reader.

For �

1

> �

0

, the right-hand side of equation 10.8 is just �x

�

given by

r

n

2��

2

Z

1

�x

�

exp

�

�

n

2�

2

(�x� �

0

)

2

�

d�x = �
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Transforming to a standard normal variable,

z =

�x� �

0

�=

p

n

(10.10)

we 
an rewrite this in terms of the standard normal integral, whi
h is given by the

error fun
tion (se
tion 3.7):

� =

1

p

2�

Z

1

z

�

e

�z

2

=2

dz =

1

p

2�

Z

�z

�

�1

e

�z

2

=2

dz = erf(�z

�

) (10.11)

For example, for � = 0:05 we �nd in a table that z

�

= 1:645. For �

0

= 2, � = 1,

and n = 25, this value of z

�

inserted in equation 10.10 yields �x

�

= 2:33. Then if

�x > 2:33, we reje
t H

0

with a level of signi�
an
e of 5%.

The power of the test 
an also be easily 
omputed in this example. It is

r

n

2��

2

Z

1

�x

�

exp

�

�

n

2�

2

(�x� �

1

)

2

�

d�x = 1� �

whi
h, in terms of the error fun
tion and the z

�

de�ned above, 
an be written

1� � = 1� erf

 

p

n

�

(�

0

� �

1

) + z

�

!

= erf

 

p

n

�

(�

1

� �

0

)� z

�

!

(10.12)

We see that the power in
reases monotoni
ally with both n and �

1

� �

0

.

10.4.2 Simple H

0

and 
omposite H

1

In the previous se
tion we have seen how to 
onstru
t the best test between two

simple hypotheses. Unfortunately, no su
h generally optimal method exists when

H

0

and/or H

1

is not simple.

Suppose that we want to test a simple H

0

against a 
omposite H

1

. Let us �rst

treat an H

1

whi
h is just a 
olle
tion of simple hypotheses, e.g., under H

0

� = �

0

,

and under H

1

� = �

1

or �

2

or �

3

or : : : �

n

. We 
ould imagine testing H

0

against ea
h

of these alternatives separately using a MP test as found in se
tion 10.4.1. However,

this would lead in general to a di�erent 
riti
al region in ea
h 
ase and most likely

to a

eptan
e of H

0

in some 
ases and reje
tion in others. We are therefore led to

inquire whether there exists one BCR for all the alternative values. A test using

su
h a BCR would be UMP.

UMP test for the exponential family

Unfortunately, an UMP test does not generally exist. One important 
ase where

an UMP test does exist is when the p.d.f. of H

0

and H

1

is of the exponential

family (se
tion 8.2.7), but then only for `one-sided' tests.

4,5

We illustrate this for

the Gaussian p.d.f. from our results of se
tion 10.4.1.
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In that example we saw that for �

1

> �

0

a BCR was given by �x � b

�

and for

�

1

< �

0

by �x � a

�

. Thus if H

1


ontains only values greater than, or only values

less than �

0

, we have a (one-sided) UMP test, but not if H

1

allows values of �

on both sides of �

0

. In su
h 
ases we would intuitively expe
t that a 
ompromise


riti
al region de�ned by �x � a

�=2

or �x � b

�=2

would give a satisfa
tory `two-

sided' test, and this is what is usually used. It is, of 
ourse, less powerful than

the one-sided tests in their regions of appli
ability as is illustrated in the �gure.

-

1

0

p

�

�

0

�

Criti
al region in both tails equally.

Criti
al region in lower tail.

Criti
al region in upper tail.

Maximizing lo
al power

If no UMP test exists, it 
an be a good idea to look for a test whi
h is most

powerful in the neighborhood of the null hypothesis. This is the pla
e where a test

will usually be least powerful. Consider the two simple hypotheses, both spe
ifying

the same p.d.f.,

H

0

: � = �

0

H

1

: � = �

1

= �

0

+�

where � is small.

The log-likelihood 
an be expanded about �

0

,

lnL(x; �

1

) = lnL(x; �

0

) + �

� lnL

��

�

�

�

�

�

�=�

0

+ : : :

Sin
e we are treating two simple tests, we 
an use the Neyman-Pearson test (equa-

tion 10.7) to reje
t H

0

if the likelihood ratio is smaller than some 
riti
al value:

� =

L(xjH

0

)

L(xjH

1

)

� 


�

This is equivalent to

lnL(x; �

0

)� lnL(x; �

1

) � ln 


�
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or (assuming � > 0)

� lnL

��

�

�

�

�

�

�=�

0

� k

�

; k

�

= �

ln 


�

�

Now, if the observations are independent and identi
ally distributed, we know from

se
tion 8.2.5 that under H

0

the expe
tation of L is a maximum and

E

"

� lnL

��

�

�

�

�

�

�=�

0

#

= 0

E

2

4

 

� lnL

��

!

2

3

5

= nI

for n independent observations, where I is the information on � for 1 observation.

Under suitable 
onditions

� lnL

��

is approximately normally distributed with mean 0

and varian
e nI. The value of k

�


orresponding to a parti
ular 
hoi
e of size � 
an

then be found as in se
tion 10.4.1 (equation 10.11):

� = erf(�z

�

) ; where z

�

=

k

�

p

nI

In this way, a lo
ally most powerful test is approximately given by reje
ting H

0

if

� lnL

��

�

�

�

�

�

�=�

0

� z

�

p

nI ; � = erf(�z

�

) (10.13)

10.4.3 Composite hypotheses|same parametri
 family

We now turn to the more general 
ase where both H

0

and H

1

are 
omposite hy-

potheses. We make a distin
tion between the 
ase where the p.d.f.'s spe
i�ed in

the hypotheses belong to one 
ontinuous family from the 
ase where they belong to

distin
t families. In the �rst 
ase the only di�eren
e between the hypotheses is the

spe
i�
ation of the parameters, e.g.,

H

0

: f(x; �) ; with � < �

0

H

1

: f(x; �) ; with � > �

0

However, in the se
ond 
ase the p.d.f.'s are di�erent and may even involve di�erent

numbers of parameters. In this se
tion we will treat the �rst 
ase.

Likelihood ratio test

We have seen (se
tion 8.4) that the maximum likelihood method gave estimators

whi
h, under 
ertain 
onditions, had desirable properties. A method of test 
on-

stru
tion 
losely related to it is the likelihood ratio method proposed by Neyman
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and Pearson

52

in 1928. It has played a similar role in the theory of tests to that

of the maximum likelihood method in the theory of estimation. As we have seen

(se
t. 10.4.1), this led to a MP test for simple hypotheses.

Assume that the N observations, x, are independent and that both hypotheses

spe
ify the p.d.f. f(x; �). Then the likelihood fun
tion is

L(x; �) =

N

Y

i=1

f(x

i

; �)

We denote the total parameter spa
e by � and a subspa
e of it by �. Then the

hypotheses 
an be spe
i�ed by

H

0

: � 2 �

H

1

: � 2 �� �

Examples, where for simpli
ity we assume that there are only two parameters � =

(�

1

; �

2

), are

Example 1 2 3

H

0

�

1

= a and �

2

= b �

1

= 
 ; �

2

unspe
i�ed �

1

+ �

2

= d

H

1

�

1

6= a and/or �

2

6= b �

1

6= 
 ; �

2

unspe
i�ed �

1

+ �

2

6= d

In the �rst example H

0

is in fa
t a simple hypothesis.

We use the term 
onditional maximum likelihood for the maximum of the like-

lihood fun
tion for � in the region spe
i�ed by H

0

. Similarily, the un
onditional

maximum likelihood is the maximum of the likelihood in the entire parameter spa
e.

We de�ne as the test statisti
 the maximum likelihood ratio, �, as the ratio of

the 
onditional maximum likelihood to the un
onditional maximum likelihood:

� =

L

�max

(x; �)

L

�max

(x; �)

(10.14)

Clearly, 0 � � � 1. Given what we know about the maximum likelihood method for

parameter estimation, it 
ertainly seems reasonable that this statisti
 would provide

a reasonable test. In the limit ofH

0

and H

1

both being simple, it is equivalent to the

Neyman-Pearson test (equation 10.7, se
tion 10.4.1). The su

ess of the maximum

likelihood ratio as a test statisti
 is due to the fa
t that it is always a fun
tion of

a suÆ
ient statisti
 for the problem. Its main justi�
ation is its past su

ess. It

has been found very frequently to result in a workable test with good properties, at

least for large sets of observations.

The hypotheses to be tested 
an usually be written in the form

H

0

: �

i

= �

i0

for i = 1; 2; : : : ; r (denote this by �

r

= �

r0

)

�

j

unspe
i�ed for j = 1; 2; : : : ; s (denote this by �

s

)

H

1

: �

i

6= �

i0

for i = 1; 2; : : : ; r (denote this by �

r

6= �

r0

)

�

j

unspe
i�ed for j = 1; 2; : : : ; s
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Hypotheses whi
h do not spe
ify exa
t values for parameters, but rather relation-

ships between parameters, e.g., �

1

= �

2

, 
an usually be reformulated in terms of

other parameters, e.g., �

0

1

= �

1

� �

2

= 0 and �

0

2

= �

1

+ �

2

unspe
i�ed. We 
an

introdu
e the more 
ompa
t notation of L(x; �

r

; �

s

), i.e., we write two ve
tors of

parameters, �rst those whi
h are spe
i�ed under H

0

and se
ond those whi
h are not.

The unspe
i�ed parameters �

s

are sometimes referred to as `nuisan
e' parameters.

In this 
ompa
t notation, the test statisti
 
an be rewritten as

� =

L

�

x; �

r0

;

^

^

�

s

�

L

�

x;

^

�

r

;

^

�

s

�

(10.15)

where

^

^

�

s

is the value of �

s

at the maximum of L in the restri
ted region � and

^

�

r

and

^

�

s

are the values of �

r

and �

s

at the maximum of L in the full region �.

If H

0

is true, we expe
t � to be near to 1. The 
riti
al region will therefore be

� � 


�

(10.16)

where 


�

must be determined from the p.d.f. of �, g(�), under H

0

. Thus, for a test

of size �, 


�

is found from

� =

Z




�

0

g(�) d� (10.17)

It is thus ne
essary to know how � is distributed. Furthermore, to perform this

integration, g(�) must not depend on any of the unspe
i�ed (nuisan
e) parameters.

Lu
kily, this is so for most statisti
al problems.

Example: As an example, let us again take a normal p.d.f. with H

0

spe
ifying

the mean as � = �

0

and H

1

spe
ifying � 6= �

0

. Both hypotheses leave � unspe
i�ed;

thus � is a nuisan
e parameter. Then

L(x;�; �) = (2��

2

)

�N=2

N

Y

i=1

exp

"

�

1

2

�

x

i

� �

�

�

2

#

We have seen (se
tion 8.4.1) that the un
onditional maximum likelihood estimators

are

�̂ = �x

�̂

2

= s

2

=

1

N

N

X

i=1

(x

i

� �x)

2

Thus, the un
onditional likelihood is

L(x; �̂; �̂) = (2�s

2

)

�N=2

exp

�

�

1

2

N

�
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Under H

0

, the maximum likelihood estimator is

^

�̂

2

=

1

N

N

X

i=1

(x

i

� �

0

)

2

= s

2

+ (�x� �

0

)

2

Therefore the 
onditional maximum likelihood is given by

L(x;�

0

;

^

�̂) =

n

2�

h

s

2

+ (�x� �

0

)

2

io

�N=2

exp

�

�

1

2

N

�

The likelihood ratio is then

� =

(

s

2

s

2

+ (�x� �

0

)

2

)

1

2

N

(10.18)

Consequently,

�

2=N

=

1

1 +

t

2

N�1

; t

2

=

N(�x� �

0

)

2

1

N�1

P

N

i=1

(x

i

� �x)

2

(10.19)

This t is a Student's t-statisti
 with N � 1 degrees of freedom (equation 3.40). We

see that � is a monotoni
ally de
reasing fun
tion of t

2

. Re
all that the t-distribution

is symmetri
 about zero. The 
riti
al region, � < �

�

, therefore 
orresponds to the

two regions t < t

��=2

and t > t

�=2

. The values of t

��=2


orresponding to a parti
ular

test size � 
an be found from the Student's t-distribution, and from that value the


orresponding value of �

�

follows using the above equation. It 
an be shown that

this test is UMPU.

11,13

Asymptoti
 distribution of the likelihood ratio

In order to determine the 
riti
al region of the likelihood ratio, �, it is ne
essary to

know how it is distributed under H

0

. Sometimes we 
an �nd this distribution quite

easily, as in the example of the previous se
tion. But often it is diÆ
ult, sin
e the

distribution is unknown or sin
e it is awkward to handle. One 
an sometimes use

Monte Carlo, but this is not always satisfa
tory. The usual pro
edure is to 
onsider

the asymptoti
 distribution of the likelihood ratio, and use it as an approximation

to the true distribution.

We know that asymptoti
ally the maximum likelihood estimator

^

� attains the

minimum varian
e bound and that

^

� be
omes normally distributed a

ording to the

likelihood fun
tion. Suppressing the normalization fa
tor, the likelihood fun
tion is

of the form

L(x; �) = L(x; �

r

; �

s

) / exp

�

�

1

2

(

^

� � �)

T

I(

^

� � �)

�

(10.20)

where I is the information matrix for �,

I =

2

6

6

4

I

r

.

.

. I

rs

� � �

.

.

. � � �

I

T

rs

.

.

. I

s

3

7

7

5
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Thus, equation 10.20 
an be written

L(x; �

r

; �

s

) / exp

n

�

1

2

h

(

^

�

r

� �

r

)

T

I

r

(

^

�

r

� �

r

)

+ 2 (

^

�

r

� �

r

)

T

I

rs

(

^

�

s

� �

s

)

+ (

^

�

s

� �

s

)

T

I

s

(

^

�

s

� �

s

)

io

(10.21)

At the maximum of L under H

1

,

^

�

r

= �

r

and

^

�

s

= �

s

. Thus the exponent of

equation 10.21 is zero and equation 10.21 be
omes L / 1. Under H

0

, we must

repla
e

^

�

s

in equation 10.21 by

^

^

�

s

At the maximum of L, we have

^

^

�

s

= �

s

. Thus,

under H

0

equation 10.21 be
omes

L / exp

�

�

1

2

(

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

�

Taking the ratio, we �nd

� = exp

�

�

1

2

(

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

�

or

�2 ln� = (

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

From the property that L is normally distributed, it follows that �2 ln� is a dis-

tributed as �

2

with r degrees of freedom under H

0

, where r is the number of

parameters spe
i�ed under H

0

. For a test of size �, we therefore reje
t H

0

if

�2 ln� > �

2

�

where

Z

1

�

2

�

�

2

(r) d�

2

= �

Under H

1

, it turns out that �2 ln� is distributed as a non-
entral �

2

with r

degrees of freedom and non-
entrality parameter

K = (

^

�

r

� �

0r

)

T

I

r

(

^

�

r

� �

0r

)

The non-
entral �

2

distribution, �

02

(r;K), is the distribution of a sum of variables

distributed normally with a non-zero mean and unit varian
e. It 
an be used to


al
ulate the power of the test:

4,5,11,13

p = 1� � =

Z

1

�

2

�

dF

1

where F

1

is the 
.d.f. of �

02

.

The asymptoti
 properties of the likelihood ratio test whi
h have been found in

this se
tion depend on the asymptoti
 properties of the likelihood fun
tion, whi
h

in turn rest on regularity assumptions about the likelihood fun
tion. In parti
ular,

we have assumed that the range of the p.d.f. does not depend on the value of a

parameter. Nevertheless, it turns out that under 
ertain 
onditions �2 ln� is even

then distributed as �

2

, but with 2r instead of r degrees of freedom.

11,13
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Small sample behavior of the likelihood ratio

Although the asymptoti
 properties of the likelihood ratio for hypotheses having

p.d.f.'s of the same family are quite simple, the small sample behavior is not so

easy. The usual approa
h is to �nd a 
orre
tion fa
tor, f , su
h that �(2 ln�)=f is

distributed as �

2

(r) even for small N .

4,5,11,13

Only the 
ase of the linear model will

be treated here.

Linear model: A parti
ular 
ase is the linear model (se
tion 8.5.2) in whi
h the

N observations y

i

are assumed to be related to other observations x

i

, within random

errors �

i

, by a fun
tion linear in the k parameters �

j

,

y

i

= y(x

i

) + �

i

=

k

X

j=1

�

j

h

j

(x

i

) + �

i

We assume that the �

i

are normally distributed with mean 0 and varian
e �

2

. We

wish to test whether the �

j

have the spe
i�ed values �

0j

, or more generally, whether

they satisfy some set of r linear 
onstraints,

A� = b (10.22)

where A and b are spe
i�ed under H

0

. Under H

1

, the � may take on any set of

values not satisfying the 
onstraints of equation 10.22.

The likelihood for both H

0

and H

1

is given by

L(x; �) = (2��

2

)

�N=2

exp

2

6

4

�

1

2�

2

N

X

i=1

0

�

y

i

�

k

X

j=1

�

j

h

j

(x

i

)

1

A

2

3

7

5

= (2��

2

)

�N=2

exp

�

�

1

2

Q

2

�

We now distinguish two 
ases:

Varian
e known. We �rst treat the 
ase of known varian
e �

2

. The esti-

mates of the parameters are given by the least squares solutions (se
tion 8.5), with


onstraints for H

0

yielding

^

�

0j

and without 
onstraints for H

1

yielding

^

�

1j

. The

likelihood ratio, �, is then given by

�2 ln� =

1

�

2

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

0j

h

j

(x

i

)

3

5

2

�

1

�

2

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

1j

h

j

(x

i

)

3

5

2

= Q

2

0

�Q

2

1

(10.23)

It has been shown

4,5

that the se
ond term 
an be expressed as the �rst term plus a

quadrati
 form in the �

i

, and hen
e that �2 ln� is distributed as a �

2

of r degrees

of freedom. This result is true exa
tly for all N , not just asymptoti
ally. It also

holds if the errors are not independent but have a known 
ovarian
e matrix.
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The test thus 
onsists of performing two least squares �ts, one with and one

without the 
onstraints of H

0

. Ea
h �t results in a value of Q

2

, the di�eren
e of

whi
h, Q

2

0

�Q

2

1

, is a �

2

(r). H

0

is then reje
ted ifQ

2

0

�Q

2

1

> �

2

�

where

R

1

�

2

�

�

2

(r) d�

2

=

�.

We 
an qualitatively understand this result in the following way: Asymptoti-


ally, Q

2

0

is a �

2

(N �k+ r) and Q

2

1

is a �

2

(N �k). From the reprodu
tive property

of the �

2

distribution (se
tion 3.12), the di�eren
e of these �

2

is also a �

2

with a

number of degrees of freedom equal to the di�eren
e of degrees of freedom of Q

2

0

and Q

2

1

, namely r. Thus the above result follows.

Varian
e unknown. If the varian
e �

2

is unknown, it must be estimated from

the data. Under H

0

the estimate of �

2

is

s

2

0

=

1

N

N

X

i=1

2

4

y

i

�

k

X

j=1

^

�

0j

h(x

i

)

3

5

2

and the maximum likelihood be
omes

L(x;H

0

) =

1

(2�)

N=2

(s

2

0

)

N=2

exp

�

�

N

2

�

The expressions for H

1

are similar. The likelihood ratio is then

� =

 

s

2

1

s

2

0

!

N=2

(10.24)

or �

�2=N

= 1 +

s

2

0

� s

2

1

s

2

1

(10.25)

It 
an be shown that (s

2

0

� s

2

1

)=�

2

and s

2

1

=�

2

are independently distributed as

�

2

with r and N � k degrees of freedom, respe
tively. The ratio,

F =

N � k

r

s

2

0

� s

2

1

s

2

1

(10.26)

is therefore distributed as the F -distribution (se
tion 3.14). H

0

is then reje
ted if

F > F

�

, where

R

1

F

�

F (r;N � k) dF = �.

However, under H

1

, (s

2

0

�s

2

1

)=�

2

is distributed as a non-
entral �

2

. This leads to

a non-
entral F -distribution from whi
h the power of the test 
an be 
al
ulated.

11,13

10.4.4 Composite hypotheses

|di�erent parametri
 families

When the p.d.f. spe
i�ed by H

1


an not be attained by varying the parameters

of the p.d.f. of H

0

, we speak of di�erent parametri
 families of fun
tions. The
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distribution of the likelihood ratio then usually turns out to depend on N as well

as on whi
h hypothesis is true. The likelihood ratio 
an still be used as a test, but

these dependen
es must be properly taken into a

ount.

4,5

The tests are therefore

more 
ompli
ated.

The easiest method to treat this situation is to 
onstru
t a 
omprehensive family

of fun
tions

h(x; �; �;  ) = (1� �)f(x;�) + �g(x; )

by introdu
ing an additional parameter �.

What we really want to test is H

0

against H

1

,

H

0

: f(x;�) ; � unspe
i�ed

H

1

: g(x; ) ;  unspe
i�ed

Instead, we 
an use the 
omposite fun
tion to test H

0

against H

0

1

:

H

0

: h(x; �; �;  ) ; � = 0; �;  unspe
i�ed

H

0

1

: h(x; �; �;  ) ; � 6= 0; �;  unspe
i�ed

using the maximum likelihood ratio as in the previous se
tion:

� =

L(x; � = 0;

^

^

�;  )

L(x;

^

�;

^

�;

^

 )

=

0

B

�

f(x;

^

^

�)

(1�

^

�)f(x;

^

�) +

^

�g(x;

^

 )

1

C

A

N

(10.27)

Then under H

0

, �2 ln� is distributed asymptoti
ally as �

2

(1) sin
e one 
onstraint

(� = 0) has been imposed on the parameter spa
e.

The power of the test 
an be found using the fa
t that, under H

1

, �2 ln�

is distributed as a non-
entral �

2

, �

02

(1; K) with 1 degree of freedom and non-


entrality parameter K = �

2

=S where

S = E

2

6

4

h

f(x;�)� g(x; )

i

2

h

(1� �)f(x;�) + �g(x; )

i

2

3

7

5

(10.28)

Sin
e this test 
ompares f(x;�) with a mixture of f and g, it is not expe
ted to be

very powerful.

In pra
ti
e, one would also make a test of H

1

against the mixture, i.e., de�ne a

new H

0

0


orresponding to � = 1, and test this against the mixture H

0

1

in the same

manner as above, hoping that H

0

or H

0

0

, but not both, would be reje
ted.

10.5 And if we are Bayesian?

If we are Bayesian, our belief in (the probability of) H

0

or H

1

is simply given by

Bayes' theorem. After an experiment giving result x, the probability of H

i

(i = 0; 1)

is

P (H

i

jx) =

P (xjH

i

)

P (xjH

0

) + P (xjH

1

)

P

p

(H

i

) (10.29)
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where P

p

(H

i

) is the probability of H

i

before (prior to) doing the experiment and

P (xjH

i

) is the probability of obtaining the result x if H

i

is true, whi
h is identi
al

to L(xjH

i

). We 
an 
ompare P (H

0

jx) and P (H

1

jx), e.g., by their ratio. If both H

0

and H

1

are simple hypotheses,

P (H

0

jx)

P (H

1

jx)

=

P (xjH

0

)

P (xjH

1

)

P

p

(H

0

)

P

p

(H

1

)

(10.30)

= �

P

p

(H

0

)

P

p

(H

1

)

(10.31)

where � is just the likelihood ratio (eq. 10.7). This leads to statements su
h as

\the probability of H

0

is, e.g., 20 times that of H

1

". Note, however, that here, as

always with Bayesian statisti
s, it is ne
essary to assign prior probabilities. In the

absen
e of any prior knowledge, P

p

(H

0

) = P

p

(H

1

). The test statisti
 is then �, just

as in the Neyman-Pearson test (se
tion 10.4.1). However now the interpretation is

a probability rather than a level of signi�
an
e.

Suppose that H

1

is a 
omposite hypothesis where a parameter � is unspe
i�ed.

Equation 10.30 remains valid, but with

P (xjH

1

) =

Z

f(x; �jH

1

) d� (10.32)

=

Z

P (xj�;H

1

) f(�jH

1

) d� (10.33)

Now, P (xj�;H

1

) is identi
al to L(x; �) under H

1

and f(�jH

1

) is just the prior p.d.f.

of � under H

1

. In pra
ti
e, this may not be so easy to evaluate. Let us therefore

make some simplifying assumptions for the purpose of illustration. We know that

asymptoti
ally L(x; �) is proportional to a Gaussian fun
tion of � (eq. 8.72). Let us

take a prior probability uniform between �

min

and �

max

and zero otherwise. Then,

with �

2

^

�

the varian
e of the estimate,

^

�, of �, equation 10.33 be
omes

P (xjH

1

) = L

max

(x; �)

Z

exp

 

�

(� �

^

�)

2

2�

2

^

�

!

1

�

max

� �

min

d� (10.34)

=

L

max

(x; �)

�

max

� �

min

Z

�

max

�

min

exp

 

�

(� �

^

�)

2

2�

2

^

�

!

d� (10.35)

= L

max

(x; �)

�

^

�

p

2�

�

max

� �

min

(10.36)

where we have assumed that the tails of the Gaussian 
ut o� by the integration

limits �

min

, �

max

are negligible. Thus equation 10.30 be
omes

P (H

0

jx)

P (H

1

jx)

= �

P

p

(H

0

)

P

p

(H

1

)

�

max

� �

min

�

^

�

p

2�

(10.37)
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where � is now the maximum likelihood ratio � = L(xjH

0

)=L

max

(xjH

1

). Note that

there is a dependen
e not only on the prior probabilities of H

0

and H

1

, but also on

the prior probability of the parameter �.

Someone remarked to me on
e:

\Physi
ians shouldn't say, `I have 
ured this man',

but, `this man didn't die under my 
are'."

In physi
s too, instead of saying,

\I have explained su
h and su
h phenomenon",

one might say, \I have determined 
auses for it

the absurdity of whi
h 
annot be 
on
lusively proved."

|Georg Christoph Li
htenberg

10.6 Goodness-of-�t tests

10.6.1 Con�den
e level or p-value

As in the previous se
tion, we are 
on
erned with testing an hypothesis H

0

at

some signi�
an
e level �. Again, H

0

will be reje
ted if a test statisti
 has a value

whi
h lies in the 
riti
al region !. The di�eren
e with the previous se
tion lies

in the alternative hypothesis H

1

. Now H

1

is simply not H

0

, i.e., H

1

is the set of

all possible alternatives to H

0

. Thus H

1


an not be formulated and 
onsequently,

the 
han
e of an error of the se
ond kind 
an not be known. Nor 
an most of the

tests of the previous se
tion (in
luding the use of Bayesian probability) be applied,

involving as they do the likelihood ratio, for if we do not spe
ify H

1

, we 
an not


al
ulate the likelihood under H

1

.

Goodness-of-�t tests 
ompare the experimental data with the p.d.f. spe
i�ed

under H

0

and lead to the statement that the data are 
onsistent or in
onsistent

with H

0

. Usually one states a 
on�den
e level, e.g., \The data are 
onsistent with

H

0

at a 
on�den
e level of 80%." The 
on�den
e level

�

(
l), also known as

p-value,

y

is the size that the test would have if the 
riti
al region were su
h that

the test statisti
 were at the boundary between reje
tion and a

eptan
e of H

0

.

In other words, it is the probability, assuming H

0

is true, of obtaining a value of

the test statisti
 as \bad" as or \worse" than that a
tually obtained. Thus, a high


on�den
e level means that if H

0

is true there is a large 
han
e of obtaining data

`similar' to ours. On the 
ontrary, if 
l is small there is a small 
han
e, and H

0

�

Many authors use 1� 
l where we use 
l.

y

The preferable term is p-value, sin
e it eliminates 
onfusion with the 
on�den
e level of


on�den
e intervals (
hapter 9), whi
h, although related, is di�erent. Nevertheless, the term


on�den
e level is widely used, espe
ially by physi
ists.
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an be reje
ted. Despite the suggestive \p", the p-value is not a probability; it is a

random variable.

We shall only 
onsider distribution-free tests, for the pra
ti
al reason that they

are widely appli
able. To apply a test, one needs to know the p.d.f. of the test

statisti
 in order to 
al
ulate the 
on�den
e level. For the well-known tests tables

and/or 
omputer routines are widely available. For a spe
i�
 problem it may be

possible to 
onstru
t a better test, but it may not be so mu
h better that it is worth

the e�ort.

10.6.2 Relation between Con�den
e level and Con�den
e

Intervals

The same integrals are involved in 
on�den
e intervals and goodness-of-�t tests. To

illustrate this, 
onsider a r.v., x, whi
h is distributed normally, f(x) = N(x;�; �

2

).

For n points, assuming �

2

known, the estimator of the mean, t = �x, is also nor-

mally distributed:

f(t) = N(t;�; �

2

=n)

The 
overage probability (or 
on�den
e 
oeÆ
ient or 
on�den
e level) of the 
on�-

den
e interval [�

�

; �

+

℄, e.g., for a 
entral 
on�den
e interval from equation 9.12,

is given by equation 9.10,

� =

Z

t

+

(�)

t

�

(�)

N(t;�; �

2

=n) dt (10.38)

whi
h holds for any value of �.

If H

0

states that x is distributed normally with mean � = 0,

H

0

: f(x) = N(x; 0; �

2

) or f(t) = N(t; 0; �

2

=n)

and if the data give t = �x, the 
on�den
e level or p-value (for a symmetri
 two-sided

test) is


l =

Z

�j�xj

�1

N(t; 0; �

2

=n) dt+

Z

+1

+j�xj

N(t; 0; �

2

=n) dt

= 1�

Z

+j�xj

�j�xj

N(t; 0; �

2

=n) dt (10.39)

Note the similarity of the integrals in equations 10.38 and 10.39. We see that

the 
overage probability of the interval [�j�xj;+j�xj℄, �, is related to the p-value

by 
l = 1 � �. However, for the 
on�den
e interval, the 
overage probability

is spe
i�ed �rst and the interval, [�

�

; �

+

℄, is the random variable, while for the

goodness-of-�t test the hypothesis is spe
i�ed (� = �

0

) and the p-value is the r.v.

Referring to the 
on�den
e belt �gure of se
tion 9.2, and supposing that �

t

is

the hypothesized value of the parameter �

0

, t

�

(�

0

) and t

+

(�

0

) are the values of
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^

t whi
h would give 
l = 1 � �. Put another way, if we de
ide to reje
t H

0

if


l < �, then the regions outside the 
on�den
e belt for � = 1�� is the reje
tion

region. Thus the 
on�den
e belt de�nes the a

eptan
e region of the 
orresponding

goodness-of-�t test.

10.6.3 The �

2

test

Probably the best known and most used goodness-of-�t test is the �

2

test. We

have already frequently alluded to it. We know (se
tion 3.12) that the sum of N

normally distributed r.v.'s is itself a r.v. whi
h is distributed as �

2

(N). Hen
e,

assuming that our measurements, y

i

, have a normally distributed error, �

i

, the

sum

X

2

=

N

X

i=1

(y

i

� f

i

)

2

�

2

i

(10.40)

where f

i

is the value that y

i

is predi
ted to have under H

0

, will be distributed as

�

2

(N). The 
l is easily 
al
ulable from the �

2

distribution:


l =

Z

1

X

2

�

2

(z;N) dz (10.41)

This X

2

is just the quantity that is minimized in a least squares �t (where we

denoted it by Q

2

). In the linear model, assuming Gaussian errors, X

2

= Q

2

min

is

still distributed as �

2

even though parameters have been estimated by the method.

However the number of degrees of freedom is redu
ed to N � k, where k is the

number of parameters estimated by the �t. If 
onstraints have been used in the �t

(
f. se
tion 8.5.6), the number of degrees of freedom is in
reased by the number of


onstraints, sin
e ea
h 
onstraint among the parameters redu
es by one the number

of free parameters estimated by the �t. If the model is non-linear, X

2

= Q

2

min

is

only asymptoti
ally distributed as �

2

(N � k).

It is sometimes argued that the �

2

test should be two-tailed rather than one-

tailed, i.e., that H

0

should be reje
ted for unlikely small values of X

2

as well as

for unlikely large values. Arguments given for this pra
ti
e are that su
h small

values are likely to have resulted from 
omputational errors, overestimation of the

measurement errors �

i

, or biases (unintentional or not) in the data whi
h have not

been a

ounted for in making the predi
tion. However, while an improbably small

value ofX

2

might well make one suspi
ious that one or more of these 
onsiderations

had o

urred (and indeed several instan
es of s
ienti�
 fraud have been dis
overed

this way), su
h a low X

2


an not be regarded as a reason for reje
ting H

0

.

10.6.4 Use of the likelihood fun
tion

It is often felt that sin
e the likelihood fun
tion is so useful in parameter estimation

and in the formulation of tests of hypotheses, it should also be useful as a goodness-

of-�t test. Frequently the statement is made that it 
an not be used for this purpose.

In fa
t, it 
an be used, but it is usually diÆ
ult to do so.
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The problem is that in order to use the value of L as a test, we must know

how L is distributed in order to be able to 
al
ulate the 
on�den
e level. Suppose

that we have N independent observations, x

i

, ea
h distributed as f(x). The log

likelihood is then just

` =

N

X

i=1

ln f(x

i

)

If no parameter is estimated from the data, the mean of ` is just

E [`℄ =

Z

N

X

i=1

ln f(x

i

)L dx

1

dx

2

:::dx

N

= N

Z

ln f(x)f(x) dx

Similarly higher moments 
ould be 
al
ulated, and from these moments (just the

�rst two if N is large and the 
entral limit theorem is appli
able) the distribution

of `, g(`), 
ould be re
onstru
ted. The 
on�den
e level would then be given by


l =

Z

`

�1

g(`) d` (10.42)

If parameters are estimated by maximum likelihood, the 
al
ulations be
ome

mu
h more 
ompli
ated. A simple, but expensive, solution is to generate Monte

Carlo experiments. From ea
h Monte Carlo experiment one 
al
ulates ` and thus

obtains an approximate distribution for ` from whi
h the 
l 
an be determined.

10.6.5 Binned data

We now 
onsider tests of binned data.

�

Sin
e binning data loses information, we

should expe
t su
h tests to be inferior to tests on individual data. Further, we must

be sure to have a suÆ
ient number of events in ea
h bin, sin
e most of the desirable

properties of the tests are only true asymptoti
ally.

However, binning the data removes the diÆ
ulty thatH

1

is 
ompletely unspe
-

i�ed, sin
e the number of events in a bin must be distributed multinomially. Thus

both H

0

and H

1

spe
ify the multinomial p.d.f. Some or all of the parameters are

spe
i�ed under H

0

; none of them are spe
i�ed under H

1

further than that they

are di�erent from those spe
i�ed under H

0

.

Likelihood ratio test

Suppose that we have k bins with n

i

events in bin i and

P

k

i=1

n

i

= N . Let H

0

be a simple hypothesis, i.e., all parameters are spe
i�ed. Let p

i

be the probability


ontent of bin i under H

0

and q

i

the probability 
ontent under the true p.d.f.,

whi
h we of 
ourse do not know. The likelihood underH

0

and under the true p.d.f.

�

Although we use the term `binned', whi
h suggests a histogram, any 
lassi�
ation of the

observations may be used. See also se
tion 8.6.1.
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are then, from the multinomial p.d.f., given by

L

0

(njp) = N !

k

Y

i=1

p

n

i

i

n

i

!

L(njq) = N !

k

Y

i=1

q

n

i

i

n

i

!

An estimate q̂

i

of the true probability 
ontent 
an be found by maximizing L(njq)

subje
t to the 
onstraint

P

k

i=1

q

i

= 1. The result

�

is

q̂

i

=

n

i

N

The test statisti
 is then the likelihood ratio (
f. se
tion 10.4.3)

� =

L

0

(njp)

L(njq̂)

= N

N

k

Y

i=1

 

p

i

n

i

!

n

i

(10.43)

The exa
t distribution of � is not known. However, we have seen in se
tion 10.4.3

that �2 ln� is asymptoti
ally distributed as �

2

(k�1) underH

0

, where the num-

ber of degrees of freedom, k� 1, is the number of parameters spe
i�ed. The multi-

nomial p.d.f. has only k�1 parameters (p

i

) be
ause of the restri
tion

P

k

i=1

p

i

= 1.

If H

0

is not simple, i.e., not all p

i

are spe
i�ed, the test 
an still be used but the

number of degrees of freedom must be de
reased a

ordingly.

Pearson's �

2

test

The 
lassi
 test for binned data is the �

2

test proposed by Karl Pearson

53

in 1900.

It makes use of the asymptoti
 normality of a multinomial p.d.f. to �nd that under

H

0

the statisti


X

2

=

k

X

i=1

(n

i

�N�

i

)

2

N�

i

(10.44)

is distributed asymptoti
ally as �

2

(k � 1).

If H

0

is not simple, its free parameters 
an be estimated, (se
tion 8.6.1) by

the minimum 
hi-square method. In that method, the quantity whi
h is minimized

with respe
t to the parameters (equation 8.152) is just Pearson's X

2

. The mini-

mum value thus found therefore serves to test the hypothesis. It 
an be shown that

in this 
ase X

2

is asymptoti
ally distributed as �

2

(k� s� 1) where s is the num-

ber of parameters whi
h are estimated. This is also true if the binned maximum

likelihood method (se
tion 8.6.2) is used to estimate the parameters.

11, 13

Simi-

�

This was derived for the binomial p.d.f. in se
tion 8.4.7. It may be trivially extended to the

multinomial 
ase by treating ea
h bin separately as binomially distributed between that bin and

all the rest.
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larly, the quantity whi
h is minimized in the modi�ed minimum 
hi-square method

(equation 8.154) is also asymptoti
ally distributed as �

2

(k � s� 1).

But what if we estimate the parameters by a di�erent method? In parti
ular, as

is frequently the 
ase, what if we estimate the parameters by maximum likelihood

using the individual data rather than the binned data? It then turns out

11, 13

that

X

2

is still distributed as �

2

, but with a number of degrees of freedom, d, between

that of the binned �t and the fully spe
i�ed 
ase, i.e., k � s � 1 � d � k � 1.

The exa
t number of degrees of freedom depends on the p.d.f. The test is then no

longer distribution free, although for large k and small s it is nearly so.

Equation 10.44 assumes thatH

0

only predi
ts the shape of the distribution, i.e.,

the probability, �

i

, that an event will be in bin i, with

P

�

i

= 1. If also the total

number of events is predi
ted by H

0

, the distribution is no longer multinomial,

but rather a multinomial times a Poisson or, equivalently, the produ
t of k Poisson

distributions. The test statisti
 is then

X

2

=

k

X

i=1

(n

i

� �

i

)

2

�

i

(10.45)

where, under H

0

, �

i

is the mean (and varian
e) of the Poisson distribution for

bin i. Sin
e ea
h bin is independent, there are now k degrees of freedom, and X

2

is distributed asymptoti
ally as �

2

(k � s).

Pearson's �

2

test makes use of the squares of the deviations of the data from

that expe
ted under H

0

. Tests 
an be devised whi
h use some other measure of

deviation, repla
ing the square of the absolute value of the deviation by some other

power and s
aling the deviation or not by the expe
ted varian
e. Su
h tests are,

however, beyond the s
ope of this 
ourse.

Choosing optimal bin size

If one is going to bin his data, he must de�ne the bins. If the number of bins is

small, too mu
h information may be lost. But a large number of bins may mean that

there are too few events per bin. Most of the results for binned data are only true

asymptoti
ally, e.g., the normal limit of the multinomial p.d.f. or the distribution

of �2 ln� or X

2

as �

2

.

There are, in fa
t, two questions whi
h play a role here. The �rst is whether the

binning may be de
ided on the basis of the data; the se
ond 
on
erns the minimum

number of events per bin. At �rst glan
e it would seem that the bin boundaries

should not depend on the observations themselves, i.e., that we should de
ide on

the binning before looking at the data. If the bin boundaries depend on the data,

then the bin boundaries are random variables, and no provision has been made in

our formalism for 
u
tuations in the position of these boundaries. On the other

hand, the asymptoti
 formalism holds for any set of �xed bins, and so we might

expe
t that it does not matter whi
h of these sets we happen to 
hoose, and this

has indeed been shown to be so.

11, 13
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Intuitively, we 
ould expe
t that we should 
hoose bins whi
h are equiprobable

under H

0

. Pearson's �

2

test is 
onsistent (asymptoti
ally unbiased) whatever the

binning, but for �nite N it is not, in general, unbiased. It 
an be shown

4, 5, 11, 13

that for equiprobable bins it is lo
ally unbiased, i.e., unbiased against alternatives

whi
h are very 
lose to H

0

, whi
h is 
ertainly a desirable property.

Having de
ided on equiprobable bins, the next question is how many bins.

Clearly, we must not make the number of bins k too large, sin
e the multinor-

mal approximation to the multinomial p.d.f. will no longer be valid. A rough rule

whi
h is 
ommonly used is that no expe
ted frequen
y, Np

i

, should be smaller

than � 5. However, a

ording to Kendall and Stuart,

11

there seems to be no gen-

eral theoreti
al basis for this rule. Co
hran goes even further and 
laims

4

that the

asymptoti
 approximation remains good so long as not more than 20% of the bins

have an expe
ted number of events between 1 and � 5.

This does not ne
essarily mean that it is best to take k = N=5 bins. By

maximizing lo
al power, one 
an try to arrive at an optimal number of bins. The

result

4, 5

is

k = b

2

4

p

2(N � 1)

�

�

+ �

1�p

0

3

5

2=5

(10.46)

where � = 1 �

R

�

�

��

�

N(x; 0; 1) dx is the

size of the test for a standard normal distri-

bution and p

0

is the lo
al power. In general,

for a simple hypothesis a value for b between

2 and 4 is good, the best value depending

on the p.d.f. under H

0

. Typi
al values for k

(N=k) using b = 2 are given in the following

table. We see from the table that there is only

a mild sensitivity of the number of bins to �

and p

0

. For N = 200, 25{30 bins would be

reasonable.

p

0

N � 0.5 0.8

200 0.01 27 (7.4) 24 (8.3)

0.05 31 (6.5) 27 (7.4)

500 0.01 39 (13) 35 (14)

0.05 45 (11) 39 (13)

Thus we are led to the following re
ommendations for binning:

1. Determine the number of bins, k, using equation 10.46 with b � 2 to 4.

2. If N=k turns out to be too small, de
rease k to make N=k � 5.

3. De�ne the bins to have equal probability 
ontent, either from the p.d.f. spe
-

i�ed by H

0

or from the data.

4. If parameters have to be estimated (H

0

does not spe
ify all parameters), use

maximum likelihood on the individual observations, but remember that the

test statisti
 is then only approximately distribution-free.

Note, however, that, regardless of the above pres
ription, if the p.d.f. under H

0

does not in
lude resolution e�e
ts, one should not 
hoose bins mu
h smaller than

the resolution.
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Even with the above pres
ription, the spe
i�
ation of the bins is still not unique.

The usual method in one dimension would be to de�ne a bin as an interval in the

variable, bin

i

= (x

i

; x

i

+ Æ

i

). However, there is nothing in the above pres
ription

to forbid de�ning a single bin as 
onsisting of more than one (nonadja
ent) interval.

This might even be desirable from the point of view H

0

. For example, H

0

might

spe
ify a p.d.f. that is symmetri
 about 0, and we might only be interested in testing

this hypothesis against alternatives whi
h are also symmetri
 about 0. Then it

would be appropriate to de�ne bins as intervals in jxj rather than in x.

In more than one dimension the situation is more ambiguous. For example,

to 
onstru
t equiprobable bins in two dimensions, the easiest way is to �rst �nd

equiprobable bins in x and then for ea
h bin in x to �nd equiprobable bins in

y. This is easily generalized to more dimensions. However, one 
ould equally well


hoose �rst to 
onstru
t bins and y and then in x, whi
h in general would yield

di�erent bins. One 
ould also 
hoose di�erent numbers of bins in x than in y. The


hoi
e depends on the individual situation. One should prefer smaller bins in the

variable for whi
h H

0

is most sensitive.

There is, obviously, one taboo: You must not try several di�erent 
hoi
es of

binning and 
hoose the one whi
h gives the best (or worst) 
on�den
e level.

10.6.6 Run test

�

2

tests make use of the squares of the deviations of the data from that expe
ted

under H

0

. Thus they only use the size of the deviations and ignore their signs.

However, the signs of the deviations are also important, and systemati
 deviations

of the same sign indi
ate that the hypothesis is unlikely, as is illustrated in the �gure.

A test whi
h uses only the sign of the devi-

ations is the run test. A run is de�ned as a

set of adja
ent points all having the same sign

of deviation. The data and 
urve in the �gure

have deviations AAABBBBBBAAA, where

A represents a positive and B a negative devi-

ation. There are thus three runs, whi
h seems

rather small. We would expe
t the 
han
e of an

A to equal that of a B and to show no 
orrelation

between points if the hypothesis were true. This

implies that we should expe
t runs to be short;

a long run of 6 points as in the �gure should be

unlikely. In fa
t, this expe
tation is stri
tly true only if H

0

is a simple hypothesis.

To be more quantitative, let k

A

be the number of positive deviations and k

B

the number of negative deviations. Let k = k

A

+ k

B

. Given k

A

and k

B

, we 
an


al
ulate the probability that there will be r runs. If either k

A

or k

B

is zero, there

is, ne
essarily only one run, and P (r = 1) = 1.
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Given k

A

and k

B

, the number of di�erent ways to arrange them is

 

k

k

A

!

=

k!

k

A

!k

B

!

Suppose that there are r runs. First, suppose that r is even and that the sequen
e

begins with an A. Then there are k

A

A-points and r=2 � 1 divisions between

them. For the example of the �gure this is AAAjAAA. With k

A

A's there are

k

A

� 1 pla
es to put the �rst dividing line, sin
e it 
an not go at the ends. Then

there are k

A

� 2 pla
es to put the se
ond dividing line, sin
e it 
an not go at the

ends or next to the �rst dividing line. In total there are

�

k

A

�1

r=2�1

�

ways to arrange

the dividing lines among the A's. There is a similar fa
tor for arrangement of the

B's and a fa
tor 2 be
ause we assumed we started with an A and it 
ould just have

well been a B. Thus the probability of r runs, for r even, is

P (r) =

2

�

k

A

�1

r=2�1

��

k

B

�1

r=2�1

�

�

k

k

A

�

(10.47)

Similarly, one �nds for r odd

P (r) =

�

k

A

�1

(r�3)=2

��

k

B

�1

(r�1)=2

�

+

�

k

A

�1

(r�1)=2

��

k

B

�1

(r�3)=2

�

�

k

k

A

�

(10.48)

From these it 
an be shown that the expe
tation and varian
e of r are

E [r℄ = 1 +

2k

A

k

B

k

(10.49)

V [r℄ =

2k

A

k

B

(2k

A

k

B

� k)

k

2

(k � 1)

(10.50)

The 
riti
al region of the test is de�ned as improbably low values of r, r < r

�

.

For k

A

and k

B

greater than about 10 or 15, one 
an use the Gaussian approx-

imation for r. For smaller numbers one 
an 
ompute the probabilities dire
tly

using equations 10.47 and 10.48. In our example, k

A

= k

B

= 6. From equa-

tions 10.49 and 10.50 we expe
t r = 7 with varian
e 2.73, or � = 1:65. We

observe 3 runs, whi
h di�ers from the expe
ted number by 4=1:65 = 2:4 standard

deviations. Using the Gaussian approximation, this 
orresponds to a (one-tailed)


on�den
e level of 0.8%. Exa
t 
al
ulation using equations 10.47 and 10.48 yields

P (1) + P (2) + P (3) = 1:3%. Whereas the �

2

is a

eptable (�

2

= 12 for 12

points), the run test suggests that the 
urve does not �t the data.

The run test is mu
h less powerful than a �

2

test, using as it does mu
h less

information. But the two tests are 
ompletely independent and hen
e they 
an

be 
ombined. An hypothesis may have an a

eptable �

2

, but still be wrong and

reje
table by the run test. Unfortunately, the run test is appli
able only when H

0

is simple. If parameters have been estimated from the data, the distribution of the

number of runs is not known and the test 
an not be applied.
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10.6.7 Tests free of binning

Sin
e binning loses information, we should expe
t tests whi
h do not require binning

to be in prin
iple better than tests whi
h do.

The su

essful bin-free tests are based on the 
.d.f., F (x), underH

0

and 
onsist

of in some way 
omparing this 
.d.f. with the data. To do so involves the 
on
ept

of order statisti
s, whi
h are just the observations, x

i

, ordered in some way, i.e.,

renumbered as x

(j)

. In one dimension this is trivial. For n observations, the order

statisti
s obey

x

(1)

� x

(2)

� : : : � x

(n)

In more than one dimension it is rather arbitrary, implying as it were a redu
tion of

the number of dimensions to one. Even in one dimension the ordering is not free of

ambiguity sin
e we 
ould equally well have ordered in des
ending order. We 
ould

also make a 
hange of variable whi
h 
hanges the order of the data.

We de�ne the sample 
.d.f. for n observations as

S

n

(x) =

8

>

<

>

:

0 ; x < x

(1)

r

n

; x

(r)

� x < x

(r+1)

1 ; x

(n)

� x

(10.51)

whi
h is simply the fra
tion of the observations not ex
eeding x. Clearly, under

H

0

, S

n

(x) ! F (x) as n ! 1. The tests 
onsist of 
omparing S

n

(x) with

F (x). We shall dis
uss two su
h tests, the Smirnov-Cram�er-von Mises test and the

Kolmogorov test. Unfortunately, both are only appli
able to simple hypotheses,

sin
e the distribution of the test statisti
 is not distribution-free when parameters

have been estimated from the data.

Smirnov-Cram�er-von Mises test

As a measure of the di�eren
e between S

n

(x) and F (x) this test uses the statisti


W

2

=

Z

1

0

[S

n

(x)� F (x)℄

2

 (x) dF

=

Z

+1

�1

[S

n

(x)� F (x)℄

2

 (x)f(x)dx

with  (x) = 1. We see that W

2

is the expe
tation of [S

n

(x)� F (x)℄

2

under

H

0

. Inserting S

n

(equation 10.51) and performing the integral results in

nW

2

=

1

12n

+

n

X

i=1

"

F (x

(i)

)�

2i� 1

2n

#

2

(10.52)

�

A more 
omplete and more a

urate table is given by Anderson and Darling,

54

who also


onsider the test statisti
 with  (x) = fF (x) [1� F (x)℄g

�1

.
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The asymptoti
 distribution of nW

2

has been

found, and from it 
riti
al regions have been


omputed. Those 
orresponding to frequently

used test sizes are given in the following table.

The asymptoti
 distribution is rea
hed remark-

ably rapidly. To the a

ura
y of this table,

�

the

asymptoti
 limit is rea
hed

4, 5, 11

for n � 3.

Test size Reje
tion region

� nW

2

>

0.10 0.347

0.05 0.461

0.01 0.743

0.001 1.168

Kolmogorov test

This test also 
ompares S

n

and F (x), but only uses the maximum di�eren
e: The

Kolmogorov (or Smirnov, or Kolmogorov-Smirnov) test statisti
 is the maximum

deviation of the observed distribution S

n

(x) from the 
.d.f. F (x) under H

0

:

D

n

= max fjS

n

(x)� F (x)jg for all x (10.53)

The asymptoti
 distribution of D

n

yields the 
riti
al regions shown in the

table. This approximation is 
onsid-

ered satisfa
tory for more than about

80 observations.

4, 5, 11

Computer rou-

tines also exist.

y

Test size Reje
tion region

�

p

nD

n

>

0.01 1.63

0.05 1.36

0.10 1.22

0.20 1.07

Alternatively, one 
an take the maximum positive deviation,

D

+

n

= max f+ [S

n

(x)� F (x)℄g for all x (10.54)

It 
an be shown that 4n(D

+

n

)

2

is distributed asymptoti
ally as a �

2

of 2 degrees

of freedom. The same holds for D

�

n

,

D

�

n

= max f� [S

n

(x)� F (x)℄g for all x (10.55)

Or, as proposed by Kuiper,

56

one 
an use

V = D

+

n

+D

�

n

(10.56)

Asymptoti
 
riti
al regions of V 
an be 
al
ulated.

55, 57

The sensitivity of the Kolmogorov test to deviations from the 
.d.f. is not in-

dependent of x. It is more sensitive around the median value and less sensitive

in the tails. This o

urs be
ause the di�eren
e jS

n

(x)� F (x)j does not, under

H

0

have a probability distribution that is independent of x. Rather, its varian
e

is proportional to F (x) [1� F (x)℄, whi
h is largest at F = 0:5. Consequently,

y

See, e.g., Numeri
al Re
ipes.

55
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the signi�
an
e of a large deviation in a tail is underweighted in the test. The Kol-

mogorov test therefore turns out to be more sensitive to departures of the data from

the median of H

0

than to departures from the width. Various modi�
ations of the

Kolmogorov test statisti
 have been proposed

54, 58, 59

to ameliorate this problem.

Although the distribution of the test statisti
, D

n

, is generally unknown if pa-

rameters have been estimated from the data, there are 
ases where the distribution

has been 
al
ulated, e.g., whenH

0

spe
i�es an exponential distribution whose mean

is estimated from the data.

60

It also may be possible to determine the distribution

of the test statisti
 yourself, e.g., using Monte Carlo te
hniques.

10.6.8 But use your eyes!

A few words of 
aution are appropriate at this point. As illustrated by the �gure

at the start of the se
tion on the run test (se
tion 10.6.6), one test may give an

a

eptable value while another does not. Indeed, it is in the nature of statisti
s

that this must sometimes o

ur.

Also, a �t may be quite good over part of the range of the variable and quite bad

over another part. The resulting test value will be some sort of average goodness,

whi
h 
an still have an a

eptable value. And so: Do not rely blindly on a test. Use

your eyes. Make a plot and examine it.

There are several useful plots you 
an make. One is, as was done to illustrate

the run test, simply a plot of the data with the �t distribution superimposed. Of


ourse, the error bars should be indi
ated. It is then readily apparent if the �t

is bad only in some parti
ular region, and frequently you get an idea of how to

improve the hypothesis. This is illustrated in the �gure where the �t (dashed line)

in (a) is perfe
t, while in (b) higher order terms are 
learly needed and in (
) either

higher orders or a dis
ontinuity are required.

6

-

x

y

(a) (b) (
)

Sin
e it is easier to see departures from a horizontal straight line, you 
ould

instead plot the residuals, y

i

�f(x

i

), or even better, the residuals divided by their
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error, (y

i

�f(x

i

))=Æ, where Æ 
an be either the error on the data, or the expe
ted

error from a �t.

It may happen that there is only one or just a few data points whi
h a

ount for

almost all the deviation from the �t. These are known as outliers. One is tempted

to throw su
h points away on the assumption that they are due to some 
atastrophi


error in the data taking, e.g., writing down 92 instead of 29. However, one must be


areful. Statisti
s 
an not really help here. You have to de
ide on the basis of what

you know about your apparatus. Automati
 outlier reje
tion should be avoided. It

is said

�

that the dis
overy of the hole in the ozone layer above the south pole was

delayed several years be
ause 
omputer programs automati
ally reje
ted the data

whi
h indi
ated its presen
e.

It's not right to pi
k only what you like,

but to take all of the eviden
e.

|Ri
hard P. Feynman

I don't see the logi
 of reje
ting data

just be
ause they seem in
redible.

|Sir Fred Hoyle

�

Cited by Barlow

1

from New S
ientist, 31 Mar
h 1988.
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10.7 Non-parametri
 tests

The main 
lasses of non-parametri
 problems whi
h 
an be solved by distribution-

free methods are

1. The two-sample problem. We wish to test whether two (or more generally k)

samples are distributed a

ording to the same p.d.f.

2. Randomness. A series of n observations of a single variable is ordered in some

way, e.g., in the time at whi
h the observation was made. We wish to test

that all of the observations are distributed a

ording to the same p.d.f., i.e.,

that there has been no 
hange in the p.d.f. as a fun
tion of, e.g., time.

3. Independen
e of variables. We wish to test that a bivariate (or multivariate)

distribution fa
torizes into two independent marginal distributions, i.e., that

the variables are independent (
f. se
tion 2.2.4).

These are all hypothesis-testing problems, whi
h are similar to the goodness-of-

�t problem in that the alternative hypothesis is simply not H

0

.

The �rst two of the above problems are really equivalent to the third, even

though the �rst two involve observations of just one quantity. For problem 1, we


an 
ombine the two samples x

(1)

i

and x

(2)

i

into one sample by de�ning a se
ond

variable y

i

= 1 or 2 depending on whether x

i

is from the �rst or the se
ond sample.

Independen
e of x and y is then equivalent to independen
e of the two samples. For

problem 2, suppose that the x

i

of problem 3 are just the observations of problem 2

and that the y

i

are the order of the observations. Then independen
e of x

i

and y

i

is equivalent to no order dependen
e of the observations of problem 1. Let us begin

then with problem 3.

10.7.1 Tests of independen
e

We have a sample of observations 
onsisting of pairs of real numbers, (x; y) dis-

tributed a

ording to some p.d.f., f(x; y), with marginal p.d.f.'s, g(x) and h(y).

We wish to test

H

0

: f(x; y) = g(x)h(y)

Sample 
orrelation 
oeÆ
ient

An obvious test statisti
 is the sample 
orrelation 
oeÆ
ient (
f. equation 2.27).

r =

1

n

P

n

i=1

x

i

y

i

� �x�y

s

x

s

y

=

xy � �x�y

s

x

s

y

(10.57)

where �x and �y are the sample means and s

x

and s

y

are the sample varian
es of x

and y, respe
tively, and xy is the sample mean of the produ
t xy. Under H

0

, x
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and y are independent, whi
h leads to the following expe
tations:

E

h

X

x

i

y

i

i

=

X

E [x

i

y

i

℄ =

X

E [x

i

℄E [y

i

℄ = nE [x℄E [y℄

Sin
e E [�x�y℄ = E [x℄E [y℄, it follows that

E [r℄ = 0

Higher moments of r 
an also be easily 
al
ulated. It turns out that the varian
e

is V [r℄ =

1

n�1

. Thus, the �rst two moments are exa
tly equal to the moments

of the bivariate normal distribution with zero 
orrelation. Further, the third and

fourth moments are asymptoti
ally approximately equal to those of the normal

distribution. From this it follows

11

that

t = r

s

n� 2

1� r

2

(10.58)

is distributed approximately as Student's t-distribution with (n � 2) degrees of

freedom, the approximation being very a

urate even for small n. The 
on�den
e

level 
an therefore be 
al
ulated from the t-distribution. H

0

is then reje
ted for

large values of jtj.

Rank tests

The rank of an observation x

i

is simply its position, j, among the order statisti
s

(
f. se
tion 10.6.7), i.e., the position of x

i

when all the observations are ordered.

In other words,

rank(x

i

) = j if x

(j)

= x

i

(10.59)

The relationship between statisti
s, order statisti
s and rank is illustrated in the

following table:

i 1 2 3 4 5 6

statisti
 (measurement) x

i

7.1 3.4 8.9 1.1 2.0 5.5

order statisti
 x

(i)

1.1 2.0 3.4 5.5 7.1 8.9

rank rank(x

i

) 5 3 6 1 2 4

For ea
h pair of observations (x

i

; y

i

), the di�eren
e in rank

D

i

= rank(x

i

)� rank(y

i

) (10.60)

is 
al
ulated. Spearman's rank 
orrelation 
oeÆ
ient is then de�ned as

� = 1�

6

n

3

� n

n

X

i=1

D

2

i

(10.61)
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whi
h 
an take on values between �1 and 1. If x and y are 
ompletely 
orrelated,

x

i

and y

i

will have the same rank and D

i

will be zero, leading to � = 1. It 
an be

shown

1, 11

that for large n (� 10) � has the same distribution as r in the previous

se
tion, and Student's t-distribution 
an be used, substituting � for r in equation

10.58.

10.7.2 Tests of randomness

Given n observations, x

i

, ordered a

ording to some other variable, e.g., time, 
alled

the trend variable, we wish to test whether the x

i

are random in, i.e., independent

of, the trend variable, t. H

0

is then that all the x

i

are distributed a

ording to the

same p.d.f.

As already remarked, we 
an test for randomness in the same way as for inde-

penden
e by making a y-variable equal to the trend variable, y

i

= t

i

.

If the trend is assumed to be monotoni
, additional tests are possible. The

reader is referred to Kendall and Stuart.

11, 13

10.7.3 Two-sample tests

Given independent samples of n

1

and n

2

observations, we wish to test whether

they 
ome from the same p.d.f. The hypothesis to be tested is thus

H

0

: f

1

(x) = f

2

(x)

If both samples 
ontain the same number of observations (n

1

= n

2

), we 
an group

the two samples into one sample of pairs of observations and apply one of the tests

for independen
e. However, we 
an also adapt (without the restri
tion n

1

= n

2

)

any of the goodness-of-�t tests (se
tion 10.6) to this problem.

Kolmogorov test

The Kolmogorov test (
f. se
tion 10.6.7) adapted to the two-sample problem 
om-

pares the sample 
.d.f.'s of the two samples. Equations 10.53-10.55 be
ome

D

n

1

n

2

= max fjS

n

1

(x)� S

n

2

(x)jg for all x (10.62)

D

�

n

1

n

2

=max f� [S

n

1

(x)� S

n

2

(x)℄g for all x (10.63)

However, now the 
riti
al values given in se
tion 10.6.7 are in terms of

q

n

1

n

2

n

1

+n

2

D

n

1

n

2

rather than

p

nD

n

and 4

n

1

n

2

n

1

+n

2

(D

�

n

1

n

2

)

2

rather than 4nD

�

n

, respe
tively.

Run test

The two samples are 
ombined keeping tra
k of the sample from whi
h ea
h obser-

vation 
omes. Runs in the sample number, rather than in the sign of the deviation,
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are then found. In the notation of se
tion 10.6.6, A and B 
orrespond to an obser-

vation 
oming from sample 1 and sample 2, respe
tively. The test then follows as

in se
tion 10.6.6.

�

2

test

Consider two histograms with identi
al binning. Let n

ji

be the number of entries

in bin i of histogram j. Ea
h histogram has k bins and a total of N

j

entries.

The Pearson �

2

statisti
 (equation 10.44) be
omes a sum over all bins of both

histograms,

X

2

=

2

X

j=1

k

X

i=1

(n

ji

�N

j

p

i

)

2

N

j

p

i

(10.64)

Under H

0

the probability 
ontent p

i

of bin i is the same for both histograms and

it is estimated from the 
ombined histogram:

p̂

i

=

n

1i

+ n

2i

N

1

+N

2

Substituting this for p

i

in equation 10.64 results, after some work, in

X

2

= (N

1

+N

2

)

"

1

N

1

k

X

i=1

n

2

1i

n

1i

+ n

2i

+

1

N

2

k

X

i=1

n

2

2i

n

1i

+ n

2i

� 1

#

(10.65)

In the usual limit of a large number of events in ea
h bin, X

2

is distributed as a

�

2

(k � 1). The number of degrees of freedom is k � 1, sin
e that is the number

of parameters spe
i�ed by H

0

. In other words, there are 2(k � 1) free bins, and

(k�1) parameters are estimated from the data, leaving (k�1) degrees of freedom.

This is dire
tly generalizable to more than two histograms. For r histograms,

X

2

=

2

4

r

X

j=1

N

r

3

5

�

2

4

r

X

j=1

0

�

1

N

r

k

X

i=1

n

2

ji

P

r

j=1

n

ji

1

A

� 1

3

5

(10.66)

whi
h, for all n

ji

large, behaves as �

2

with (r � 1)(k � 1) degrees of freedom.

Mann-Whitney test

As previously mentioned, the two-sample problem 
an be viewed as a test of inde-

penden
e for whi
h, as we have seen, rank tests 
an be used. A rank test appropriate

for this problem is the Mann-Whitney test, whi
h is also known as the Wil
oxon

�

test, the rank sum test, or simply the U -test. Let the observations of the �rst

sample be denoted x

i

and those of the se
ond sample y

i

. Rank them together.

�

Wil
oxon proposed the test before Mann and Whitney, but his name is also used for another

test, the Wil
oxonmat
hed pairs test, whi
h is di�erent. The use of Mann-Whitney here eliminates
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This results in a series like xyyxxyx. For ea
h x value, 
ount the number of y

values that follow it and add up these numbers. In the above example, there are

3 y values after the �rst x, 1 after the se
ond, 1 after the third, and 0 after the

fourth. Their sum, whi
h we 
all U

x

is 5. Similarly, U

y

= 3+ 3+ 1 = 7. In fa
t,

you only have to 
ount for one of the variables, sin
e

U

x

+ U

y

= N

x

N

y

U

x


an be 
omputed in another way, whi
h may be more 
onvenient, by �nding the

total rank, R

x

, of the x's, whi
h is the sum of the ranks of the x

i

. In the example

this is R

x

= 1 + 4 + 5 + 7 = 17. Then U

x

is given by

U

x

= N

x

N

y

+

N

x

(N

x

+ 1)

2

�R

x

(10.67)

UnderH

0

, one expe
ts U

x

= U

y

=

1

2

N

x

N

y

. Asymptoti
ally, U

x

is distributed

normally

1, 11

with mean

1

2

N

x

N

y

and varian
e

1

12

N

x

N

y

(N

x

+N

y

+1), from whi
h

(two-tailed) 
riti
al values may be 
omputed. For small samples, one must resort

to tables.

This test 
an be easily extended

11

to r samples: For ea
h of the

1

2

r(r�1) pairs

of samples, U

x

is 
al
ulated (
all it U

pq

for the samples p and q) and summed

U =

r

X

p=1

r

X

q=p+1

U

pq

(10.68)

Asymptoti
ally U is distributed normally under H

0

with mean and varian
e:

E [U ℄ =

1

4

0

�

N

2

�

r

X

p=1

N

2

p

1

A

(10.69)

V [U ℄ =

1

72

2

4

N

2

(2N + 3)�

r

X

p=1

N

2

p

(2N

p

+ 3)

3

5

(10.70)

where N =

P

r

p=1

N

p

.

10.7.4 Two-Gaussian-sample tests

The previous two-sample tests make no assumptions about the distribution of the

samples and are 
ompletely general. If we know something about the distribution

we 
an make more powerful tests. Often, thanks to the 
entral limit theorem, the

distribution is (at least to a good approximation) Gaussian. If this is not the 
ase,

a simple transformation su
h as x ! lnx, x ! x

2

, or x ! 1=x may result

in a distribution whi
h is nearly Gaussian. If we are testing whether two samples

have the same distribution, testing the transformed distribution is equivalent to

testing the original distribution. We now 
onsider tests for two samples under the

assumption that both are normally distributed.
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Test of equal mean

As we have already done several times when dealing with normal distributions, we

distinguish between 
ases where the varian
e of the distributions is or is not known.

Known �: Suppose we have two samples, x

i

and y

i

, both known to have a

Gaussian p.d.f. with varian
e �

2

x

and �

2

y

, respe
tively. If �

2

x

= �

2

y

, the hypothesis

that the two Gaussians are the same is equivalent to the hypothesis that their

means are the same, or that the di�eren
e in their means, � = �

x

� �

y

, is zero.

An obvious test that the means are equal, also valid when �

2

x

6= �

2

y

is given by an

estimate of this di�eren
e,

^

� = �̂

x

� �̂

y

, whi
h has varian
e

V

h

^

�

i

= V [�̂

x

℄ + V [�̂

y

℄ =

�

2

x

N

x

+

�

2

y

N

y

We know that the di�eren
e of two normally distributed random variables is also

normally distributed. Therefore,

^

� will be distributed as a Gaussian with varian
e

V

h

^

�

i

and mean 0 or non-0 under H

0

andH

1

, respe
tively. H

0

is then reje
ted for

large j

^

�j and the size of the test follows from the integral of the Gaussian over the


riti
al region as in se
tions 10.4.1 and 10.4.2. This is, of 
ourse, just a question of

how many standard deviations

^

� is from zero, and reje
tion of H

0

if

^

� is found to

be too many � from zero.

Unknown �: If the parent p.d.f. of ea
h sample is known to be normal, but its

varian
e is unknown, we 
an estimate the varian
e for ea
h sample:

�̂

2

x

=

P

N

x

i=1

(x

i

� �x)

2

N

x

� 1

; �̂

2

y

=

P

N

y

i=1

(y

i

� �y)

2

N

y

� 1

(10.71)

A Student's-t variable 
an then be 
onstru
ted. Re
all that su
h a r.v. is the ratio

of a standard Gaussian r.v. to the square root of a redu
ed �

2

r.v. Under H

0

,

�

x

= �

y

and

^

� = (�x � �y)=

r

�

2

x

N

x

+

�

2

y

N

y

is normally distributed with mean 0 and

varian
e 1. From equation 10.71 we see that

�

2

=

(N

x

� 1)�̂

2

x

�

2

x

+

(N

y

� 1)�̂

2

y

�

2

y

(10.72)

is distributed as �

2

withN

x

+N

y

�2 degrees of freedom, the loss of 2 degrees of free-

dom 
oming from the determination of �x and �y. The ratio,

^

�=

q

�

2

=(N

x

+N

y

� 2),

is then distributed as Student's t. However, we 
an 
al
ulate this only if �

x

and

possible 
onfusion.
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�

y


an be eliminated from the expression. This o

urs if �

x

= �

y

, resulting in

t =

�x� �y

S

q

1

N

x

+

1

N

y

(10.73)

where S

2

=

(N

x

� 1)�̂

2

x

+ (N

y

� 1)�̂

2

y

N

x

+N

y

� 2

(10.74)

Note that S

2

is in fa
t just the estimate of the varian
e obtained by 
ombining

both samples.

We emphasize that this test rests on two assumptions: (1) that the p.d.f. of

both samples is Gaussian and (2) that both Gaussians have the same varian
e. The

latter 
an be tested (
f. se
tion 10.7.4). As regards the former, it turns out that

this test is remarkably robust. Even if the parent p.d.f. is not Gaussian, this test is

a good approximation.

11

This was also the 
ase for the sample 
orrelation (se
tion

10.7.1).

Correlated samples: In the above we have assumed that the two samples are

un
orrelated. A 
ommon 
ase where samples are 
orrelated is in testing the e�e
t of

some treatment. For example, the light transmission of a set of 
rystals is measured.

The 
rystals are then treated in some way and the light transmission is measured

again. One 
ould 
ompare the means of the sample before and after treatment.

However, we 
an introdu
e a 
orrelation by using the simple mathemati
al relation

P

x

i

�

P

y

i

=

P

(x

i

� y

i

). A 
rystal whose light transmission was lower than

the average before the treatment is likely also to be below the average after the

treatment, i.e., there is a positive 
orrelation between the transmission before and

after. This redu
es the varian
e of the before-after di�eren
e, �: �

2

�

= �

2

x

+ �

2

y

�

2��

x

�

y

. We do not have to know the 
orrelation, or indeed �

x

or �

y

, but 
an

estimate the varian
e of � = x� y dire
tly from the data:

�̂

2

�

=

1

N � 1

N

X

i=1

�

�

2

i

�

�

�

2

�

(10.75)

Again we �nd a Student's-t variable:

^

� =

�

� is normally distributed with varian
e

�

2

�

=N . Thus,

p

N

�

�=�

�

is a standard normal r.v. Further, (N � 1)�̂

2

�

=�

2

�

is a �

2

r.v. of N � 1 degrees of freedom. Hen
e, the ratio

t =

�

�

p

N

�̂

�

(10.76)

is a Student's-t variable of N � 1 degrees of freedom, one degree of freedom being

lost by the determination of

�

�, a result already known from equation 3.40.
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Test of equal varian
e

One 
ould approa
h this problem as above for the means, i.e., estimate the varian
e

of ea
h sample and 
ompare their di�eren
e with zero. However, this requires

knowing the means or, if unknown, estimating them. Further, we must know how

this di�eren
e is distributed.

A more straightforward approa
h makes use of the F -distribution (
f. se
tion

3.14), whi
h is the p.d.f. for the ratio of two redu
ed �

2

variables. For ea
h sample,

the estimate of the varian
e (equation 8.3 or 8.7 depending on whether the mean is

known) divided by the true varian
e is related to a �

2

(
f. equation 10.72). Thus

F =

�

2

x

=(N

x

� 1)

�

2

y

=(N

y

� 1)

=

�̂

2

x

=�

2

�̂

2

y

=�

2

(10.77)

is distributed as the F -distribution. The �

2


an
els in this expression, and 
on-

sequently F 
an be 
al
ulated dire
tly from the data. We 
ould just as well have

used 1=F instead of F ; both have the same p.d.f. By 
onvention F is taken > 1.

The parameters of the F -distribution are �

1

= N

x

� 1, �

2

= N

y

� 1 if �̂

2

x

is in

the numerator of equation 10.77.

\Never trust to general impressions, my boy,

but 
on
entrate yourself upon details."

|Arther Conan Doyle: Sherlo
k Holmes in

\A Case of Identity"

10.7.5 Analysis of Varian
e

Analysis of Varian
e (AV or ANOVA), originally developed by R. A. Fisher in the

1920's, is widely used in the so
ial s
ien
es, and there is mu
h literature|entire

books|about it. In the physi
al s
ien
es it is mu
h less frequently used and so will

be only brie
y treated here in the 
ontext of testing whether the means of k normal

samples are equal. The method is mu
h more general. In parti
ular, it 
an be used

for parameters in the linear model. As usual, Kendall and Stuart

11, 13

provide a

wealth of information.

The basi
 method: One-way 
lassi�
ation

Given k samples, ea
h normally distributed with the same unknown varian
e, �

2

,

we want to test whether the means of all samples are the same. Suppose that sample
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i 
ontains N

i

measurements and has a sample moment �y

i

, whi
h estimates its true

mean �

i

. Using all N =

P

k

i=1

N

i

measurements we 
an 
al
ulate the overall

sample mean �y in order to estimate the overall true mean �. The null hypothesis

is that � = �

i

for all i.

If the �

i

di�er we 
an expe
t the �y

i

to di�er more from �y than would be expe
ted

from the varian
e of the parent Gaussian alone. Unfortunately, we do not know �,

whi
h would enable us to 
al
ulate this expe
tation. We 
an, however, estimate

� from the data. We 
an do this in two ways: from the variation of y within

the samples and from the variation of �y between samples. The results of these

two determinations 
an be 
ompared and tested for equality. To do this we will


onstru
t an F variable (se
tion 3.14). Re
all that F is the ratio of two redu
ed

�

2

variables.

The expe
ted error on the estimated mean is �=

p

N . Therefore, under H

0

�

2

(k) =

k

X

i=1

(�y

i

� �)

2

�

2

=N

i

is distributed as �

2

(k). Sin
e � is unknown, we repla
e it by its estimate (obtained

from the entire sample) to obtain a �

2

of k � 1 degrees of freedom:

�

2

(k � 1) =

k

X

i=1

N

i

(�y

i

� �y)

2

�

2

(10.78)

A se
ond �

2

variable is obtained from the estimate of � for ea
h sample

�̂

2

i

=

1

N

i

� 1

N

i

X

j=1

�

y

(i)

j

� �y

i

�

2

(10.79)

(where y

(i)

j

is element j of sample i) by a weighted average:

�̂

2

=

1

N � k

k

X

i=1

(N

i

� 1) �̂

2

i

(10.80)

whi
h is a generalization of equation 10.74. Then (N � k)�̂

2

=�

2

is a �

2

r.v. with

N � k degrees of freedom, sin
e k sample means, �y

i

, have also been determined.

The ratio of these two �

2

variables, normalized by dividing by their respe
tive

numbers of degree of freedom, is an r.v. distributed as F (k� 1;N � k):

F =

1

k�1

P

k

i=1

N

i

(�y

i

� �y)

2

1

N�k

P

k

i=1

P

N

i

j=1

(y

(i)

j

� �y

i

)

2

(10.81)

If the hypothesis of equal means is false, the �y

i

will be di�erent and the numerator of

equation 10.81 will be larger than expe
ted underH

0

while the denominator, being

an average of the sample varian
e within samples, will be una�e
ted (remember that

the true varian
e of all samples is known to be the same). Hen
e large values of F

are used to reje
tH

0

with a 
on�den
e level determined from the one-tailed 
riti
al

values of the F distribution. If there are only two samples, this analysis is equivalent

to the previously des
ribed two-sample test using Student's t distribution.
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Multiway analysis of varian
e

Let us examine the situation of the previous se
tion in a slightly di�erent way. An

estimate of the varian
e of the (Gaussian) p.d.f. is given by �̂

2

= Q=(N�1) where

the \sum of squares" (SS), denoted here byQ (in 
ontrast to previous se
tions where

Q

2

was used), is given (
f. equation 8.118) by

Q = (N � 1) �̂

2

=

N

X

i=1

(y

i

� �y)

2

(10.82)

Under H

0

, Q=�

2

is a �

2

of N � 1 degrees of freedom. Equation 10.82 
an be

rewritten

Q =

k

X

i=1

N

i

X

j=1

(y

(i)

j

� �y)

2

(10.83)

=

k

X

i=1

N

i

X

j=1

�

y

(i)

j

� �y

i

+ �y

i

� �y

�

2

=

k

X

i=1

8

<

:

N

i

X

j=1

�

�

y

(i)

j

� �y

i

�

2

+ (�y

i

� �y)

2

�

+ 2 (�y

i

� �y)

N

i

X

j=1

�

y

(i)

j

� �y

i

�

9

=

;

The se
ond term is zero sin
e both its sums are equal:

N

i

X

j=1

y

(i)

j

=

N

i

X

j=1

�y

i

= N

i

�y

i

Hen
e,

Q = (N � 1) �̂

2

=

k

X

i=1

(N

i

� 1) �̂

2

i

+

k

X

i=1

N

i

(�y

i

� �y)

2

(10.84)

There are thus two 
ontributions to our estimate of the varian
e of the p.d.f.: The

�rst term is the 
ontribution of the varian
e of the measurements within the samples;

the se
ond is that of the varian
e between the samples. Also the number of degrees

of freedom are partitioned. As we have seen in the previous se
tion, the �rst and

se
ond terms are related to �

2

variables of N � k and k � 1 degrees of freedom,

respe
tively, and their sum, N � 1, is the number of degrees of freedom of the �

2

variable asso
iated with �̂

2

.

Now suppose the samples are 
lassi�ed in some way su
h that ea
h sample has

two indi
es, e.g., the date of measurement and the person performing the measure-

ment. We would like to partition the overall varian
e between the various sour
es:

the varian
e due to ea
h fa
tor (the date and the person) and the innate residual

variation. In other words, we seek the analog of equation 10.84 with three terms.

We then want to test whether the mean of the samples is independent of ea
h fa
tor

separately.
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Of 
ourse, the situation 
an be more 
ompli
ated. There 
an be more than two

fa
tors. The 
lassi�
ation is 
alled \
rossed" if there is a sample for all 
ombinations

of fa
tors. More 
ompli
ated is the 
ase of \nested" 
lassi�
ation where this is not

the 
ase. Further, the number of observations in ea
h sample 
an be di�erent. We

will only treat the simplest 
ase, namely two-way 
rossed 
lassi�
ation.

We begin with just one observation per sample. As an example, suppose that

there are a number of te
hni
ians who have among their tasks the weighing of

samples. As a 
he
k of the pro
edure, a referen
e sample is weighed on
e ea
h day

by ea
h te
hni
ian. One wants to test (a) whether the balan
e is stable in time,

i.e., gives the same weight ea
h day, and (b) that the weight found does not depend

on whi
h te
hni
ian performs the measurement.

In su
h a 
ase the measurements 
an be pla
ed in a table with ea
h row 
or-

responding to a di�erent value of the �rst fa
tor (the date) and ea
h 
olumn to a

value of the se
ond fa
tor (the te
hni
ian). Suppose that there are R rows and C


olumns. The total number of measurements is then N = RC. We use subs
ripts

r and 
 to indi
ate the row and 
olumn, respe
tively. The sample means of row r

and 
olumn 
 are given, respe
tively, by

�y

r:

=

1

C

C

X


=1

y

r


; �y

:


=

1

R

R

X

r=1

y

r


(10.85)

In this notation a dot repla
es indi
es whi
h are averaged over, ex
ept that the

dots are suppressed if all indi
es are averaged over (�y � �y

::

). We now pro
eed as

in equations 10.82-10.84 to separate the varian
e (or more a

urately, the sum of

squares, SS) between rows from the rest:

Q =

X

r

X




(y

r


� �y)

2

(10.86)

=

X

r

X




(y

r


� �y

r

)

2

+ C

X

r

(�y

r:

� �y)

2

(10.87)

where C is, of 
ourse, the same for all rows and hen
e 
an be taken out of the sum

over r. The se
ond term, to be denoted Q

R

, is the 
ontribution to the SS due to

variation between rows while the �rst term 
ontains both the inter-
olumn and the

innate, or residual, 
ontributions.

We 
an, in the same way, separate the SS between rows from the rest. The result


an be immediately written down by ex
hanging 
olumns and rows in equation

10.87:

Q =

X




X

r

(y

r


� �y

:


)

2

+R

X




(�y

:


� �y)

2

(10.88)

The residual 
ontribution, Q

W

, to the SS 
an be obtained by subtra
ting the inter-

row and inter-
olumn 
ontributions from the total:

Q

W

= Q�Q

R

�Q

C

=

X

r

X




(y

r


� �y)

2

� C

X

r

(�y

r:

� �y)

2

�R

X




(�y

:


� �y)

2
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whi
h, using the fa
t that

X

r

X




y

r


= C

X

r

�y

r:

= R

X




�y

:


= CR �y (10.89)


an be shown to be equal to

Q

W

=

X

r

X




(y

r


� �y

r:

� �y

:


+ �y)

2

We have thus split the varian
e into three parts. The number of degrees of freedom

also partitions:

Two-way Crossed Classi�
ation { Single Measurements

Fa
tor SS d.o.f.

Row Q

R

= C

P

r

(�y

r:

� �y)

2

R� 1

Column Q

C

= R

P




(�y

:


� �y)

2

C � 1

Residual Q

W

=

P

r

P




(y

r


� �y

r:

� �y

:


+ �y)

2

RC �R� C + 1

Total Q =

P

r

P




(y

r


� �y)

2

RC � 1

Divided by their respe
tive numbers of degrees of freedom, the SS are, under

H

0

, all estimators of �

2

. The hypothesesH

R

0

, that the means of all rows are equal,

and H

C

0

, similarly de�ned for 
olumns, 
an be separately tested by the one-tailed

F -test using, respe
tively,

F

R

=

1

R�1

Q

R

1

(R�1)(C�1)

Q

W

; F

C

=

1

C�1

Q

C

1

(R�1)(C�1)

Q

W

(10.90)

Let us now look at this pro
edure somewhat more formally. What we, in fa
t,

have done is used the following model for our measurements:

y

r


= �+ �

r

+ !




;

X

r

�

r

=

X




!




= 0 (10.91)

whi
h is a linear model with R+C +1 parameters subje
t to R+C 
onstraints.

The measurements are then equal to � + �

r

+ !




+ �

r


where the measurement

errors, �

r


, are assumed to be normally distributed with the same varian
e. The

hypothesis to be tested is that all the �

r

and !




are 0. The �

r

and the !





an be

tested separately. The least squares estimator for �

r

is

^

�

r

=

1

C

X




y

r


� �̂ = �y

r:

� �y (10.92)

If all �

r

are zero, whi
h is the 
ase under H

0

, then

�

2

=

X

r

^

�

2

r

�

2

=C

=

C

P

r

(�y

r:

� �y)

2

�

2

=

Q

R

�

2

(10.93)
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is a �

2

of R � 1 degrees of freedom. However, sin
e �

2

is unknown, we 
an not

use this �

2

dire
tly.

As shown above, a se
ond, independent �

2


an be found, namely Q

W

=�

2

,

whi
h is from that part of the sum of squares not due to inter-row or inter-
olumn

variation. This �

2

is then 
ombined with that of equation 10.93 to make an F -test.

for the hypothesis that all �

r

are zero. Similarly, an F -test 
an be derived for

the hypothesis that all !




are zero. The method 
an be extended to mu
h more


ompli
ated linear models.

However, we will go just one step further: two-way 
rossed 
lassi�
ation with

several, K, observations per 
lass. We limit ourselves to the same number, K,

for all 
lasses. It is now possible to generalize the model by allowing \intera
tion"

between the fa
tors. The model is

y

r
k

= �+ �

r

+ !




+ �

r


;

X

r

�

r

=

X




!




=

X

r

X




�

r


= 0 (10.94)

where k is the index spe
ifying the observation within 
lass r
.

In our example of di�erent te
hni
ians and di�erent dates, the varian
e among

te
hni
ians 
an now depend on the date. (On a day a te
hni
ian does not feel well

the measurements might show more variation.)

The null hypothesis that all �

r

, !




, and �

r


are zero is equivalent to three

hypotheses all being true, namelyH

R

0

that all �

r

are zero, a similarH

C

0

for 
olumns,

and H

I

0

that all �

r


are zero. These three hypotheses 
an all be tested separately.

Here too, the pro
edure of equations 10.82-10.84 
an be followed with the ad-

dition of a sum over k. The result is the partition of the sum of squares over four

terms:

Two-way Crossed Classi�
ation

Fa
tor SS d.o.f.

Row Q

R

= CK

P

r

(�y

r::

� �y)

2

R� 1

Column Q

C

= RK

P




(�y

:
:

� �y)

2

C � 1

Intera
tion Q

I

= K

P

r

P




(�y

r
:

� �y

r::

� �y

:
:

+ �y)

2

RC �R� C + 1

Residual Q

W

=

P

r

P




P

k

(y

r
k

� �y

r
:

)

2

RC(K � 1)

Total Q =

P

r

P




P

k

(y

r
k

� �y)

2

RCK � 1

where the averages are, e.g.,

�y

r::

=

1

CK

X




X

k

y

r
k

; �y

r
:

=

1

K

X

k

y

r
k

F -tests 
an be 
onstru
ted using Q

R

, Q

C

, and Q

I

together with Q

W

.
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1. In statisti
s we will see that the moments of the parent distribution 
an be

`estimated', or `measured', by 
al
ulating the 
orresponding moment of the

data, e.g., x =

1

n

P

x

i

gives an estimate of the mean � and

q

1

n

P

(x

i

� x)

2

estimates �, et
.

(a) Histogram the following data using a suitable bin size.

90 90 79 84 78 91 88 90 85 80

88 75 73 79 78 79 67 83 68 60

73 79 69 74 76 68 72 72 75 60

61 66 66 54 71 67 75 49 51 57

62 64 68 58 56 79 63 68 64 51

58 53 65 57 59 65 48 54 55 40

49 42 36 46 40 37 53 48 44 43

35 39 30 41 41 22 28 36 39 51

These data will be available in a �le, whi
h 
an be read, e.g., in FORTRAN

by

READ(11,'(10F4.0)') X

where X is an array de�ned by REAL X(80).

(b) Estimate the mean, standard deviation, skewness, mode, median and

FWHM (full width at half maximum) using the data and using the his-

togram bin 
ontents and the 
entral values of the bins.

You may �nd the FORTRAN subroutine FLPSOR useful: CALL FLPSOR(X,N),

where N is the dimension, e.g., 80, of the array X. After 
alling this routine,

the order of the elements of X will be in as
ending order.

2. Verify by making a histogram of 1000 random numbers that your random

number generator indeed gives an approximately uniform distribution in the

interval 0 to 1.

Make a two-dimensional histogram using su

essive pairs of random numbers

for the x and y 
oordinates. Does this two-dimensional distribution also

appear uniform? Cal
ulate the 
orrelation 
oeÆ
ient between x and y.

3. LetX

i

; i = 1; 2; :::; n, be n independent r.v.'s uniformly distributed between

0 and 1, i.e., the p.d.f. is f(x) = 1 for 0 � x � 1 and f(x) = 0 otherwise.

Let Y be the maximum of the n X

i

: Y = max(X

1

;X

2

; :::;X

n

). Derive

the p.d.f. for Y , g(y). Hint: What is the 
.d.f. for Y ?

4. For two r.v.'s, x and y, show that

V [x+ y℄ = V [x℄ + V [y℄ + 2 
ov(x; y)
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5. Show that the skewness 
an be written




1

=

1

�

3

�

E

h

x

3

i

� 3E [x℄E

h

x

2

i

+ 2E [x℄

3

�

6. The Cheby
hev Inequality. Assume that the p.d.f. for the r.v. X has mean �

and varian
e �

2

. Show that for any positive number k, the probability that

x will di�er from � by more than k standard deviations is less than or equal

to 1=k

2

, i.e., that

P (jx� �j � k�) �

1

k

2

7. Show that j 
ov(x; y)j � �

x

�

y

, i.e., that the 
orrelation 
oeÆ
ient, �

x;y

=


ov(x; y)=�

x

�

y

, is in the range �1 � � � 1 and that � = �1 if and only

if x and y are linearly related.

8. A beam of mesons, 
omposed of 90% pions and 10% kaons, hits a

�

Cerenkov


ounter. In prin
iple the 
ounter gives a signal for pions but not for kaons,

thereby identifying any parti
ular meson. In pra
ti
e it is 95% eÆ
ient at

giving a signal for pions, and also has a 6% probability of giving an a

idental

signal for a kaon. If a meson gives a signal, what is the probability that the

parti
le was a pion? If there is no signal, what is the probability that it was

a kaon?

9. Mongolian swamp fever (MSF) is su
h a rare disease that a do
tor only expe
ts

to meet it on
e in 10000 patients. It always produ
es spots and a
ute lethargy

in a patient; usually (60% of 
ases) they su�er from a raging thirst, and

o

asionally (20% of 
ases) from violent sneezes. These symptoms 
an arise

from other 
auses: spe
i�
ally, of patients who do not have MSF, 3% have

spots, 10% are lethargi
, 2% thirsty, and 5% 
omplain of sneezing. These four

probabilities are independent.

Show that if you go to the do
tor with all these symptoms, the probability

of your having MSF is 80%. What is the probability if you have all these

symptoms ex
ept sneezing?

10. Suppose that an antimissile system is 99.5% eÆ
ient in inter
epting in
oming

ballisti
 missiles. What is the probability that it will inter
ept all of 100

missiles laun
hed against it? How many missiles must an aggressor laun
h to

have a better than even 
han
e of one or more penetrating the defenses? How

many missiles would be needed to ensure a better than even 
han
e of more

than two missiles evading the defenses?

11. A student is trying to hit
h a lift. Cars pass at random intervals, at an average

rate of 1 per minute. The probability of a 
ar giving a student a lift is 1%.

What is the probability that the student will still be waiting:
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(a) after 60 
ars have passed?

(b) after 1 hour?

12. Show that the 
hara
teristi
 fun
tion of the Poisson p.d.f.,

P (r;�) =

�

r

e

��

r!

is

�(t) = exp

h

�

�

e

{t

� 1

�i

Use the 
hara
teristi
 fun
tion to prove the reprodu
tive property of the Pois-

son p.d.f.

13. A single number often used to 
hara
terize an angular distribution is the

forward-ba
kward ratio, F=B, or the forward-ba
kward asymmetry,

F

N

,where

F is the number of events with 
os � > 0, B is the number of events with


os � < 0, and N = F +B is the total number of events. Assume that the

events are independent and that the event rate is 
onstant, for both forward

and ba
kward events.

Clearly, only two of the three variables, F , B, N , are independent. We 
an

regard this situation in two ways:

(a) The number of eventsN is Poisson distributed with mean � and they are

split into F and B = N �F following a binomial p.d.f., B(F ;N;p

F

),

i.e., the independent variables are N and F .

(b) The F events and B events are both Poisson distributed (with param-

eters �

F

and �

B

), and the total is just their sum, i.e., the independent

variables are F and B.

Show that both ways lead to the same p.d.f.

14. Show that the Poisson p.d.f. tends to a Gaussian with mean � and varian
e

�

2

= � for large �, i.e.,

P (r;�) �! N(r;�; �)

For � = 5:3, what is the probability of 2 or less events? Approximating

the dis
rete Poisson by the 
ontinuous Gaussian p.d.f., � 2 should be re-

garded as < 2:5, half way between 2 and 3. What is the probability in this

approximation?

15. For a Gaussian p.d.f.:

(a) What is the probability of a value lying more than 1:23� from the mean?
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(b) What is the probability of a value lying more than 2:43� above the

mean?

(
) What is the probability of a value lying less than 1:09� below the mean?

(d) What is the probability of a value lying above a point 0:45� below the

mean?

(e) What is the probability that a value lies more than 0:5� but less than

1:5� from the mean?

(f) What is the probability that a value lies above 1:2� on the low side of

the mean, and below 2:1� on the high side?

(g) Within how many standard deviations does the probability of a value

o

urring equal 50%?

(h) How many standard deviations 
orrespond to a one-tailed probability of

99%?

16. During a meteor shower, meteors fall at the rate of 15.7 per hour. What is the

probability of observing less than 5 in a given period of 30 minutes? What

value do you �nd if you approximate the Poisson p.d.f. by a Gaussian p.d.f.?

17. Four values (3.9, 4.5, 5.5, 6.1) are drawn from a normal p.d.f. whose mean is

known to be 4.9. The varian
e of the p.d.f. is unknown.

(a) What is the probability that the next value drawn from the p.d.f. will

have a value greater than 7.3?

(b) What is the probability that the mean of three new values will be between

3.8 and 6.0?

18. Let x and y be two independent r.v.'s, ea
h distributed uniformly between 0

and 1. De�ne z

�

= x� y.

(a) How are z

+

and z

�

distributed?

(b) What is the 
orrelation between z

+

and z

�

; between z

+

and y?

It will probably help your understanding of this situation to use Monte Carlo

to generate points uniform in x and y and to make a two-dimensional his-

togram of z

+

vs. z

�

.

19. Derive the reprodu
tive property of the Gaussian p.d.f., i.e., show that if

x and y are independent r.v.'s distributed normally as N(x;�

x

; �

2

x

) and

N(y;�

y

; �

2

y

), respe
tively, then z = x + y is also normally distributed as

N(z;�

z

; �

2

z

). Show that �

z

= �

x

+ �

y

and �

2

z

= �

2

x

+ �

2

y

. Derive also

the p.d.f. for z = x� y, for z = (x+ y)=2, and for z = �x =

P

n

i=1

x

i

=n

when all the x

i

are normally distributed with the same mean and varian
e.
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20. For the bivariate normal p.d.f. for x; y with 
orrelation 
oeÆ
ient �, trans-

form to variables u; v su
h that the 
ovarian
e matrix is diagonal and show

that

�

2

u

=

�

2

x


os

2

� � �

2

y

sin

2

�


os

2

� � sin

2

�

�

2

v

=

�

2

y


os

2

� � �

2

x

sin

2

�


os

2

� � sin

2

�

where tan 2� =

2��

x

�

y

�

2

x

� �

2

y

21. Show that for the bivariate normal p.d.f., the 
onditional p.d.f., f(yjx), is a

normal p.d.f. with mean and varian
e,

E [yjx℄ = �

y

+ �

�

y

�

x

(x� �

x

) and V [yjx℄ = �

2

y

(1� �

2

)

22. For a three-dimensional Gaussian p.d.f. the 
ontours of 
onstant probability

are ellipsoids de�ned by 
onstant

G = (x� �)

T

V

�1

(x� �)

Find the probability that a point is within the ellipsoid de�ned by G = 1.

23. Given n independent variables, x

i

, distributed a

ording to f

i

having mean,

�

i

, and varian
e, V

i

= �

2

i

, show that S =

P

x

i

has mean �

S

= E [S℄ =

P

�

i

and varian
e V [S℄ =

P

V

i

=

P

�

2

i

. What are the expe
ted value and

varian
e of the average of the x

i

, �x =

1

n

P

x

i

?

24. Derive the reprodu
tive property of the Cau
hy p.d.f. Does the p.d.f. of the

sum of n independent, Cau
hy-distributed r.v.'s, approa
h the normal p.d.f.

in the limit n!1?

25. Let x and y be independent r.v.'s, ea
h distributed normally with mean 0

and varian
es �

2

x

and �

2

y

, respe
tively.

(a) Derive the p.d.f. of the r.v. z = x=y.

(b) Des
ribe a method to generate random numbers distributed as a standard

Cau
hy p.d.f. Try it.

26. (a) Show that for n independent r.v.'s, x

i

, uniformly distributed between 0

and 1, the p.d.f. for

g =

P

n

i=1

x

i

�

n

2

q

n

12

approa
hes N(g; 0; 1) for n!1.
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(b) Demonstrate the result (a) by generating by Monte Carlo the distribution

of g for n = 1, 2, 3, 5, 10, 50 and 
omparing it to N(g; 0; 1).

(
) If the x

i

are uniformly distributed in the intervals [0:0; 0:2℄ and [0:8; 1:0℄.

i.e.,

f(x) =

1

0:4

; 0:0 � x � 0:2 or 0:8 � x � 1:0

= 0 ; otherwise,

what distribution will g approa
h? Demonstrate this by Monte Carlo as

in (b).

27. Show that the weighting method used in the two-dimensional example of 
rude

Monte Carlo integration (se
t. 6.2.5, eq. 6.5) is in fa
t an appli
ation of the

te
hnique of importan
e sampling.

28. Perform the integral I =

R

1

0

x

3

dx by 
rude Monte Carlo using 100, 200,

400, and 800 points. Estimate not only I, but also the error on I. Does the

error de
rease as expe
ted with the number of points used?

Repeat the determination of I 50 times using 200 (di�erent) points ea
h time

and histogram the resulting values of I. Does the histogram have the shape

that you expe
t? Also evaluate the integral by the following methods and


ompare the error on I with that obtained by 
rude Monte Carlo:

(a) using hit or miss Monte Carlo and 200 points.

(b) using 
rude Monte Carlo and strati�
ation, dividing the integration re-

gion in two, (0,0.5) and (0.5,1), and using f � 200 points in (0,0.5) and

(1�f) � 200 points in (0.5,1), where f = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, and 0.9. Plot the error on I vs. f .

(
) as (b) but for f=0.5 with various intervals, (0,
) and (
,1), for 
 = 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Make a plot of the estimated

error on I vs. 
.

(d) using 
rude Monte Carlo and antitheti
 variables x and (1�x) and 200

points.

(e) as (d) but with only 100 points.

(f) using importan
e sampling with the fun
tion g(x) = x

2

and 200 points.

29. Generate 20000 Monte Carlo points with x > 0 distributed a

ording to the

distribution

f(x) =

1

2

 

1

�

e

�x=�

+

1

�

e

�x=�

!

for � = 3 and � = 10. Do this for (a) the weighting, (b) the reje
tion,

and (
) the 
omposite methods using inverse transformations. Whi
h method
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is easiest to program? Whi
h is fastest? Make histograms of the resulting

distribution in ea
h 
ase and verify that the distribution is 
orre
t.

If you 
an only dete
t events with 1 < x < 10, what fra
tion of the events

will you dete
t? Suppose in addition, that your dete
tor has a dete
tion

eÆ
ien
y given by

e =

�

0; if x < 1 or x > 10

(x� 1)=9; if 1 < x < 10

How 
an you arrive at a histogram for the x-distribution of the events you

dete
t? There are various methods. Whi
h should be the best?

30. Generate 1000 points, x

i

, from the Gaussian p.d.f. N(x; 10; 5

2

). Use ea
h

of the following estimators to estimate the mean of X: sample mean, sample

median, and trimmed sample mean (10%).

Repeat assuming we only measure values of X in the interval (5,25), i.e. if

an x

i

is outside this range, throw it away and generate a new value.

Repeat this all 25 times, histogramming ea
h estimation of the mean. From

these histograms determine the varian
e of ea
h of the six estimators.

31. Under the assumptions that the range of the r.v. X is independent of the

parameter � and that the likelihood, L(x; �), is regular enough to allow

inter
hanging

�

2

��

2

and

R

dx, derive equation 8.23,

I

x

(�) = �E

"

�

��

S(x; �)

#

32. Show that the estimator




�

2

=

P

(x

i

� �)

2

=n is an eÆ
ient estimator of the

varian
e of a Gaussian p.d.f. of known mean by showing that its varian
e is

equal to I

�1

.

33. Using the method of se
tion 8.2.7, �nd an eÆ
ient and unbiased estimator for

�

2

of a normal p.d.f. when � is known and there is thus only one parameter

for the distribution.

34. We 
ount the number of de
ays in a �xed time interval, T . We do this N

times yielding the results n

i

, i = 1; :::;N . The sour
e is assumed to 
onsist

of a large number of atoms having a long half-life. The data, n

i

, are therefore

assumed to be distributed a

ording to a Poisson p.d.f., the parameter of

whi
h 
an be estimated by �̂ = �n (se
tion 8.3.2). Suppose, however, that we

want instead to estimate the probability of observing no de
ays in the time

interval, T .

(a) What is the estimator in the frequen
y method of estimation?
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(b) Derive a less biased estimator.

(
) Derive the varian
es of both the estimator and the less biased estimator.

35. (a) Derive equations 8.41 and 8.42, i.e., show that the varian
e of the r

th

sample moment is given by

V [x

r

℄ =

1

n

h

E

h

x

2r

i

� (E [x

r

℄)

2

i

and that


ov [x

r

; x

q

℄ =

1

n

h

E

h

x

r+q

i

� E [x

r

℄E [x

q

℄

i

(b) Derive an expression in terms of sample moments to estimate the vari-

an
e, V

h




�

2

i

, of the moments estimator of the parent varian
e,




�

2

=




m

2

�




m

2

1

36. We estimate the values of x and y by their sample means, �x and �y, whi
h

have varian
es �

2

x

and �

2

y

. The 
ovarian
e is zero. We want to estimate the

values of r and � whi
h are related to x and y by

r

2

= x

2

+ y

2

and tan � =

y

x

Following the substitution method, what are r̂ and

^

�? Find the varian
es and


ovarian
e of r̂ and

^

�.

37. We measure x = 10:0� 0:5 and y = 2:0� 0:5. What is then our estimate

of x=y? Use Monte Carlo to investigate the validity of the error propagation.

38. We measure 
os � and sin �, both with standard deviation �. What is the

ml estimator for �? Compare with the results of exer
ise 36.

39. De
ay times of radioa
tive atoms are des
ribed by an exponential p.d.f. (equa-

tion 3.10):

f(t; �) =

1

�

e

�t=�

(a) Having measured the times t

i

of n de
ays, how would you estimate �

and the varian
e V [�̂ ℄ (1) using the moments method and (2) using the

maximum likelihood method? Whi
h method do you prefer? Why?

(b) Generate 100 Monte Carlo events a

ording to this p.d.f. with � = 10,

(
f. exer
ise 29) and 
al
ulate �̂ and V [�̂ ℄ using both the moments

and the maximum likelihood methods. Are the results 
onsistent with

� = 10? Whi
h method do you prefer? Why?
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(
) Use a minimization program, e.g., MINUIT, to �nd the maximum of the

likelihood fun
tion for the Monte Carlo events of (39b). Evaluate V [�̂ ℄

using both the se
ond-derivative matrix and the variation of l by

1

/

2

.

Compare the results for �̂ and V [�̂ ℄ with those of (39b).

(d) Repeat (39b) 1000 times making histograms of the value of �̂ and of the

estimate of the error on �̂ for ea
h method. Do you prefer the moments

or the maximum likelihood expression for V [�̂ ℄? Why?

(e) Suppose that we 
an only dete
t times t < 10. What is then the

likelihood fun
tion? Use a minimization program to �nd the maximum

of the likelihood fun
tion and thus �̂ and its varian
e. Does this value

agree with � = 10?

(f) Repeat (39b) and (39e) with 10000 Monte Carlo events.

40. Verify that a least squares �t of independent measurements to the model

y = a+ bx results in estimates for a and b given by

â = �y �

^

b�x and

^

b =

xy � �x�y

x

2

� �x

2

where the bar indi
ates a weighted sample average with weights given by

1=�

2

i

, as stated in se
tion 8.5.5.

41. Use the method of least squares to derive formulae to estimate the value (and

its error), y � Æy, from a set of n measurements, y

i

� Æy

i

. Assume that

the y

i

are un
orrelated. Comment on the relationship between these formulae

and those derived from ml (equations 8.59 and 8.60).

42. Perform a least squares �t of a parabola

y(x) = �

1

+ �

2

x+ �

3

x

2

for the four independent measurements: 5� 2; 3� 1; 5� 1; 8� 2 measured

at the points x = �0:6;�0:2; 0:2; 0:6, respe
tively. Determine not only the

^

�

i

and their 
ovarian
es, but also 
al
ulate the value of y and its un
ertainty

at x = 1.

To invert a matrix you 
an use the routine RSINV:

CALL RSINV (N,A,N,IFAIL)

where A is a symmetri
, positive matrix of dimension (N,N). If the matrix

inversion is su

essful, IFAIL is returned as 0.

43. The three angles of a triangle are independently measured to be 63

Æ

, 34

Æ

,

and 85

Æ

, all with a resolution of 1

Æ

.

(a) Cal
ulate the least squares estimate of the angles subje
t to the require-

ment that their sum be 180

Æ

.
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(b) Cal
ulate the 
ovarian
e matrix of the estimators.

44. Generate events as in exer
ise 39b. Histogram the times t

i

and use the two

minimum 
hi-square methods and the binned maximum likelihood method to

estimate the lifetime � . Use a minimization program, e.g., MINUIT, to �nd

the minima and maximum. Compare the results of these three methods and

those of exer
ise 39b.

45. In se
tion 8.7.4 is a table 
omparing the eÆ
ien
ies of various lo
ation es-

timators for various distributions. Generate 10000 random numbers from a

standard normal distribution and estimate the mean using ea
h of the esti-

mators in the table. Repeat this 1000 times making histograms of the values

of ea
h estimator. The standard deviation of these histograms is an estimate

of the standard deviation of the estimator. Are these in the ratio expe
ted

from the table?

46. Consider a long-lived radioa
tive sour
e.

(a) In our dete
tor it produ
es 389 
ounts in the �rst minute and 423 
ounts

in the se
ond minute. Assuming a 100% eÆ
ient dete
tor, what is the

best estimation of the a
tivity of the sour
e?

(b) What 
an you say about the best value and un
ertainty for the a
tivity

of the sour
e from the following set of independent measurements?

1:08� 0:13 ; 1:04� 0:07 ; 1:13� 0:10 Bq:

47. A 
urrent is determined by measuring the voltage V a
ross a standard re-

sistor. The voltmeter has a resolution �

V

and a systemati
 error s

V

. We

measure two 
urrents using the same resistor and voltmeter. Sin
e the resis-

tan
e is un
hanged between the measurements, we regard its un
ertainty as

entirely systemati
. Find the 
ovarian
e matrix for the two 
urrents, whi
h

are 
al
ulated using Ohm's law, I

i

= V

i

=R.

48. We measure a quantity X 25 times using an apparatus of unknown but 
on-

stant resolution. The average value of the measurements is �x = 128. The

estimate of the varian
e is s

2

=

1

24

P

(x � �x)

2

= 225. What is the 95%


on�den
e interval on the true value, �, of the quantity X?

49. You want to determine the probability, p, that a student passes the statis-

ti
s exam. Sin
e there are only two possible out
omes, pass and fail, the

appropriate p.d.f. is binomial, B(k;N;p).

(a) Constru
t the 
on�den
e belt for a 95% 
entral 
on�den
e interval for p

for the 
ase that 10 students take the exam and k pass, i.e., draw k

+

(p)

and k

�

(p) 
urves on a p vs. k plot.
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(b) Assume that 8 of the 10 pass. Find the 95% 
entral 
on�den
e interval

from the plot 
onstru
ted in (a) and by solving equation 9.18.

50. An experiment studying the de
ay of the proton (an extremely rare pro
ess, if

it o

urs at all) observes 7 events in 1 year for a sample of 10

6

kg of hydrogen.

(a) Assume that there is no ba
kground. Give a 90% 
entral 
on�den
e

interval and a 90% upper limit for the expe
ted number of proton de
ays

and from these 
al
ulate the 
orresponding interval and limit for the

mean lifetime of the proton.

(b) Repeat (a) assuming that ba
kground pro
esses are expe
ted to 
on-

tribute an average of 3 events per year.

(
) Repeat (a) assuming 8 expe
ted ba
kground events per year.

51. Constru
t a most powerful (MP) test for one observation, x, for the hypothesis

that X is distributed as a Cau
hy distribution,

f(x) =

1

� [1 + (x� �)

2

℄

with � = 0 under H

0

and � = 1 under H

1

. What is the size of the test if

you de
ide to reje
t H

0

when x > 0:5?

52. Ten students ea
h measure the mass of a sample, ea
h with an error of 0.2 g:

10:2 10:4 9:8 10:5 9:9 9:8 10:3 10:1 10:3 9:9 g

(a) Test the hypothesis that they are all measurements of a sample whose

true mass is 10.1 g.

(b) Test the hypothesis that they are all measurements of the same sample.

53. On Feb. 23, 1987, the Irvine-Mi
higan-Brookhaven experiment was 
ounting

neutrino intera
tions in their dete
tor. The time that the dete
tor was on

was split into ten-se
ond intervals, and the number of neutrino intera
tions

in ea
h interval was re
orded. The number of intervals 
ontaining i events is

shown in the following table. There were no intervals 
ontaining more than 9

events.

Number of events 0 1 2 3 4 5 6 7 8 9

Number of intervals 1042 860 307 78 15 3 0 0 0 1

This date was also the date that astronomers �rst saw the supernova S1987a.

(a) Test the hypothesis that the data are des
ribed by a Poisson distribution.
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(b) Test the hypothesis that the data are des
ribed by the sum of two Poisson

distributions, one for a signal of 9 events within one ten-se
ond interval,

and another for the ba
kground of ordinary 
osmi
 neutrinos.

54. Marks on an exam are distributed over male and female students as follows

(it is left to your own bias to de
ide whi
h group is male):

Group 1 39 18 3 22 24 29 22 22 27 28 23 48

Group 2 42 23 36 35 38 42 33

Assume that test s
ores are normally distributed within ea
h group.

(a) Assume that the varian
e of the s
ores of both groups is the same, and

test the hypothesis that the mean is also the same for both groups.

(b) Test the assumption that the varian
e of the s
ores of both groups is the

same.

55. The light transmission of 
rystals is degraded by ionizing radiation. Folklore,

and some qualitative physi
s arguments, suggest that it 
an be (partially)

restored by annealing. To test this the light transmission of 7 
rystals, whi
h

have been exposed to radiation, is measured. The 
rystals are then annealed,

and their light transmission again measured. The results:

Crystal 1 2 3 4 5 6 7

Before 29 30 42 34 37 45 32

After 36 26 46 36 40 51 33

di�eren
e 7 �4 4 2 3 6 1

Assume that the un
ertainty in the measurement of the transmission is nor-

mally distributed.

(a) Test whether the light transmission has improved using only the mean

of the before and after measurements.

(b) Test whether the light transmission has improved making use of the

measurements per 
rystal, i.e., using the di�eren
es in transmission.

For the following exer
ises you will be assigned a �le 
ontaining the data to be

used. It will 
onsist of 3 numbers per event, whi
h may be read, e.g., in FORTRAN

by
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READ(11,'(I5)') NEVENTS

READ(11,'(3F10.7)') ((E(I,IEV),I=1,3),IEV=1,NEVENTS)

The data may be thought of as being the measurement of the radioa
tive de
ay

of a neutral parti
le at rest into two new parti
les, one positive and one negative,

with

E(1,IEV) = x, the mass of the de
aying parti
le as determined from the en-

ergies of the de
ay produ
ts. The mass values have a 
ertain

spread due to the resolution of our apparatus and/or the Heisen-

berg un
ertainty prin
iple (for a very short-lived parti
le).

E(2,IEV) = 
os �, the 
osine of the polar angle of the positive de
ay parti
le's

dire
tion.

E(3,IEV) = �=�, the azimuthal angle, divided by �, of the positive de
ay par-

ti
le's dire
tion. Division by � results in a more 
onvenient

quantity to histogram.

Assume that the de
ay is of a ve
tor meson to two pseudo-s
alar mesons. The de
ay

angular distribution is then given by

f(
os �; �) =

3

4�

�

1

2

(1� �

00

) +

1

2

(3�

00

� 1) 
os

2

� � �

1;�1

sin

2

� 
os 2�

�

p

2Re�

10

sin 2� 
os�

�

A1. Use the moments method to estimate the mass of the parti
le and the de
ay

parameters �

00

, �

1;�1

, and Re�

10

. Also estimate the varian
e and standard

deviation of the p.d.f. for x. Estimate also the errors of all of the estimates.

A2. Use the maximum likelihood method to estimate the de
ay parameters �

00

,

�

1;�1

, and Re�

10

using a program su
h as MINUIT to �nd the maximum of the

likelihood fun
tion. Determine the errors on the estimates using the variation

of the likelihood.

A3. Assume that x is distributed normally. Determine � and � using maximum

likelihood. Also determine the 
ovarian
e matrix of the estimates.

A4. Assume that x is distributed normally. Determine � and � using both the

minimum �

2

and the binned maximum likelihood methods. Do this twi
e,

on
e with narrow and on
e with wide bins. Compare the estimates and their


ovarian
e matrix obtained with these two methods with ea
h other and with

that of the previous exer
ise.

A5. Test the assumption of ve
tor meson de
ay against the hypothesis of de
ay of

a s
alar meson, in whi
h 
ase the angular distribution must be isotropi
.
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For the following exer
ises you will be assigned a �le 
ontaining the data to be

used. It is the same situation as in the previous exer
ises ex
ept that it is somewhat

more realisti
, having some ba
kground to the signal.

B1. From an examination of histograms of the data, make some reasonable hypothe-

ses as to the nature of the ba
kground, i.e., propose some fun
tional form for

the ba
kground, f

b

(x) and f

b

(
os �; �).

B2. Modify your likelihood fun
tion to in
lude your hypothesis for the ba
kground,

and use the maximum likelihood method to estimate the de
ay parameters

�

00

, �

1;�1

, and Re�

10

as well as the fra
tion of signal events. Also determine

the position of the signal, �, and its width, �, under the assumption that the

signal x is normally distributed. Determine the errors on the estimates using

the variation of the likelihood.

B3. Develop a way to use the moments method to estimate, taking into a

ount

the ba
kground, the de
ay parameters �

00

, �

1;�1

, and Re�

10

. Estimate also

the errors of the estimates.

B4. Determine the goodness-of-�t of the �ts in the previous two exer
ises. There

are several goodness-of-�t tests whi
h 
ould be applied. Why did you 
hoose

the one you did?


