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They say that Understanding ought to work by the rules of right
reason. These rules are, or ought to be, contained in Logic; but
the actual science of logic is conversant at present only with things
either certain, impossible, or entirely doubtful, none of which (for-
tunately) we have to reason on. Therefore the true logic for this
world is the calculus of Probabilities, which takes account of the
magnitude of the probability which is, or ought to be, in a reason-
able man’s mind.

—J. Clerk Maxwell

Chapter 1

Introduction

Statistics is a tool useful in the design, analysis and interpretation of experi-
ments. Like any other tool, the more you understand how it works the better you
can use it.

The fundamental laws of classical physics do not deal with statistics, nor with
probability. Newton’s law of gravitation F = GMm

r2 contains an exponent 2 in
the denominator—exactly 2, not 2.000 ± 0.001. But where did the 2 come from?
It came from analysis of many detailed and accurate astronomical observations of
Tycho Brahe and others.

In “statistical” physics you have such a complicated situation that you treat it
in a “statistical” manner, although I would prefer to make a distinction between
statistics and probability and call it a probabilistic manner. In quantum mechanics
the probability is intrinsic to the theory rather than a mere convenience to get
around complexity.

Thus in studying physics you have no need of statistics, although in some sub-
jects you do need probability. But when you do physics you need to know what
measurements really mean. For that you need statistics.

Using probability we can start with a well defined problem and calculate the
chance of all possible outcomes of an experiment. With probability we can thus go
from theory to the data.

In statistics we are concerned with the inverse problem. From data we want to
infer something about physical laws. Statistics is sometimes called an art rather

1
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than a science, and there is a grain of truth in it. Although there are standard
approaches, most of the time there is no “best” solution to a given problem. Our
most common tasks for statistics fall into two categories: parameter estimation and
hypothesis testing.

In parameter estimation we want to determine the value of some parameter in a
model or theory. For example, we observe that the force between two charges varies
with the distance r between them. We make a theory that F ∼ r−α and want to
determine the value of α from experiment.

In hypothesis testing we have an hypothesis and we want to test whether that
hypothesis is true or not. An example is the Fermi theory of β-decay which predicts
the form of the electron’s energy spectrum. We want to know whether that is
correct. Of course we will not be able to give an absolute yes or no answer. We
will only be able to say how confident we are, e.g., 95%, that the theory is correct,
or rather that the theory predicts the correct shape of the energy spectrum. Here
the meaning of the 95% confidence is that if the theory is correct, and if we were
to perform the experiment many times, 95% of the experiments would appear to
agree with the theory and 5% would not.

Parameter estimation and hypothesis testing are not completely separate topics.
It is obviously nonsense to estimate a parameter if the theory containing the pa-
rameter does not agree with the data. Also the theory we want to test may contain
parameters; the test then is whether values for the parameters exist which allow
the theory to agree with the data.

Although the main subject of this course is statistics, it should be clear that
an understanding of statistics requires understanding probability. We will begin
therefore with probability. Having had probability, it seems only natural to also
treat, though perhaps briefly, Monte Carlo methods, particularly as they are often
useful not only in the design and understanding of an experiment but also can be
used to develop and test our understanding of probability and statistics.

There are a great many books on statistics. They vary greatly in content and
intended audience. Notation is by no means standard. In preparing these lectures I
have relied heavily on the following sources (sometimes to the extent of essentially
copying large sections):

• R. J. Barlow,1 a recent text book in the Manchester series. Most of what
you need to know is in this book, although the level is perhaps a bit low.
Nevertheless (or perhaps therefore), it is a pleasure to read.

• Siegmund Brandt,2 a good basic book at a somewhat higher level. Unfor-
tunately, the FORTRAN sample programs it contains are rather old-fashioned.
There is an emphasis on matrix notation. There is also a German edition.

• A. G. Frodesen, O. Skjeggestad, and H. Tøfte,3 also a good basic text (despite
the words “particle physics” in the title) at a higher level. Unfortunately, it
is out of print.
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• W. T. Eadie et al.,4 a book at an advanced level. It is difficult to use if you
are not already fairly familiar with the subject.

• G. P. Yost,5 the lecture notes for a course at Imperial College, London. They
are somewhat short on explanation.

• Glen Cowan,6 a recent book at a level similar to these lectures. In fact, had
this book been available I probably would have used it rather than writing
these notes.

Other books of general interest are those of Lyons,7 Meyer,8 and Bevington.9

The ultimate reference for almost all of probability and statistics is the three-
volume work by Kendall and Stuart10. Since the death of Kendall, volumes 1
and 2 (now called 2a) are being kept up to date by others,11,12 and a volume (2b)
on Bayesian statistics has been added.13 Volume 3 has been split into several small
books, “Kendall’s Library of Statistics”, covering many specialized topics. Another
classic of less encyclopedic scope is the one-volume book by Cramér14.

1.1 Language

Statistics, like physics, has it own specialized terminology with words whose mean-
ing differs from the meaning in everyday use or the meaning in physics. An example
is the word estimate. In statistics “estimate” is used where the physicist would say
“determine” or “measure”, as in parameter estimation. The physicist or indeed
ordinary people tend to use “estimate” to mean little more than “guess” as in “I
would estimate that this room is about 8 meters wide.” We will generally use the
statisticians’ word.

Much of statistics has been developed in connection with population studies
(sociology, medicine, agriculture, etc.) and industrial quality control. One cannot
study the entire population; so one “draws a sample”. But the population exists.

In experimental physics the set of all measurements (or observations) forms the
“sample”. If we make more measurements we increase the size of the sample, but
we can never attain the “population”. The population does not really exist but is
an underlying abstraction. For us some terminology of the statisticians is therefore
rather inappropriate. We therefore sometimes make substitutions like the following:
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“demographic” terminology “physics” terminology

sample data (set)
draw a sample observe, measure

sample of size N N observations, N measurements
population observable space

population mean parent mean
= mean of the underlying distribution

population variance, etc. parent variance, etc.
sample mean sample mean = mean of the data

= experimental mean or average

We will just say “mean” when it is clear from the context whether we are referring
to the parent or the sample mean.

1.2 Computer usage

In this day and age, data analysis without a computer is inconceivable. While there
exist (a great many) programs to perform statistical analyses of data, they tend to
be difficult to learn and/or limited in what they can do. Their use also tends to
induce a cook-book mentality. Consequently, we shall not use them, but will write
our own programs (in FORTRAN or C). In this way we will at least know what we are
doing. Subroutines will be provided for a few conceptually simple, but technically
complicated, tasks.

Data is often presented in a histogram (1 or 2 dimensional). Computer packages
to do this will be available.

As an aid to understanding it is often useful to use random numbers, i.e., perform
simple Monte Carlo (cf. Part II). On a computer there is generally a routine which
returns a “pseudo-random” number. What that actually is will be treated in section
6.1.2. An example of such use is to generate random numbers according to a given
distribution, e.g., uniformly between 0 and 1, and then to histogram some function
of these numbers.

Parameter estimation (chapter 8) is often most conveniently done by numerically
finding the maximum (or minimum) of some function. Computer programs to do
this will also be available.

1.3 Some advice to the student

The goal of this course is not to provide a cook book of statistical data analysis.
Instead, we aim for some understanding of statistical techniques, of which there
are many. Lack of time will preclude rigorous proof (or sometimes any proof) of
results. Moreover, we will introduce some theoretical concepts, which will not seem
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immediately useful, but which should put the student in a better position to go
beyond what is included in this course, as will almost certainly be necessary at
some time in his career. Further, we will point out the assumptions underlying,
and the limitations of, various techniques.

A major difficulty for the student is the diversity of the questions statistical tech-
niques are supposed to answer, which results in a plethora of methods. Moreover,
there is seldom a single “correct” method, and deciding which method is “best” is
not always straightforward, even after you have decided what you mean by “best”.

A further complication arises from what we mean by “probability”. There are
two major interpretations, “frequentist” (or “classical”) and “Bayesian” (or “sub-
jective”), which leads to two different ways to do statistics. While the emphasis
will be on the classical approach, some effort will go into the Bayesian approach as
well.

While there are many questions and many techniques, they are related. In order
to see the relationships, the student is strongly advised not to fall behind.

Finally, some advice to astronomers which is equally valid for physicists:

Whatever your choice of area, make the choice to live your professional
life at a high level of statistical sophistication, and not at the level—
basically freshman lab. level—that is the unfortunate common currency
of most astronomers. Thereby we will all move forward together.

—William H. Press15
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“La théorie des probabilités n’est que
le bon sens reduit au calcul.”

—P.-S. de Laplace, “Mécanique Céleste”

Chapter 2

Probability

2.1 First principles

2.1.1 Probability—What is it?

We begin by taking the “frequentist” approach. A given experiment is assumed
to have a certain number of possible outcomes or events E. Suppose we repeat
the identical experiment N times and find outcome Ei Ni times. We define the
probability of outcome Ei to be

P (Ei) = lim
N→∞

Ni

N
(2.1)

We can also be more abstract. Intuitively, probability must have the following
properties. Let Ω be the set of all possible outcomes.

Axioms:

1. P (Ω) = 1 The experiment must have an outcome.

2. 0 ≤ P (E), E ∈ Ω

3. P (∪Ei) =
∑
P (Ei), for any set of disjoint Ei, Ei ∈ Ω

(Axiom of Countable Additivity)

It is straightforward to derive the following theorems:

1. P (E) = 1− P (E∗), where Ω = E ∪ E∗, E and E∗ disjoint.

2. P (E) ≤ 1

9
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3. P (∅) = 0, where ∅ is the null set.

4. If E1,E2 ∈ Ω and not necessarily disjoint, then
P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

A philosopher once said, “It is necessary
for the very existence of science that

the same conditions always produce the same results.”
Well, they do not. —Richard P. Feynman

2.1.2 Sampling

We restrict ourselves to experiments where the outcome is one or more real numbers,
Xi. Repetition of the experiment will not always yield the same outcome. This
could be due to an inability to reproduce exactly the initial conditions and/or to
a probabilistic nature of the process under study, e.g., radioactive decay. The Xi

are therefore called random variables (r.v.), i.e., variables whose values cannot
be predicted exactly. Note that the word ‘random’ in the term ‘random variable’
does not mean that the allowed values of Xi are equiprobable, contrary to its use
in everyday speech. The set of possible values of Xi, which we have denoted Ω, is
called the sample space. A r.v. can be

• discrete: The sample space Ω is a set of discrete points. Examples are the
result of a throw of a die, the sex of a child (F=1, M=2), the age (in years)
of students studying statistics, names of people (Marieke=507, Piet=846).

• continuous: Ω is an interval or set of intervals. Examples are the frequency of
radiation from a black body, the angle at which an electron is emitted from
an atom in β-decay, the height of students studying statistics.

• a combination of discrete and continuous.

An experiment results thus in an outcome which is a set of real numbers Xi

which are random variables. They form a sampling of a parent ‘population’. Note
the difference between the sample, the sample space and the population:

• The population is a list of all members of the population. Some members of
the population may be identical.

• The sample space is the set of all possible results of the experiment (the
sampling). Identical results are represented by only one member of the set.
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• The sample is a list of the results of a particular experiment. Some of the
results may be identical. How often a particular result, i.e., a particular
member of the sample space, occurs in the sample should be approximately
proportional to how often that result occurs in the population.

The members of the population are equiprobable while the members of the sample
space are not necessarily equiprobable. The sample reflects the population which is
derived from the sample space according to some probability distribution, usually
called the parent (or underlying) probability distribution.

2.1.3 Probability density function (p.d.f.)

Conventionally, one uses a capital letter for the experimental result, i.e., the sam-
pling of a r.v. and the corresponding lower case letter for other values of the r.v.
Here are some examples of probability distributions:

• the throw of a die. The sample space is Ω = {1, 2, 3, 4, 5, 6}. The probability
distribution is P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1

6
, which gives

a parent population of {1, 2, 3, 4, 5, 6}. An example of an experimental result
is X = 3.

• the throw of a die having sides marked with one 1, two 2’s, and three 3’s.
The sample space is Ω = {1, 2, 3}. The probability distribution is P (1) = 1

6
,

P (2) = 1
3
, P (3) = 1

2
. The parent population is {1, 2, 2, 3, 3, 3}. An experi-

mental result is X = 3 (maybe).

In the discrete case we have a probability function, f(x), which is greater than zero
for each value of x in Ω. From the axioms of probability,

∑

Ω

f(x) = 1

P (A) ≡ P (X ∈ A) =
∑

A

f(x) , A ⊂ Ω

For a continuous r.v., the probability of any exact value is zero since there are
an infinite number of possible values. Therefore it is only meaningful to talk of the
probability that the outcome of the experiment, X, will be in a certain interval.
f(x) is then a probability density function (p.d.f.) such that

P (x ≤ X ≤ x + dx) = f(x) dx ,
∫

Ω
f(x) dx = 1 (2.2)

Since most quantities of interest to us are continuous we will usually only treat
the continuous case unless the corresponding treatment of the discrete case is not
obvious. Usually going from the continuous to the discrete case is simply the re-
placement of integrals by sums. We will also use the term p.d.f. for f(x) although
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in the discrete case it is really a probability rather than a probability density. Some
authors use the term ‘probability law’ instead of p.d.f., thus avoiding the mislead-
ing (actually wrong) use of the word ‘density’ in the discrete case. However, such
use of the word ‘law’ is misleading to a physicist, cf. Newton’s second law, law of
conservation of energy, etc.

2.1.4 Cumulative distribution function (c.d.f.)

The cumulative distribution function (c.d.f.) is the probability that the value of a
r.v. will be ≤ a specific value. The c.d.f. is denoted by the capital letter correspond-
ing to the small letter signifying the p.d.f. The c.d.f. is thus given by

F (x) =
∫ x

−∞
f(x′) dx′ = P (X ≤ x) (2.3)

Clearly, F (−∞) = 0 and F (+∞) = 1.

Properties of the c.d.f.:

• 0 ≤ F (x) ≤ 1

• F (x) is monotone and not decreasing.

• P (a ≤ X ≤ b) = F (b)− F (a)

• F (x) discontinuous at x implies

P (X = x) = lim
δx→0

[F (x+ δx)− F (x− δx)] , i.e., the size of the jump.

• F (x) continuous at x implies P (X = x) = 0.

The c.d.f. can be considered to be more fundamental than the p.d.f. since the
c.d.f. is an actual probability rather than a probability density. However, in appli-
cations we usually need the p.d.f. Sometimes it is easier to derive first the c.d.f.
from which you get the p.d.f. by

f(x) =
∂F (x)

∂x
(2.4)

2.1.5 Expectation values

Consider some single-valued function, u(x) of the random variable x for which f(x)
is the p.d.f. Then the expectation value of u(x) is defined:

E [u(x)] =
∫ +∞

−∞
u(x) f(x) dx (2.5)

=
∫ +∞

−∞
u(x) dF (x) , f(x) continuous (2.6)

Properties of the expectation value:
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• If k is a constant, then E [k] = k

• If k is a constant and u a function of x, then E [ku] = kE [u]

• If k1 and k2 are constants and u1 and u2 are functions of x, then
E [k1u1 + k2u2] = k1E [u1] + k2E [u2], i.e., E is a linear operator.

Note that some books, e.g., Barlow1, use the notation 〈u(x)〉 instead of E [u(x)].

2.1.6 Moments

Moments are certain special expectation values. The mth moment is defined (think
of the moment of inertia) as

E [xm] =
∫ +∞

−∞
xmf(x) dx (2.7)

The moment is said to exist if it is finite. The most commonly used moment is the
(population or parent) mean,

µ ≡ E [x] =
∫ +∞

−∞
xf(x) dx (2.8)

The mean is often a good measure of location, i.e., it frequently tells roughly where
the most probable region is, but not always.

-

6

x

f(x)

µ

-

6

x

f(x)

µ

In statistics we will see that the sample mean, x, the average of the result of a
number of experiments, can be used to estimate the parent mean, µ, the mean of
the underlying p.d.f.

Central moments are moments about the mean. The mth central moment is
defined as

E [(x− µ)m] =
∫ +∞

−∞
(x− µ)mf(x) dx (2.9)

If µ is finite, the first central moment is clearly zero. If f(x) is symmetric about its
mean, all odd central moments are zero.

The second central moment is called the variance. It is denoted by V [x], σ2
x,

or just σ2.

σ2
x ≡ V [x] ≡ E

[
(x− µ)2

]
(2.10)

= E
[
x2
]
− µ2 (2.11)



14 CHAPTER 2. PROBABILITY

The square root of the variance, σ, is called the standard deviation. It is a measure
of the spread of the p.d.f. about its mean.

Since all symmetrical distributions have all odd central moments zero, the odd
central moments provide a measure of the asymmetry. The first central moment is
zero. The third central moment is thus the lowest order odd moment. One makes
it dimensionless by dividing by σ3 and defining the skewness as

γ1 ≡
E
[
(x− µ)3

]

σ3
(2.12)

The sharpness of the peaking of the p.d.f. is measured by the kurtosis (also
spelled curtosis),

γ2 ≡
E
[
(x− µ)4

]

σ4
− 3 (2.13)

The −3 makes the kurtosis zero for a Gaussian. Thus γ2 > 0 (< 0) implies a p.d.f.
which is more (less) peaked than a Gaussian.

Skewness and kurtosis are sometimes defined differently, so be careful when
reading books and articles. Kurtosis is not often used by physicists.

Moments are often normalized in some other way than we have done with γ1

and γ2, e.g., with the corresponding power of µ:

ck ≡
E
[
xk
]

µk
; rk ≡

E
[
(x− µ)k

]

µk
(2.14)

It can be shown that if all central moments exist, the distribution is completely
characterized by them. In statistics we can estimate each parent moment by its
sample moment (cf. section 8.3.2) and so, in principle, reconstruct the p.d.f.

Other attributes of a p.d.f.:

• mode: The location of a maximum of f(x). A p.d.f. can be multimodal.

• median: That value of x for which the c.d.f. F (x) = 1
2
. The median is not

always well defined, since there can be more than one such value of x.
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c.d.f.

-

6

1

1
2

x

F (x)

median

-

6

1

1
2

x

F (x)

medians

p.d.f.

-

6

x

f(x)

-

6

x

f(x)

“If any one imagines that he knows something,
he does not yet know as he ought to know.”

—1 Corinthians 8:2

2.2 More on Probability

2.2.1 Conditional Probability

Suppose we restrict the set of results of our experiment (observations or events) to
a subset A ⊂ Ω. We denote the probability of an event E given this restriction by
P (E | A); we speak of “the probability of E given A.” Clearly this ‘conditional’
probability is greater than the probability without the restriction, P (E) (unless of
course A∗, the complement of A, is empty). The probability must be renormalized
such that the probability that the condition is fulfilled is unity. The conditional
probability should have the following properties:
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P (A | A) = 1 renormalization
P (A2 | A1) = P (A1 ∩ A2 | A1)

While the probability changes with the restriction,
ratios of probabilities must not:

P (A1 ∩ A2 | A1)

P (A1 | A1)
=
P (A1 ∩ A2)

P (A1)

Ω

A2

A1

These requirements are met by the definition, assuming P (A1) > 0,

P (A2 | A1) ≡
P (A1 ∩ A2)

P (A1)
(2.15)

If P (A1) = 0, P (A2 | A1) makes no sense. Nevertheless, for completeness we define
P (A2 | A1) = 0 if P (A1) = 0.

It can be shown that the conditonal probability satisfies the axioms of proba-
bility.

It follows from the definition that

P (A1 ∩ A2) = P (A2 | A1)P (A1)

If P (A2 | A1) is the same for all A1, i.e., A1 and A2 are independent, then

P (A2 | A1) = P (A2)
and P (A1 ∩ A2) = P (A1)P (A2)

2.2.2 More than one r.v.

Joint p.d.f.

If the outcome is more than one r.v., say X1 and X2, then the experiment is a
sampling of a joint p.d.f., f(x1, x2), such that

P (x1 < X1 < x1 + dx1 , x2 < X2 < x2 + dx2) = f(x1, x2) dx1 dx2 (2.16)

P (a < X1 < b , c < X2 < d) =
∫ b

a
dx1

∫ d

c
dx2 f(x1, x2) (2.17)

Marginal p.d.f.

The marginal p.d.f. is the p.d.f. of just one of the r.v.’s; all dependence on the other
r.v.’s of the joint p.d.f. is integrated out:

f1(x1) =
∫ +∞

−∞
f(x1, x2) dx2 (2.18)

f2(x2) =
∫ +∞

−∞
f(x1, x2) dx1 (2.19)

Conditional p.d.f.
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-

6

X1

X2

x1

Ω
Suppose that there are two r.v.’s, X1 and X2, and
a space of events Ω.

Choosing a value x1 ofX1 restricts the possible
values of X2. Assuming f1(x1) > 0, then f(x2 |
x1) is a p.d.f. of X2 given X1 = x1.

In the discrete case, from the definition of con-
ditional probability (eq. 2.15), we have

f(x2 | x1) ≡ P (X2 = x2 | X1 = x1) =
P (X2 = x2 ∩X1 = x1)

P (X1 = x1)

=
P (X2 = x2, X1 = x1)

P (X1 = x1)
=
f(x1, x2)

f1(x1)

The continuous case is, analogously,

f(x2 | x1) =
f(x1, x2)

f1(x1)
(2.20)

Note that this conditional p.d.f. is a function of only one r.v., x2, since x1 is fixed.
Of course, a different choice of x1 would give a different function. A conditional
probability is then obviously calculated

P (a < X2 < b | X1 = x1) =
∫ b

a
f(x2 | x1) dx2 (2.21)

This may also be written P (a < X2 < b | x1).
We can also compute conditional expectations:

E [u (x2) | x1] =
∫ +∞

−∞
u(x2)f(x2 | x1) dx2 (2.22)

For example, the conditional mean, E [x2 | x1],
or the conditional variance, E [(x2 − E [x2 | x1])

2 | x1].

The generalization to more than two variables is straightforward, e.g.,

f(x2, x4 | x1, x3) =
f(x1, x2, x3, x4)

f13(x1, x3)

where f13(x1, x3) =
∫ ∫

f(x1, x2, x3, x4) dx2 dx4

2.2.3 Correlation

When an experiment results in more than one real number, i.e., when we are con-
cerned with more than one r.v. and hence the p.d.f. is of more than one dimension,
the r.v.’s may not be independent. Here are some examples:
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• Let A =‘It is Sunday’, B =‘It is raining’. The probability of rain on Sunday is
the same as the probability of rain on any other day. A and B are independent.
But if A =‘It is December’, the situation is different. The probability of rain
in December is not the same as the probability of rain in all other months. A
and B are correlated.

• If you spend 42 hours each week at the university, the probability that at a
randomly chosen moment your head is at the university is 1/4. Similarly, the
probability that your feet are at the university is 1/4. The probability that
both your head and your feet are at the university is also 1/4 and not 1/16; the
locations of your head and your feet are highly correlated.

• Abram and Lot were standing at a road junction. The probability that Lot
would take the left-hand road was 1/2. The probability that Abram would take
the left-hand road was also 1/2. But the probability that they both would take
the left-hand road was zero.16

• The Fermi theory allows us to calculate the energy spectrum of the particles
produced in β-decay, e.g., n→ pe−νe, from which we can calculate the prob-
ability that the proton will have more than, say 3/4, of the available energy.
We can also calculate the probability that the electron will have more than
3/4 of the available energy. But the probability that both the electron and the
proton will have more than 3/4 of the available energy is zero. The energies
of the electron and the proton are not independent. They are constrained by
the law of energy conservation.

Given a two-dimensional p.d.f. (the generalization to more dimensions is straight-
forward), f(x, y), the mean and variance of X, µX and σ2

X are given by

µX = E [X] =
∫ +∞

−∞

∫ +∞

−∞
xf(x, y) dxdy

σ2
X = E

[
(X − µX)2

]

A measure of the dependence of X on Y is given by the covariance defined as

cov(X, Y ) ≡ E [(X − µX)(Y − µY )] (2.23)

= E [XY ]− µYE [X]− µXE [Y ] + µXµY

= E [XY ]− µXµY (2.24)

From the covariance we define a dimensionless quantity, the correlation coef-
ficient

ρXY ≡
cov(X, Y )

σXσY
(2.25)

If σX = 0, then X ≡ µX and consequently E [XY ] = µXE [Y ] = µXµY , which means
that cov(X, Y ) = 0. In this case the above definition would give ρ indeterminate,
and we define ρXY = 0.
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It can be shown that ρ2 ≤ 1, the equality holding if and only if X and Y are
linearly related. The proof is left to the reader (exercise 7).

Note that while the mean and the standard deviation scale, the correlation
coefficient is scale invariant, e.g.,

µ2X = 2µX and σ2X = 2σX

ρ2X,Y =
cov(2X, Y )

σ2XσY
=

2 cov(X, Y )

2σXσY

The correlation coefficient ρXY is a measure of how much the variables X and Y
depend on each other. It is most useful when the contours of constant probability
density, f(x, y) = k, are roughly elliptical, but not so useful when these contours
have strange shapes:

-

6

X

Y

ρ > 0

-

6

X

Y

ρ < 0

-

6

X

Y

ρ ≈ 0

In the last case, even though X and Y are clearly related, ρ ≈ 0. This can be seen
as follows:

E [(X − µX) | y] =
∫

(x− µX)f(x | y) dx

=
∫

(x− µX)
f(x, y)

fY (y)
dx

= 0 for all y

Thus, the mean value of X is independent of y. Then,

cov(X, Y ) = E [(X − µX) (Y − µY )]

=
∫

(y − µY )
∫

(x− µX)f(x, y) dx
︸ ︷︷ ︸

=0

dy

= 0

Consequently, ρXY = 0.
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However, if we change variables, e.g.,
by rotating, ρ, i.e., ρX′Y ′ , will no longer
be 0.

-

6

X ′

Y ′

ρ > 0

Also in the elliptical case, such a change in variables can make ρ = 0.

-

6

X

Y

ρ > 0

-

-

6

X ′

Y ′

ρ = 0

In fact, it is always possible (also in n dimensions) to remove the correlation by a
change of variables (cf. section 2.2.7).

The correlation coefficient, ρ, measures the average linear change in the marginal
p.d.f. of one variable for a specified change in the other variable. This can be 0 even
when the variables clearly depend on each other. This occurs when a change in one
variable produces a change in the marginal p.d.f. of the other variable but no change
in its average, only in its shape. Thus zero correlation does not imply independence.

2.2.4 Dependence and Independence

We know from the definitions of conditional and marginal p.d.f.’s that

f(x1, x2) = f(x2 | x1)f1(x1) (2.26)

and f2(x2) =
∫
f(x1, x2) dx1

Hence f2(x2) =
∫
f(x2 | x1)f1(x1) dx1

Now suppose that f(x2 | x1) does not depend on x1, i.e., is the same for all x1.
Then

f2(x2) = f(x2 | x1)
∫
f1(x1) dx1

︸ ︷︷ ︸
=1, normalization

= f(x2 | x1)

Substituting this in (2.26) gives

f(x1, x2) = f1(x1)f2(x2)
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The joint p.d.f. is then just the product of the marginal p.d.f.’s. We take this as
the definition of independence:

r.v.’s X1 and X2 are independent ≡ f(x1, x2) = f1(x1)f2(x2)
r.v.’s X1 and X2 are dependent ≡ f(x1, x2) 6= f1(x1)f2(x2)

We can easily derive two theorems:

Theorem: X1 and X2 are independent r.v.’s with joint p.d.f. f(x1, x2) if and only
if f(x1, x2) = g(x1)h(x2) with g(x1) ≥ 0 and h(x2) ≥ 0 for all x1, x2 ∈ Ω.

=⇒ From the definition of independence, f can be written as the product of
the marginal p.d.f.’s, which fulfill the requirement of being positive for
all x1, x2 ∈ Ω.

⇐= Assume f(x1, x2) = g(x1)h(x2) with g and h positive. Then the marginal
distributions are

f1(x1) =
∫
g(x1) h(x2) dx2 = g(x1)

∫
h(x2) dx2 = c g(x1)

and f2(x2) =
∫
g(x1) h(x2) dx1 = h(x2)

∫
g(x1) dx1 = d h(x2)

Hence, f(x1, x2) = g h =
1

cd
f1(x1)f2(x2)

And, since f1 and f2 are normalized to 1, cd = 1. Q.E.D.

Note that g and h do not have to be the marginal p.d.f.’s; the only requirement
is that their product equal the product of the marginals.

Theorem: If X1 and X2 are independent r.v.’s with marginal p.d.f.’s f1(x1) and
f2(x2), then for functions u(x1) and v(x2), assuming all E’s exist,

E [u (x1) v (x2)] = E [u (x1)]E [v (x2)]

=⇒ From the definition of expectation, and since X1 and X2 are independent,

E [u (x1) v (x2)] =
∫ ∫

u(x1) v(x2) f(x1, x2) dx1 dx2

=
∫
u(x1) f1(x1) dx1

∫
v(x2) f2(x2) dx2

=
∫ ∫

u(x1) f(x1)f(x2)︸ ︷︷ ︸
=f(x1,x2)

dx1 dx2

∫ ∫
v(x2) f(x2)f(x1)︸ ︷︷ ︸

=f(x1,x2)

dx2 dx1

= E [u(x1)]E [v(x2)]

A consequence of this last theorem is that X1, X2 independent implies

cov(x1, x2) ≡ E [(x1 − µ1) (x2 − µ2)] = E [x1 − µ1]E [x2 − µ2] = 0

But the converse is not true.
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2.2.5 Characteristic Function

So far we have only considered real r.v.’s. But from two real r.v.’s we can construct
a complex r.v., Z = X + ıY with expectation E [Z] = E [X] + ıE [Y ]

The characteristic function of the p.d.f. f(x) is defined as the expectation of the
complex quantity eıtx, t real:

φ(t) = E
[
eıtx

]
=

{ ∫ +∞
−∞ eıtxf(x) dx (X continuous)∑

k e
ıtxkf(xk) (X discrete)

(2.27)

For X continuous, φ(t) is the Fourier integral of f(x).
The characteristic function completely determines the p.d.f., since by inverting

the Fourier transformation we regain f(x):

f(x) =
1

2π

∫ +∞

−∞
φ(t)e−ıxt dt (2.28)

From the definition, it is clear that φ(0) = 1 and |φ(t)| ≤ 1.
The cumulative distribution function, or indeed the probability for any interval

[xmin, x], can also be found from φ(t):

F (x) =
∫ x

xmin

f(x) dx =
∫ x

xmin

1

2π

∫ +∞

−∞
φ(t)e−ıxt dt dx

=
1

2π

∫ +∞

−∞
φ(t)

∫ x

xmin

e−ıxt dx dt

=
1

2π

∫ +∞

−∞
φ(t)

(
1

−ıt
) (

e−ıxt − e−ıxmint
)

dt

=
ı

2π

∫ +∞

−∞

e−ıxt − e−ıxmint

t
φ(t) dt

In the discrete case, f(xk) is given by the difference in the probability of adjacent
values of x,

f(xk) = F (xk)− F (xk−1)

=
ı

2π

∫ +∞

−∞

e−ıtxk − e−ıtxk−1

t
φ(t) dt

The characteristic function is particularly useful in calculating moments. Dif-
ferentiating φ(t) with respect to t and evaluating the result at t = 0 gives

dqφ(t)

dtq

∣∣∣∣∣
t=0

=
∫ +∞

−∞
(ıx)qe0f(x) dx = ıqE [xq]

The characteristic function can also be written in terms of the moments by
means of a Taylor expansion.

φ(t) = E
[
eıtx

]
= E

[ ∞∑

r=0

(ıtx)r

r!

]

=
∞∑

r=0

(ıt)r

r!
E [xr] (2.29)
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Some authors prefer, especially for discrete r.v.’s, to use the probability gener-
ating function instead of the characteristic function. It is in fact the same thing,
just replacing eıt by z:

G(z) = E [zx] =

{ ∫+∞
−∞ zxf(x) dx∑

k z
xkf(xk)

The moments are then found by differentiating with respect to z and evaluating at
z = 1,

G′(1) = dG(z)
dz

∣∣∣
z=1

=
∫+∞
−∞ xzx−1f(x) dx

∣∣∣
z=1

= E [x]

G′′(1) = d2G(z)
dz2

∣∣∣
z=1

=
∫ +∞
−∞ x(x− 1)zx−2f(x) dx

∣∣∣
z=1

= E [x(x− 1)] = E [x2]− E [x]

Thus the variance is given by

V [x] = E
[
x2
]
− (E [x])2 = G′′(1) +G′(1)− [G′(1)]

2

Another application of the characteristic function is to find the p.d.f. of sums
of independent r.v.’s. Let x and y be r.v.’s. Then w = x + y is also an r.v. The
characteristic function of w is

φw(t) = E
[
eıtw

]
= E

[
eıt(x+y)

]
= E

[
eıtxeıty

]

If x and y are independent, this becomes

φw(t) = E
[
eıtx

]
E
[
eıty

]
= φx(t)φy(t) (2.30)

Thus the characteristic function of the sum of independent r.v.’s is just the product
of the individual characteristic functions.

2.2.6 Transformation of variables

We will treat the two-dimensional case. You can easily generalize to N dimensions.

Continuous p.d.f.

Given r.v.’s X1, X2 from a p.d.f. f(x1, x2) defined on a set A, we transform (X1, X2)
to (Y1, Y2). Under this transformation the set A maps onto the set B.

-

6

a

A

X1

X2

-

-

6

b

B

Y1

Y2
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Let a ⊂ A be a small subset which the transformation maps onto b ⊂ B, i.e.,

(X1, X2) ∈ a→ (Y1, Y2) ∈ b such that P (a) = P (b)

Then P [(Y1, Y2) ∈ b] = P [(X1, X2) ∈ a] =
∫

a

∫
f(x1, x2) dx1 dx2

The transformation is given by

y1 = u1(x1, x2)

y2 = u2(x1, x2)

The transformation must be one-to-one. Then a unique inverse transformation
exists:

x1 = w1(y1, y2)

x2 = w2(y1, y2)

(Actually the condition of one–to–one can be relaxed in some cases.) Assume also
that all first derivatives of w1 and w2 exist. Then

P (a) = P (b)∫

a

∫
f(x1, x2) dx1 dx2 =

∫

b

∫
f (w1(y1, y2), w2(y1, y2)) |J | dy1 dy2

where J is the Jacobian determinant (assumed known from calculus) and the abso-
lute value is taken to ensure that the probability is positive,

J = J

(
w1, w2

y1, y2

)
=

∣∣∣∣∣∣

∂w1

∂y1

∂w2

∂y1
∂w1

∂y2

∂w2

∂y2

∣∣∣∣∣∣
(2.31)

Hence the p.d.f. in (Y1, Y2) is the p.d.f. in (X1, X2) times the Jacobian:

g(y1, y2) = f (w1 (y1, y2) , w2(y1, y2)) |J | (2.32)

Discrete p.d.f.

This is actually easier, since we can take the subsets a and b to contain just one
point. Then

P (b) = P (Y1 = y1, Y2 = y2) = P (a) = P (X1 = x1 = w1(y1, y2), X2 = w2(y1, y2))

g(y1, y2) = f(w1 (y1, y2) , w2 (y1, y2))

Note that there is no Jacobian in the discrete case.
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2.2.7 Multidimensional p.d.f. – matrix notation

In this section we present the vector notation we will use for multidimensional
p.d.f.’s. An n-dimensional random variable, i.e., the collection of the n r.v.’s
x1, x2, . . . , xn is denoted by an n-dimensional column vector and its transpose by a
row vector:

x =




x1

x2
...
xn


 xT = (x1 x2 . . . xn ) (2.33)

If the r.v. x is distributed according to the p.d.f. f(x), the c.d.f. is

F (x) =
∫ x1

−∞
. . .

∫ xn

−∞
f(x) dx , dx = dx1 dx2 . . . dxn

The p.d.f. and the c.d.f. are related by

f(x) =
∂n

∂x1∂x2 . . . ∂xn
F (x)

The moments about the origin of order l1, l2, . . . , ln are

µl1,l2,...,ln = E
[
xl1

1 , x
l2
2 , . . . , x

ln
n

]
=
∫ ∞

−∞
. . .
∫ ∞

−∞
xl1

1 x
l2
2 · · ·xln

n f(x) dx

The mean of a particular r.v., e.g., x2, is

µ2 = µ010...0

These means can be written as a vector, the mean of x:

µ =




µ1

µ2
...
µn




Moments about the mean are

λl1,l2,...,ln = E
[
(x1 − µ1)

l1(x2 − µ2)
l2 . . . (xn − µn)ln

]

The variances are, e.g.,

σ2
1 = σ2(x1) = λ200...00 = E

[
(x1 − µ1)

2
]

and the covariances

σij = cov(xi, xj) = E [(xi − µi)(xj − µj)] , i 6= j

e.g., cov(x1, x2) = λ1100...00



26 CHAPTER 2. PROBABILITY

The variances and covariances may be written as a matrix, called the covariance
(or variance) matrix:

V = E
[
(x− µ)(x− µ)T

]
=




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σnn


 (2.34)

=




σ2
1 ρ12σ1σ2 . . .

ρ12σ1σ2 σ2
2 . . .

...
...

. . .

ρ1nσ1σn ρ2nσ2σn . . .




(2.35)

where ρij is the correlation coefficient for r.v.’s xi and xj:

ρij ≡
σij

σiσj
=

cov(xi, xj)√
σ2

i σ
2
j

(2.36)

The covariance matrix is clearly symmetric (σji = σij). As is well known in
linear algebra, it is always possible to find a unitary transformation, U , of the r.v.
x to the r.v. y = U x such that the covariance matrix of y, V

[
y
]

= U V [x]UT, is
diagonal, which means that the yi are uncorrelated.

2.3 Bayes’ theorem

A ∩ B = B ∩ A. Hence, P (A ∩ B) = P (B ∩ A). From the definition of conditional
probability, eq. (2.15), P (A | B) ≡ P (A ∩B)/P (B), it then follows that

P (A | B)P (B) = P (B | A)P (A) (2.37)

This simple theorem∗ of Rev. Thomas Bayes17 is quite innocuous. However it
has far-reaching consequences in one interpretation of probability, as we shall see
in the next section.

“When I use a word,” Humpty Dumpty said in a
rather scornful tone, “it means just what I
choose it to mean—neither more nor less.”

—Lewis Carroll, “Through the Looking Glass”

∗Sometimes called the chain rule of probability, this theorem was first formulated by Rev. Bayes
around 1759. The exact date is not known; the paper was published posthumously by his good
friend Price in 1763. It was formulated in its present form by Laplace,18 who applied it to problems
in celestial mechanics, medical statistics and even, according to some accounts, to jurisprudence.
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2.4 Probability—What is it?, revisited

We have used mathematical probability, which is largely due to Kolmogorov, to
derive various properties of probability. In our minds we have so far an idea of what
probability means, which we refer to as the frequency approach. In this section we
shall first review these two topics and then discuss another interpretation of the
meaning of probability, which we shall call subjective probability.

2.4.1 Mathematical probability (Kolmogorov)

In this approach19 we began with three axioms, from which we can derive everything.
We can calculate the probability of any complicated event for which we know the
a priori probabilities of its components. But this is simply mathematics. What
probability really means requires a connection to the real world. As Bayes wrote,20

It is not the business of the Mathematician to dispute whether quantities
do in fact ever vary in the manner that is supposed, but only whether
the notion of their doing so be intelligible; which being allowed, he has
the right to take it for granted, and then to see what deductions he
can make from that supposition... He is not inquiring how things are in
matter of fact, but supposing things to be in a certain way, what are the
consequences to be deduced from them; and all that is to be demanded
of him is, that his suppositions be intelligible, and his inferences just
from the suppositions he makes.

2.4.2 Empirical or Frequency interpretation (von Mises)

In this approach, largely due to von Mises,21 probability is viewed as the limit of the
frequency of a result of an experiment or observation when the number of identical
experiments is very large, i.e.,

P (xi) = lim
N→∞

Ni

N
(2.38)

There are two shortcomings to this approach:

• P (xi) is not just a property of the experiment. It also depends on the “collec-
tive” or “ensemble”, i.e., on the N repetitions of the experiment. For example,
if I take a resistor out of a box of resistors, the probability that I measure the
resistance of the resistor as 1 ohm depends not only on how the resistor was
made, but also on how all the other resistors in the box were made.

• The experiment must be repeatable, under identical conditions, but with dif-
ferent outcomes possible. This is a great restriction on the number of situa-
tions in which we can use the concept of probability. For example, what is
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the probability that it will rain tomorrow? Such a question is meaningless for
the frequentists, since the experiment cannot be repeated!

2.4.3 Subjective (Bayesian) probability

This approach attempts to extend the notion of probability to the areas where the
experiment of the frequentists cannot be repeated. Probability here is a subjective
“degree of belief” which can be modified by observations. This was, in fact, the
interpretation of such pioneers in probability as Bayes and Laplace.

This approach takes Bayes’ theorem (2.37), which we repeat here,

P (A | B)P (B) = P (B | A)P (A)

and interprets A as a theory or hypothesis and B as a result or observation. P (A)
is then the probability that A is true, or, in other words, our “belief” in the theory.
Then Bayes’ theorem becomes

P (theory | result)P (result) = P (result | theory)P (theory)

Then

P (theory | result) =
P (result | theory)

P (result)
P (theory)

Here, P (theory) is our “belief” in the theory before doing the experiment, P (result |
theory) is the probability of getting the result if the theory is true, P (result) is the
probability of getting the result irrespective of whether the theory is true or not,
and P (theory | result) is our belief in the theory after having obtained the result.

This seems to make sense. We see that if the theory predicts the result with
high probability, i.e., P (result | theory) big, then P (theory | result), i.e., your belief
in the theory after the result, will be higher than it was before, P (theory), and vice
versa. However, if the result is likely even if the theory is not true, then your belief
in the theory will not increase by very much since then P (result|theory)

P (result)
is not much

greater than 1.
Suppose we want to determine some parameter of nature, λ, by doing an ex-

periment which has outcome Z. Further, suppose we know the conditional p.d.f. to
get Z given λ: f(z | λ). Our prior, i.e., before we do the experiment, belief about
λ is given by Pprior(λ). Now the probability of z, P (z), is just the marginal p.d.f.:
f1(z) =

∑
λ′ f(z | λ′)Pprior(λ

′). Then by Bayes’ theorem,

Pposterior(λ | z) =
f(z | λ)

f1(z)
Pprior(λ) (2.39)

Or, if λ is a continuous variable,

fposterior(λ | z) =
f(z | λ)

f1(z)
fprior(λ) (2.40)
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where f1(z) =
∫
f(z | λ′) fprior(λ

′) dλ′.
Given Pprior(λ) this is all OK. The problem here is: What is Pprior(λ)? By its

nature this is not known. Guessing the prior probability is clearly subjective and
unscientific. The usual prescription is

Bayes’ Postulate: If completely ignorant about Pprior(λ), take all values of λ as
equiprobable.

There are objections to this postulate:

• If we are completely ignorant about P (λ), how do we know Pprior(λ) is a
constant?

• A different choice of Pprior(λ) would give a different Pposterior.

• If we are ignorant about P (λ), we are also ignorant about P (λ2) or P (
√
λ)

or P (1/λ). Taking any of these as constant would imply a different Pprior(λ),
giving a different posterior probability.

These objections are usually answered by the assertion (supported by experience)
that Pposterior usually converges to about the same value after several experiments
irrespective of the initial choice of Pprior.

2.4.4 Are we frequentists or Bayesians?

First we note that it is in the sense of frequencies that the word ‘probability’ is used
in quantum mechanics and statistical physics. Turning to experimental results,
in the physical sciences, most experiments are, in principle, repeatable and the
problem can be stated to specify the “collective”. So the frequentist interpretation
is usually OK for us. Given the objections we have seen in the Bayesian approach,
particularly that of subjectivity, most physicists today, like mathematicians starting
in the mid-nineteenth century, would claim to be frequentists.

However in interpreting experimental results we often sound like Bayesians. For
example, you measure the mass of the electron to be 520 ± 10 keV/c2, i.e., you
measured 520 keV/c2 with an apparatus with a resolution of 10 keV/c2. You might
then say “The mass of the electron is probably close to 520 keV/c2.” Or you might
say “The mass of the electron is between 510 and 530 keV/c2 with 68% probability.
But this is not the frequentist’s probability—the experiment has not been repeated
an infinite or even a large number of times. It sounds much more like a Bayesian
probability: With a resolution, or ‘error’, of σ = 10 keV/c2, the probability that we
will measure a mass m when the true value is me is

P (m | me) ∝ e−(m−me)2/2σ2

Then by Bayes’ theorem, the probability that the true mass has the value me after
we have measured a value m is

P (me | m) =
P (m | me)

P (m)
Pprior(me)
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∝ P (m | me) assuming Pprior(me) = const.

∝ e−(m−me)2/2σ2

In a frequentist interpretation of probability, the statement that the electron
has a certain mass with a certain probability is utter nonsense. The electron has
a definite mass: The probability that it has that mass is 1; the probability that it
has some other value is 0. Our only problem is that we do not know what the value
is. We can, nevertheless, make the statement “The mass of the electron is between
510 and 530 keV/c2 with 68% confidence.” Note that this differs from the Bayesian
statement above by just one word. This will be discussed further in the sections
on maximum likelihood (sect. 8.2.4) and confidence intervals (sect. 9), where what
exactly we mean by the word confidence will be explained.

“That’s a great deal to make one word mean,”
Alice said in a thoughtful tone.

“When I make a word do a lot of work like that,”
said Humpty Dumpty, “I always pay it extra.”
—Lewis Carroll, “Through the Looking Glass”



Chapter 3

Some special distributions

We will now examine some distributions which are frequently encountered in physics.
We begin with discrete distributions.

3.1 Bernoulli trials

A Bernoulli trial is an experiment with two possible outcomes, e.g., the toss of a
coin. The random variable is the outcome of the experiment, k:

outcome probability

‘success’, k = 1 p
‘failure’, k = 0 q = 1− p

The p.d.f. is

f(k; p) = pkq1−k (3.1)

Note that we use a semicolon to separate the r.v. k from the parameter of the
distribution, p. This p.d.f. results in the moments and central moments:

E [km] = 1 · p + 0 · (1− p) = p

E [(k − µ)m] = (1− p)mp︸ ︷︷ ︸
k=1

+ (0− p)m(1− p)︸ ︷︷ ︸
k=0

In particular,

µ = p

V [k] = E
[
k2
]
− (E [k])2 = p− p2 = p(1− p)

31
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3.2 Binomial distribution

The binomial distribution gives the probability of k successes (ones) in n inde-
pendent Bernoulli trials each having a probability p of success. We denote this
distribution by B(k;n, p). The probability of k successes followed by n− k failures
is pkqn−k. But the order of the successes and failures is unimportant. There are(

n
k

)
= n!

k!(n−k)!
different permutations. Therefore the p.d.f. is given by

B(k;n, p) =

(
n

k

)
pk(1− p)n−k (3.2)

It has the following properties:

µ = E [k] = np (mean)
σ2 = V [k] = np(1− p) (variance)

γ1 = 1−2p√
np(1−p)

(skewness)

γ2 = 1−6p(1−p)
np(1−p)

(kurtosis)

φ(t) = [peıt + (1− p)]n (characteristic function)

We will derive the first of these properties and leave the rest as exercises.

µ = E [k] =
n∑

k=0

kB(k;n, p) =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑

k=0

k
n!

k!(n− k)!p
k(1− p)n−k

= np
n∑

k=1

k
(n− 1)!

k(k − 1)!(n− k)!p
k−1(1− p)n−k k = 0 term is 0

= np
n′∑

k′=0

n′!

k′!(n′ − k′)!p
k′

(1− p)n′−k′

︸ ︷︷ ︸
=[p+(1−p)]n′=1

with n′ = n− 1, k′ = k − 1

= np

Many distributions have a reproductive property, i.e., the p.d.f. of the sum of
two or more independent r.v.’s, each distributed according to the same p.d.f., is the
same p.d.f. as for the individual r.v.’s although (usually) with different parameters.

Let X, Y be independent r.v.’s both distributed according to a binomial p.d.f.
with parameter p. Thus

f(x, y) = B(x;nx, p)B(y;ny, p) =

(
nx

x

)
px(1− p)nx−x

(
ny

y

)
py(1− p)ny−y

What is then the p.d.f. of the r.v. X + Y ? We change variables:

new variables Z1 = X + Y Z2 = Y
new parameters nz1 = nx + ny nz2 = ny

inverse transformation X = Z1 − Z2 Y = Z2
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The p.d.f. for the new variables is then

g(z1, z2) = f(z1 − z2, z2)

=

(
nz1 − nz2

z1 − z2

)(
nz2

z2

)
pz1(1− p)nz1−z1

The p.d.f. for Z1 = X + Y is the marginal of this. Hence we must sum over z2.

g1(z1) =
∑

z2

g(z1, z2) = pz1(1− p)nz1−z1
∑

z2

(
nz1 − nz2

z1 − z2

)(
nz2

z2

)

For normalization the sum must be just
(

nz1
z1

)
. Thus g1 is also a binomial p.d.f.:

g1(x + y) = B(z1;nz1, p) = B(x + y;nx + ny, p)

3.3 Multinomial distribution

This is the generalization of the binomial distribution to more than two outcomes.
Let there be m different outcomes, with probabilities pi. Consider n experiments
and let ki denote the number of experiments having outcome i. The p.d.f. is then

M(k1, k2, . . . , km; p1, p2, . . . , pm, n) =
n!

k1!k2! . . . km!
pk1

1 p
k2
2 . . . pkm

m (3.3)

subject to the conditions

m∑

i=1

pi = 1 and
m∑

i=1

ki = n

We can write the multinomial p.d.f. in a more condensed form:

M(k; p, n) = n!
m∏

i=1

pki
i

ki!
(3.4)

An example of application of this p.d.f. is a histogram of m bins with a probabil-
ity of pi that an event will be in the ith bin. Then for n events, the probability that
the numbers of events in the bins will be given by the ki is given by the multinomial
p.d.f.

To calculate expectation values we make use of the binomial p.d.f.: For a given
bin, either an event is in it (probability pi) or not (probability 1 − pi =

∑
j 6=i pj).

This is just the case of the binomial p.d.f. In other words, the marginal p.d.f. of
the multinomial is the binomial. Hence,

µi = E [ki] = npi

σ2
i = V [ki] = npi(1− pi)
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Further, cov(ki, kj) = −npipj i 6= j

The correlation coefficient is then

ρij =
cov(ki, kj)

σiσj

= −
√

pi

1− pi

pj

1− pj

The correlation comes about because n is fixed:
∑
ki = n. The ki are thus not

independent. If n is not fixed, i.e., n is a r.v., the bin contents are not correlated.
But then we do not have the multinomial p.d.f. but the Poisson p.d.f. for each bin.

The characteristic function of the multinomial p.d.f. is

φ(t2, t3, . . . , tm) =
(
p1 + p2e

ıt2 + p3e
ıt3 + . . .+ pme

ıtm
)n

3.4 Poisson distribution

This p.d.f. applies to the situation where we detect events but do not know the
number of trials. An example is a radioactive source where we detect the decays
but do not detect the non-decays. The events are counted as a function of some
parameter x, e.g., the time of a decay. The probability of an event in an interval
∆x is assumed proportional to ∆x.

Now make ∆x so small that the probability of more than one event in the interval
∆x is negligible. Consider n such intervals. Let λ be the probability of an event
in the total interval n∆x. Assume λ 6= λ(x). Then the probability of an event in
∆x is p = λ/n. The probability of r events in the total interval, i.e., r of the n
subintervals contain one event, is given by the binomial p.d.f.

P (r;λ) = B

(
r;n,

λ

n

)
=

n!

r!(n− r)!

(
λ

n

)r (
1− λ

n

)n−r

Now n!
(n−r)!

= n(n− 1)(n− 2) . . . (n− r + 1) r terms

≈ nr since n >> r

and
(
1− λ

n

)n−r ≈
(
1− λ

n

)n −→
n→∞

e−λ

Hence, we arrive at the expression for the Poisson p.d.f.:

P (r;λ) =
e−λλr

r!

We can check that P (r;λ) is properly normalized:

∞∑

r=0

P (r;λ) = e−λ
∞∑

r=0

λr

r!
= e−λeλ = 1
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The mean is

µ = E [r] =
∞∑

r=0

re−λλ
r

r!
= λe−λ

∞∑

r=1

λr−1

(r − 1)!

= λe−λ
∞∑

r′=0

λr′

r′!
r′ = r − 1

= λ
∞∑

r′=0

P (r′;λ)

= λ

Hence the Poisson p.d.f. is usually written

P (r;µ) =
e−µµr

r!
(3.5)

It gives the probability of getting r events if the expected number (mean) is µ.
Further, you can easily show that the variance is equal to the mean:

σ2
r = V [r] = µ (3.6)

Other properties:

γ1 =
E[(r−µ)3]

σ3 = µ
µ3/2 = 1√

µ
(skewness)

γ2 =
E[(r−µ)4]

σ4 = 3µ2+µ
µ2 − 3 = 1

µ
(kurtosis)

φ(t) =
∑∞

r=0 e
ıtrP (r;µ) =

∑∞
r=0 e

ıtr µr

r!
e−µ

= e−µ ∑∞
r=0

(µeıt)r

r!
= e−µ exp (µeıt)

φ(t) = exp [µ (eıt − 1)] (characteristic function)

From the skewness we see that the p.d.f. becomes more symmetric as µ increases.
When calculating a series of Poisson probabilities, one can make use of the

recurrence formula P (r + 1) = µ
r+1

P (r).

Reproductive property

The Poisson p.d.f. has a reproductive property: For independent r.v.’s X and Y ,
both Poisson distributed, the joint p.d.f. is

f(x, y) =
µx

xµ
y
ye

−µxe−µy

x!y!
x, y = 0, 1, 2, 3, . . .

To find the p.d.f. of X + Y we change variables

new variables Z1 = X + Y Z2 = Y
inverse transformation X = Z1 − Z2 Y = Z2
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The joint p.d.f. of the new variables is then

g(z1, z2) =
µz1−z2

x µz2
y e−µxe−µy

(z1 − z2)!z2!

The marginal p.d.f. for z1 is (using the fact that 0 ≤ z2 ≤ z1)

g1(z1) =
z1∑

z2=0

g(z1, z2) =
e−µx−µy

z1!

z1∑

z2=0

z1!

(z1 − z2)!z2!
µz1−z2

x µz2
y

︸ ︷︷ ︸
=(µx+µy)z1 (binomial theorem)

=
(µx + µy)

z1e−(µx+µy)

z1!

which has the form of a Poisson p.d.f. Q.E.D. We rewrite it

g(x+ y) =
(µx + µy)

x+ye−(µx+µy)

(x+ y)!

The p.d.f. of the sum of two Poisson distributed random variables is also Poisson
with µ equal to the sum of the µ’s of the individual Poissons. This can also be
easily shown using the characteristic function (exercise 12).

Examples

The Poisson p.d.f. is applicable when

• the events are independent, and

• the event rate is constant (= µ).

We give a number of examples:

• Thus the number of raisins per unit volume in raisin bread should be Poisson
distributed. The baker has mixed the dough thoroughly so that the raisins do
not stick together (independent) and are evenly distributed (constant event
rate).

• However, the number of zebras per unit area is not Poisson distributed (even
in those parts of the world where there are wild zebras), since zebras live in
herds and are thus not independently distributed.

• A classic example of Poisson statistics is the distribution of the number of
Prussian cavalry soldiers kicked to death by horses.22 In 10 different cavalry
corps over 20 years there were 122 soldiers kicked to death by horses. The
average is thus k = 122/200 = 0.610 deaths/corps/year.
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Assuming that the death rate is constant over the 20 year period and inde-
pendent of corps and that the deaths are independent (not all caused by one
killer horse) then the deaths should be Poisson distributed: the probability of
k deaths in one particular corps in one year is P (k;µ). Since the mean of P
is µ, we take the experimental average as an ‘estimate’ of µ. The distribution
should then be P (k; 0.61) and we should expect 200× P (k; 0.61) occurrences
of k deaths in one year in one corps. The data:

number of deaths in actual number of times Poisson
1 corps in 1 year 1 corps had k deaths prediction

k in 1 year 200× P (k; 0.610)

0 109 108.67
1 65 66.29
2 22 20.22
3 3 4.11
4 1 0.63
5 0 0.08

200 200.00

The ‘experimental’ distribution agrees very well with the Poisson p.d.f. The
reader can verify that the experimental variance, estimated by 1

N

∑
(ki − k)2,

is 0.608, very close to the mean (0.610) as expected for a Poisson distribution.

• The number of entries in a given bin of a histogram when the (independent)
data are collected over a fixed time interval, i.e., when the total number of
entries in the histogram is not fixed.

However, if the rate of the basic process is not constant, the distribution may not
be Poisson, e.g.,

• The radioactive decay over a period of time significant compared with the
lifetime of the source.

• The radioactive decay of a small amount of material.

• The number of interactions produced by a beam consisting of a small number
of particles incident on a thick target.

In the first two examples the event rate decreases with time, in the third with
position. In the last two there is the further restriction that the number of events is
significantly restricted, as it can not exceed the number of atoms or beam particles,
while for the Poisson distribution the number extends to infinity.
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• The number of people who die each year while operating a computer is also
not Poisson distributed. Although the probability of dying while operating
a computer may be constant, the number of people operating computers in-
creases each year. The event rate is thus not constant.

The Poisson p.d.f. requires that the events be independent. Consider the case
of a counter with a dead time of 1 µsec. This means that if a second particle
passes through the counter within 1 µsec after one which was recorded, the counter
is incapable of recording the second particle. Thus the detection of a particle is
not independent of the detection of other particles. If the particle flux is low, the
chance of a second particle within the dead time is so small that it can be neglected.
However, if the flux is high it cannot be. No matter how high the flux, the counter
cannot count more than 106 particles per second. In high fluxes, the number of
particles detected in some time interval will not be Poisson distributed.

Radioactive decays – Poisson approximation of a Binomial

Let us examine the case of radioactive decays more closely. Consider a sample of
n radioactive atoms. In a time interval T some will decay, others will not. There
are thus two possibilities between which the n atoms are divided. The appropriate
p.d.f. is therefore the binomial. The probability that r atoms decay in time T is
thus

f(r) = B(r;n, p) =
n!

r!(n− r)! p
r(1− p)n−r (3.7)

where p is the probability for one atom to decay in time T . Of course, p depends
on the length of the time interval. In the following time interval n will be less but
the value of p will remain the same. But if n is large and p small, then n >> r and
the change in n can be neglected. Then

n!

(n− r)! = n(n− 1)(n− 2) · · · (n− r + 1) r terms

≈ nr

Also,

(1− p)n−r = 1− p(n− r) +
p2

2!
(n− r)(n− r − 1) + . . .

≈ 1− p(n− r) +
p2

2!
(n− r)2 + . . .

= e−p(n−r) ≈ e−pn

Substituting these approximations in (3.7) yields

f(r) = B(r;n, p) ≈ (np)r

r!
e−np = P (r;np)

which is a Poisson p.d.f. with µ = np. This derivation is in fact only slightly different
from our previous one; the approximations involved here are the same.
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Radioactive decays – Exponential and Gamma distributions

As discussed in the previous section, the probability of r decays in time dt is given
by the binomial p.d.f.:

P (r) =
n!

r!(n− r)! p
r(1− p)n−r

where n is the number of undecayed atoms at the start of the interval. The proba-
bility that one atom decays is p, which of course depends on the length of the time
interval, dt. Now r is just the current value of − dn

dt
, i.e., the number of atoms

which decay in dt equals the change in the number of undecayed atoms. Therefore,

E

[
dn

dt

]
= −E [r] = −np (3.8)

Interchanging the order of the differentiation and the integration of the expectation
operator yields

dE [n]

dt
= −np

Identifying the actual number with its expectation,

dn

dt
= −np

n = n0e
−pt (3.9)

Thus the number of undecayed atoms falls exponentially. From this it follows that
the p.d.f. for the distribution of individual decay times (lifetimes) is exponential:

Exponential p.d.f.: Let f(t) be the p.d.f. for an individual atom to decay at
time t. The probability that it decays before time t is then F (t) =

∫ t
0 f(t) dt. The

expected number of decays in time t is

E [n0 − n] = n0F (t) = n0

∫ t

0
f(t) dt

Substituting for E [n] from equation 3.9 and differentiating results in the exponential
p.d.f.:

f(t; t0) =
1

t0
e−t/t0 (3.10)

which gives, e.g., the probability that an individual atom will decay in time t. Note
that this is a continuous p.d.f.

Properties:

µ = E [t] = t0 γ1 = 2
σ2 = V [t] = t20 γ2 = 6

φ(x) = [1− ıxt0]−1
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Since we could start timing at any point, in particular at the time of the first
event, f(t) is the p.d.f. for the time of the second event. Thus the p.d.f. of the time
interval between decays is also exponential. This is the special case of k = 1 of the
following situation:

Let us find the distribution of the time t for k atoms to decay. The r.v. T =
∑k

1 ti
is the sum of the time intervals between k successive atoms. The ti are independent.
The c.d.f. for t is then just the probability that more than k atoms decay in time t:

F (t) = P (T ≤ t) = 1− P (T > t)

Since the decays are Poisson distributed, the probability of m decays in the interval
t is

P (m) =
(λt)me−λt

m!

where λ = 1/t0, and t0 is the mean lifetime of an atom. The probability of < k
decays is then

P (T > t) =
k−1∑

m=0

(λt)me−λt

m!
=
∫ ∞

λt

zk−1e−z

(k − 1)!
dz

(The replacement of the sum by the integral can be found in any good book of
integrals.) Substituting the gamma function, Γ(k) = (k − 1)!, the c.d.f. becomes

F (t) = 1−
∫ λt

0

zk−1e−z

Γ(k)
dz

Changing variables, y = z/λ,

F (t) =
∫ t

0

λkyk−1e−λy

Γ(k)
dy

The p.d.f. is then

f(t; k, λ) =
dF

dt
=
λktk−1e−λt

Γ(k)
, t > 0, (3.11)

which is called the gamma distribution. Some properties of this p.d.f. are

µ = E [t] = k/λ γ1 = 2/
√
k

σ2 = V [t] = k/λ2 γ2 = 6/k

φ(x) =
[
1− ıx

λ

]−k

Note that the exponential distribution, f(t; 1, λ) = λe−λt, is the special case of the
gamma distribution for k = 1. The exponential distribution is also a special case
of the Weibull distribution (section 3.16).

Although in the above derivation k is an integer, the gamma distribution is, in
fact, more general: k does not have to be an integer. For λ = 1

2
and k = n

2
, the

gamma distribution reduces to the χ2(n) distribution (section 3.11).
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3.5 Uniform distribution

The uniform distribution (also known as the rectangular distribution),

f(x; a, b) =
1

b− a , a ≤ x ≤ b and f(x) = 0 , elsewhere (3.12)

is the p.d.f. of a r.v. distributed uniformly between a and b.
Properties:

µ = E [t] =
∫ b
a

x
b−a

dx = b+a
2

mean

σ2 = V [x] =
∫ b
a

x2

b−a
dx− µ2 = (b−a)2

12
variance

γ1 =
E[(x−µ)3]

σ3 = 0 skewness

γ2 =
E[(x−µ)4]

σ4 − 3 = −1.2 kurtosis

φ(t) =
sinh[ 1

2
ıt(b−a)]

ıt(b−a)
+ 1

2
ıt(b + a) characteristic function

Round-off errors in arithmetic calculations are uniformly distributed.

3.6 Gaussian or Normal distribution

This is probably the best known and most used p.d.f.

N(x;µ, σ2) =
1√

2πσ2
e−(x−µ)2/2σ2

(3.13)

Some books use the notation N(x;µ, σ). The Gaussian distribution is symmetric
about µ, and σ is a measure of its width.

We name this distribution after Gauß, but in fact many people discovered it
and investigated its properties independently. The French name it after Laplace,
who had noted23 its main properties when Gauß was only six years old. The first
known reference to it, before Laplace was born, is by the Englishman A. de Moivre
in 1733,24 who, however, did not realize its importance and made no use of it. Its
importance in probability and statistics (cf. section 8.5) awaited Gauß25 (1809).

The origin of the name ‘normal’ is unclear. It certainly does not mean that
other distributions are abnormal.

Properties: (The first two justify the notation used for the two parameters of the
Gaussian.)

µ = E [x] = µ mean
σ2 = V [x] = σ2 variance
γ1 = γ2 = 0 skewness and kurtosis

E [(x− µ)n] =

{
0, n odd
(n− 1)!!σn = n!σn

2n/2( n
2
)!
, n even central moments

where a!! ≡ 1 · 3 · 5 · · ·a
φ(t) = exp

[
ıtµ− 1

2
t2σ2

]
characteristic function
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When using the Gaussian, it is usually convenient to shift the origin, x→ x′ =
x− µ to obtain

N(x′; 0, σ2) =
1√

2πσ2
e−x′2/2σ2

(3.14)

We can also change the scale, x → z = (x − µ)/σ, defining a ‘standard’ variable,
i.e., a variable with µ = 0 and σ = 1. Then we obtain the unit Gaussian (also
called the unit Normal or standard Normal) p.d.f.:

N(z; 0, 1) =
1√
2π
e−z2/2 (3.15)

which has the cumulative distribution (c.d.f.)

erf(z) ≡ 1√
2π

∫ z

−∞
e−x2/2 dx (3.16)

which is called the error function or normal probability integral. The c.d.f. of
N(x;µ, σ2) is then erf

(
x−µ

σ

)
.

Some authors use the following definition of the error function instead of equa-
tion 3.16:

φ(z) ≡ 2√
π

∫ z

0
e−t2 dt (3.17)

It is this definition which is used by the FORTRAN library function ERF(Z). Our
definition (3.16) is related to this definition by

erf(z) =
1

2
+

1

2
φ

(
z√
2

)
(3.18)

The Gaussian as limiting case

The Gaussian distribution is so important because it is a limiting case of nearly all
commonly used p.d.f.’s. This is a consequence of the Central Limit Theorem, which
we will discuss shortly (cf. chapter 5). This relationship is shown for a number of
distributions in the following figure:
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Reproductive property

Since the Poisson p.d.f. has the reproductive property and since the Gaussian p.d.f.
is a limit of the Poisson, it should not surprise us that the Gaussian is also re-
productive: If X and Y are two independent r.v.’s distributed as N(x;µx, σ

2
x) and

N(y;µy, σ
2
y) then Z = X + Y is distributed as N(z;µz, σ

2
z) with µz = µx + µy and

σ2
z = σ2

x + σ2
y. The proof is left as an exercise (exercise 19).

3.7 Log-Normal distribution

If an r.v., y, is normally distributed with mean µ and variance σ2, then the r.v.,
x = ey, is distributed as

f(x;µ, σ2) =
1√

2πσ2

1

x
exp

(
−1

2

(log x− µ)2

σ2

)
(3.19)

As with the normal p.d.f., some authors consider σ, rather than σ2, as the parameter
of the p.d.f.
Properties:

E [x] = exp
(
µ+ 1

2
σ2
)

mean

V [x] = exp (2µ+ σ2) [exp (σ2)− 1] variance

Note that the parameters µ and σ2 are not the mean and variance of the p.d.f. of
x, but rather the parameters of the corresponding normal p.d.f. for log x.
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3.8 Multivariate Gaussian or Normal distribution

Consider n random variables xi with expectations (means) µi, which we write as
vectors:

x =




x1

x2
...
xn


 µ =




µ1

µ2
...
µn




The Gaussian is an exponential of a quadratic form in (x− µ). In generalizing
the Gaussian to more than one dimension, we replace (x− µ) by the most general
n-dimensional quadratic form which is symmetric about the point µ,

−1

2
(x− µ)TA (x− µ)

We have written the − 1
2

explicitly in order that A = 1
σ2 in the one-dimensional

case. Since we have constructed this to be symmetric about µ, we must have that

E [x] = µ. Hence, E
[
x− µ

]
= 0, and

∫ +∞

−∞
(x− µ) exp

[
−1

2
(x− µ)TA (x− µ)

]
dx = 0

By differentiating this with respect to µ we get (1 is the unit matrix)

∫ +∞

−∞

[
1− (x− µ)(x− µ)TA

]
exp

[
−1

2
(x− µ)TA (x− µ)

]
dx = 0

Therefore,
E
[
1− (x− µ)(x− µ)TA

]
= 0

E
[
(x− µ)(x− µ)T

]
A = 1

This expectation is just the definition of the covariance matrix, V (equation 2.34).
Hence V A = 1 or

A = V −1

If the correlations between all the xi, are zero, i.e., if all ρij, i 6= j, are zero, then
V is diagonal with Vii = σ2

i . Then A is also diagonal with Aii = 1
σ2

i
and

exp
[
−1

2
(x− µ)TA(x− µ)

]
= exp

[
−1

2

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

+ . . .

)]

= exp

[
−(x1 − µ1)

2

2σ2
1

]
exp

[
−(x2 − µ2)

2

2σ2
2

]
· · ·

The p.d.f. is thus just the product of n 1-dimensional Gaussians. Thus all ρij = 0
implies that xi and xj are independent. As we have seen (sect. 2.2.4), this is not
true of all p.d.f.’s.
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It remains to determine the normalization. The result is

N
(
x;µ, V

)
=

1

(2π)n/2 |V |1/2
exp

[
−1

2
(x− µ)TV −1(x− µ)

]
(3.20)

where |V | is the determinant of V . This assumes that V is non-singular, i.e.,
|V | 6= 0. If V is singular, that means that two of the xi are completely correlated,
i.e., |ρij| = 1. In that case we can replace xj by a function of xi thus reducing the
dimension by one.

Comparison of equations 3.13 and 3.20 shows that an n-dimensional Gaussian
may be obtained from a 1-dimensional Gaussian by the following substitutions:

x → x µ → µ

σ2 → V σ−2 → V −1

σ → |V |1/2 1√
2π
→ 1

(2π)n/2

These same substitutions are applicable for many (not all) cases of generalization
from 1 to n dimensions, as we might expect since the Gaussian p.d.f. is so often a
limiting case.

Multivariate Normal - summary:

p.d.f. N
(
x;µ, V

)
= 1

(2π)n/2|V |1/2 exp
[
−1

2
(x− µ)TV −1(x− µ)

]
(3.20)

mean E [x] = µ
covariance cov(x) = V

V [xi] = Vii

cov(xi, xj) = Vij

characteristic

function φ(t) = exp
[
ıtµ− 1

2
tT V t

]

Other interesting properties:

• Contours of constant probability density are given by

(x− µ)TV −1(x− µ) = C , a constant

• Any section through the distribution, e.g., at xi = const., gives again a mul-
tivariate normal p.d.f. It has dimension n − 1. For the case xi = const., the
covariance matrix Vn−1 is obtained by removing the ith row and column from

V −1 and inverting the resulting submatrix.

• Any projection onto a lower space gives a marginal p.d.f. which is a multi-
variate normal p.d.f. with covariance matrix obtained by deleting appropriate
rows and columns of V . In particular, the marginal distribution of xi is

fi(xi) = N(xi;µi, σ
2
i )
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• A set of variables, each of which is a linear function of a set of normally
distributed variables, has itself a multivariate normal p.d.f.

We will now examine a special case of the multivariate normal p.d.f., that for two
dimensions.

3.9 Binormal or Bivariate Normal p.d.f.

This is the multivariate normal p.d.f. for 2 dimensions. Using (x, y) instead of
(x1, x2), we have

V =
(

σ2
x ρσxσy

ρσxσy σ2
y

)

V −1 =
1

σ2
xσ

2
y(1− ρ2)

(
σ2

y −ρσxσy

−ρσxσy σ2
x

)

f(x, y) =
1

2πσxσy

√
1− ρ2

e−
1
2
G

where G =
1

(1− ρ2)



(
x− µx

σx

)2

− 2ρ
(
x− µx

σx

)(
y − µy

σy

)
+

(
y − µy

σy

)2



Contours of constant probability density are given by setting the exponent equal to
a constant. These are ellipses, called covariance ellipses.

-
x

6
y
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HHHH

HHHH

θ

µx − σx µx µx + σx

µy − σy

µy

µy + σy

For G = 1, the extreme values of the
ellipse are at µx ± σx and µy ± σy. The
larger the correlation, the thinner is the
ellipse, approaching 0 as |ρ| → 1. (Of
course in the limit of ρ = ±1, G is infinite
and we really have just 1 dimension.)

The orientation of the major axis of
the ellipse is given by

tan 2θ =
2ρσxσy

σ2
x − σ2

y

Note that θ = ±45◦ only if σ2
x = σ2

y

θ = 0 if ρ = 0
In calculating θ by taking the arctangent of the above equation, one must be

careful of quadrants. If we define the arctangent function to lie between − π
2

and
π
2
, then θ is the angle of the major axis if σx > σy; otherwise it is the angle of the

minor axis.
In the one-dimensional Gaussian the probability that x is within k standard

deviations of µ is given by

P (µ− kσ ≤ x ≤ µ+ kσ) =
∫ µ+kσ

µ−kσ
N(x;µ, σ2) dx (3.21)
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which is an integral over the interval of x where G ≤ k. In two dimensions this
generalizes to the probability that (x, y) is within the ellipse corresponding to k
standard deviations, which is given∗ by

P (G ≤ k) =
1

2πσxσy

√
1− ρ2

∫

G ≤ k

∫
e−

1
2
G dx dy (3.22)

Some values:

2-dimensional 1-dimensional 2× 1-dimensional
P (G ≤ k) k P (G ≤ k) = P (µx − kσ ≤ x ≤ µx + kσ)

P (µ− kσ ≤ x ≤ µ+ kσ) P (µy − kσ ≤ y ≤ µy + kσ)

0.39 1 0.6827 .4661
0.63 2 0.9545 .9111
0.78 3 0.9973 .9886
0.86 4 0.99994 .9988
0.92 5
0.95 6

Note that the 2-dimensional probability for a given k is much less than the cor-
responding 1-dimensional probability. This is easily understood: the product of
the two 1-dimensional probabilities is the probability that (x, y) is in the rectangle
defined by µx − kσx ≤ x ≤ µx + kσx and µy − kσy ≤ y ≤ µy + kσy. The ellipse is
entirely within this rectangle and hence the probability of being within the ellipse
is less than the probability of being within the rectangle.

-
x

6y
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σx
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Since the covariance matrix is sym-
metric, there exists a unitary transforma-
tion which diagonalizes it. In two dimen-
sions this is the rotation matrix U ,

U =
(

cos θ − sin θ
sin θ cos θ

)

This matrix transforms (x, y) to (u, v):

(
u
v

)
= U

(
x
y

)

The new covariance matrix is U V UT.
Since the transformation is unitary, areas are preserved (Jacobian |J | = 1). Hence,

P [(x, y) inside ellipse] = P [(u, v) inside ellipse]

∗We will see in sect. 3.11 that G is a so-called χ2 r.v. P (G ≤ k) can therefore also be found
from the c.d.f. of the χ2 distribution, tables of which, as well as computer routines, are readily
available.
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The standard deviations of u, v are then found from the transformed covariance
matrix. After some algebra we find

σ2
u =

σ2
x cos2 θ − σ2

y sin2 θ

cos2 θ − sin2 θ
(3.23a)

σ2
v =

σ2
y cos2 θ − σ2

x sin2 θ

cos2 θ − sin2 θ
(3.23b)

Or starting from the uncorrelated (diagonalized) variables (u,v), a rotation by θ to
the new variables x, y will give

σ2
x = σ2

u cos2 θ + σ2
v sin2 θ (3.24a)

σ2
y = σ2

v cos2 θ + σ2
u sin2 θ (3.24b)

ρ = sin θ cos θ
σ2

u − σ2
v

σxσy
(3.24c)

Note that if ρ is fairly large, i.e., the ellipse is thin, just knowing σx and σy

would give a very wrong impression of how close a point (x, y) is to (µx, µy).
The properties stated at the end of the previous section, regarding the condi-

tional and marginal distributions of the multivariate normal p.d.f. can be easily
verified for the bivariate normal. In particular, the marginal p.d.f. is

fx(x) = N(x;µx, σ
2
x) (3.25)

and the conditional p.d.f. is

f(y |x) =
f(y, x)

fx(x)
=

1√
2πσ2

y

√
1− ρ2

exp

{
− 1

2σ2
y(1− ρ2)

[
y −

(
µy + ρ

σy

σx
(x− µx)

)]2}

= N
(
y;µy + ρ

σy

σx

(x− µx) , σ
2
y

[
1− ρ2

])
(3.26)

3.10 Cauchy (Breit-Wigner) p.d.f.

The Cauchy p.d.f. is

C(x;µ, α) =
1

πα

1

1 + (x− µ)2/α2
(3.27)

or in its ‘standard’ form with µ = 0 and α = 1,

C(x; 0, 1) =
1

π

1

1 + x2
(3.28)

It looks something like a Gaussian, but with bigger tails.
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-

6
���9 N

�
��=

C

x

f(x)It is usually encountered in physics in a
slightly different form as the Breit-Wigner
function which gives the distribution of par-
ticles of mass m due to a resonance of mass
M and width Γ.

f(m;M,Γ) =
1

2π

Γ

(m−M)2 + (Γ
2
)2

The Cauchy p.d.f. is a pathological distribution. Let us try to calculate the
mean:

E [x] =
1

πα

∫ +∞

−∞

x

1 + (x−µ)2

α2

dx =
1

πα

∫ +∞

−∞

(x− µ) + µ

1 + (x−µ)2

α2

dx

=
α

π

∫ +∞

−∞

z

1 + z2
dz +

µ

π

∫ +∞

−∞

1

1 + z2
dz , z = x−µ

α

=
α

2π
ln(1 + z2)

]+∞

−∞
+
µ

π
π = +∞−∞+ µ

which is indeterminate. The mean does not exist! However, noting that the p.d.f.
is symmetric about µ, we can define the mean as

lim
L→∞

∫ µ+L

µ−L
xC(x;µ, α) dx = µ

All higher moments are also divergent, and no such trick will allow us to define
them. In actual physical problems the distribution is truncated, e.g., by energy
conservation, and the resulting distribution is well-behaved.

The characteristic function of the standard Cauchy p.d.f. is

φ(t) = e−α|t|+ıµt

The reproductive property of the Cauchy p.d.f. is rather unusual: x = 1
n

∑
xi is

distributed according to the identical Cauchy p.d.f. as are the xi. (The proof is left
as an exercise.)

3.11 The χ2 p.d.f.

Let x be a vector of n independent r.v.’s, xi, each distributed normally with mean
µi and variance σ2

i . Then the joint p.d.f. is

f(x;µ, σ) =
n∏

i=1

1√
2πσi

exp

[
−1

2

(
xi − µi

σi

)2
]

= exp

[
−1

2

n∑

i=1

(
xi − µi

σi

)2
]

n∏

i=1

1√
2πσi
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The variable χ2 is defined:

χ2(n) =
n∑

i=1

(
xi − µi

σi

)2

(3.29)

Being a function of r.v.’s, χ2 is itself a r.v. The χ2 has a parameter n, which is
called the number of degrees of freedom (d.o.f.), since each of the r.v.’s, xi, is free
to vary independently of the others. Note that χ2 is regarded as the variable, not
the square of a variable; one does not usually refer to χ =

√
χ2.

χ2 with 1 d.o.f.

For example, for n = 1, letting z = (x− µ)/σ, the p.d.f. for z is N(z; 0, 1) and the
probability that z ≤ Z ≤ z + dz is

f(z) dz =
1√
2π

e−
1
2
z2

dz

Let Q = Z2. (We use Q here instead of χ2 to emphasize that this is the variable.)
This is not a one-to-one transformation; both +Z and −Z go into +Q.

-

6

0 z

f(z)

−|Z| +|Z|

-

-

6

q

f(q)f(q)

Q

The probability that Q is between q and q + dq is the sum of the probability that
Z is between z and z + dz around z =

√
q and the probability that Z is between z

and z − dz around z = −√q. Therefore, we must add the p.d.f. obtained from the
+Z → q transformation to that obtained from the −Z → q transformation. The
Jacobians for these two transformations are (cf. section 2.2.6)

J± =
d(±z)

dq
= ± 1

2
√
q

f(q) dq =
1√
2π

e−
1
2
q (|J+|+ |J−|) dq =

1√
2π

e−
1
2
q

(
dq

2
√
q

+
dq

2
√
q

)
=

1√
2πq

e−
1
2
q dq

Now Q was just χ2. Hence the p.d.f. for χ2 with 1 d.o.f. is

χ2(1) = f(χ2; 1) =
1√

2πχ2
e−

1
2
χ2

(3.30)

It may be confusing to use the same symbol, χ2, for both the r.v. and its p.d.f., but
that’s life!
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χ2 with 3 degrees of freedom

For n = 3, using standardized normal variables zi =
(

xi−µi

σi

)
, let

R2 = χ2 = z2
1 + z2

2 + z2
3

The joint probability is then

g(z1, z2, z3) dz1 dz2 dz3 =
1

(2π)3/2
e−R2/2 dz1 dz2 dz3

Think ofR as the radius of a sphere in 3-dimensional space. Then, clearly, dz1 dz2 dz3 =
R2 dR d cos θ dφ. To get the marginal p.d.f. for R, we integrate over cos θ and φ,
which gives a factor 4π. Hence, the probability that R is between R and R+ dR is

f(R) dR =
2√
2π

R2 e−R2/2 dR

Now χ2 = R2. Hence, dχ2 = 2R dR and dR = dχ2/2
√
χ2. Hence,

f(χ2; 3) dχ2 =
2√
2π

χ2e−χ2/2 dχ2

2
√
χ2

χ2(3) = f(χ2; 3) =
(χ2)1/2

√
2π

e−χ2/2 (3.31)

χ2 with n degrees of freedom

For n degrees of freedom, the p.d.f. of χ2 is

χ2(n) = f(χ2;n) =
(χ2)

n
2
−1 e−χ2/2

Γ(n
2
) 2n/2

(3.32)

Properties:

mean µ = E [χ2(n)] = n
variance V [χ2(n)] = σ2

χ2(n) = 2n

mode (max.) at χ2(n) =
{
n− 2 n ≥ 2
0 n ≤ 2

skewness γ1 = 2
√

2
n

kurtosis γ2 = 12/n

characteristic function φ(t) = (1− 2ıt)−n/2

Reproductive property: Let χ2
i be a set of variables which are distributed as χ2(ni).

Then
∑
χ2

i is distributed as χ2(
∑
ni). This is obvious from the definition of χ2:

The variables χ2
1 and χ2

2 are, by definition,

χ2
1(n1) =

n1∑

i=1

z2
i and χ2

2(n2) =
n1+n2∑

i=n1+1

z2
i
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Hence, their sum is

χ2
n1+n2

= χ2
n1

+ χ2
n2

=
n1+n2∑

i=1

z2
i

which from the definition is a χ2 of (n1 + n2) degrees of freedom.
Since the expectation of a χ2(n) is n, the expectation of χ2(n)/n is 1. The

quantity χ2(n)/n is called a “reduced χ2”.
Asymptotically (for large n), the χ2 p.d.f. approaches the normal distribution

with mean n and variance 2n:

f(χ2;n) = χ2(n) −→ N(χ2;n, 2n) (3.33)

A faster convergence occurs for the variable
√

2χ2:

f(
√

2χ2;n) = χ2(χ2;n)
√

2χ2 −→ N(
√

2χ2;
√

2n− 1, 1) (3.34)

This approximation is good for n greater than about 30.

General definition of χ2

If the n Gaussian variables are not independent, we can change variables such that
the covariance matrix is diagonalized. Since this is a unitary transformation, it
does not change the covariance ellipse G = k. In the diagonal case G ≡ χ2. Hence,
χ2 = G also in the correlated case. Thus we can take

χ2 = (x− µ)TV −1(x− µ) (3.35)

as the general definition of the random variable χ2.

3.12 Student’s t distribution

Consider an r.v., x, normally distributed with mean µ and standard deviation σ.
Then z = x−µ

σ
is normally distributed with mean 0 and standard deviation 1. In

the normal p.d.f., the mean determines the origin and the standard deviation the
scale. By transforming to the standard variable z, both dependences are removed.

In analyzing data we may not know the σ of the p.d.f. We may then remove the
scale dependence by using the sample standard deviation, σ̂, instead of the parent
standard deviation. We may also not know the parent mean and will use the sample
mean, x̄, instead. For N independent xi (cf. equations 8.3, 8.7),

σ̂2 =
1

N

N∑

i=1

(xi − µ)2 , using µ (3.36a)

σ̂2 =
1

N − 1

N∑

i=1

(xi − x̄)2 , using x̄ = 1
N

∑
xi (3.36b)
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In either case, nσ̂2/σ2 is a χ2(n), i.e., is distributed according to the χ2 distribution
for n = N − k degrees of freedom, where k is 0 if µ is used and is 1 if x̄ is used,
since in the latter case only N − 1 of the terms in the sum are independent. This
is discussed in more detail in section 8.2.1.

We now seek the p.d.f. for the r.v.

t =
x− µ
σ̂

=
(x− µ)/σ√
(nσ̂2/σ2)/n

=
z√
χ2/n

(3.37)

Now z is a standard normal r.v. and χ2 is a χ2(n). A Student’s t r.v. is thus the
ratio of a standard normal r.v. to the square root of a reduced χ2 r.v. The joint
p.d.f. for z and χ2 is then (equation 3.32)

f(z, χ2;n) dz dχ2 = N(z; 0, 1)χ2(χ2;n) dz dχ2 =
e−z2/2

√
2π

(χ2)
n
2
−1 e−χ2/2

Γ(n
2
) 2n/2

dz dχ2

where we have assumed that z and χ2 are independent. This is certainly so if the
x has not been used in determining σ̂, and asymptotically so if n is large. Making
a change of variable, we transform this distribution to one for t and χ2:

f(t, χ2;n) dt dχ2 =
1√

2πnΓ(n
2
) 2n/2

(χ2)
n−1

2 e−
χ2

2
(1+ t2

n
) dt dχ2

Integrating this over all χ2, we arrive finally at the p.d.f. for t, called Student’s
t distribution,

t(n) = f(t;n) =
1√
πn

Γ(n+1
2

)

Γ(n
2
)

1

(1 + t2

n
)(n+1)/2

(3.38)

Properties: mean µ = E [t] = 0 , n > 1
variance V [t] = σ2

t = n
n−2

, n > 2

skewness γ1 = 0
kurtosis γ2 = 6

n−4
, n > 4

moments µr =





n2rΓ( r+1
2 )Γ(n−r

2 )
Γ( 1

2
)Γ( n

2
)

, r even and r < n

0 , r odd and r ≤ n
does not exist , otherwise.

Student’s t distribution is thus the p.d.f. of a r.v., t, which is the ratio of a

standard normal variable and the square root of a normalized χ2 r.v., i.e.,
√
χ2(n)/n,

of n degrees of freedom. It was discovered26 by W. S. Gossett, a chemist working for
the Guinness brewery in Dublin, who in his spare time wrote articles on statistics
under the pseudonym∗ “Student”.

The number of degrees of freedom, n, is not required to be an integer. The
t-distribution with non-integral n > 0 is useful in certain applications, which is,
however, beyond the scope of this course.

∗It was the policy of Guinness that articles by its employees be published under a pseudonym.
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Student’s t distribution is
symmetric about t = 0. It ap-
proaches the standard normal dis-
tribution as the number of degrees
of freedom, n, approaches infin-
ity. For n = 1 it is identical to
the standard Cauchy p.d.f. As
n → ∞, it approaches the stan-
dard normal distribution. It thus
has larger tails and a larger vari-
ance than the Gaussian, but not
so large as the Cauchy distribu-
tion.

We have constructed t from a
single observation, x. In a sim-
ilar way, a r.v. t can be con-
structed for the mean of a number
of r.v.’s each distributed normally
with mean µ and standard devia-
tion σ. We know from the reproductive property of the normal p.d.f. that x̄ is also
normally distributed with mean µ but with a standard deviation of σ/

√
N . Thus

z = x̄−µ
σ

√
N is a standard normal r.v. and hence

t =
x̄− µ
σ̂

√
N (3.39)

is distributed as Student’s t with n degrees of freedom. It can be shown3 that x̄
and σ̂2 are independent.

3.13 The F -distribution

Consider two random variables, χ2
1 and χ2

2, distributed as χ2 with ν1 and ν2 degrees
of freedom, respectively. We define a new r.v., F , as the ratio of the two reduced
χ2:

F =
χ2

1/ν1

χ2
2/ν2

(3.40)

The p.d.f. of F may be derived by a method similar to that used for Student’s t
distribution: Start with the joint p.d.f. of the independent variables χ2

1, χ
2
2; make

a change of variables to F , v = χ2
2; and integrate out the v dependence. The result

is2

f(F ; ν1, ν2) =
√
νν1

1 ν
ν2
2

Γ(ν1+ν2

2
)

Γ(ν1

2
)Γ(ν2

2
)

F
ν1
2
−1

(ν2 + ν1F )
ν1+ν2

2

(3.41)
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This distribution is known by many names: Fisher-Snedecor distribution, Fisher
distribution, Snedecor distribution, variance ratio distribution, and F -distribution.

We could, of course, have written equation 3.40 with the ratio the other way
around. By convention, one usually puts the larger value on top so that F ≥ 1.
Properties: mean µ = E [F ] = ν2

ν2−ν1
, ν2 > 2

variance V [F ] =
2ν2

2 (ν1+ν2−2)

ν1(ν2−2)2(ν2−4)
, ν2 > 4

The distribution is positively skew and tends to mormality as ν1, ν2 −→ ∞, but
only slowly (ν1, ν2 > 50).

The p.d.f. for Z = 1
2
lnF has a much faster approach to a Gaussian with a mean

of 1
2
( 1

ν2
− 1

ν1
) and variance 1

2
( 1

ν2
+ 1

ν1
).

The F -distribution is useful in various hypothesis tests (cf. sections 10.4.3 and
10.7.4). However, for the tests it may be more convenient to use

U =
ν1F

ν2 + ν1F
(3.42)

which is a monotonic function of F and has a beta distribution (cf. section 3.14).

3.14 Beta distribution

This is a basic distribution for random variables bounded on both sides. Without
loss of generality the bounds are here taken as 0 ≤ x ≤ 1. It has two parameters
(not necessarily integers): n,m > 0. The p.d.f. is

f(x;n,m) =
Γ(n+m)

Γ(n)Γ(m)
xm−1(1− x)n−1 , 0 ≤ x ≤ 1 (3.43)

= 0 , otherwise

Properties: mean µ = E [x] = m
m+n

variance V [x] = mn
(m+n)2(m+n+1)

For m = n = 1 this becomes the uniform p.d.f.
Do not confuse the beta distribution with the beta function,

β(y, z) =
Γ(y)Γ(z)

Γ(y + z)
=
∫ 1

0
xy−1(1− x)z−1 dx , real y, z > 0

to which it is related, and from which the normalization of the p.d.f. is easily derived.

3.15 Double exponential (Laplace) distribution

This distribution is symmetric about the mean. Its tails fall off less sharply than
the Gaussian, but faster than the Cauchy distribution. Note that its first derivative
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is discontinuous at x = µ.

f(x;µ, λ) =
λ

2
exp (−λ|x− µ|) (3.44)

Properties: mean µ = E [x] = µ
variance V [x] = 2/λ2

skewness γ1 = 0
kurtosis γ2 = 3

characteristic function φ(t) = ıtµ+ λ2

λ2+t2

It can also be written

f(x;µ, σ2) =
1√
2σ2

exp

(
−
√

2
|x− µ|
σ

)
(3.45)

3.16 Weibull distribution

Originally invented to describe failure rates in ageing lightbulbs, it describes a wide
variety of complex phenomena.

f(t;α, λ) = αλ(λt)α−1e−(λt)α

real t ≥ 0 and α, λ > 0 (3.46)

Properties: mean µ = E [x] = 1
λ

Γ
(

1
α

+ 1
)

variance V [x] = 1
λ2

{
Γ
(

2
α

+ 1
)
−
[
Γ
(

1
α

+ 1
)]2}

The exponential distribution (equation 3.10) is a special case (α = 1), when the
probability of failure at time t is independent of t.



Chapter 4

Real p.d.f.’s

There are, of course, many other distributions which we have not discussed in the
previous section. We may introduce a few more later when needed. Now lets turn
to some complicatons which we will encounter in trying to use these distributions.

4.1 Complications in real life

So far we have treated probability and handled some ideal p.d.f.’s. Given the
p.d.f. for the physical process we want to study, we can, in principle, calculate the
probability of a given experimental result. There are, however, some complications:

• In real life the p.d.f. is quite likely not one of the ideal distributions we have
studied. It may be difficult to calculate. Or it may not even be known.

• The range of variables is never the −∞ to +∞ we have so blithely assumed.
Either it is limited by physics, e.g., conservation of energy, or by our appara-
tus, e.g., a given radio telescope only works in a certain range of frequencies,
in which case we must use the conditional p.d.f., f(x|xmin ≤ x ≤ xmax).
While truncation is usually a complication, making the p.d.f. more difficult
to calculate (e.g., we must renormalize, which frequently can only be done
by numerical integration), occasionally it is welcome, e.g., the Cauchy p.d.f.
becomes well-behaved if truncated at µ± a:

C(x;µ = 0, α = 1) =
1

π

1

1 + x2

−→ C(x; 0, 1)
∫ +a
−a C(x; 0, 1) dx

=
1

2 arctan a
· 1

1 + x2

which has a finite variance (recall that the Cauchy p.d.f. did not):

V [x] =
1

arctan a

∫ +a

−a

x2

1 + x2
dx =

a

arctan a
− 1

57
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• The physical p.d.f. may be modified by the response of the detector. This
response must then be convoluted with the physical p.d.f. to obtain the p.d.f.
which is actually sampled.

“Now we see in a mirror dimly ...
Now I know in part ...”
—1 Corinthians 13:12

4.2 Convolution

Experimentally we often measure the sum of two (or more) r.v.’s. For example,
in the decay n → pe−νe we want to measure the energy of the electron, which is
distributed according to a p.d.f. given by the theory of weak interactions, f1(E1).
But we measure this energy with some apparatus, which has a certain resolution.
Thus we do not record the actual energy E1 of the electron but E1 + δ, where δ
is distributed according to the resolution function (p.d.f.) of the apparatus, f2(δ).
What is then the p.d.f., f(E), of the quantity we record, i.e., E = E1 + δ? This
f(E) is called the (Fourier) convolution of f1 and f2.

Assume E1 and δ to be independent. This may seem reasonable since E1 is from
the physical process (n decay) and δ is something extra added by the apparatus,
which has nothing at all to do with the decay itself. Then the joint p.d.f. is

f12(E1, δ) = f1(E1) f2(δ)

The c.d.f. of E = E1 + δ is then

F (E) =
∫

E1 + δ ≤ E

∫
f1(E1)f2(δ) dE1 dδ

=
∫ +∞

−∞
dE1 f1(E1)

∫ E−E1

−∞
dδ f2(δ)

=
∫ +∞

−∞
dE1 f1(E1)F2(E − E1)

or =
∫ +∞

−∞
dδ f2(δ)F1(E − δ)

The p.d.f. can then be calculated from the c.d.f.:

f(E) =
dF (E)

dE
=
∫ +∞

−∞
f1(E1)f2(E − E1) dE1

or =
∫ +∞

−∞
f2(δ)f1(E − δ) dδ
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The characteristic function is particularly useful in evaluating convolutions:

φf(t) =
∫
eıtEf(E) dE

=
∫
eıtE

∫
f1(E1)f2(E − E1) dE1 dE

=
∫ ∫

eıtE1f1(E1)e
ıt(E−E1)f2(E − E1) dE1 dE

since E = E1 + (E − E1)

= φf1(t) φf2(t) (4.1)

Thus, assuming that the r.v.’s are independent, the characteristic function of a
convolution is just the product of the individual characteristic functions. (This
probably looks rather familiar. We have already seen it in connection with the
reproductive property of distributions; in that case f1 and f2 were the same p.d.f.)
Recall that the characteristic function is a Fourier transform. Hence, a convolution,
E = E1 + δ, where δ is independent of E, is known as a Fourier convolution.

Another type of convolution, called the Mellin convolution, involves the product
of two random variables, e.g., E = E1R1. As we shall see, the Fourier convolution
is easily evaluated using the characteristic function, which is essentially a Fourier
transform of the p.d.f. Similarly, the Mellin convolution can be solved using the
Mellin transformation, but we shall not cover that here.

In the above example we have assumed a detector response independent of what
is being measured. In practice, the distortion of the input signal usually depends
on the signal itself. This can occur in two ways:

1. Detection efficiency. The chance of detecting an event with our apparatus
may depend on the properties of the event itself. For example, we want to
measure the frequency distribution of electromagnetic radiation incident on
the earth. But some of this radiation is absorbed by the atmosphere. Let
f(x) be the p.d.f. for the frequency, x, of incident radiation and let e(x) be
the probability that we will detect a photon of frequency x incident on the
earth. Both f and e may depend on other parameters, y, e.g., the direction
in space in which we look. The p.d.f. of the frequency of the photons which
we detect is

g(x) =

∫
f(x, y)e(x, y) dy

∫ ∫
f(x, y)e(x, y) dxdy

2. Resolution. To continue with the above example, suppose the detector records
frequency x′ when a photon of frequency x is incident. Let r(x′, x) be the p.d.f.
that this will occur. Then

g(x′) =
∫
r(x′, x)f(x) dx

In the case that r is just a function of x − x′ we get the simple convolution
handled above. Note that resolution effects can lead to values of x′ which lie
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outside the physical range of x, e.g., an energy of a particle which is larger
than the maximum energy allowed by energy conservation. The Central Limit
Theorem (chapter 5) will tell us that the detector response, or resolution
function, is usually normally distributed for a given input to the detector:

r(x′, x) =
1√
2πσ

exp

[
−1

2

(x′ − x)2

σ2

]

= N(x′; x, σ2) if σ is constant

However in practice σ often depends on x, in which case r(x′, x) may still have
the above form, but is not really a Gaussian.

If the resolution function is Gaussian and if the physical p.d.f., f(x), is also
Gaussian, f(x) = N(x;µ, τ 2), then you can show, by using the reproductive
property of the Gaussian (exercise 19) or by evaluating the convolution using
the characteristic function (equation 4.1), that the p.d.f. for x′ is also normal:

g(x′) =
∫ +∞

−∞
f(x) r(x′, x) dx = N

(
x′;µ, σ2 + τ 2

)



Chapter 5

Central Limit Theorem

5.1 The Theorem

This is a very important theorem; you could call it the ‘central’ theorem of statistics.
It states:

Given n independent variables, xi, distributed according to p.d.f.’s, fi, having
mean µi and variance Vi = σ2

i , then the p.d.f. for the sum of the xi, S ≡
∑
xi, has

expectation (mean) E [S] =
∑
µi and variance V [S] =

∑
Vi =

∑
σ2

i and approaches
the normal p.d.f. N (S;

∑
µi,
∑
σ2

i ) as n→∞:

lim
n→∞ f(S)→ N

(
S;

n∑

i=1

µi,
n∑

i=1

σ2
i

)
, S =

n∑

i=1

xi (5.1)

It must be emphasized that the mean and variance must exist.
It is left as an exercise to show that

µS =
∑

µi (5.2)

and σ2
S = V [S] =

∑
Vi =

∑
σ2

i (5.3)

Proving the C.L.T. in the general case is a bit too difficult for us. We will only
demonstrate it for the restricted case where all the p.d.f’s are the same, fi = f .
Without loss of generality we can let µ = 0. Then σ2 = E [x2]. We also assume not
only that the mean and variance of f are finite, but also that the expectations of
higher powers of x are finite such that we can expand the characteristic function
of f (equation 2.29):

φx(t) = E
[
eıtx

]
= 1 +

(ıt)2

2
σ2 +

(ıt)3

3!
E
[
x3
]
+ . . .

= 1− σ2t2

2
+ . . .

Let u = x
σ
√

n
. The p.d.f. for u has variance 1/n. Then

φu(t) = E
[
eıtu

]
= 1− t2

2n
+ . . .
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Now recall that the characteristic function of a sum of independent r.v.’s is the
product of the individual characteristic functions. Therefore, the characteristic
function of Su =

∑
ui is

φSu(t) = [φu(t)]
n =

[
1− t2

2n
+ . . .

]n

which in the limit n→∞ is just an exponential:

φSu(t) = exp

(
−t

2

2

)

But this is just the characteristic function of the standard normal N(Su; 0, 1). Since
Su =

∑
ui = 1

σ
√

n
S, the p.d.f. for

∑
xi is the normal p.d.f. N(S;nµ, nσ2).

A corallary of the C.L.T.: Under the conditions of the C.L.T., the p.d.f. of S/n
approaches the normal p.d.f. as n→∞:

lim
n→∞

f
(
S

n

)
= N

(
S

n
;

∑
µi

n
,

∑
σ2

i

n2

)
, S =

n∑

i=1

xi (5.4)

or in the case that all the fi are the same:

lim
n→∞

f
(
S

n

)
= N

(
S

n
;µ,

σ2

n

)
, S =

n∑

i=1

xi (5.5)

5.2 Implications for measurements

The C.L.T. shows why the Gaussian p.d.f. is so important. Most of what we measure
is in fact the sum of many r.v.’s. For example, you measure the length of a table with
a ruler. The length you measure depends on a lot of small effects: optical parallax,
calibration of the ruler, temperature, your shaking hand, etc. A digital meter has
electronic noise at various places in its circuitry. Thus, what you measure is not
only what you want to measure, but added to it a large number of (hopefully) small
contributions. If this number of small contributions is large the C.L.T. tells us that
their total sum is Gaussian distributed. This is often the case and is the reason
resolution functions are usually Gaussian. But if there are only a few contributions,
or if a few of the contributions are much larger than the rest, the C.L.T. is not
applicable, and the sum is not necessarily Gaussian.

Consider the passage of particles, e.g., an α particle, through matter. Usually the
α undergoes a large number of small-angle scatters producing a small net deflection.
This net deflection is Gaussian distributed since it results from a large number of
individual scatters. However occasionally there is a large-angle scattering; usually
not, but sometimes 1 and very rarely 2. The distribution of the scattering angle θ
when there has been one or more large-angle scatters will not be Gaussian, since
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1 or 2 is not a large number. Instead, the p.d.f. for θ will be the convolution of
the Gaussian for the net deflection from many small-angle scatters with the actual
p.d.f. for the large-angle scatters. It will look something like:

-

6

θ

Adding this to the Gaussian p.d.f. for the much more likely case of no large-angle
scatters will give a p.d.f. which looks almost like a Gaussian, but with larger tails:

-

6

θ

Nearly Gaussian.
Many small-angle,

no large-angle scatters.
Z

Z
Z~

Long tails. Many small-angle
scatterings giving Gaussian tails.

Plus some large-angle
scatterings giving a
non-Gaussian p.d.f.

�
�
�
�
�
��

This illustrates that the further you go from the mean, the worse the Gaussian
approximation is likely to be.

The C.L.T. also shows the effect of repeated measurements of a quantity. For
example, we measure the length of a table with a ruler. The variance of the p.d.f.
for 1 measurement is σ2; the variance of the p.d.f. for an average of n measurements
is σ2

n
. Thus σ is reduced by

√
n.

If a r.v. is the product of many factors, then its logarithm is a sum of equally
many terms. Assuming that the CLT holds for these terms, then the r.v. is asymp-
totically distributed as the log-normal distribution.

“You can . . . never foretell what any one man
will do, but you can say with precision what an
average number will be up to. Individuals vary,

but percentages remain constant.”
—Arthur Conan Doyle: Sherlock Holmes in

“The Sign of Four”
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Part II

Monte Carlo
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Chapter 6

Monte Carlo

The term Monte Carlo is used for calculational techniques which make use of random
numbers. These techniques represent the solution of a problem as a parameter of
a hypothetical population, and use a random sequence of numbers to construct a
sample of the population, from which statistical estimates of the parameter are
obtained.

The Monte Carlo solution of a problem thus consists of three parts:

1. choice of the p.d.f. which describes the hypothetical population;

2. generation of a random sample of the hypothetical population using a random
sequence of numbers; and

3. statistical estimation of the parameter in question from the random sample.

It is no accident that these three steps correspond to the three parts of these lectures.
P.d.f.’s have been covered in part I; this part will cover the generation of a Monte
Carlo sample according to a given p.d.f.; and part III will treat statistical estimation,
which is done in the same way for Monte Carlo as for real samples.

If the solution of a problem is the number F , the Monte Carlo estimate of F
will depend on, among other things, the random numbers used in the calculation.
The introduction of randomness into an otherwise well-defined problem may seem
rather strange, but we shall see that the results can be very good.

After a short treatment of random numbers (section 6.1) we will treat a common
application of the Monte Carlo method, namely integration (section 6.2) for which
the statistical estimation is particularly simple. Then, in section 6.3 we will treat
methods to generate a Monte Carlo sample which can then be used with any of the
statistical methods of part III.

6.1 Random number generators

Random number generators may be classified as true random number generators or
as pseudo-random number generators.

67
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6.1.1 True random number generators

True random number generators must be based on random physical processes, e.g.,

• the potential across a resistor, which arises from thermal noise.

• the time between the arrival of two cosmic rays.

• the number of radioactive decays in a fixed time interval.

An example of how we could use this last possibility is to turn on a counter for
a fixed time interval, long enough that the average number of decays is large. If
the number of detected decays is odd, we record a 1; if it is even, we record a 0.
We repeat this the number of times necessary to make up the fraction part of our
computer’s word (assuming a binary computer). We then have a random number
between 0 and 1.

Unfortunately, this procedure does not produce a uniform distribution if the
probability of an odd number of decays is not equal to that of an even number. To
remove this bias we could take pairs of bits: If both bits are the same, we reject
both bits; if they are different, we accept the second one. The probability that we
end up with a 1 is then the probability that we first get a zero and second a one;
the probability that we end up with a zero is the probability that we first get a
one and second a zero. Assuming no correlation between successive trials, these
probabilities are equal and we have achieved our goal.

The main problem with such generators is that they are very slow. Not wanting
to have too dangerous a source, i.e., not too much more than the natural background
(cosmic rays are about 200 m−2s−1), nor too large a detector, it is clear that we will
have counting times of the order of milliseconds. For a 24-bit fraction, that means
24 counting intervals per real random number, or 96 intervals if we remove the bias.
Thus we can easily spend of the order of 1 second to generate 1 random number!

They are also not, by their very nature, reproducible, which can be a problem
when debugging a program.

6.1.2 Pseudo-random number generators

A pseudo-random number generator produces a sequence of numbers calculated
by a strictly mathematical procedure, which nonetheless appears random by some
statistical tests. Since the sequence is not really random, there will certainly exist
some other statistical test for which it will fail to appear random.

Several algorithms have been used to produce pseudo-random generators,27 de-
scriptions of which are beyond the scope of this course. In FORTRAN77, generators
have usually been introduced as functions with names such as RAN. The statement X
= RAN(0) assigns the next number in the random number sequence to the variable
X. The argument of the function is a dummy argument which is not used. The
generation proceeds from a ‘seed’, each number in the sequence acting as the seed
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for the next. Usually there is a provision allowing the user to set the seed at the
start of his program and to find out what the seed is at the end. This feature allows
a new run to be made starting where the previous run left off. In FORTRAN90 this
is standardized by providing an intrinsic subroutine, random number(h), which fills
the real variable (or array) h with pseudo-random numbers in the interval [0, 1).
A subroutine random seed is also provided to input a seed or to inquire what the
seed is at any point in the calculation. However, no requirements are made on the
quality of the generated sequence, which will therefore depend on the compiler used.
In critical applications one may therefore prefer to use some other generator.

Recently, new methods have been developed resulting in pseudo-random number
generators far better than the old ones.28 In particular the short periods, i.e., that
the sequence repeats itself, of the old generators has been greatly lengthened. For
example the generator RANMAR has a period of the order of 1043. The new generators
are generally written as subroutines returning an array of random numbers rather
than as a function, since the time to call a subroutine or invoke a function is of the
same order as the time to generate one number, e.g., CALL RANMAR (RVEC,90) to
obtain the next 90 numbers in the sequence in the array RVEC, which of course must
have a dimension of at least 90.

Some pseudo-random number generators generate numbers in the closed interval
[0, 1] rather than the open interval. Although it occurs very infrequently (once in
224 on a 32-bit computer), the occurence of an exact 0 can be particularly annoying
if you happen to divide by it. The open interval should therefore always be used.

6.2 Monte Carlo integration

Much of this section has been taken from James27 and Lyons7.
We want to evaluate the integral

I =
∫ b

a
y(x) dx (6.1)

We will discuss several Monte Carlo methods to do so.

6.2.1 Crude Monte Carlo

A trivial (certainly not the best) numerical method is to divide the interval (a, b)
into n subintervals and add up the areas of each subinterval using the value of y at
the middle of the interval:

I =
b− a
n

n∑

i=1

y(xi) , xi = a+
(
i− 1

2

)
b− a
n

An obvious Monte Carlo method, called crude Monte Carlo, is to do the same
sum, but with

xi = a+ ri(b− a)
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where the ri are random numbers uniformly distributed on the interval (0, 1).
More formally, the expectation of the function y(x) given a p.d.f. f(x) which is

non-zero in (a, b) is given by

µy = E [y] =
∫ b

a
y(x)f(x) dx

Since the available pseudorandom number generators sample a uniform distribution,
we take f(x) to be the uniform p.d.f. f(x) = 1/(b− a), a ≤ x ≤ b. Then

µy = E [y] =
1

b− a
∫ b

a
y(x) dx =

I

b− a
σ2

y = V [y] =
1

b− a
∫ b

a
(y − µy)

2 dx =
1

b− a
∫ b

a
y2 dx− µ2

y

Let us emphasize that µy and σ2
y are the expectation and variance of the function

y(x) for a uniform p.d.f. Do not confuse them with the mean and variance of a
p.d.f.—y(x) is not a p.d.f.

Let yi = y(xi) where the xi are distributed according to f(x), i.e., uniformly.
Then, by the C.L.T., the average of the n values yi approaches the normal distri-
bution for large n:

N

(∑
yi

n
;µy,

σ2
y

n

)
= N

(∑
yi

n
;

I

b− a,
σ2

y

n

)

We shall see in statistics (sect. 8.3) that an expectation value, e.g., E [y], can be
estimated by the sample mean of the quantity, ȳ =

∑
yi/n.

Thus by generating n values xi distributed uniformly in (a, b) and calculating
the sample mean, we determine the value of I/(b− a) to an uncertainty σy/

√
n:

I =
b− a
n

n∑

i=1

y(xi) ± (b− a) σy√
n

(6.2)

In practice, if we do not know
∫
y dx, it is unlikely that we know

∫
y2 dx, which

is necessary to calculate σy. However, we shall see that this too can be estimated
from the Monte Carlo points (eq. 8.7):

σ̂2 =
1

n− 1

n∑

i=1

(yi − ȳ)2

Since n is large, we can replace n− 1 by n. Multiplying out the sum we then get

σ̂2 = (y2 − ȳ2)

Hence the integral is estimated by

I =
∫ b

a
y(x) dx = (b− a)

(
ȳ ± 1√

n

√
y2 − ȳ2

)
(6.3)
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Generalizing to more than one dimension is straightforward: Points are gen-
erated uniformly in the region of integration. The Monte Carlo estimate of the
integral is still given by equation 6.3 if the length of the interval, (b−a), is replaced
by the volume of the region of integration.

6.2.2 Hit or Miss Monte Carlo
Another method to evaluate the integral
(6.1) is by hit or miss Monte Carlo. In this
method two random numbers are required
per evaluation of y(x). Let R[x, y] be a
random number uniformly distributed on
(x, y). Then generate a point in the rectan-
gle defined by the minimum and maximum
values of y and the limits of integration, a
and b:

xi = R[a, b]

yi = R[ymin, ymax]

-

y(x)

ymax

ymin

6

xa b

If you do not know ymin and ymax, you must guess ‘safe’ values. The generated point
is called a

‘hit’ if yi < y(xi)
‘miss’ if yi > y(xi)

Then an estimate of I is given by the fraction of points which are hits:

I =
nhits

n
(b− a)(ymax − ymin) + ymin(b− a)

Since hit or miss is a binomial situation, the number of hits follows the binomial
p.d.f. with expectation E [nhits] = np and variance V [nhits] = np(1− p), where p is
the probability of a hit. V [I] is trivially related to V [nhits]:

V [I] =
1

n2
V (nhits)(b− a)2(ymax − ymin)

2

=
1

n
p(1− p)(b− a)2(ymax − ymin)

2

The probability p, of a hit can be estimated from the result: p̂ = nhits/n. Thus

I =
nhits

n
(b− a)(ymax − ymin) + ymin(b− a)

±
√
nhits

n

√(
1− nhits

n

)
(b− a) (ymax − ymin) (6.4)

Here too, the generalization to more than one dimension is straightforward:
Points are generated uniformly in the region of integration and the function value
is tested for a hit. The integral is then given by equation 6.4 with (b− a) replaced
by the volume of the region in which points were generated.
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6.2.3 Buffon’s needle, a hit or miss example

An early (1777) application of the Monte Carlo technique was to estimate the value
of π. This calculation, known as Buffon’s needle,29 proceeds as follows: Parallel lines
separated by distance d are drawn on the floor. A needle of length d is dropped on
the floor such that its position (distance of the center of the needle to the nearest
line) and its orientation (angle, θ, between the needle and a perpendicular to the
lines) are both distributed uniformly. If the needle lies across a line we have a hit,
otherwise a miss.

For a given θ, the chance of a hit is given by the conditional p.d.f.

f(hit|θ) =
projected length of needle on a perpendicular

distance between lines
=
d cos θ

d
= cos θ

The chance of a hit irrespective of θ is then

p =
∫ π/2

0
f(hit|θ)f(θ) dθ =

∫ π/2

0
cos θ

1
π
2
− 0

︸ ︷︷ ︸
f(θ)

dθ =
2

π

Thus an estimate of 2/π is given by the estimator of p, namely p̂ = nhits/n and an
estimate of π by 2n/nhits.

6.2.4 Accuracy of Monte Carlo integration

The uncertainty of the Monte Carlo integration decreases, for both crude and hit
or miss Monte Carlo, with the number of points, n, as n−1/2. However crude Monte
Carlo is usually more accurate than the hit or miss method. For example, take the
integral involved in Buffon’s needle. In crude Monte Carlo,

µy = E [y] =
I

b− a =
2

π

∫ π/2

0
cos θ dθ =

2

π

V [y] =
1

b− a
∫ π/2

0
cos2 θ dθ − µ2

y

=
1

2
−
(

2

π

)2

= 0.0947

The uncertainty of the estimation of I is then
√

0.0947/
√
n = 0.308/

√
n.

On the other hand, hit or miss yields, using p = 2/π:

V [I] =
1

n
p(1− p)

(
π

2

)2

=
0.571

n

The uncertainty of the estimation of I is then
√

0.571/
√
n = 0.756/

√
n, which is

considerably larger (more than a factor 2) than for crude Monte Carlo.
The uncertainty of Monte Carlo integration is compared with that of numerical

methods in the following table:
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uncertainty in I calculated from n points

method 1 dimension d dimensions

Monte Carlo n−1/2 n−1/2

trapezoidal rule n−2 n−2/d

Simpson’s rule n−4 n−4/d

m-point Gauss rule n−(2m−1) n−(2m−1)/d

Thus we see that Monte Carlo integration converges much more slowly than
other methods, particularly for low numbers of dimensions. Only for greater than
8 dimensions does Monte Carlo converge faster than Simpson’s rule, and there is
always a Gauss rule which converges faster than Monte Carlo.

However, there are other considerations besides rate of convergence: The first is
the question of feasibility. For example, in 38 dimensions a 10-point Gauss method
converges at the same rate as Monte Carlo. However, in the Gauss method, the
number of points is fixed, n = md, which in our example is 1038. The evaluation
of even a very simple function requires on the order of microseconds on a fast
computer. So 1038 is clearly not feasible. (1032 sec. ≈ π × 1024 years, while the age
of the universe is only of order 12 Gyr.)

Another problem with numerical methods is the boundary of integration. If the
boundary is complicated, numerical methods become very difficult. This is, how-
ever, easily handled in Monte Carlo. One simply takes the smallest hyperrectangle
that will surround the region of integration and integrates over the hyperrectangle,
throwing away the points that fall outside the region of integration. This leads to
some inefficiency, but is straightforward. This is one of the chief advantages of the
Monte Carlo technique. An example is given by phase space integrals in particle
physics. Consider the decay n → pe−νe, the neutron at rest. Calculations for this
decay involve 9 variables, px, py, pz for each of the 3 final-state particles. However
these variables are not independent, being constrained by energy and momentum
conservation,

∑
px =

∑
py =

∑
pz = 0, and

∑
E = mnc

2, where the energy of a

particle is given by, E =
√
m2c4 + p2

xc
2 + p2

yc
2 + p2

zc
2. This complicated boundary

makes an integration by numerical methods difficult; it becomes practically im-
possible for more than a few particles. However Monte Carlo integration is quite
simple: one generates points uniformly in the integration variables, calculates the
energy and momentum components for each particle and tests whether momentum
and energy are conserved. If not, the point is simply rejected.

Another practical issue might be termed the growth rate. Suppose you have
performed an integration and then decide that it is not accurate enough. With
Monte Carlo you just have to generate some more points (starting your random
number generator where you left off the previous time). However, with the Gauss
rule, you have to go to a higher order m. All the previous points are then useless
and you have to start over.
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6.2.5 A crude example in 2 dimensions

One of the advantages of Monte Carlo is the ease
with which irregular integration regions can be
handled. Consider a two-dimensional integral
over a triangular region:

I =
∫ b

a
dx
∫ x

a
dy g(x, y)

We give five ways of estimating this integral us-
ing crude Monte Carlo:

-
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y(x)

a

b

xa b

1. The obvious way:

(a) Choose xi = R[a, b].

(b) Choose yi = R[a, xi].

(c) Sum the g(xi, yi): I = (b−a)2

2n

∑n
i=1 g(xi, yi)

This method, although obvious, is incorrect. This is because the points
(xi, yi) are not uniformly distributed over the region of integration. There
are (approximately) the same number of points for a < x < (a + b)/2 as for
(a+ b)/2 < x < b, while the areas differ by a factor 3.

2. Rejection method:

(a) Choose xi = R[a, b] and yi = R[a, b].

(b) Define a new function z(x, y) which is defined on the entire region for
which points are generated, but which has the same integral as g:

zi =
{

0, if yi > xi,
g(xi, yi), if yi < xi.

Or, equivalently, reject the point if it does not lie in the region of inte-
gration, i.e., if yi > xi.

(c) Then sum the zi:

I =
(b− a)2

n

n∑

i=1

zi

3. Rejection method (area of region of integration known): The above rejection
method results in a perhaps needlessly large error since we are using Monte
Carlo to estimate the integral of z, even where we know that z = 0. Another
way of looking at it is that we are using Monte Carlo to estimate what fraction,
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fa, of the area of point generation is taken up by the area of integration.
Hence, if we know this fraction we can remove this contribution to the error
by simply rejecting the points not in the area of integration. We proceed as
follows:

(a) Choose xi = R[a, b] and yi = R[a, b].

(b) Reject the point if it does not lie in the region of integration, i.e., if
yi > xi.

(c) Then sum the g(xi, yi) replacing the area of point generation by the area
of the region of integration, fa(b − a)2. In this example we know that
fa = 1

2
. The result is then

I =
1

2

(b− a)2

n′

n′∑

i=1

g(xi, yi)

where n′ is the number of generated points lying in the region of inte-
gration.

Both rejection methods are correct, but inefficient—both use only half of the
points. Sometimes this inefficiency can be overcome by a trick:

4. Folding method (a trick):

(a) Choose ui = R[a, b] and vi = R[a, b].

(b) Let xi = max(ui, vi) and yi = min(ui, vi).

(c) Then sum the gi:

I =
(b− a)2

2n

n∑

i=1

g(xi, yi)

This is equivalent to generating points uniformly over the whole square and
then folding the square about the diagonal so that all the points fall in the
triangular region of integration. The density of points remains uniform.

5. Weighting method. We generate points as in the “obvious”, but wrong,
method:

(a) Choose xi = R[a, b].

(b) Choose yi = R[a, xi].

(c) But we make a weighted sum, the weight correcting for the unequal
density of points (density ∼ 1

(x−a)
):

I =
b− a
n

n∑

i=1

(xi − a) g(xi, yi) (6.5)
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The derivation of this formula is left as an exercise (27).

This method is, in fact, an application of the technique of importance sampling
(cf. section 6.2.6) It may, or may not, be more efficient than folding, depending
on the function g. In particular, it will be more efficient when the variance of
(x− a)g is smaller than that of g.

6.2.6 Variance reducing techniques

As we have seen, Monte Carlo integration converges rather slowly with n compared
to the better numerical techniques. There are, however, several methods of reducing
the variance of the Monte Carlo estimation:

Stratification

In this approach we split the region of integration into two or more subregions.
Then the integral is just the sum of the integrals over the subregions, e.g., for two
subregions,

I =
∫ b

a
y(x) dx =

∫ c

a
y(x) dx+

∫ b

c
y(x) dx

The variance of I is just the sum of the variances of the subregions. A good choice
of subregions and number of points in each region can result in a dramatic decrease
in V [I]. However, to make a good choice requires knowledge of the function. A
poor choice can increase the variance.

Some improvement can always be achieved by simply splitting the region into
subregions of equal size and generating the same number of points for each subre-
gion. We illustrate this, using crude Monte Carlo, for the case of two subregions:

For the entire region the variance is (from equation 6.2)

V1(I) =
(b− a)2

n
σ2

y =
(b− a)2

n


 1

b− a
∫ b

a
y2 dx−

(
1

b− a
∫ b

a
y dx

)2



For two equal regions, the variance is the sum of the variances of the two regions:

V2(I) =
[(b− a)/2]2

n/2

{[
2

b− a
∫ c

a
y2 dx−

(
2

b− a
∫ c

a
y dx

)2
]

+


 2

b− a
∫ b

c
y2 dx−

(
2

b− a
∫ b

c
y dx

)2






=
(b− a)2

2n





2

b− a
∫ b

a
y2 dx− 4

(b− a)2



(∫ c

a
y dx

)2

+

(∫ b

c
y dx

)2






The improvement in variance is given by

V1(I)− V2(I) = − 1

n

(∫ b

a
y dx

)2

+
2

n



(∫ c

a
y dx

)2

+

(∫ b

c
y dx

)2
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Substituting A =
∫ c

a
y dx and B =

∫ b

c
y dx

V1(I)− V2(I) =
1

n

[
− (A+B)2 + 2

(
A2 +B2

)]

=
1

n
(A−B)2

≥ 0

Thus some improvement in the variance is attained, although it may be arbitrarily
small. This improvement can be qualitatively understood as due to an increased
uniformity of the distribution of points.

Importance Sampling

We have seen that (in crude Monte Carlo) the variance of the estimate of the integral
is proportional to the variance of the function being integrated (eq. 6.2). Thus the
less variation in y, i.e., the more constant y(x) is, the more accurate the integral.
We can effectively achieve this by generating more points in regions of large y and
compensating for the higher density of points by reducing the value of y (i.e., giving
a smaller weight) accordingly. This was also the motivation for stratification.

In importance sampling we change variable in order to have an integral with
smaller variance:

I =
∫ b

a
y(x) dx =

∫ b

a

y(x)

g(x)
g(x) dx =

∫ G(b)

G(a)

y(x)

g(x)
dG(x)

where G(x) =
∫ x

a
g(x) dx

Thus we must find a function g(x) such that

• g(x) is a p.d.f., i.e., everywhere positive and normalized such that G(b) = 1.

• G(x) is known analytically.

• Either G(x) can be inverted (solved for x) or a random number generator is
available which generates points (x) according to g(x).

• The ratio y(x)/g(x) is as nearly constant as possible and in any case more
constant than y(x), i.e., σy/g < σy.

We then choose values of G randomly between 0 and 1; for each G solve for x; and
sum y(x)/g(x). The weighting method of section 6.2.5 was really an application of
importance sampling.

Although importance sampling is a useful technique, it suffers in practice from
a number of drawbacks:
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• The class of functions g which are integrable and for which the integral can
be inverted analytically is small—essentially only the trigonometric functions,
exponentials, and polynomials. The inversion could in principle be done nu-
merically, but this introduces inaccuracies which may be larger that the gain
made in reducing the variance.

• It is very difficult in more than one dimension. In practice one usually uses a
g which is a product of one-dimensional functions.

• It can be unstable. If g becomes small in a region, y/g becomes very big and
hence the variance also. It is therefore dangerous to use a function g which is
0 in some region or which approaches 0 rapidly.

• Clearly y(x) must be rather well known in order to choose a good function g.

On the other hand, an advantage of this method is that singularities in y(x) can be
removed by choosing a g(x) having the same singularities.

Control Variates

This is similar to importance sampling except that instead of dividing by g(x), we
subtract it:

I =
∫
y(x) dx =

∫
[y(x)− g(x)] dx +

∫
g(x) dx

Here,
∫
g(x) dx must be known, and g is chosen such that y − g has a smaller

variance than y. This method does not risk the instability of importance sampling.
Nor is it necessary to invert the integral of g(x).

Antithetic Variates

So far, we have always used Monte Carlo points which are independent. Here we
deliberately introduce a correlation. Recall that the variance of the sum of two
functions is

V [y1(x) + y2(x)] = V [y1(x)] + V [y2(x)] + 2 cov[y1(x), y2(x)]

Thus, if we can write

I =
∫ b

a
y dx =

∫ b

a
(y1 + y2) dx

such that y1 and y2 have a large negative correlation, we can reduce the variance of
I. Clearly, we must understand the function y(x) in order to do this. It is difficult
to give general methods, but we will illustrate it with an example:

Suppose that we know that y(x) is a monotonically increasing function of x.
Then let y1 = 1

2
y(x) and y2 = 1

2
y (b− (x− a)). Clearly the integral of (y1 + y2) is

just the integral of y. However, since y is monotonically increasing, y1 and y2 are
negatively correlated; when y1 is small, y2 is large and vice versa. If this negative
correlation is large enough, V [y1 + y2] < V [y].
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6.3 Monte Carlo simulation

References for this section are James27 and Lyons.7 For further details and additional
topics consult Rubinstein.30

Monte Carlo problems are usually classified as either integration or simulation.
We shall be concerned with simulating experiments in physics. This begins with
a theory or hypothesis about the physical process, i.e., with the assumption of
an underlying p.d.f., g(x′), which may then be modified by the response function,
r(x, x′), of the experimental apparatus. The expected p.d.f. of the observations is
then given by

f(x) =
∫
g(x′) r(x, x′) dx′

The purpose of the simulation is to produce a set of n simulated or ‘fake’ data
points distributed according to f(x). These can be compared with the real data to
test the hypothesis. They can also be used in the planning stage of the experiment
to help in its design, e.g., to compare the use of different apparatus, and to test
software to be used in the analysis of the experiment.

Since these fake points are distributed according to f(x), they are in fact just
the points generated for the Monte Carlo integration of

∫
f(x) dx. Simulation is

thus, formally at least, equivalent to integration. The purpose is, however, usually
different. This means that often a different Monte Carlo method will be preferred
for simulation than for integration.

Although we will continue to use the term p.d.f. for f(x), for the purposes
of simulation the normalization is unimportant (at least if we are careful). It is,
however, essential that the function not be negative.

The p.d.f. that we wish to simulate, f(x), can be extremely complicated. The
underlying physical p.d.f., g(x′), may itself involve integrals which will be evaluated
by Monte Carlo in the course of the simulation, and the detector description may
consist of various stages, each depending on the previous one.

Monte Carlo simulation of such complex processes breaks them down into a
series of steps. At each step a particular outcome is chosen from a set of possi-
ble outcomes according to a given p.d.f., f(x). In other words, the outcome of
the step is a (pseudo-)random number generated according to f(x). But random
number generators generally produce uniformly distributed numbers. We therefore
must transform the uniformly distributed random numbers into random numbers
distributed according to the desired p.d.f. There are three basic methods to do this:

6.3.1 Weighted events

This method is analogous to that of crude Monte Carlo for integration. For a p.d.f.,
f(x), defined on the interval (a, b), points are generated uniformly in x and given
a weight, w. An event then consists of the values xi and wi = f(xi)(b − a). The
integral of f(x) over any subinterval of (a, b), e.g., (c, d) with a ≤ c < d ≤ b, is then
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given by the sum of the weights of the events in that interval:

∫ d

c
f(x) dx =

1

n

∑

c<x<d

wi

In particular, a weighted histogram of the xi (c and d are then the various bin
limits), represents the p.d.f. and can be directly compared with the data.

We have seen that integration by crude Monte Carlo gives a smaller variance
than the hit-or-miss method, and is therefore generally preferable. However in sim-
ulation it is usually deemed preferable not to have weighted events. One prefers to
have the Monte Carlo events as much as possible like the real events. In particular,
it is usually desirable that the Monte Carlo sample behave statistically like the real
event sample, e.g., the variance of the average of n Monte Carlo points should result
in the same variance as that of the average of n real points. This is not the case
with weighted events. The density of Monte Carlo points where f(x) is small is
the same as where f(x) is large, whereas in the real data the density of points is
proportional to f(x).

6.3.2 Rejection method

This method is analogous to the hit-or-miss
method of Monte Carlo integration. As in
hit-or-miss Monte Carlo, we generate points
uniformly in x and in f(x)

xi = R[a, b]

ri = R[0, fmax]

where fmax is the maximum value of f(x) in
(a, b). Points for which f(xi) < ri are then
rejected.

-
x0

f(x)

fmax

6

a bcd

The integral over a subinterval (c, d) is then

∫ d

c
f(x) dx =

nc<x<d

n
(b− a)fmax

In hit-or-miss Monte Carlo we also introduced an fmin. Since we knew the
integral

∫ b
a fmin dx, it was not necessary to evaluate it by Monte Carlo. It was

therefore better (more efficient) to use all the Monte Carlo points to evaluate
∫ b
a (f−

fmin) dx. But here we want to generate all the events for f , not just for (f − fmin).
The difficulty with this method lies in knowing fmax. If we do not know it, then

we must guess a ‘safe’ value, i.e., a value which we are sure is larger than fmax. If
we choose fmax too safe, the method becomes inefficient. This method can be made
more efficient by choosing different values of fmax in different regions.
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This method is the easiest method to use for complicated functions in many
dimensions.

6.3.3 Inverse transformation method

Continuous p.d.f.

This is like importance sampling with g(x) = f(x). The resulting integrand is just
the uniform distribution. We transform from f(x) to F :

f(x) dx = dF

where F (x) is just the c.d.f. of f(x),

F (x) =
∫ x

a
f(x) dx

Instead of generating points uniform in x, we generate points uniformly distributed
in F between F (a) and F (b), which are 0 and 1, respectively, if f(x) is a p.d.f.
normalized on (a, b):

ui = R [F (a), F (b)]

and calculate the corresponding value of x,

xi = F−1(ui)

-0

F (x)

1

u

6

xa
x = F−1(u)

The xi are then distributed as f(x). To see this, recall the results on changing vari-
ables (sect. 2.2.6): For a transformation u→ x = v(u) with inverse transformation
u = w(x), the p.d.f. for x is given by the p.d.f. for u, g(u), times the Jacobian, i.e.,

p.d.f. for x = g(u)

∣∣∣∣∣
∂u

∂x

∣∣∣∣∣ = g (w(x))

∣∣∣∣∣
∂w(x)

∂x

∣∣∣∣∣

Here, u = F (x), x = F−1(u) and u is distributed uniformly, i.e., g(u) = 1. The
p.d.f. for x is then ∣∣∣∣∣

∂u

∂x

∣∣∣∣∣ =
∣∣∣∣∣
∂F (x)

∂x

∣∣∣∣∣ = f(x)

Hence, if g(u) is a uniform distribution, the p.d.f. for x is f(x), as desired.
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The difficulties with this method are integrating f(x) to obtain F (x) and in-
verting F (x) to obtain F−1(u). But if this can be done, this is usually the best
method.

If F is not one-to-one, we define

x = F−1
min(u) = min(x for which F (x) ≥ u)

F (x)

xa0 x = F−1
min(u)

-

6

u

Discrete p.d.f.

For a discrete p.d.f., we can always use this method, since the c.d.f. is always easily
calculated. The probability of X = xk is P (X = xk) = f(xk). Then the c.d.f. is

Fk = P (X ≤ xk) =
k∑

i=1

f(xk)

Taking u uniformly distributed between 0 and 1,

P (Fk−1 < u ≤ Fk) =
∫ Fk

Fk−1

du

= Fk − Fk−1 = f(xk)

Thus, to generate a point, we

1. generate ui = R[0, 1]

2. find the value of k such that

Fk−1 < ui ≤ Fk

Then xk is the desired value of x.

F (x)

xa0
-

6

Fk−1

xk−1

Fk

xk

1

Step 2 of this procedure can involve a lot of steps. You can usually save computer
time by starting the comparison somewhere in the middle of the x-range, say at the
mean or mode, and then working up or down in x depending on u and Fk.

This is of interest not only for situations with a discrete p.d.f., but also for
cases where the p.d.f. is continuous, but not known analytically. The resolution
function of an apparatus is often determined experimentally and the resulting p.d.f.
expressed as a histogram.
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6.3.4 Composite method

It may be advantageous to decompose the desired p.d.f. into a sum of p.d.f.’s which
are easier to generate:

f(x) =
∑

fk(x) (6.6)

Let

αk =

∫ b
a fk(x) dx

∑
j

∫ b
a fj(x) dx

(6.7)

Then
∑
αi = 1, and αk is the fraction of the points to be generated according to

fk.
In generating the points, we regard the index k as a discrete r.v. with probability

αk. We first generate u = R[0, 1] and use it to select k. Then we generate a value
xi according to fk(x) using one of the previous methods.

You might ask why not skip the first step and just generate exactly αkn points
according to fk for each k, where n is the total number of points. This was a method
(stratification) to improve the variance in Monte Carlo integration. The answer is
that the variance of the Monte Carlo sample would then be different from that of
a sample of n real events, while the purpose of simulation is usually to obtain a
Monte Carlo sample having the same statistical properties as real events.

6.3.5 Example

As an example of the above methods, we take the p.d.f.

f(x) = 1 + x2

in the region (−1, 1). This could be an angular distribution with x = cos θ. We
note that f(x) is not normalized. We could, of course, normalize it, but choose not
to do so. For as we shall see, for the purpose of generating events the normalization
is not necessary.

Weighted events

This is completely trivial. We generate xi = R[−1, 1] and assign weight wi = 1+x2
i .

Rejection method

2

1

0−1 0 +1

We have fmax = 2, a = −1, b = +1. There-
fore, we generate

xi = R[−1,+1] = 2R[0, 1]− 1
ri = R[0, 2] = 2R[0, 1]

and reject the point if ri > 1 + x2
i .

Note that the efficiency of the genera-

tion is

∫ 1

−1
(1+x2) dx

(b−a)fmax
= 2

3
, i.e., 1/3 of the points are rejected.
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Inverse transformation method

We have

F (x) =
∫ x

−1
(1 + x2) dx = x +

x3

3

]x

−1

= x+
x3

3
+

4

3

Hence F (−1) = 0 and F (1) = 8/3. Therefore generate u = R[0, 1]. Then 8
3
u

is uniformly distributed on [F (−1), F (+1)]. The corresponding value of x is the
solution of

8

3
u = F (x) = x +

x3

3
+

4

3

The solution is

xi = A+B, where A = (4u− 2 + s)1/3

B = (4u− 2− s)1/3 , s =
√

1 + 4(1− 2u)2

Note that this requires calculating one square root and two cube roots per point.

Composite method

We write f(x) as the sum of simpler functions. In this case an obvious choice is

f(x) = fa(x) + fb(x) with fa(x) = 1 and fb(x) = x2

The integrals of these functions are

Aa =
∫ +1

−1
fa(x) dx = 2 and Ab =

∫ +1

−1
fb(x) dx =

x3

3

]+1

−1

=
2

3

Hence we want to generate from fa with probability 2
2+ 2

3

= 3
4

and from fb with

probability 1
4
.

The first step is therefore to generate v = R[0, 1]

• If v ≤ 3
4

we generate from fa:

ui = R[0, 1]

xi = 2ui − 1

• If v > 3
4

we generate from fb:

1. either by the rejection method:

xi = 2R[0, 1]− 1

ri = R[0, fbmax] = R[0, 1]

repeating until we find a point for which ri ≤ x2
i .
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Note that the efficiency is

∫ 1

−1
x2 dx

(b−a)fb max
= 1

3
for the points generated here

(1/4 of the points). But it was 1 for the points distributed according to
fa. The net efficiency is thus 1

3
· 1

4
+ 1 · 3

4
= 5

6
, a small improvement over

the 2/3 of the simple rejection method.

2. or by the inverse transformation method:

Fb(x) =
∫ x

−1
x2 dx =

x3

3

]x

−1

=
x3

3
+

1

3
Fb(−1) = 0 Fb(1) =

2

3

We generate ui = R[0, 1]. Then xi is the solution of

2

3
ui =

x3
i

3
+

1

3
Hence, xi = (2ui − 1)1/3

Note that we only have to calculate one cube root; and that only for 1/4
of the events. This is ∼ 12 times faster that the simple inverse trans-
formation method (assuming that square and cube roots take about the
same time).

In this example, the composite rejection method turned out to be the fastest
with the simple rejection method only slightly slower. The composite inverse trans-
formation method was much faster than the simple inverse transformation method,
but still much slower than the rejection method. These results should not be re-
garded as general. Which method is faster depends on the function f .

6.3.6 Gaussian generator

The Gaussian distribution is one of the most important in physics and statistics.
Many methods have been proposed to generate normally distributed points.

Using the Central Limit Theorem

By the C.L.T., the average of a large number of r.v.’s distributed according to almost
any p.d.f. will be normally distributed. In particular, for n r.v.’s, ui, distributed
uniformly between 0 and 1, the quantity, g,

g =

∑n
i=1 ui − n

2√
n
12

is approximately distributed as N(g; 0, 1) for large n. Proof of this is left to the
reader (exercise 26).

While simple to program, this generator is not particularly fast and has the
feature that the tails are truncated at ±nσ, which is usually undesirable. If the
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absence of long tails is tolerable, this method is usually satisfactory for as few as
n = 12, where g reduces to

g+ =
12∑

i−1

ui − 6

Another disadvantage of this method is that it puts severe requirements on the cor-
relations between successive points of the random number generator, in particular
on correlations within groups of n successive values of ui.

A word of caution is perhaps appropriate for clever students who have undoubt-
edly noticed that instead of summing 12 ui and subtracting 6, we could have used

g− =
6∑

i=1

ui −
12∑

i=7

ui

So far, so good. But if you try to save computer time by generating both g+ and
g− with the same 12 values of ui, you are in trouble: g+ and g− are then highly
correlated.

A transformation method

Since the Gaussian p.d.f. cannot be integrated in terms of the usually available func-
tions, it is not straightforward to find a transformation from uniformly to Gaussian
distributed variables. There is, however, a clever method, which we give without
proof, to transform two independent variables, u1 and u2, uniformly distributed on
(0,1) to two independent variables, g1 and g2, which are normally distributed with
µ = 0 and σ2 = 1:

g1 = cos(2πu2)
√
−2 lnu1

g2 = sin(2πu2)
√
−2 lnu1

This method is exact, but its speed can be improved upon by effectively gener-
ating the sine and cosine by a rejection method:

1. Generate uniform random numbers u1 and u2 on (0,1)

2. Calculate r2 = (2u1 − 1)2 + (2u2 − 1)2.

3. If r2 > 1, then reject u1 and u2 and go back to step 1.

4. Otherwise,

g1 = (2u1 − 1)

√
−2 ln r2

r2

g2 = (2u2 − 1)

√
−2 ln r2

r2

This saves the time of evaluating a sine and a cosine at the slight expense of rejecting
about 21% of the uniformly generated points.
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Chapter 7

Statistics—What is it/are they?

So far, we have considered probability theory. Once we have decided which p.d.f. is
appropriate to the problem, we can make direct calculations of the probability of any
set of outcomes. Apart from possible uncertainty about which p.d.f. is appropriate,
this is a straight-forward and mathematically well defined procedure.

The problem we now address is the inverse of this. We have a set of data
which have been sampled from some parent p.d.f. We wish to infer from the data
something about the parent p.d.f.

The study of calculations using probability is sometimes called direct probability.
Statistical inference is sometimes called inverse probability.

We may think we know what the p.d.f. is apart from one or more parameters,
e.g., we think it is a Gaussian but want to determine its mean and standard devia-
tion. This is called parameter estimation. It is also called fitting since we want to
determine the value of the parameter such that the p.d.f. best ‘fits’ the data.

On the other hand, we may think we know the p.d.f. and want to know whether
we are right. This is called hypothesis testing. Usually both parameter estimation
and hypothesis testing are involved, since it makes little sense to try to determine the
parameters of an incorrect p.d.f. And frequently an hypothesis to be tested involves
some unknown parameter. Nevertheless, we will first treat these as separate topics.
A third topic is decision theory or classification.

For all of these topics we shall use statistical methods (or “statistics”), so-called
because they, statistical methods, make (it, statistics, makes) use of one or more
statistics.∗ A definition: A statistic is any function of the observations in a sample,
which does not depend on any of the unknown characteristics of the population
(parent p.d.f.). An example of a statistic is the sample mean, x̄ =

∑
xi/n. Each

observation, xi, is, in fact, itself a statistic. In other words, if you can calculate it
from the data plus known quantities, it is a statistic. “Statistics” is the branch of

∗It is perhaps interesting to note that the stat in statistics is the same as in state. Statists
(advocates of statism, economic control and planning by a highly centralized state), collected data
to better enable the state to run the economy. Such data, and quantities calculated from them,
came to be called statistics.

89
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applied mathematics which deals with statistics as just defined. Whether the word
statistics is singular or plural, thus depends on context.

We have seen in section 2.4 that there are two common interpretations of prob-
ability, which we have called frequentist and Bayesian. They give rise to two ap-
proaches to statistical inference, usually called classical or frequentist statistics (or
inference) and Bayesian inference. The word classical is something of a misnomer,
since the Bayesian interpretation is older (Laplace, Bayes). However, in the second
half of the 19th century science became more quantitative and objective, even in
such fields as biology (Darwin, evolution, heredity, Galton). This gave rise to the
frequentist interpretation and the development of frequentist statistics. By about
1935 frequentist statistics, which came to be known as classical statistics, had com-
pletely replaced Bayesian thinking. Since around 1960, however, Bayesian inference
has been making a comeback.

Probably most physicists would profess to being frequentists, and reflecting this,
as well as my own personal bias, the emphasis in the rest of this course will be on
classical statistics. However, there are situations where classical statistics is very
difficult, or even impossible, to use and where Bayesian statistics is comparatively
simple to apply. So, intermixed with classical statistics you will find some Bayesian
methods. This is rather unconventional; most books are firmly in one of the two
camps, and discussions between frequentists and Bayesians often take on aspects of
holy war. It also runs the risk of confusing the student—it is important to know
which you are doing.



Chapter 8

Parameter estimation

8.1 Introduction

In everyday speech, “estimation” means a rough and imprecise procedure leading
to a rough and imprecise result. You estimate when you cannot measure exactly.
This last sentence is also true in statistics, but only because you can never measure
anything exactly. However in statistics estimation is a precise procedure leading
to a result which may be imprecise, but the extent of the precision is, in principle,
known. Estimation in statistics has nothing to do with approximation.

The goal of parameter estimation is then to make some sort of statement like
θ = a ± b where a is, on the basis of the data, the ‘best’ (in some sense) value
of the parameter θ and where it is ‘highly probable’ that the true value of θ lies
somewhere between a − b and a + b. We often call b the estimated error on a. If
we make a plot, this is represented by a point at θ = a with a bar running through
it from a − b to a + b, the ‘error bar’. It is usually assumed that the estimate of
θ is normally distributed, i.e., that the values of a obtained from many identical
experiments would form a normal distribution centered about the true value of θ
with standard deviation equal to b. The meaning of θ = a± b is then that a is the
most probable value of θ and that in any case there is a

∫ a+b
a−b N(x; a, b2) = 68.3%

chance that the true value of θ lies in the interval (a − b, a + b).∗ This is a special
case of a 68.3% ‘confidence interval’ (cf. chapter 9), i.e., an interval within which
we are 68.3% confident that the true value lies. We shall see that error bars, or
confidence intervals may be difficult to estimate. Just as our estimate of θ has an
‘error’, so too does our estimate of this ‘error’.

Suppose now that we have a set of numbers xi which are the result of our
experiment. This could, e.g., be n measurements of some quantity. Let θ be the
true value of that quantity. The xi are clustered about θ in some way that depends

∗Note that this is different from what an engineer usually means by a ± b. He usually means
that b is the tolerance on a, i.e., that the true value is guaranteed to be within (a− b, a + b).
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on the measuring process. We often assume that they are distributed normally
about the true value with a width given by the accuracy of the measurement.

It is worth noting the distinction many authors, e.g., Bevington9, make between
the words accuracy and precision, which in normal usage are synonymous. Ac-
curacy refers to how close a result is to the true value, whereas precision refers
to how reproducible the measurements are. Thus, a poorly calibrated apparatus
may result in measurements of high precision but poor accuracy. Other authors,
e.g., Eadie et al.,4 prefer to avoid these terms altogether since neither term is well
defined, and to speak only of the variance of the estimates.

Similarly, a distinction is sometimes∗ made between error, the difference be-
tween the estimate and the true value, and the uncertainty, the square root of the
variance of the estimate. Thus accurate means small error and precise means small
uncertainty. However, the use of the word ‘error’ to mean uncertainty is deeply
ingrained, and we (like most books) will not make the distinction. Note that with
the above distinction, the accuracy and the error are usually unknown, since the
true value is usually unknown.

So, we wish to estimate θ. To do this we need an estimator which is a function
of the measurements.

As stated in chapter 7, a statistic is, by definition, any function of the obser-
vations in a sample, φ(xi), which does not depend on any of the unknown charac-
teristics of the population (parent p.d.f.). An example of a statistic is the sample
mean, x̄ =

∑
xi/n. In other words, if you can calculate it from the data plus known

quantities, it is a statistic.
Since a statistic is calculated from random variables, it is itself a r.v., but an

r.v. whose value depends on the particular sample, or set of data. Like all random
variables, it is distributed according to some p.d.f. Since the value of the statistic
depends on the sample, its p.d.f. is sometimes referred to as the sampling distri-
bution or sampling p.d.f. in order to distinguish it from the population or parent
p.d.f.

An estimator is (definition) a statistic, the value of which we will give as our
determination of some constant, θ, which is a property of the parent population
or parent p.d.f. We will generally denote an estimator of a variable by adding a
circumflex (̂ ) to the symbol of the variable. Thus θ̂ is an estimator of θ.

There are in general numerous estimators that one can construct for any θ. Here
are several estimators of the mean, µ, of the parent p.d.f., assuming nmeasurements,
xi:

1. µ̂ = x̄ = 1
n

∑n
i=1 xi The sample mean. This is probably the most

often used estimator of the mean, but it can be
sensitive to mismeasured data.

2. µ̂ = 1
10

∑10
i=1 xi The sample mean of the first 10 points, ignoring

the rest.
∗This is recommended by the International Standards Organization31.
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3. µ̂ = 1
n−1

∑n
i=1 xi n/(n− 1) times the sample mean.

4. µ̂ = 5 Throw away all the data and give the estimate
as 5.

5. µ̂ = n

√∏n
i=1 xi

6. Make a histogram of the xi and take µ̂ as the
midpoint of the bin containing the most events,
i.e., a sort of sample mode. Note that the value
will depend on the bin size.

7. µ̂ = [min(xi) + max(xi)] /2 The midrange, i.e., the average of the smallest
and the largest xi. This is very sensitive to the
tails of the distribution but may be the best es-
timator if the p.d.f. is nearly uniform.

8. µ̂ = 2
n

∑n/2
i=1 x2i The sample mean of the even numbered points,

ignoring the odd numbered points.

9. µ̂ = µ̄trimmed Discard the smallest and largest y% (e.g., 10%)
of the data and then average. This is relatively
insensitive to the tails of the distribution, but
has a larger variance than the sample mean if
there are no problems in the tails.

10. µ̂ = sample median This is less sensitive to statistical fluctuations in
the tails, but it has a larger variance than the
sample mean if the p.d.f. is a Gaussian.

Each of these is, by our definition, an estimator. Yet some are certainly better
than others. However, which is ‘best’ depends on the p.d.f. Which is ‘best’ may
also depend on the use we want to make of it. How do we choose which estimator
to use? In general we shall prefer an estimator which is ‘unbiased’, ‘consistent’, and
‘efficient’. We will discuss these and other properties of estimators in the following
section. In succeeding sections we will treat three general methods of constructing,
or choosing, estimators.

Nothing is easier than to invent
methods of estimation.

—R. A. Fisher
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8.2 Properties of estimators

8.2.1 Bias

Since a statistic is a function of r.v.’s, it is itself a r.v. Therefore, it is distributed
according to some p.d.f., and we can speak of its expectation value, E

[
θ̂
]
. For an

estimator, making use of n observations, the bias bn is defined as the difference
between the expectation of the estimator and the true value of the parameter:

bn(θ̂) = E
[
θ̂
]
− θ = E

[
θ̂ − θ

]
(8.1)

An estimator is unbiased if, for all n and θ, bn(θ̂) = 0, i.e., if E
[
θ̂
]

= θ. We
include n in this definition since we shall see that some estimators are unbiased
only asymptotically, i.e., only for n→∞.

Mean In general, the sample mean, no. 1 in our list above, is an unbiased esti-
mator of the parent (true) mean:

E [µ̂] = E [x̄] = E
[
1

n

∑
xi

]
=

1

n

∑
E [xi] =

1

n
nE [x] = E [x] = µ (8.2)

On the other hand, the third estimator in our list is biased:

E [µ̂] = E
[

1

n− 1

∑
xi

]
=

n

n− 1
µ

although the bias,

bn(µ̂) =
n

n− 1
µ− µ =

µ

n− 1
→ 0 , for large n.

This estimator is thus asymptotically unbiased.
If we know the bias, we can construct a new estimator by correcting the old

one for its bias. For example, from no. 3 and its bias we construct no. 1 simply by
multiplying no. 3 by (n− 1)/n.

Lack of bias is a reason to prefer no. 1 to no. 3. However, nos. 2 and 8 are also
unbiased. The trimmed mean (no. 9) is unbiased if the parent p.d.f. is symmetric
about its mean. The sample median (no. 10) is also unbiased if the parent median
equals the parent mean. Similarly, nos. 6 and 7 will be unbiased for certain p.d.f.’s.

Variance Now suppose we want to estimate the variance of the parent p.d.f.
Assume that we know the true mean, µ. Usually this is not the case, but could be,
e.g., if we know that the p.d.f. is symmetric about some value. Then following our
above experience with the sample mean, we might expect the sample variance,

s2
1 =

1

n

n∑

i=1

(xi − µ)2 (8.3)
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to be a good estimator of the parent variance, σ2. (N.b., do not confuse the standard
deviation, σ, of the parent p.d.f. with the ‘error’ on µ̂.) Assume that the parent
variance, σ2, is finite (exists). Then

E
[
s2
1

]
=

1

n
E
[∑

(xi − µ)2
]

=
1

n
E
[∑(

x2
i − 2xiµ+ µ2

)]

=
1

n
E
[∑

x2
i − 2µ

∑
xi +

∑
µ2
]

=
1

n

[
E
[∑

x2
i

]
− 2µE

[∑
xi

]
+ nµ2

]

=
1

n

[
nE

[
x2
]
− 2nµE [x] + nµ2

]
= E

[
x2
]
− 2µ2 + µ2

= σ2 + µ2 − 2µ2 + µ2 , since σ2 = E [x2]− µ2

= σ2

Thus σ̂2 = s2
1 is an unbiased estimator of the variance of the parent p.d.f., σ2, if µ

is known.
But usually µ is not known. We therefore try using our estimate of µ, µ̂ = x̄,

instead of µ:

s2
x =

1

n

∑
(xi − x̄)2 =

1

n

∑
x2

i − x̄2 = x2 − x̄2 (8.4)

This has the expectation,

E
[
s2

x

]
= E

[∑
x2

i

n
−
(∑

xi

n

)2
]

=
1

n

(
E
[∑

x2
i

]
− 1

n
E
[(∑

xi

)2
])

(8.5)

The xi are independent. Hence E [
∑
x2

i ] = nE [x2]. Also,

σ2 = E
[
x2
]
− µ2

and V
[∑

xi

]
= E

[
(
∑

xi)
2
]
−
(
E
[∑

xi

])2

Substituting in (8.5), gives

E
[
s2

x

]
=

1

n

[
n
(
σ2 + µ2

)
− 1

n

(
V
[∑

xi

]
+
(
E
[∑

xi

])2
)]

Using V
[∑

xi

]
=
∑

V [xi] = nV [x] = nσ2

and E
[∑

xi

]
= nE [x] = nµ

we find

E
[
s2

x

]
=

1

n

[
nσ2 + nµ2 − 1

n

(
nσ2 + (nµ)2

)]

=
1

n
(n− 1) σ2 (8.6)
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Thus s2
x is a biased estimator of σ2. The reason

is that, not knowing µ, we used our estimate of
the mean, µ̂ = x̄, the sample mean. The spread
of the data about the sample mean is clearly
less than its spread about the true mean. Since
the variance is the spread about the true mean,
s2

x underestimates the true variance.

-
x̄ µ x

This bias is easily removed. An unbiased estimator for the parent variance when
the parent mean is unknown is

s2 =
n

n− 1
s2

x =
n

n− 1

(
x2 − x̄2

)
=

1

n− 1

∑
(xi − x̄)2 (8.7)

Note that the above calculations did not depend at all on what the parent p.d.f.
was, not even on the C.L.T.

If the p.d.f. is Gaussian or if n is large enough that the C.L.T. applies, let

zi =
xi − x̄
σ

Then
∑

z2
i =

1

σ2

∑
(xi − x̄)2

is distributed as χ2 (sect. 3.11). There is one relationship among the zi’s:

∑
zi =

1

σ

∑
(xi − x̄) =

1

σ

(∑
xi − nx̄

)
= 0

which follows from the definition of x̄. Hence, the p.d.f. for
∑
z2

i is a χ2 of n − 1
degrees of freedom. Recall that E [χ2(n− 1)] = n−1. This is another way of seeing
that

E
[
s2
]

= E

[
σ2

n− 1

∑
z2

i

]
= E

[
σ2

n− 1
χ2

]
= σ2 1

n− 1
E
[
χ2
]

= σ2

i.e., that σ̂2 = s2 is an unbiased estimator of σ2 when µ is unknown.

This use of χ2 is of more than passing interest: In general, if we have n mea-
surements, xi, of a quantity, with k ≤ n relationships (constraints) among them,
then the χ2 constructed from the

∑
x2

i will have n− k degrees of freedom.

The (n−1) instead of n in s2 also makes sense in the limit n = 1. With only one
measurement of x, you have an estimate µ̂ = x of µ, but no estimate of the width
of the distribution. This is consistent with s2 = 1

1−1
(x − µ̂)2 = 0

0
= indeterminate.

However, if µ is known you do not have to use the measurement to estimate µ; you
can use it instead to estimate σ2. Hence s1 contains n instead of (n− 1).
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8.2.2 Consistency

If we take more data, we should expect a better (more accurate) estimate of the
parameters. An estimator which converges to the true value with increasing n is
termed consistent.
Definition: An estimator, θ̂, of θ is consistent if for any ε > 0 (no matter how small),

lim
n→∞

P (|θ̂ − θ| ≥ ε) = 0 (8.8)

This is rather analogous to the definition of convergence of a series except that
here it is the probability of the deviation from the true value which approaches 0
rather than the deviation itself. This is therefore sometimes called convergence in
probability.

If θ̂ is an average of data which are distributed according to a p.d.f. for which
the C.L.T. applies, then θ̂ is a consistent estimator, since the width of the p.d.f.,
N(x̄;µ, σ2

n
) approaches 0 for n→∞.

In our list of estimators of the mean no. 2 is clearly inconsistent. Nos. 1, 3,
and 8 are obviously consistent if the C.L.T. applies. No. 10 is consistent only if the
mean and median of the parent p.d.f. are equal. Likewise, the consistency of nos.
6, 7 and 9 depends on the p.d.f.

The usual example of an inconsistent estimator is the sample mean for the
Cauchy p.d.f., which, as we have seen, does not have a finite variance. The C.L.T.
does not then apply, and in fact x̄ is distributed just like x. Thus, x̄ does not
converge to anything! This illustrates the fact that an unbiased estimator is not
necessarily consistent.

8.2.3 Variance of an estimator, efficiency

An estimator is called efficient if it has a small variance, in particular if it has the
smallest possible variance (see the following section).

Repetition of an experiment generally results in a different value of our (consis-
tent) estimator. If the variance of the sampling p.d.f. of the estimator, which, for
convenience, we will call the variance of the estimator, is small, these values will
cluster closely about the true value, or, if the estimator is biased, about the biased
(i.e., wrong) value. We will see that in general the variance of an estimator depends
on the parent p.d.f., in particular, on the variance (σ2) of the parent p.d.f.

For example, consider the variance of the sample mean. As we have seen (chap-
ter 5 and exercise 23),

V
[
x̄ =

1

n

∑
xi

]
=

1

n2

∑
V [xi] =

1

n2
nV [x] =

σ2

n
(8.9)

Now consider the sample variance, which was defined in equation 8.7. Assuming
that the xi follow a normal p.d.f. (or that n is large and the C.L.T. applies), the
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sample variance has variance

V
[
s2
]

= V

[
1

n− 1
σ2
∑ (xi − x̄)2

σ2

]
=

[
σ2

n− 1

]2

V
[∑

z2
i

]

where zi = xi−x̄
σ

. As we have seen (section 8.2.1),
∑n

i=1 z
2
i is distributed as χ2(n−1).

Thus,

V
[∑

z2
i

]
= V

[
χ2(n− 1)

]
= 2(n− 1)

Hence,

V
[
s2
]

=
2(σ2)2

n− 1
(8.10)

We see that the expressions for the variance of x̄ and s2 both contain σ2, the
variance of the parent p.d.f., which we may not know. (If we do know it we certainly
will not be interested in estimating it.) The usual procedure is to use instead our
estimate of σ2, s2. Then the estimated variances of our estimates are

V̂ [x̄] =
s2

n
, V̂

[
s2
]

=
2(s2)2

n− 1
(8.11)

Sometimes you do know σ2. We give two examples: (1) You average many mea-
surements of a quantity, e.g., the length of a table. The p.d.f. is then a convolution
of a δ-function about the true length with a resolution function for the measuring
apparatus, which is just a Gaussian centered about the true length with σ equal to
the resolution. But you have calibrated the measuring apparatus by measuring a
standard length a great many times. From this calibration you know σ2. So you
only need to estimate µ. (2) You are designing an experiment and you want to know
how many measurements you need to make in order to attain a given accuracy. You
then make reasonable assumptions about the p.d.f. and calculate what V will be
for the different assumptions about µ, σ2, and n.

To summarize, assuming that we do not know µ or σ2, they are estimated by

µ̂ = x̄±
√
V [x̄] and σ̂2 = s2 ±

√
V [s2] (8.12a)

= x̄±
√
s2

n
= s2 ±

√
2

n− 1
s2 (8.12b)

Note that the ‘error’ on µ̂ has itself an error. By ‘error propagation’, which will
be covered in sect. 8.3.6,

V [s2] =
(

ds2

ds

)2
V [s] = (2s)2V [s]

Hence, V [s] = 1
4s2V [s2] = 1

4s2
2(s2)2

n−1
= s2

2(n−1)

and
√
V [s] =

√
s2√

2(n−1)
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The error on the error on µ̂ is then (with δ indicating ‘error’)

δ(δµ̂) =
√
V [δµ̂] =

√√√√√V



√
s2

n


 =

√
1

n
V
[√
s2
]

=

√
s2

√
2n(n− 1)

=
δµ̂√

2(n− 1)

Thus for n not too small, the error on the error on µ̂ is negligible.

8.2.4 Interpretation of the Variance

We usually interpret V [q̂] = σ2 as the “square of the expected error” of q̂ and we
write q = q̂±δq where δq = σ. If the p.d.f. of q̂ is a Gaussian with variance σ2, then
the chance, in some sense, that the true value of q, qt, is within q̂ − σ ≤ qt ≤ q̂ + σ
is

P (q̂ − σ ≤ qt ≤ q̂ + σ) =
∫ q̂+σ

q̂−σ
N(q; q̂, σ2) dq ≈ 0.68

In exactly what sense this is so will be discussed in section 9.
We could have used some other quantity to indicate the ‘error’, e.g., the average

of the absolute deviation |q̂ − q| instead of
√

(q̂ − q)2. The variance is conventional
for a number of reasons:

• It is low order and hence easy to calculate.

• It is sufficient in the case of a Gaussian, being one of the two parameters of
the Gaussian, and the Gaussian is, by the C.L.T., often the asymptotic limit
of the p.d.f.

• It is easily converted to a confidence interval in the Gaussian limit (cf. chap-
ter 9).

When the p.d.f. of q̂ is non-Gaussian one must be careful. If the p.d.f. is skewed,
this can be indicated by stating asymmetric errors. But that is not foreseen in the
propagation of errors. Also, for a non-Gaussian P (q̂ − σ ≤ qt ≤ q̂ + σ) is usually
not 68%. Nor is the probability of being within, e.g., 2σ the same in the non-
Gaussian case as in the Gaussian case. Nor do the errors even have to be symmetric.

The propagation of errors is usually the least trustworthy when there is a de-
pendence on 1/q. Going to higher orders in the expansion does not necessarily help
because the resulting error, though perhaps more accurate, still has the same prob-
lems resulting from skewness and the probability content of ±2σ. These questions
are often conveniently investigated by Monte Carlo methods. As previously stated,
the best cure for these problems is to rewrite the p.d.f. in terms of the parameters
you want to estimate.

We shall return to these questions when discussing confidence intervals (chapter
9) and hypothesis testing (chapter 10).
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8.2.5 Information and Likelihood

The concepts ‘information’ and ‘likelihood’ will be useful in discussing the variance
of estimators. We introduce them now:

There are several different definitions of information. They are named after
the person who introduced them. We will use that of R. A. Fisher, which is then
referred to as the information of R. A. Fisher. However, since we will only treat this
one definition of information, we will simply refer to it as information. But bear in
mind that the word can have other definitions. We will see that Fisher’s definition
meets the following requirements, which we find necessary for what we would like
the word ‘information’ to mean:

1. The information should increase if we make more observations.

2. Data, which are irrelevant to the estimation of the parameters we wish to
estimate or to the hypothesis we wish to test, should contain no information.
Of course the same data may contain information for other parameters or
other tests.

3. The precision of the estimation or test should be greater if we have more
information.

Present-day, large-scale experiments usually produce a great amount of data of
which only a small part is useful for a given measurement or test. The information
contained in a datum can be used to decide whether to reject it in order to reduce
the amount of data to a manageable size. (It is difficult to work with data on 100
magnetic tapes; working with just one tape, or a small disk file is much easier.)
A good criterion for data reduction is to reject the maximum of data with the
minimum loss of information. This is usually a compromise, although the rejection
of some data may actually result in no loss of information.

Likelihood function: We observe a real random variable, X, sampled from a
p.d.f., f(x; θ), where θ is a parameter. The set of allowed values of X is denoted by
Ωθ, the subscript emphasizing the possible dependence on the parameter. Both X
and θ could be sets of values X and θ, not necessarily of the same dimension.

Consider a set of n independent observations of X, xi. The joint p.d.f. of the xi

is, since they are independent,

L(x; θ) = L(x1, x2, . . . , xn; θ) =
n∏

i=1

f(xi; θ) (8.13)

The function L depends on both the measurements xi and on the parameters θ.
However, after having done the experiment, the xi are fixed. Then L can be regarded
as a function of θ only. L is called the likelihood function. We also define its
logarithm,

` ≡ lnL(x1, . . . , xn; θ) =
n∑

i=1

ln f(xi; θ) (8.14)
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Information: The information (of R. A. Fisher) given about a parameter θ by
an observation of the r.v. x is defined as the expectation

Ix(θ) = E



(
∂ lnL(x; θ)

∂θ

)2

 = E



(
∂`

∂θ

)2

 (8.15)

=
∫

Ωθ

(
∂ lnL(x; θ)

∂θ

)2

L(x; θ) dx

In the case where there are k parameters, the information is a k × k matrix:

[
Ix(θ)

]
ij

= E

[
∂ lnL(x; θ)

∂θi

∂ lnL(x; θ)

∂θj

]

=
∫

Ωθ

∂ lnL(x; θ)

∂θi

∂ lnL(x; θ)

∂θj
L(x; θ) dx

This definition of information may seem rather arbitrary, but we shall see that
it satisfies the three requirements stated above.

Score: Notation becomes more compact by introducing the score. We define the
score of one measurement as

S1 ≡
∂

∂θ
ln f(x; θ) (8.16)

Note that the score, being a function of r.v.’s, is itself a r.v. The score of the entire
sample is then defined to be the sum of the scores of each observation:

S(x; θ) ≡
n∑

i=1

S1(xi; θ) (8.17)

Then

S(x; θ) =
n∑

i=1

∂

∂θ
ln f(xi; θ)

=
∂

∂θ

n∑

i=1

ln f(xi; θ)

=
∂ lnL(x; θ)

∂θ

Summarizing,

S(x; θ) =
∂ lnL(x; θ)

∂θ
=

n∑

i=1

S1(xi; θ) =
∂

∂θ

n∑

i=1

ln f(xi; θ) (8.18)

This result combined with equation 8.15 shows that we can write the information
of the sample x on the parameter θ as the expectation of the square of the score:

Ix(θ) = E
[
(S(x; θ))2

]
(8.19)
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If Ωθ is independent of θ, we can show that the expectation of the score is zero

and we can derive another relation between the information and the score. Let us
assume that

1. Ωθ is independent of θ, and

2. L(x; θ) is regular enough that we can interchange the order of ∂2

∂θi∂θj
and

∫
dx.

If condition (1) holds, condition (2) will also generally hold for distributions en-
countered in physics. Now,

E [S1(x; θ)] = E

[
∂

∂θ
ln f(x; θ)

]
=
∫ [

∂

∂θ
ln f(x; θ)

]
f(x; θ) dx

=
∫ 1

f(x; θ)

[
∂

∂θ
f(x; θ)

]
f(x; θ) dx

=
∫

∂

∂θ
f(x; θ) dx

Interchanging the order of integration and differentiation (assumption 2),

E [S1(x; θ)] =
∂

∂θ

∫
f(x; θ) dx =

∂

∂θ
1 = 0 (8.20)

since f(x; θ) is normalized for all values of θ. Hence,

E [S(x; θ)] =
∑

E [S1(xi; θ)] = 0 (8.21)

Using the fact that the variance of a quantity is given by V [a] = E [a2]−(E [a])2,
we see from equations 8.19 and 8.21 that

Ix(θ) = V [S(x; θ)] (8.22)

We have shown above (equation 8.19) that in general the information on θ is
equal to the expectation of the square of the score. Under the above two assumptions
you can show (exercise 31) that the information is also given by

Ix(θ) = −E
[
∂S(x; θ)

∂θ

]
(8.23)

These results (equations 8.21 and 8.23) are very useful, but do not forget the as-
sumptions on which they depend.
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Does I satisfy the requirements? We can now show that the information
increases with the number of independent observations. For n observations,

I(θ) = E



(

n∑

i=1

S1(xi; θ)

)2



= V

[
n∑

i

S1(xi; θ)

]
+

{
E

[
n∑

i

S1(xi; θ)

]}2

where we have used the fact that V [a] = E [a2] − (E [a])2. The second term is
zero under the assumptions that Ωθ is independent of θ and that the order of
differentiation and integration can be interchanged as in the previous paragraph
(eq. 8.21). However, let us now relax these assumptions.

Since the xi are independent, the variance of the sum is just the sum of the
variances. And since all the xi are sampled from the same p.d.f., the variance is the
same for all i. A similar argument applies to the second term. Hence,

I(θ) = nV [S1(x; θ)] + n2 {E [S1(x; θ]}2 (8.24)

Following the same steps for n = 1 gives the same expression with n = 1. Hence,
the information increases with the number of observations, our first requirement for
information.

If the assumptions of the previous paragraph apply, the second term in the above
equation is zero by equation 8.20. Then,

I(θ) = n I1(θ) (8.25)

and the information of n independent observations is just n times the information
of one observation. If the assumptions are not true, the second term may not be
zero but will still be positive; hence I will still increase with n.

For data which are irrelevant for the estimation of θ, the p.d.f. will not depend
on θ and the score will, from its definition (equations 8.16 and 8.17), be zero. This
implies that the information will also be zero, which was our second requirement
for information.

We now turn to the third requirement, the connection between the precision of
an estimator and the information.

8.2.6 Minimum Variance Bound

It turns out that there is a lower limit to the variance of an estimator under certain
general conditions.

Rao-Cramér inequality: Suppose that we have an estimator θ̂ of θ with bias
bn(θ̂) = E

[
θ̂
]
− θ, that the variance V

[
θ̂
]

is finite, and that the range of X does
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not depend on θ. Then

E
[
θ̂ S(x; θ)

]
=
∫
. . .
∫
θ̂

[
∂

∂θ
lnL(x; θ)

]
L(x; θ) dx1 . . . dxn

=
∫
. . .
∫
θ̂

[
1

L(x; θ)

∂

∂θ
L(x; θ)

]
L(x; θ) dx1 . . . dxn

=
∫
. . .
∫
θ̂

[
∂

∂θ
L(x; θ)

]
dx1 . . . dxn

=
∫
. . .
∫
θ̂
∂

∂θ

[
n∏

i=1

f(xi; θ) dxi

]

=
∫
. . .
∫ ∂

∂θ

[
θ̂

n∏

i=1

f(xi; θ) dxi

]

The last step follows because θ̂ is a statistic and therefore does not depend on θ.
Assuming that we can interchange the order of differentiation and integration, we
find

E
[
θ̂ S(x; θ)

]
=

∂

∂θ

∫
. . .
∫
θ̂

n∏

i=1

[f(xi; θ) dxi]

=
∂

∂θ
E
[
θ̂
]

=
∂

∂θ

[
θ + bn(θ̂))

]

= 1 +
∂

∂θ
bn(θ̂)

Both θ̂ and S(x; θ) are r.v.’s. Their covariance is

cov
[
S(x; θ), θ̂(x)

]
= E

[
S(x; θ) θ̂(x)

]
− E [S(x; θ)]︸ ︷︷ ︸

=0, eq. 8.21

E
[
θ̂(x)

]

= 1 +
∂

∂θ
bn(θ̂)

Therefore, their correlation coefficient is

ρ2 =

{
cov

[
S, θ̂

]}2

V [S] V
[
θ̂
] =

[
1 + ∂

∂θ
bn(θ̂)

]2

I(θ)V
[
θ̂
]

Since ρ2 ≤ 1, we have

σ2(θ̂) = V
[
θ̂
]
≥
[
1 + ∂

∂θ
bn(θ̂)

]2

I(θ)
(8.26)

Thus, there is a lower bound on the variance of the estimator. For a given set
of data and hence a given amount of information, I(θ), on θ, we can never find an
estimator with a lower variance.



8.2. PROPERTIES OF ESTIMATORS 105

The more information we have, the lower this bound is, in accordance with our
third requirement for information.

If the estimator is a constant, θ̂ = c, then the bias is b = c− θ and the minimum
variance is 0, which is not a very interesting bound since the variance of a constant
is always 0.

The inequality (8.26) is usually known as the Rao-Cramér inequality or the
Frechet inequality. It was discovered independently by a number of people including
Rao,32 Cramér,14 and Frechet. The first were Aitken and Silverstone.33 Although we
have assumed that the range of X is independent of θ and that we could interchange
the order of differentiation and integration, the result (8.26) can be obtained with
somewhat more general assumptions.10

In general, we prefer unbiased estimators. In that case the inequality reduces to
σ2(θ̂) ≥ 1/I(θ). This is also the case if the bias of the estimator does not depend
on the true value of θ. For more than one parameter this result generalizes to

σ2(θ̂i) ≥
[
I−1(θ)

]
ii

(8.27)

the diagonal element of the inverse of the information matrix.
We define the efficiency of the estimator as

ε(θ̂) =
σ2

min(θ̂)

σ2(θ̂)
≤ 1 (8.28)

which, for unbiased estimators, is just

ε(θ̂) =
1

σ2(θ̂) I(θ)
≤ 1 (8.29)

An estimator whose variance is equal to the minimum variance given by equa-
tion 8.26, i.e., has ε(θ̂) = 1, is termed efficient. It is not always possible to
construct an efficient estimator.

Examples:

Gaussian with known mean. We have seen (section 8.2.1) that σ̂2 =
∑

(xi−
µ)2/n is an unbiased estimator of the variance of a Gaussian of known mean. It is
easy to show (exercise 32) that it is also an efficient estimator.

Exponential. Consider n independent observations from an exponential p.d.f.,

f(x;µ) =
1

µ
e−x/µ , µ > 0

We wish to estimate µ. We note that

ln f(x;µ) = − lnµ− x

µ
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The score of one observation is then

S1(x;µ) =
∂

∂µ

(
− lnµ− x

µ

)
= − 1

µ
+

x

µ2

The information of one observation is then, using equation 8.19 or 8.23, the latter
being applicable since the range of X is independent of µ,

I1(µ) = E
[
(S1(x;µ))2

]
= −E

[
∂S1(x;µ)

∂µ

]

= −E
[

1

µ2
− 2x

µ3

]
= − 1

µ2
+

2

µ2
=

1

µ2

And the total information of the sample is

I(µ) = nI1(µ) =
n

µ2

If µ̂ is unbiased, its minimum variance is then 1/I = µ2/n. We try the sample mean
as an estimator: µ̂ = x̄. We know (equation 8.2) that the sample mean is always
an unbiased estimator of the mean. The variance of the sample mean is

V [x̄] =
1

n
V [x] =

1

n

(
E
[
x2
]
− µ2

)

=
1

n

∫ ∞

0
x2 1

µ
e−x/µ dx

︸ ︷︷ ︸
=2µ2

−µ
2

n
=
µ2

n

which is just the minimum variance found above. Thus the sample mean is an
efficient estimator of the mean of an exponential p.d.f.

Note that the score is

S(x;µ) =
n∑

i=1

S1(xi;µ) = −n
µ

+

∑
xi

µ2
= −I(µ) (µ− µ̂)

Thus the score is a linear function of the estimator. This is not a coincidence, but
a general feature of unbiased efficient estimators, as we show in the next section.

8.2.7 Efficient estimators—the Exponential family

In this section we shall show that an efficient estimator can be found if and only if
the p.d.f. is a member of a quite general class of functions known as the exponential
family.

The minimum variance bound was found using

ρ2 =

{
cov

[
S, θ̂

]}2

V
[
S
]
V
[
θ̂
] ≤ 1
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The equality ρ = ±1 corresponds to a linear relationship between the variables
(exercise 7), i.e., a straight line on a graph of S vs. θ̂. Thus, assuming that the
conditions of the minimum variance bound hold, an estimator θ̂ can be efficient if
and only if it is a linear function of S, with the possible exception of regions where
the probability is zero.

Let A(θ) and B(θ) be functions of θ, but not of x, and A′, B′ be their derivatives
with respect to θ. Then we can write the linear relationship as

∂

∂θ
ln f(x; θ) ≡ S = A′(θ)θ̂(x) +B′(θ) (8.30)

Since θ̂ is a statistic and hence depends only on x, integration over θ gives

ln f(x; θ) = A(θ) θ̂(x) +B(θ) +K(x) (8.31)

where the integration constant K may depend on x but not on θ. Then, where the
required normalization is included in B and/or K,

f(x; θ) = exp
[
A(θ) θ̂(x) +B(θ) +K(x)

]
(8.32)

Any p.d.f. of the above form is said to belong to the exponential family. What
we have shown is that an efficient estimator can be found if and only if the p.d.f. is
of the exponential family where the estimator enters the exponent in the way shown
in equation 8.32.

Note that the efficient estimator is not necessarily unique since the product A · θ̂
can often be factored in more than one way. The estimator θ̂ will be an unbiased
estimator for some quantity, although not necessarily for the quantity we want to
estimate. It may also not be an estimator which we will be able to use. Let us now
calculate the expectation of θ̂ and see for what quantity it is an unbiased estimator:
From equation 8.30,

θ̂ =
S(x; θ)

A′(θ)
− B′(θ)

A′(θ)

Since A′ and B′ do not depend on x, the expectation is then

E
[
θ̂
]

=
1

A′(θ)
E [S(x; θ)]− B′(θ)

A′(θ)

Since E [S(x; θ)] = 0, we have

E
[
θ̂
]

= −
∂B(θ)

∂θ
∂A(θ)

∂θ

(8.33)

This is the quantity for which the θ̂ in equation 8.32 is an unbiased, efficient esti-
mator.
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If there are k parameters, θ, equation 8.32 generalizes to

f(x; θ) = exp
[
A(θ) · θ̂(x) +B(θ) +K(x)

]
(8.34)

The score for the ith parameter is then

S(x; θi) =
∂

∂θi
ln f(x; θ) =

∑

j

θ̂j(x)
∂Aj(θ)

∂θi
+
∂B(θ)

∂θi

Taking the expectation, we arrive at the generalization of equation 8.33, which is a
set of k equations:

E
[
θ̂i

]
= −

∂B(θ)
∂θi

+
∑

j 6=iE
[
θ̂j

]
∂Aj(θ)

∂θi

∂Ai(θ)
∂θi

(8.35)

Examples:

Gaussian. As an example we take the normal p.d.f., N(x;µ, σ2), which has

two parameters θ =
(
µ
σ2

)
. We write N(x;µ, σ2) in an exponential form:

N(x;µ, σ2) =
1√

2π
√
σ2

exp

[
−1

2

(x− µ)2

σ2

]

= exp

[
µ

σ2
x− 1

2σ2
x2 − 1

2

(
µ2

σ2
+ ln(2πσ2)

)]

For n independent observations the p.d.f. becomes
n∏

i=1

N(xi;µ, σ
2) = exp

[
nµ

σ2
x̄− n

2σ2
x2 − n

2

(
µ2

σ2
+ ln(2πσ2)

)]

from which we see that we can choose (in equation 8.34)

A1(θ) = nµ
σ2 θ̂1(x) = x̄

A2(θ) = − n
2σ2 θ̂2(x) = x2

B(θ) = −n
2

(
µ2

σ2 + ln(2πσ2)
)

K(x) = 0

Then (from equation 8.35)

∂A1

∂µ
= n

σ2

∂A2

∂µ
= 0

∂B
∂µ

= −n µ
σ2

Thus θ̂1 = x̄ is an efficient and unbiased estimator of

−−nµ/σ
2

n/σ2
= µ

∂A1

∂σ2 = nµ
σ4

∂A2

∂σ2 = n
2σ4

∂B
∂σ2 = nµ2

2σ4 − n
2σ2

Thus θ̂2 = x2 is an efficient and unbiased estimator of
µ2 + σ2. Hence, x2 − µ2 = (x− µ)2 is an efficient and
unbiased estimator of σ2. However, this is of use to us
only if we know µ.
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Note the role of the number of observations n. The likelihood function, L, is
just the p.d.f. with each term in the exponent replaced by a sum of n terms. Thus
L can be obtained from f by the replacements: x→ x̄, x2 → x2, etc. and A→ nA,
B → nB, and K → nK. But −∂B/∂θ

∂A/∂θ
is unchanged by these substitutions. Thus

we can work with f instead of L, just replacing any function of x by its average in
the expression for θ̂.

Binomial. Discrete p.d.f.’s can also belong to the exponential family. As an
example we take the binomial p.d.f.,

f(k;n, θ) =

(
n

k

)
θk(1− θ)n−k

which can be written

f(k;n, θ) = exp

[
k ln

(
θ

1− θ

)
+ n ln(1− θ) + ln

(
n

k

)]

With n fixed, there is just one parameter to estimate, θ.

A(θ) = ln
(

θ
1−θ

)
θ̂(k) = k

B(θ) = n ln(1− θ) K(k) = ln
(

n
k

)

The expectation of the estimator is

E
[
θ̂
]

= −∂B/∂θ
∂A/∂θ

= nθ

Thus k is an efficient, unbiased estimator of nθ, or k/n is an efficient, unbiased
estimator of θ.

Which estimator is the best? Returning to the list of 10 estimators for the
mean at the start of the section, we can ask which of the 10 is the best. Unfor-
tunately, there is no unique answer. In general we prefer unbiased, consistent and
efficient estimators. We can clearly reject nos. 2, 3, 4, 5 and 8. Nor is no. 6, the
sample mode, a good choice, even when the parent mode equals the parent mean,
since it uses so little of the information. However, which of the others is ‘best’
depends on the parent p.d.f.

The sample mean is efficient for a normal p.d.f. However, for a uniform p.d.f.
(f(x; a, b) = 1

b−a
) where the limits (a, b) are unknown, estimator no. 7, 1

2
xmin +

1
2
xmax, has a smaller variance that x̄.

No. 10, the sample median, has a larger variance that the sample mean for
a Gaussian p.d.f., but for a ‘large-tailed Gaussian’ it can be smaller. No. 9, the
trimmed sample mean, throws away information but may still be best, in particular
if we think that points in the tails are largely due to mismeasurement.
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8.2.8 Sufficient statistics

A statistic T (x) is said to be sufficient for the parameter θ if the conditional p.d.f. of
x, given T , f(x|T ), is independent of θ. (T and θ may of course be multidimensional
and of different dimensions.) In other words, T is sufficient if T contains all the
information on θ.

Clearly, T = x is a sufficient statistic since that is all the information we have—
on θ or on anything else. But this doesn’t help us very much. The importance
of sufficiency is in data reduction. If we have a sufficient statistic, T , of a smaller
dimension than the data, x, we can reduce the amount of data. This can be of
enormous practical advantage.

From n independent observations xi, one can construct m ≤ n independent
statistics t, t1, t2, . . . , tm−1 (in an infinite number of ways). From the definition of
marginal and conditional p.d.f.’s we can write the p.d.f. of these statistics as (cf.
equation 2.26)

f(t, t1, t2, . . . , tm−1; θ) = g(t; θ) h(t1, t2, . . . , tm−1; θ|t) (8.36)

where g(t; θ) is the marginal p.d.f. of t and h is the conditional p.d.f. Now if
h is independent of θ, then clearly the t1, t2, . . . , tm−1 contribute nothing to our
knowledge of θ. If this is true for any set of ti and any m < n then t clearly
contains all the information on θ. We therefore define a sufficient statistic t as: t is
a sufficient statistic for θ if for any choice of t1, t2, . . . , tm−1 (which are independent
of t),

f(t, t1, t2, . . . , tm−1; θ) = g(t; θ) h(t1, t2, . . . , tm−1|t) (8.37)

Now, what does this mean in terms of the likelihood? The likelihood function
is the p.d.f. for x and is thus related to the f of equation 8.37 by a coordinate
transformation. Starting from equation 8.37, let ti = xi for i = 1, 2, . . . , n − 1.
Then

f(t, x1, x2, . . . , xn−1; θ) = g(t; θ) h(x1, x2, . . . , xn−1|t)
The p.d.f. in terms of x is then

L(x; θ) = g(t; θ) h(x1, x2, . . . , xn−1|t)
∣∣∣∣∣J
(

x1, . . . , xn

x1, . . . , xn−1, t

)∣∣∣∣∣

which is, since the Jacobian does not involve θ, of the form

L(x; θ) = g(t; θ) k(x) (8.38)

Conversely, starting from equation 8.38, we make the transformation

t = t(x1, . . . , xn)

ti = ti(x1, . . . , xn) , i < m

ti = xi , i = m, . . . , n− 1
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L(x; θ) dx then transforms to

g(t; θ) k(x)

∣∣∣∣∣J
(
t, t1, . . . , tn−1

x1, . . . , xn

)∣∣∣∣∣ dt
n∏

i=1

dti

which we integrate over dtm . . . dtn−1 to obtain the p.d.f. f(t, t1, . . . , tm−1). Neither
k nor J depend on θ. However, the integration limits for tm, . . . , tn−1 (xm, . . . , xn−1)
could depend on θ. If not, it is clear that we obtain the form of equation 8.37. It
turns out10 that this is also true even when the integration limits do depend on θ.

Thus equations 8.37 and 8.38 are equivalent. If we can find a statistic t such that
the likelihood function can be written in the form of equation 8.38, t is a sufficient
statistic for θ.

The sufficient statistics for θ having the smallest dimension are called minimal
sufficient statistics for θ. One usually prefers a minimal sufficient statistic since
that gives the greatest data reduction.

We have seen that if we can write the p.d.f. in the exponential form of equa-
tion 8.34,

f(x; θ) = exp
[
A(θ) · θ̂(x) +B(θ) +K(x)

]

then θ̂ is an efficient estimator. Such a p.d.f. clearly factorizes like equation 8.38
with

g(θ̂; θ) = exp
[
A(θ) · θ̂(x) +B(θ)

]

k(x) = exp [K(x)]

Thus, if the range of x does not depend on θ, θ̂(x) is not only an efficient estimator of
θ, but also a sufficient statistic for θ. If the range of x depends on θ, the situation is
more complicated. The reader is referred to Kendall and Stuart10 for the conditions
of sufficiency.

8.3 Substitution methods

Now that we know something about the properties of estimators, let us turn to
the problem of constructing, or choosing, an estimator. There are three general
methods of estimation, which we will examine in turn. We begin with substitution
methods.

8.3.1 Frequency substitution

This is the simplest method. It is useful when the parameter to be estimated is
a frequency or the function of a frequency. It consists of simply estimating the
population (parent) frequency by the experimentally observed (sample) frequency.
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For example, if the underlying p.d.f. is a binomial, B(x;n, p) =
(

n
x

)
px(1− p)n−x,

we would estimate p by p̂ = x/n. This is unbiased since E [x] = np. It is also
efficient since B is a member of the exponential family of p.d.f.’s, as we saw in sect.
8.2.7. And we would estimate a function of p, g(p), by g(p̂) = g(x/n). This method
works well for large samples where the C.L.T. assures us that the difference between
E [x] and np is a small fraction of np.

Advantages of this method are simplicity and the fact that the estimator is
usually consistent. Disadvantages are that the estimator may be biased and that it
may not have minimum variance. However, if it is biased, we may be able to reduce
the bias, or at least estimate its size by a series expansion:

Suppose that θ̂ is an unbiased estimator of θ. We wish to estimate some function
of θ, g(θ). Following the above prescription, we use ĝ = g(θ̂). Then, expanding ĝ
about the true value of θ, θt, assuming that the necessary derivatives exist,

ĝ = g(θ̂) = g(θt) + (θ̂ − θt)
∂g(θ)

∂θ

∣∣∣∣∣
θ=θt

+
1

2
(θ̂ − θt)

2 ∂
2g(θ)

∂θ2

∣∣∣∣∣
θ=θt

+ . . .

Now we take the expectation. Since θ̂ is assumed unbiased, this gives simply,

E [ĝ] = g(θt) +
1

2
E
[
(θ̂ − θt)

2
]∂2g(θ)

∂θ2

∣∣∣∣∣
θ=θt

+ . . .

Not knowing the true value θ, we can not calculate E
[
(θ̂ − θt)

2
]
. But we can

estimate it by V
[
θ̂
]
. In the same spirit, we evaluate the derivative at θ = θ̂ instead

of at θ = θt. Thus, to lowest order, there is a bias of approximately 1
2
V
[
θ̂
]

∂2g(θ)
∂θ2

∣∣∣
θ=θ̂

.

In the case of more than one parameter, θ, this becomes

ĝ = g(θ̂) = g(θt) +
∑

i

(θ̂i − θti)
∂g

∂θi

∣∣∣∣∣
θ=θt

+
1

2

∑

i

∑

j

(θ̂i − θti)(θ̂j − θtj)
∂2g

∂θi∂θj

∣∣∣∣∣
θ=θt

+ . . .

E [ĝ] = g(θt) +
1

2

∑

i

∑

j

Vij(θ̂)
∂2g

∂θi∂θj

∣∣∣∣∣
θ=θ̂

+ . . .

from which we deduce that

ĝ1 = ĝ − 1

2

∑

i,j

Vij
∂2g

∂θi∂θj

∣∣∣∣∣
θ=θ̂

(8.39)

has reduced bias, provided that the correction term is not large or rapidly varying.
If that is not true, it is not obvious that going to higher order terms in the expansion
would help, since the problem may come from using θ̂ instead of the true value in
the expansion. In that case more detailed investigation is needed, perhaps employ-
ing Monte Carlo techniques to test the behavior of the estimators under different
assumptions for θ.
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8.3.2 Method of Moments

The method

This is another substitution method. To estimate a function q of the parameter θ,
we write q(θ) as a function of the moments of the p.d.f.:

q(θ) = g(m1, m2, . . .)

where mj = E [xj]. This can, of course, only be done if all the necessary moments
exist. We then estimate q(θ) by replacing all the parent (population) moments, mj,
in g by the corresponding sample (experimental) moments. Thus,

q̂ = g(m̂1, m̂2, . . .) , m̂j = xj =
1

n

∑

i

xj
i (8.40)

In this notation m1 = µ, the parent mean, and m̂1 = x̄, the sample mean.
For example, to estimate the parent variance, V [x], we write the variance in

terms of the moments: V [x] = σ2 = m2 −m2
1. We then estimate the moments by

the corresponding sample moments:

σ̂2 = m̂2 − m̂2
1 =

1

n

∑
x2

i − x̄2 =
1

n

∑
(xi − x̄)2

As we have previously seen (equation 8.6), this estimator, which we have called s2
x

(equation 8.4), is biased. Thus the method of moments does not necessarily give
unbiased estimators.

As a second example, take the Poisson p.d.f. For this p.d.f., the population mean
and the population variance are equal, µ = V [x]. Therefore, we could estimate the
mean and the variance either

by θ̂ = m̂1 = x̄

or by θ̂ = m̂2 − m̂2
1 = 1

n

∑
(xi − x̄)2

Thus the method of moments does not necessarily provide a unique estimator.

Variance of sample moments

Of course, a moment estimator, like any estimator, is rather useless unless we
also estimate its uncertainty. It can be easily shown (exercise 35) that in general,
assuming that the moments exist,

V [m̂k] = V
[
1

n

∑
xk

i

]
=

1

n

(
m2k −m2

k

)
(8.41)

cov [m̂j, m̂k] =
1

n
(mj+k −mjmk) (8.42)

We can estimate these variances and covariances by replacing the moments by their
estimators and 1/n by 1/(n− 1) to remove the bias.
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By the C.L.T. the average tends to its expectation under the assumption that
the variance is finite. Moments estimators, being averages, are therefore consistent.

A word of caution is in order: If it is necessary to use higher order moments, you
should be cautious. They are very sensitive to the tails of the distribution, which
is the part of the distribution which is usually the most affected by experimental
difficulties.

8.3.3 Descriptive statistics

Moments provide a simple way to describe the data without making any assumption
about the parent p.d.f. Since the amount of data in present-day experiments is
usually far too large to publish, it is necessary to reduce it to a reasonable volume,
but in such a way that it remains useful.

In some cases we have a theory which is in agreement with the data and it is
enough that the experimental data agree with the expectation. In other cases we
have no theory and the purpose of the experiment is to provide data which can point
the way to a theory. The experimental moments of a distribution up to a certain
(not too high) order provide a set of numbers with which some future theory can
easily be compared.

8.3.4 Generalized method of moments

Instead of the moments mi = E [xi], which are moments of the functions xi, we
can use moments of some other set of functions, uj(x). These moments, E [uj], are
given by

E [uj] =
∫
uj(x)f(x; θ) dx

Thus we have a number of equations for E [uj] in terms of θ. We solve them for the
θ in terms of the E [uj] and substitute the sample moments, ūj, for the expectations
to obtain our estimate of θ. We will always need at least as many equations, and
hence at least as many functions uj, as there are parameters to be estimated.

We take as an example the angular distribution of the decay of a vector meson
into two pseudo-scalar mesons. The angles θ and φ of the decay products in the
rest system of the vector meson are distributed as

f(cos θ, φ) =
3

4π

[
1

2
(1− ρ00) +

1

2
(3ρ00 − 1) cos2 θ − ρ1,−1 sin2 θ cos 2φ

−
√

2Reρ10 sin 2θ cosφ
]

where the ρ’s are parameters to be estimated. The data consist of measurements
of the angles, θi and φi, for n decays. From inspection of the above expression for
f , we choose three functions to estimate the three parameters. The choice is not
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unique, but an obvious choice is as follows. We then compute the expectation of
each of the functions:

function expectation

u1 = cos2 θ E [u1] = 1
5
(1 + 2ρ00)

u2 = sin2 θ cos 2φ E [u2] = −4
5
ρ1,−1

u3 = sin 2θ cosφ E [u3] = −4
5

√
2Reρ10

Replacing E [uj] by the sample mean ūj = 1
n

∑
uj(cos θi, φi) gives, e.g.,

−4

5

√
2Reρ̂10 = ū3 =

1

n

n∑

i=1

sin 2θi cosφi

which we solve for Reρ̂10.
This method is most elegant when the functions uj form an orthonormal set.

Then

f(x) =
∞∑

i=0

aiui(x) and
∫
u∗j(x)uk(x) dx = δjk

The expectations are then

E [u∗k(x)] =
∫
u∗k(x)f(x) dx = ak

Thus the estimate of the coefficient of the kth term is just the sample mean of the
(complex conjugate of the) kth function,

âk = u∗k

This estimator is unbiased and, by the C.L.T., asymptotically normally distributed
about ak.

8.3.5 Variance of moments

The variance of the kth sample moment, generalized or not, is

Vkk ≡ V [ūk] =
1

n2
V

[
n∑

i=1

uk(xi)

]
=

1

n
V [uk(x)]

=
1

n
E
[(
uk(x)− E [uk(x)]

)2
]

(8.43)

which reduces to equation 8.41 for ordinary moments, uk(x) = mk = xk. This is
estimated by replacing the expectations by the sample means to give

V̂kk =
1

n

1

n− 1

n∑

i=1

(
uk(xi)− ūk(x)

)2
=

1

n− 1

(
u2

k − ū2
k

)
(8.44)
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where we have used 1
n−1

instead of 1
n

in order to have an unbiased estimate. The
general element of the covariance matrix is estimated by

V̂jk [ū] =
1

n

1

n− 1

n∑

i=1

(
uj(xi)− ūj(x)

)(
uk(xi)− ūk(x)

)
(8.45)

=
1

n− 1
(uj uk − ūj ūk) (8.46)

8.3.6 Transformation of the covariance matrix under a change

of parameters

Frequently it is not one of the moments that we want to estimate, but rather
some function of the moments, e.g., ρ̂00 = (5ū1 − 1)/2. We now examine how the
covariance matrix for the ūk transforms under such a change of parameter. This
topic is usually known as propagation of errors. This is, of course, applicable to
functions of any estimator, not just to moments.

We want to estimate θ which we write as a function of q, θ(q). We first find
an estimate of q, q̂, and an estimate of its variance, V̂ [q̂]. To avoid possible mis-
understanding, we denote the true (unknown) value of q by qt. The true value of
θ is then θ(qt). Our estimate of q, q̂, being a r.v., is of course distributed about
qt according to some p.d.f. We wish to (approximately) evaluate the variance of θ̂
from the variance of q̂. We assume that q̂ is an unbiased estimator of q, which is
true, at least asymptotically (C.L.T.), if q̂ is a moment.

We expand θ̂ about the true value of q. Then

θ̂ = θ(q̂) = θ(qt) +
∂θ

∂q

∣∣∣∣∣
q=qt

(q̂ − qt) + . . .

and E
[
θ̂
]

= θ(qt) +
∂θ

∂q

∣∣∣∣∣
q=qt

E [(q̂ − qt)] + . . .

Since q̂ is unbiased, E [(q̂ − qt)] = 0. Thus, to first order, E
[
θ̂
]

= θ(qt). Subtracting
the second equation from the first gives, to first order,

θ̂ − E
[
θ̂
]

=
∂θ

∂q

∣∣∣∣∣
q=qt

(q̂ − qt)

Hence,

V
[
θ̂
]
≡ E

[(
θ̂ − E

[
θ̂
])2

]
=

(
∂θ

∂q

)2

q=qt

E
[
(q̂ − qt)2

]

=

(
∂θ

∂q

)2

q=qt

V [q̂] (8.47)
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This can be estimated by substituting q̂ for qt and our estimate V̂ [q̂] for V [q̂]:

V̂
[
θ̂
]

=

(
∂θ

∂q

)2

q=q̂

V̂ [q̂] (8.48)

This technique works well only when second and higher order terms are small and
when q̂ is unbiased.

We give a simple example, a func-
tion linear in q. The result is
then, in fact, exact since the sec-
ond and higher order derivatives
are zero.

θ(q) = A +Bq

∂θ

∂q
= B

V
[
θ̂
]

= B2 V [q̂] (8.49)

The general case is similar to our treatment of change of variables (section
2.2.6). Indeed, it is in principle better to transform the p.d.f. to a new p.d.f. in
terms of the parameter we want to estimate, e.g., f(x; q) → g(x; θ). In particular
it is nice if we can transform to a p.d.f. having θ as its mean (or other low order
moment), since sample moments are unbiased estimators. However, in practice
such a transformation may be difficult and it may be easier to estimate q than to
estimate θ directly.

6

-
q

θ

E [q̂]

θ1

dq

dθ

f(q̂)

g(θ̂) θ = θ(q)

Consider now the p.d.f.’s for the estima-
tors q̂ and θ̂. If the transformation θ = θ(q)
is non-linear, the shape of the p.d.f. g(θ̂) is
changed from that of f(q̂) by the Jacobian
(|∂q/∂θ| in one dimension), as illustrated
in the figure. In regions where dθ < dq,
the probability piles up faster for θ than
for q. Thus in the example the peak in
g(θ̂) occurs below θ1 = g (E [q̂]).

In particular, if f(q̂) is normal, g(θ̂) is
not normal, except for a linear transforma-
tion. This is a source of bias, which in the
figure manifests itself as a long tail for g(θ̂) resulting in E

[
θ̂
]
> θ1.

Now let us treat the multidimensional case, where q is of dimension n and θ is
of dimension m. Note that m ≤ n; otherwise not all θi will be independent and
there will be no unique solution. An example would be a p.d.f. for (x, y) for which
we want only to estimate some parameter of the (marginal) distribution for r. In
this case, n = 2 and m = 1.

We can then expand each θ̂i about its true value in the same manner as for the
one-dimensional case, except that we now must introduce a sum over all parameters:

θ̂i ≡ θi(q̂) = θi(qt
) +

n∑

k=1

∂θi

∂qk

∣∣∣∣∣
q=q

t

(q̂k − qt k) + . . .
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Assuming that q̂i is unbiased, its expectation is equal to the true value so that to
first order,

(
θ̂i − E

[
θ̂i

]) (
θ̂j − E

[
θ̂j

])
=

n∑

k=1

n∑

l=1

∂θi

∂qk

∣∣∣∣∣
q=q

t

∂θj

∂ql

∣∣∣∣∣
q=q

t

(q̂k − qt k) (q̂l − qt l)

Taking expectations, and writing in matrix notation, we arrive at the generalization
of equation 8.47:

V
[
θ̂
]

= DT(θ)V
[
q̂
]
D(θ) (8.50)

where,

D(θ) =




∂θ1

∂q1

∂θ2

∂q1
. . . ∂θm

∂q1
∂θ1

∂q2

∂θ2

∂q2
. . . ∂θm

∂q2

...
...

. . .
...

∂θ1

∂qn

∂θ2

∂qn
. . . ∂θm

∂qn



q=q

t

(8.51)

As in the one-dimensional case we estimate this variance by replacing true values
by expectations to arrive at the generalization of equation 8.48:

V̂
[
θ̂
]

= D̂
T
(θ) V̂

[
q̂
]
D̂(θ) (8.52)

where,

D̂(θ) =




∂θ1

∂q1

∂θ2

∂q1
. . . ∂θm

∂q1
∂θ1

∂q2

∂θ2

∂q2
. . . ∂θm

∂q2

...
...

. . .
...

∂θ1

∂qn

∂θ2

∂qn
. . . ∂θm

∂qn



q=q̂

(8.53)

Warning: D is not symmetric.

8.4 Maximum Likelihood method

This method of parameter estimation is very general. It is often the simplest method
to use, particularly in complex cases, and maximum likelihood estimators have
certain desirable properties.

8.4.1 Principle of Maximum Likelihood

We have already met the likelihood function in section 8.2.5. We repeat its defi-
nition here: The likelihood function is the joint p.d.f. for n measurements x given
parameters θ:

L(x; θ) = L(x1, x2, . . . , xn; θ) (8.54)
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If the xi are independent, this is just the product of the p.d.f.’s for the individual
xi:

L(x; θ) =
n∏

i=1

fi(xi; θ) (8.55)

where we have included a subscript i on f since it is not necessary that all the xi

have the same p.d.f.
In probability theory this p.d.f. expresses the probability that an experiment

identical to ours would result in the n observations x which we observed. In prob-
ability theory we know θ and the functions fi, and we calculate the probability of
certain results. In statistics this is turned around. We have done the experiment;
so we know a set of results, x. We (think we) know the p.d.f.’s, fi(x, θ). We want
to estimate θ.

We emphasize that L is not a p.d.f. for θ; if it were we would use the expectation
value of θ for θ̂. Instead we take eq. 8.54, replace θ by θ̂ and solve for θ̂ under the
condition that L is a maximum. In other words, our estimate, θ̂, of θ is that value of
θ which would make our experimental results the most likely of all possible results.

This is the Principle of Maximum Likelihood: The best estimate of a pa-
rameter θ is that value which maximizes the likelihood function. This can not be
proved without defining ‘best’. It can be shown that maximum likelihood (ml)
estimators have desirable properties. However, they are often biased. Whether the
ml estimator really is the ‘best’ estimator depends on the situation.

It is usually more convenient to work with

` = lnL (8.56)

since the product in eq. 8.55 becomes a sum in eq. 8.56. For independent xi this is

` =
n∑

i=1

`i , where `i = ln fi(xi; θ) (8.57)

Since L > 0, both L and ` have the same extrema, which are found from

Si ≡
∂`

∂θi
=

1

L
∂L
∂θi

= 0 (8.58)

where Si is the score function (section 8.2.5)

6

-
θ

` largest
max.

HHHj

local
max.

?

@
@

@
@

@R

← physical range of θ →

The maximum likelihood condi-
tion (8.58) finds an extremum which
may be a minimum; so it is important
to check. There may also be more
than one maximum, in which case
one usually takes the highest max-
imum. The maximum may also be
at a physical boundary, in which case
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eq. (8.58) may not find it. Usually
such problems do not occur for suffi-
ciently large samples. However, this
is not always the case.

Note that for the purpose of finding the maximum of L, it is not necessary
that L be normalized. Any factors not depending on θ can be thrown away. This
includes factors which depend on x but not on θ.

Example: n independent xi, each distributed normally.

L =
n∏

i=1

1√
2πσi

exp

[
−1

2

(
xi − µi

σi

)2
]

` =
n∑

i=1

[
−1

2
ln(2π)− ln σi −

(xi − µi)
2

2σ2
i

]

Suppose that all the µi are the same, µi = µ, but that the σi are different, but
known. This is the case if we make n measurements of the same quantity, each
with a different precision, e.g., using different apparatus. The maximum likelihood
condition (8.58) is then

∂`

∂µ
=
∑ xi − µ

σ2
i

=
∑ xi

σ2
i

−
∑ µ

σ2
i

= 0

The solution of this equation is the ml estimate of µ:

µ̂ =

∑
(xi/σ

2
i )∑

(1/σ2
i )

(8.59)

which is a weighted average, each xi weighted by 1/σ2
i
.

The expectation of µ̂ is

E [µ̂] = E

[∑
(xi/σ

2
i )∑

(1/σ2
i )

]
=

∑
(E [xi] /σ

2
i )∑

(1/σ2
i )

=

∑
(µ/σ2

i )∑
(1/σ2

i )
=
µ
∑

(1/σ2
i )∑

(1/σ2
i )

= µ

from which we conclude that this estimate is unbiased. The variance of µ̂ is

V [µ̂] = E
[
µ̂2
]
−
(
E [µ̂]

)2
= E

[
µ̂2
]
−µ2 =

E

[(∑ xi

σ2
i

)2
]

[∑(
1
σ2

i

)]2 −µ2 =
E
[∑

i

∑
j

xixj

σ2
i σ2

j

]

[∑(
1
σ2

i

)]2 −µ2

Since the xi are independent,

E [xixj] =

{
E [xi]E [xj] = µiµj = µ2 if i 6= j
E [x2

i ] = σ2
i + µ2 if i = j
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Therefore, having written the expectation of sums as the sum of expectations and
having split the double sum into two parts,

V [µ̂] =

(
1

∑
(1/σ2

i )

)2

∑

i

σ2
i + µ2

σ4
i

+
∑

i

∑

j 6=i

µ2

σ2
i σ

2
j


− µ2

=

(
1

∑
(1/σ2

i )

)2

∑

i

1

σ2
i

+ µ2
∑

i

1

σ4
i

+ µ2
∑

i

∑

j 6=i

1

σ2
i σ

2
j


− µ2

=
1

∑
(1/σ2

i )
+ µ2



∑

i
1
σ4

i
+
∑

i

∑
j 6=i

1
σ2

i σ2
j

(
∑

(1/σ2
i ))

2




︸ ︷︷ ︸
=1

−µ2

=
1

∑
(1/σ2

i )
(8.60)

It is curious that in this example V [µ̂] does not depend on the xi, but only on the
σi. This is not true in general.

We have seen (sect. 8.2.6) that the Rao-Cramér inequality sets a lower limit on
the variance of an estimator. For an unbiased estimator the bound is 1/I, where I
is the information. For µ,

I(µ) = −E
[
∂S(µ)

∂µ

]
= −E

[
∂2`

∂µ2

]

= −E
[
∂

∂µ

(∑ xi

σ2
i

−
∑ µ

σ2
i

)]

= −E
[
−
∑ 1

σ2
i

]
=
∑ 1

σ2
i

Thus V [µ̂] = I−1(µ); the variance of µ̂ is the smallest possible. The ml estimator
is efficient. This is in fact a general property of ml estimators: The ml estimator
is efficient if an efficient estimator exists. We will now demonstrate this.

Properties of maximum likelihood estimators

We have seen in section 8.2.7 that an efficient, unbiased estimator is linearly related
to the score function. Assume that such an estimator of θ exists; call it T (x). Then

S(x, θ) = C(θ)T (x) +D(θ) (8.61)

From the maximum likelihood condition, S(x, θ̂) = 0, where θ̂ is the ml estimator
of θ. Hence the unbiased, efficient estimator T (x) is related to the ml estimator θ̂
by

T (x) = −D(θ̂)

C(θ̂)
(8.62)
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We have also seen in section 8.2.6, equation 8.21, that E [S(x, θ)] = 0 under
quite general conditions on f . Therefore, taking the expectation of equation 8.61,

E [S(x, θ] = C(θ)E [T (x)] +D(θ) = 0

Hence,

E [T (x)] = −D(θ)

C(θ)
(8.63)

This is true for any value of θ; in particular it is true for θ = θ̂, i.e., if the true value
of θ is equal to the ml estimate of θ:

E
[
T (x|θ̂)

]
= −D(θ̂)

C(θ̂)
= T (x) (8.64)

It may seem strange to write E
[
T (x|θ̂)

]
since T (x) does not depend on the value of

θ. However, the expectation operator does depend on the value of θ. In fact, since
T (x) is an unbiased estimator of θ,

E [T (x)] =
∫
T (x) f(x, θ) dx = θ (8.65)

Hence,
E
[
T (x|θ̂)

]
= θ̂

Combining this with equation 8.64 gives

T (x) = θ̂ (8.66)

Thus we have demonstrated that the ml estimator is efficient and unbiased if an
efficient, unbiased estimator exists.

If an unbiased, efficient estimator exists, we can derive the following properties:

1. From equations 8.63 and 8.65,

D(θ) = −θ C(θ)

Substituting this and equation 8.66 in equation 8.61 yields

S(x, θ) = C(θ)
[
θ̂ − θ

]
(8.67)

2. Assuming that the estimator is efficient means that the Rao-Cramér inequal-
ity, equation 8.26, becomes an equality. Collecting equations 8.19, 8.23, and
8.26, results in the variance of an unbiased, efficient estimator θ̂ given by

V
[
θ̂
]

=
1

I(θ)
=

1

E [S2]
= − 1

E
[

∂S
∂θ

] = − 1

E
[

∂2`
∂θ2

]
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From (8.67),
∂S

∂θ
= C ′(θ)

[
θ̂ − θ

]
− C(θ) (8.68)

Since θ̂ is unbiased, E
[
θ̂
]

= θt, the true value of the parameter. Hence,

E

[
∂S

∂θ

]
= −C(θt)

and V
[
θ̂
]

=
1

C(θt)
(8.69)

Hence, C(θt) > 0.

3. From equation 8.68, we also see that

∂2`

∂θ2

∣∣∣∣∣
θ=θ̂

=
∂S

∂θ

∣∣∣∣∣
θ=θ̂

= −C(θ̂)

Since C(θ) > 0 in the region of the true value, this confirms that the extremum
of `, which we have used to determine θ̂, is in fact a maximum.

4. From equation 8.67 and the maximum likelihood condition (equation 8.58),
we see that the ml estimator is the solution of

0 = S(x, θ) = C(θ)
(
θ̂ − θ

)

Since C(θ) > 0 in the region of the true value, this equation can have only one
solution, namely θ̂. Hence, the maximum likelihood estimator θ̂ is unique.

Let us return to the Gaussian example. But now assume not only that all µi = µ
but also all σi = σ. Unlike the previous example, we now assume that σ is unknown.
The likelihood condition gives

∂`

∂µ

)

µ̂,σ̂

=
∑(

xi − µ̂
σ̂

)
= 0

∂`

∂σ

)

µ̂,σ̂

=
∑(

− 1

σ̂
+

(xi − µ̂)2

σ̂3

)
= 0

The first equation gives

µ̂ =
1

n

∑
xi = x̄

Using this in the second equation gives

σ̂2 =
1

n

∑
(xi − x̄)2

which, as we have previously seen (eq. 8.6), is a biased estimator of σ2. This
illustrates an important, though often forgotten, feature of ml estimators: They
are often biased.

To summarize this section: The ml estimator is efficient and unbiased if such
an estimator exists. Unfortunately, that is not always the case.
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8.4.2 Asymptotic properties

Although, as we have seen in the previous section, the maximum likelihood esti-
mator is efficient and unbiased if an efficient, unbiased estimator exists, in general
the ml estimator is neither unbiased nor efficient. However, asymptotically, i.e.,
for a large number of independent measurements, it (usually) is both unbiased and
efficient. To see this we expand the score about θ̂:

S(x, θ) =
∂

∂θ

∑
ln f(xi, θ) ≈ S(x, θ̂) +

∂S

∂θ

∣∣∣∣∣
θ̂

(
θ − θ̂

)
+ . . .

By the maximum likelihood principle, S(x, θ̂) = 0. We assume that as n → ∞
higher order terms can be neglected. We are then left with

S(x, θ) ≈ ∂S

∂θ

∣∣∣∣∣
θ̂

(
θ − θ̂

)
=

∂

∂θ

∑
S1(xi, θ)

∣∣∣∣∣
θ̂

(
θ − θ̂

)

=
∑ ∂S1(xi, θ)

∂θ

∣∣∣∣∣
θ̂

(
θ − θ̂

)

Replacing the sum by n times the sample mean,

S(x, θ) ≈ n
∂S1

∂θ

∣∣∣∣∣
θ̂

(
θ − θ̂

)
= n

∂2

∂θ2
ln f(xi, θ)

∣∣∣∣∣
θ̂

(
θ − θ̂

)

Since the sample mean approaches the expectation as n → ∞ provided only that
the variance is finite (C.L.T.), asymptotically

S(x, θ) ≈ nE

[
∂S1

∂θ

∣∣∣∣∣
θ̂

] (
θ − θ̂

)
= nE

[
∂2

∂θ2
ln f(xi, θ)

∣∣∣∣∣
θ̂

] (
θ − θ̂

)

= E

[
∂

∂θ

∑
S1

∣∣∣∣∣
θ̂

] (
θ − θ̂

)
= E

[
∂2

∂θ2

∑
ln f(xi, θ)

∣∣∣∣∣
θ̂

] (
θ − θ̂

)

= E

[
∂S

∂θ

∣∣∣∣∣
θ̂

] (
θ − θ̂

)
= E

[
∂2`

∂θ2

∣∣∣∣∣
θ̂

] (
θ − θ̂

)

= −I(θ̂)
(
θ − θ̂

)
(8.70)

the last step following from equation 8.23.
There are several consequences of equation 8.70:

• First we note that asymptotically, I(θ) = I(θ̂):

I(θ) = −E
[
∂S

∂θ

]
= E

[
I(θ̂)

]
= I(θ̂)

where the second step follows from equation 8.70 and the last step follows
since I(θ̂) is itself an expectation and the expectation of an expectation is
just the expectation itself.
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• The result, equation 8.70, that θ̂ is linearly related to the score function, im-
plies (sect. 8.2.7) that θ̂ is unbiased and efficient. This an important asymp-
totic property of ml estimators.

• Further, we can integrate equation 8.70,

∂

∂θ
lnL = S(x, θ) ≈ −I(θ̂)(θ − θ̂)

over θ to find

` = lnL ≈ −I(θ̂)
2

(
θ̂ − θ

)2
+ ln k (8.71)

where the integration constant, k, is just k = L(θ̂) = Lmax. Exponentiating,

L(θ) ≈ Lmax exp
[
−1

2
I(θ̂)(θ̂ − θ)2

]
∝ N

(
θ; θ̂, I−1(θ̂)

)
(8.72)

Thus, asymptotically, L is proportional to a Gaussian function of θ with mean
θ̂ and variance 1/I(θ̂).

Instead of starting with equation 8.70, we could use equation 8.67, which ex-
presses the linear dependence of S on θ̂ for any efficient, unbiased estimator. Inte-
grating equation 8.67 leads to

L(θ) = Lmax exp
[
−1

2
C(θ)(θ̂ − θ)2

]

which looks formally similar to equation 8.72 but is not, in fact, a Gaussian function
since C depends on θ. Only asymptotically must C(θ) approach a constant, C(θ)→
I(θ̂). Nevertheless, C(θ) may be constant for finite n, as we have seen in the example
of using x̄ to estimate µ of a Gaussian (cf. section 8.2.7).

We emphasize again that, despite the form of equation 8.72, L is not a p.d.f.
for θ. It is an experimentally observed function. Nevertheless, the principle of
maximum likelihood tells us to take the maximum of L to determine θ̂, i.e., to
take θ̂ equal to the mode of L. In this approximation the mode of L is equal to
the mean, which is just θ̂. In other words the ml estimate is the same as what we
would find if we were to regard L as a p.d.f. for θ and use the expectation (mean)
of L to estimate θ.

Since asymptotically the ml estimator is unbiased and efficient, the Rao-Cramér
bound is attained and V

[
θ̂
]

= I−1(θ). Thus the variance is also that which we would
have found treating L as a p.d.f. for θ.

We have shown that the ml estimator is, under suitable conditions, asymptot-
ically efficient and unbiased. Let us now specify these conditions (without proof)
more precisely:
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1. The true value of θ must not be at the
boundary of its allowed interval such that
the maximum likelihood condition would
not be satisfied, i.e., ∂L

∂θ
must be zero at the

maximum. -

6

θmax θ

L ∂L
∂θ
6= 0 XXz

2. The p.d.f.’s defined by different values of θ must be distinct, i.e., two values
of θ must not give p.d.f.’s whose ratio is not a function of θ. Otherwise there
would be no way to decide between them.

3. The first three derivatives of ` = lnL must exist in the neighborhood of θ̂.

4. The information, I(θ) must be finite and positive definite.

8.4.3 Change of parameters

It is important to understand the difference between a change of parameters and a
change of variable. L(x; θ) is a p.d.f. for the random variable x. Under a change
of variable, x −→ y(x) and L(x; θ) −→ L′(y; θ), the probability must be conserved.
Hence, L(x; θ) dx = L′(y; θ) dy. This requirement results (cf. section 2.2.6) in

L′(y; θ) = L(w(y); θ) |J |

where w is the inverse of the transformation x −→ y and J is the Jacobian of the
transformation.

However, for a change of parameters, θ −→ g(θ), the requirement that prob-
ability be conserved means that L(x; θ) dx = L′(x; g) dx and consequently that
L(x; θ) = L′(x; g). Thus the value of L is unchanged by the transformation from
θ to g(θ) and L′ is obtained from L simply be replacing θ by h(g) where h is the
inverse of the transformation θ → g. There is no Jacobian involved.

As in frequency substitution, the ml estimator of a function, g, of the parameter
θ is just that function for the ml estimator, i.e.,

ĝ(θ) = g(θ̂)

This occurs because, assuming ∂θ
∂g

exists,

∂L
∂g

=
∂L
∂θ

∂θ

∂g

Then the maximum likelihood condition for θ, ∂L
∂θ

= 0, implies that ∂L
∂g

= 0, which
is just the maximum likelihood condition for g.
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-

6

θ

g

∂θ
∂g

= 0

If ∂θ
∂g

is zero at some value of θ, this can intro-
duce additional solutions to the likelihood condi-
tion for g. This will not usually happen if g is a
single-valued function of θ unless there are points
of inflection.

Note that θ̂ unbiased does not imply that
ĝ = g(θ̂) is unbiased and vice versa. Asymptoti-
cally, both θ̂ and ĝ become unbiased and efficient
(previous section), but they usually approach this at different rates.

In the case of more than one parameter, g(θ), the above generalizes to

∂L
∂gk

=
∑

i

∂L
∂θi

∂θi

∂gk
=

(
∂L
∂θ

)T (
∂θ

∂gk

)
(8.73)

and the information matrix transforms as

Ijk(g) =

(
∂gj

∂θ

)T

I(θ)

(
∂gk

∂θ

)
(8.74)

It is not necessary that θ and g have the same dimensions.

8.4.4 Maximum Likelihood vs. Bayesian inference

Recall Bayes’ theorem (section 2.3). Assume that the parameter θ, which we wish
to estimate, can have only discrete values, θ1, θ2, . . . , θk. Applied to the estimation
of θ, Bayes’ theorem can be stated (cf. section 2.4.3)

Pposterior(θi | x) =
P (x | θi)

P (x)
Pprior(θi) (8.75)

and it would seem reasonable to choose as our estimate of θ̂ that value θi having the
largest Pposterior, i.e., the mode of the posterior probability.∗ Since

∑
i Pposterior(θi|x) =

1, we see that P (x) =
∑

i P (x|θi)Pprior(θi) is a constant which serves to normalize
Pposterior. We also see that P (x|θi) is just the likelihood, L(x; θi), apart from nor-
malization.

In the absence of prior knowledge (belief) of θ, Bayes’ postulate tells us to assume
all values equally likely, i.e., Pprior(θi) = 1

k
. Then the right-hand side of equation 8.75

is exactly L(x; θi) (apart from normalization) and maximizing Pposterior is the same
as maximizing L. Thus, Bayesian statistics leads to the same estimator as maximum
likelihood.

∗The mode is not the only choice. A Bayesian could also choose the mean or the median, or
some other property of the posterior probability distribution. Asymptotically, of course, Pposterior

will be Gaussian, in which case the mode, mean, and median are the same.
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In the more usual case of a continuous parameter, equation 8.75 must be rewrit-
ten in terms of probability densities:

fposterior(θ | x) =
f(x | θ)∫

f(x | θ) fprior(θ) dθ
fprior(θ) (8.76)

Assuming Bayes’ postulate, fprior = constant, and again Bayesian statistics is equiv-
alent to maximum likelihood.

But now what happens if we want to estimate the parameter g = g(θ) rather
than θ? Assume that the transformation g(θ) is one-to-one. Then in the discrete
case we just replace θi by gi = g(θi) in equation 8.75. Bayes’ postulate again tells
us that Pprior = 1

k
and the same maximum is found resulting in ĝ = g(θ̂). However

in the continuous case, the change of parameter (cf. sections 2.2.6, 8.4.3) involves
a Jacobian, since in Bayesian statistics f is a p.d.f. for θ, or in other words, the ml

parameter is regarded as the variable of the p.d.f. Hence,

fposterior(g | x) = fposterior(θ | x) |J |

where J is the Jacobian of the transformation θ → g. But since the likelihood
function is a p.d.f. for x, not for θ, there is no Jacobian involved in rewriting L
using g instead of θ, i.e., L(x; g(θ)) = L(x; θ). Thus, assuming Bayes’ postulate
for g, fprior(g) = constant, the value of g which maximizes fposterior(g | x) is that
which maximizes L(x; θ)|J | rather than L(x; θ). Bayesian statistics and maximum
likelihood thus give different estimates of g. To obtain the same result in ml, the
Bayesian would have to use fprior(g) = fprior(θ)|J | rather than the uniform fprior(g)
suggested by Bayes’ postulate. In other words, Bayes’ postulate can only be applied
to θ or g, not to both (except when θ and g are linearly related). But how does
one choose which?∗ This is one of the grounds which would cause most physicists
to prefer maximum likelihood to Bayesian parameter estimation.

8.4.5 Variance of maximum likelihood estimators

We have seen that the variance of an efficient estimator is given by the Rao-Cramér
bound (equation 8.26). Assuming that θ̂ is efficient, substituting θ̂ for θ in this

equation gives an estimate of V
[
θ̂
]
. If, in addition, θ̂ is unbiased (or at least that

the bias does not depend on θ), this just becomes V
[
θ̂
]

= 1/I(θ̂). We recall that the
ml estimator is efficient if an efficient estimator exists, but that this is not always
the case. Nor is the ml estimator always unbiased.

∗There are arguments for the choice of non-uniform priors (see, e.g., Jeffreys34) in certain
circumstances. However, they are not completely convincing and remain controversial.
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If the estimator is unbiased and efficient

However, asymptotically the ml estimator is both unbiased and efficient. Assuming
this to be the case, and also assuming that the range of x does not depend on θ,
we can estimate the variance as follows:

1. Using equation 8.19, I(θ) = E [S2],

V −1
[
θ̂
]

= I(θ) = E
[
S2
]

= E



(
∂`

∂θ

)2



which, for more than one parameter generalizes to

V −1
jk

[
θ̂
]

= E

[
∂`

∂θj

∂`

∂θk

]
(8.77)

If the sample consists of n independent events distributed according to the
p.d.f.’s fi(xi; θ), the score is just the sum of the scores for the individual events
and

V −1
[
θ̂
]

= E



(

n∑

i=1

S1(xi; θ)

)2



Performing the square and using the fact that the expectation of a sum is the
sum of the expectations, we get

V −1
[
θ̂
]

=
n∑

i=1

E
[
S2

1(xi; θ)
]
+

n∑

i=1

n∑

j=1
i6=j

E [S1(xi; θ)S1(xj; θ)]

However, the cross terms are zero, which follows from the fact that for indepen-
dent xi the expectation of the product equals the product of the expectations
and from E [S1(x; θ)] = 0 (equation 8.20). Therefore, generalizing to more
than one parameter,

V −1
jk

[
θ̂
]

=
n∑

i=1

E

[
∂ ln fi(xi; θ)

∂θj

∂ ln fi(xi; θ)

∂θk

]
(8.78)

Not knowing the true value of θ, we estimate this by evaluating it at θ = θ̂.
If all the fi are the same, equation 8.78 reduces to

V −1
jk

[
θ̂
]

= nE

[
∂ ln f(x; θ)

∂θj

∂ ln f(x; θ)

∂θk

]
(8.79)

Rather than calculating the expectation and evaluating it at θ̂, we can estimate
the expectation value by the sample mean evaluated at θ̂:

V̂ −1
jk

[
θ̂
]

=
n∑

i=1

∂ ln f(xi; θ)

∂θj

∣∣∣∣∣
θ̂

∂ ln f(xi; θ)

∂θk

∣∣∣∣∣
θ̂

(8.80)
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2. I is also given by equation 8.23:

I(θ) = −E
[
∂S

∂θ

]
= − ∂S

∂θ̂

∣∣∣∣∣
θ̂=θ

= − ∂2`

∂θ̂2

∣∣∣∣∣
θ̂=θ

(8.81)

where the second step follows from the linear dependence of S on θ̂ (equa-
tion 8.30) for an unbiased, efficient estimator. The variance is then estimated
by evaluating the derivative at θ = θ̂:

V̂ −1
[
θ̂
]

= − ∂2`

∂θ2

∣∣∣∣∣
θ̂

(8.82)

In the case of more than one parameter, this becomes

V −1
jk

[
θ̂
]

= Ijk(θ) = −E
[

∂2`

∂θj∂θk

]
(8.83)

which is estimated by

V̂ −1
jk

[
θ̂
]

= Ijk(θ̂) = − ∂2`

∂θj∂θk

∣∣∣∣∣
θ̂

(8.84)

which is the Hessian matrix∗ of −`. For n independent events, all distributed
as f(x; θ), the expectations in equations 8.81 and 8.83 can be estimated by a
sample mean evaluated at θ̂. Thus

V̂ −1
jk

[
θ̂
]

= −
n∑

i=1

∂2 ln f(xi; θ)

∂θj∂θk

∣∣∣∣∣
θ̂

= −n ∂2 ln f(x; θ)

∂θj∂θk

∣∣∣∣∣
θ̂

(8.85)

The expectation forms (8.77, 8.78, 8.79 and 8.84) are useful for estimating the error
we expect before doing the experiment, e.g., to decide how many events we need to
have in order to achieve a certain precision under various assumptions for θ. Both
the expectation and the sample mean forms (8.80 and 8.85) may be used after the
experiment has been done. It is difficult to give general guidelines on which method
is most reliable.

Example: Let us apply the two methods to the example of n independent xi

distributed normally with the same µ but different σi. Assume that the σi are
known. Recall that in this case

` =
n∑

i=1


−1

2
ln(2π)− ln σi −

1

2

(
(xi − µ)

σi

)2



∗Mathematically it is conditions on the first derivative vector, ∂`/∂θ̂, and on the Hessian matrix
that define the maximum of ` or the minimum of −`. The Hessian matrix is positive (negative)
definite at a minimum (maximum) of the function and indefinite at a saddle point.
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1. From equation 8.78,

V −1 [µ̂] =
n∑

i=1

E



(
∂ ln fi(xi;µ, σi)

∂µ

)2

 =

n∑

i=1

E



(
−1

2

∂

∂µ

(
xi − µ
σi

)2
)2



=
n∑

i=1

E

[
1

σ2
i

(
xi − µ
σi

)2
]

=
n∑

i=1

1

σ2
i

E

[(
xi − µ
σi

)2
]

since σi is just a parameter of fi, hence a constant

=
n∑

i=1

1

σ2
i

since this expectation is 1 for the normal p.d.f.

2. Since ∂`
∂µ

=
∑n

i=1
xi−µ
σ2

i
, equation 8.84 yields

V −1 [µ̂] = − ∂
2`

∂µ2
=

n∑

i=1

1

σ2
i

Thus both methods give V [µ̂] = 1/
∑(

1
σ2

i

)
. This is the same result we found in

section 8.4.1, equation 8.60, where we calculated the variance explicitly from the
definition. This was, of course, to be expected since in this example µ̂ is unbiased
and efficient and the range of x is independent of µ.

Variance using Bayesian inference

We have emphasized that L is the p.d.f. for x given θ and not the p.d.f. for θ given
x. However, using the Bayesian interpretation of probability (sections 2.4.3 and
8.4.4), these two conditional p.d.f.’s are related: By Bayes’ theorem,

fposterior(θ|x) ∝ f(x|θ) fprior(θ)

and f(x|θ) is just the likelihood function L(x; θ). If we are willing to accept Bayes’
postulate (for which there is no mathematical justification) and take the prior p.d.f.
for θ, fprior(θ), as uniform in θ (within possible physical limits), we have

fposterior(θ|x) =
L(x; θ)

∫ L(x; θ) dθ
(8.86)

where the explicit normalization in the denominator is needed to normalize fposterior,
since L is normalized by

∫ L dx = 1. Since, in Bayesian inference L is regarded as
a p.d.f. for θ, the covariance matrix of θ̂,

Vjk

[
θ̂
]

= E
[(
θ̂j − θj

) (
θ̂k − θk

)]
(8.87)

is given by

Vjk

[
θ̂
]

=

∫ (
θ̂j − θj

) (
θ̂k − θk

)
L dθ

∫ L dθ
(8.88)
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If the integrals in equation 8.88 can not be easily performed analytically, we could
use Monte Carlo integration. Alternatively, we can estimate the expectation (8.87)
from the data. This is similar to Monte Carlo integration, but instead of Monte
Carlo points θ we use the data themselves. Assuming n independent observations
xi, we estimate each parameter for each observation separately, keeping all other
parameters fixed at θ̂. Thus, θ̂j(i) is the value of θ̂j that would be obtained from

using only the ith event. In other words, θ̂j(i) is the solution of

∂fi(xi; θ)

∂θj

∣∣∣∣∣
θk=θ̂k,k 6=j

= 0

With L regarded as a p.d.f. for θ, the θ̂j(i) are r.v.’s distributed according to L.

Their variance about θ thus estimates the variance of θ̂. However, not knowing θ
we must use our estimate of it. This leads to the following estimate of the covariance,
where in equation 8.87 the expectation has been replaced by an average over the
observations, θ̂ by the estimate from one observation θ̂j(i), and θj by our estimate

θ̂j:

V̂jk

[
θ̂
]

=
1

n

n∑

i=1

(
θ̂j(i) − θ̂j

) (
θ̂k(i) − θ̂k

)
(8.89)

Equation 8.88 is particularly easy to evaluate when L is a Gaussian. We have
seen that asymptotically L is a Gaussian function of θ (equation 8.72) and hence
that ` is parabolic (equation 8.71):

L = Lmax e
− 1

2
Q2

, Q2 =
(θ̂ − θ)2

σ2
, ` = lnL = lnLmax −

1

2
Q2 (8.90)

Then, using the Bayesian interpretation, it follows from equation 8.88 that V
[
θ̂
]

=

σ2 = I−1(θ̂).
However, in the asymptotic limit it is not necessary to invoke the Bayesian

interpretation to obtain this result, since we already know from the asymptotic
efficiency of the ml estimator that V

[
θ̂
]

= I−1(θ) = I−1(θ̂).

A graphical method

-

6

θ

`(θ)

θ̂

`max

θ1

`1

θ2

`2

In any case, if L is Gaussian, the values of

θ for which Q2 = (θ̂−θ)2

σ2 = 1, i.e., the values
of θ corresponding to 1 standard deviation
“errors”, θ̂ − θ = ±σ, are just those values,
θ1, for which ` differs from `max by 1/2. This
provides another way to estimate the uncer-

tainty, δθ̂ =
√
V
[
θ̂
]
, on θ̂: Find the value of

θ, θ1, for which

`1 = `(θ1) = `max −
1

2



8.4. MAXIMUM LIKELIHOOD METHOD 133

The error is then δθ̂ = |θ̂− θ1| This could be done graphically from a plot of ` vs. θ.
Similarly, two-standard deviation errors (Q2 = 4) could be found using `2 = `max−2,
etc. (The change in ` corresponding to Q standard deviations is Q2/2.)

But, what do we do if L is not Gaussian? We can be Bayesian and use equa-
tion 8.87 or 8.88. Not wanting to be Bayesian, we can use the following approach.
The two approaches will in general give different estimates of the variance, the
difference being smallest when L is nearly of a Gaussian form.

Recall that for efficient, unbiased estimators L can be Gaussian even for finite n.
Imagine a one-to-one transformation g(θ) from the parameter θ to a new parameter
g and suppose that ĝ is efficient and unbiased and hence that L(g) is normal. Such
a g may not exist, but for now we assume that it does. We have seen that ĝ = g(θ̂).
Let h be the inverse transformation, i.e., θ = h[g(θ)]. Since, by assumption, L(g)
is Gaussian, δg is given by a change of 1/2 in `(g).

But, as we have seen in section 8.4.3, L(θ|x) = L(g(θ)|x) for all θ; there is no
Jacobian involved in going from L(θ) to L(g). This means that since we can find
δg from a change of 1/2 in `(g), δθ will be given by the same change.

-

6

g

`(g)

ĝ

`max

g1

`1

g2

`2

-

6

θ

`(θ)

θ̂ θ1 θ2

L(θ) need not be a symmetric function of θ, in which case the errors on θ̂ are
asymmetric.

Note that we do not actually need to use the parameter g. We can find δθ
directly.

A problem is that such a g may not exist. Asymptotically both L(g) and L(θ) are
Gaussian. However, in general, L(g) and L(θ) will approach normality at different
rates. It is therefore plausible that there exists some g which is at least nearly
normally distributed for finite n. Since we never actually have to use g, we can only
adopt it as an assumption, realizing that the further away L for the ‘best’ g is from
normality, the less accurate will be our estimation of δθ.

This method of error estimation is easily extended to the case of more than
one parameter. If all estimators are efficient, L will be a multivariate normal. We
show the example of two parameters, θ1 and θ2. The condition of a change of 1/2
in `, i.e., Q2 = 1, gives an ellipse of constant L in θ2 vs. θ1. A distinction must be
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made, however, between the ‘error’ and the ‘reduced’ or ‘conditional error’, which
is the error if the values of the other parameters are all assumed to be equal to their
estimated values.

-

6

θ1

θ2

θ̂1

θ̂2

← σ1 →←σc
1→

↑
σ2

↓

↑
σc

2↓

If, for example, θ2 is held fixed at θ̂2
and ` varied by 1/2, the conditional er-
ror, σc

1 is found rather than the error σ1,
which is the error that enters the multi-
variate normal distribution. In practice,
the maximum of `, as well as the vari-
ation of ` by 1/2, are usually found on a
computer using a search technique. How-
ever, since it is easier (faster), the pro-
gram may compute σc rather than σ. If
the parameters are uncorrelated, σc = σ.
If parameters are correlated, the correla-
tion should be stated along with the errors, or in other words, the complete covari-
ance matrix should be stated, e.g., as σ1, σ2, and ρ, the correlation coefficient.

8.4.6 Summary

• If the sample is large, maximum likelihood gives a unique, unbiased, minimum
variance estimate under certain general conditions. However ‘large’ is not well
defined. For finite samples the ml estimate may not be unique, unbiased, or
of minimum variance. In this case other estimators may be preferable.

• Maximum likelihood estimators are often the easiest to compute, especially
for complex problems. In many practical cases maximum likelihood is the
only tractable approach.

• Maximum likelihood estimators are sufficient, i.e., they use all the information
about the parameter that is contained in the data. In particular, for small
samples ml estimators can be much superior to methods which rely on binned
data.

• Maximum likelihood estimators are not necessarily robust. If you use the
wrong p.d.f., the ml estimate may be worse than that from some other
method.

• The maximum likelihood method gives no way of testing the validity of the
underlying theory, i.e., whether or not the assumed p.d.f. is the correct one.
In practice this is not so bad: You can always follow the maximum likelihood
estimation by a goodness-of-fit test. Such tests will be discussed in section
10.6.
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And finally, a practical point: In complex situations, the likelihood condition
∂`
∂θi

= 0 can not be solved analytically. You then must code the likelihood function
and use computer routines to find its maximum. Very clever programs exist as
pre-packaged routines for finding the minimum or maximum of a function. Do not
be tempted to write your own; take one from a good software library, e.g., that of
the Numerical Algorithms Group (NAG) or the MINUIT35 program from CERN.
Note that such programs usually search for a minimum instead of a maximum, so
put a minus sign before your `. One usually writes a subroutine which calculates
the function for values of θ chosen by the program. The program needs a starting
value for θ. It evaluates the function at numerous points in θ space, determines
the most likely direction in this space to find the minimum (or maximum), and
proceeds to search until the minimum is found. The search can usually be speeded
up by also supplying a subroutine to calculate the derivatives of ` with respect to
the θi; otherwise the program must do this numerically.

8.4.7 Extended Maximum Likelihood

Applied to n independent events from the same p.d.f., the likelihood method, as
discussed so far, is a method to determine parameters governing the shape of the
p.d.f. The number of events in the sample is not regarded as a variable.

Fermi proposed to extend the maximum likelihood method by including the
number of events as a parameter to be estimated. His motivation was the grand
canonical ensemble of statistical mechanics. In the canonical ensemble the number
of atoms or molecules is regarded as fixed while in the grand canonical ensemble
the number is free to vary.

To incorporate a variable number of events, the ordinary likelihood function is
multiplied by the Poisson p.d.f. expressing the probability of obtaining n events
when the expected number of events is ν. This expected number of events is then
another parameter to be estimated from the data. The likelihood becomes

L(x; θ) =
n∏

i=1

f(xi; θ) −→ LE(x; θ, ν) =
e−ννn

n!

n∏

i=1

f(xi; θ) (8.91)

`(x; θ) =
n∑

i=1

ln f(xi; θ) −→ `E(x; θ, ν) =
n∑

i=1

ln f(xi; θ)− ν + n ln ν − lnn!

`E(x; θ, ν) =
n∑

i=1

ln νf(xi; θ)− ν − lnn!

Or, `E(x; θ, ν) =
n∑

i=1

ln g(xi; θ)− ν (8.92)

where g = νf is the p.d.f. normalized to ν rather than to 1 and where we have
dropped the constant term lnn! since constant terms are irrelevant in finding the
maximum and the variance of estimators.
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Just as the grand canonical ensemble can be used even for situations where the
number of molecules is in fact constant (non-permeable walls), so also the extended
maximum likelihood method. In particular, if there is no functional relationship
between ν and θ, the likelihood condition ∂`E/∂ν = 0 will lead to ν̂ = n. Also,
∂`E/∂θj = ∂`/∂θj , which leads to identical estimators θ̂j as in the ordinary max-
imum likelihood method. Nevertheless, we may still prefer to use the extended
maximum likelihood method. It can happen that the p.d.f., f , is very difficult to
normalize, e.g., involving a lengthy numerical integration. Then, even though the
number of events is fixed, we can use the extended maximum likelihood method,
allowing the maximum likelihood principle to find the normalization. In this case,
the resulting estimate of ν should turn out to be the actual number of events n times
the normalization of f and the estimate of the other parameters to be the same as
would have been found using the ordinary maximum likelihood method. However,
the errors on the parameters will be overestimated since the method assumes that
ν can have fluctuations. This overestimation can be removed (cf. section 3.8) by

1. inverting the covariance matrix,

2. removing the row and column corresponding to ν,

3. inverting the resulting matrix.

This corresponds to fixing ν at the best value, ν̂. Thus we could also fix ν = ν̂ and
find the errors on θ̂ by the usual ml procedure.

An example: Suppose we have an angular distribution containing N events, F
in the forward hemisphere and B = N − F in the backward hemisphere. In the
ordinary maximum likelihood method N is regarded as fixed. The p.d.f. for the
division of N events into F forward and B backward is the binomial p.d.f.:

L(F ; p) = B(F ; p,N) =
N !

F !B!
pF (1− p)B

`(F ; p) = F ln p+ B ln(1− p) + lnN !− lnF !B!

The likelihood condition is then

∂`

∂p
=
F

p
− B

1− p = 0 −→ p̂ =
F

F +B
=
F

N

Its variance is given by

V [p̂] = −
[
∂2`

∂p2

]−1

= −
[
F

p2
+

B

(1− p)2

]−1

which we estimate by replacing p by p̂:

V̂ [p̂] = −
[
F

p̂2
+

B

(1− p̂)2

]−1

= −
[
N

p̂
+

N

(1− p̂)

]−1

= −
[

N

p̂(1− p̂)

]−1

=
p̂(1− p̂)

N
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The estimated numbers of forward and backward events, i.e., the estimate of the
expectation of the numbers of forward and backward events if the experiment were
repeated, are then

F̂ = Np̂ = F and B̂ = N(1− p̂) = B

with variance

V
[
F̂
]

= V [Np̂] = N 2V [p̂]

which is estimated by replacing V by V̂ :

V̂
[
F̂
]

= N2V̂ [p̂] = Np̂(1− p̂) = N
F

N

B

N
=
FB

N

Similarly,

V
[
B̂
]

= V [N(1− p̂)] = V [Np̂]

V̂
[
B̂
]

=
FB

N

Further, F̂ , B̂ are completely anticorrelated.
In extended maximum likelihood N is not constant, but Poisson distributed.

Hence,

LE =
e−ννN

N !
L =

e−ννN

N !

N !

F !B!
pF (1− p)B

`E = −ν +N ln ν − lnN ! + F ln p+B ln(1− p) + lnN !− lnF !B!

∂`E
∂ν

= 1 +
N

ν
= 0 −→ ν̂ = N

The likelihood condition for p, ∂`E
∂p

= 0 gives p̂ = F
N

, the same as in ordinary
likelihood. The variance of p̂ is also the same. For ν̂, the variance is found as
follows:

∂2`E
∂ν2

= −N
ν2

−→ V [ν̂] =
ν2

N

Estimating the variance by replacing ν with ν̂ gives V̂ (ν̂) = N . Further,

∂2`E
∂ν∂p

= 0 −→ p̂ and ν̂ are uncorrelated.

The estimate of the number of forward events is F̂ = p̂ν̂ = F , with the variance
found by error propagation:

V
[
F̂
]

= p̂2V [ν̂] + ν̂2V [p̂] =
F 2

N2
N +N2 p̂(1− p̂)

N
=
F 2

N
+N

F

N

B

N
= F
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The result for B̂ is similar. Thus,

F̂ = F ±
√
F and B̂ = B ±

√
B

Alternatively, we can write the p.d.f. as a product of Poisson p.d.f.’s, one for
forward events and one for backward events (see exercise 13). Again, N is not
fixed. The parameters are now the expected numbers of forward, φ, and backward,
β, events. Then

LE =
e−φφF

F !

e−ββB

B!

which leads to the same result:

F̂ = φ̂ = F ±
√
F and B̂ = β̂ = B ±

√
B

again with uncorrelated errors.
The constraint of fixed N leads to smaller, but correlated, errors in the ordi-

nary maximum likelihood method. The estimates of the numbers of forward and
backward events are, however, the same. Which method is correct depends on the
question we are asking. To find the fraction of backward events we should use ordi-
nary maximum likelihood. To find the number of backward events that we should
expect in repetitions of the experiment where the number of events can vary, we
should use extended maximum likelihood.

8.4.8 Constrained parameters

It often happens that the parameters to be estimated are constrained, for instance
by a physical law. The imposition of constraints always implies adding some in-
formation, and therefore the errors of the parameters are in general reduced. One
should therefore be careful not to add incorrect information. One should always test
that the data are indeed compatible with the constraints. For example, before fixing
a parameter at its theoretical value one should perform the fit with the parameter
free and check that the resulting estimate is compatible with the theoretical value.
Even if the theory is true, the data may turn out to give an incompatible value
because of some experimental bias. Testing the compatibility is usually a good way
to discover such experimental problems. How to do this will be discussed in sections
10.4 and 10.6.

The constraints may take the form of a set of equations

g(θ̂) = 0 (8.93)

The most efficient method to deal with such constraints is to change parameters
such that these equations become trivial. For example, if the constraint is

g(θ) = θ1 + θ2 − 1 = 0



8.4. MAXIMUM LIKELIHOOD METHOD 139

we simply replace θ2 by 1− θ1 in the likelihood function and maximize with respect
to θ1.

Similarly, boundaries on a parameter, e.g., θl < θ < θh, can be imposed by the
transformation

θ = θl +
1

2
(sinψ + 1)(θh − θl)

and maximizing L with respect to ψ.
When the θi are fractional contributions, subject to the constraints

0 ≤ θi ≤ 1 ;
k∑

i=1

θi = 1

one can use the following transformation:

θ1 = ξ1

θ2 = (1− ξ1)ξ2
θ3 = (1− ξ1)(1− ξ2)ξ3
... =

...

θk−1 = (1− ξ1)(1− ξ2)(1− ξ3) · · · (1− ξk−2)ξk−1

θk = (1− ξ1)(1− ξ2)(1− ξ3) · · · (1− ξk−2)(1− ξk−1)

where the ξi are bounded by 0 and 1 using the method given above:

ξi =
1

2
(sinψi + 1)

L is then maximized with respect to the k − 1 parameters ψi. A drawback of this
method is that the symmetry of the problem with respect to the parameters is lost.

In general, the above simple methods may be difficult to apply. One then turns
to the method of Lagrangian multipliers. Given the likelihood function L(x; θ) and
the constraints g(θ) = 0, one finds the extremum of

F (x; θ, α) = lnL(x; θ) + αTg(θ) (8.94)

with respect to θ and α. The likelihood condition (equation 8.58) becomes

∂F

∂θi

∣∣∣∣∣ θ=θ̂
α=α̂

=
∂`

∂θi

∣∣∣∣∣
θ=θ̂

+ α̂T ∂g(θ)

∂θi

∣∣∣∣∣
θ=θ̂

= 0 (8.95)

∂F

∂αj

∣∣∣∣∣ θ=θ̂
α=α̂

= g(θ̂) = 0 (8.96)

The estimators of θ found in this way clearly satisfy the constraints (equation 8.93).
They also have all the usual properties of maximum likelihood estimators.
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To find the variances, we construct the matrix of the negative of the second
derivatives:

I ≡ −E




∂2F

∂θ∂θ′
∂2F

∂θ∂α(
∂2F

∂θ∂α

)T
∂2F

∂α2


 = −E




∂2`

∂θ∂θ′
∂g

∂θ(
∂g

∂θ

)T

0


 ≡

(
A B
BT 0

)
(8.97)

It can be shown4 that the covariance matrix of the estimators is then given by

V
[
θ̂
]

= A−1 − A−1B V [α̂] BTA−1 (8.98)

V [α̂] =
(
BTA−1B

)−1
(8.99)

The first term of V
[
θ̂
]

is the ordinary unconstrained covariance matrix; the second
term is the reduction in variance due to the additional information provided by the
constraints. We have implicitly assumed that I is not singular. This may not be the
case, e.g., when the constraint is necessary to define the parameters unambiguously.
One then adds another term to F ,

F ′ = F − g2(θ)

and proceeds as above. The resulting inverse covariance matrix is usually non-
singular.4

Computer programs which search for a maximum will generally perform better
if the constraints are handled correctly, rather than by some trick such as setting the
likelihood very small when the constraint is not satisfied, since this will adversely
affect the program’s estimation of derivatives. Also, use of Lagrangian multipliers
may not work with some programs, since the extremum can be a saddle point rather
than a maximum: a maximum with respect to θ, but a minimum with respect to α.
In such a case, “hill-climbing” methods will not be capable of finding the extremum.

8.5 Least Squares method

8.5.1 Introduction

We begin this subject by starting from maximum likelihood and treating the exam-
ple of n independent xi, each distributed normally with the same mean but different
σi. To estimate µ when all the σi are known we have seen that the likelihood func-
tion is

L =
n∏

i=1

1√
2πσi

exp

[
−1

2

(
xi − µ
σi

)2
]

` = −n
2

ln(2π) +
n∑

i=1

[
− ln σi −

(xi − µ)2

2σ2
i

]
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To maximize L, or `, is equivalent to minimizing
∑n

i=1
(xi−µ)2

σ2
i

. If µ were known, this

quantity would be, assuming each point independent, a χ2(n). Since µ is unknown
we replace it by an estimate of µ, µ̂. There is then one relationship between the
terms of the χ2 and therefore

χ2 =
n∑

i=1

(xi − µ̂)2

σ2
i

(8.100)

is a χ2 not of n, but of n− 1 degrees of freedom.
The method of least squares takes as the estimator of a parameter that value

which minimizes χ2. The least squares estimator is thus given by

∂χ2

∂µ

∣∣∣∣∣
µ=µ̂

= −2
n∑

i=1

xi − µ̂
σ2

i

= 0

which gives the same estimator as did maximum likelihood (equation 8.59):

µ̂ =

∑ xi

σ2
i∑ 1

σ2
i

(8.101)

Although in this example the least squares and maximum likelihood methods
result in the same estimator, this is not true in general, in particular if the p.d.f.
is not normal. We will see that although we arrived at the least squares method
starting from maximum likelihood, least squares is much more solidly based than
maximum likelihood. It is, perhaps as a consequence, also less widely applicable.

The method of least squares is a special case of a more general class of methods
whereby one uses some measure of distance, di(xi, θ), of a data point from its
expected value and minimizes the sum of the distances to obtain the estimate of θ.
Examples of d, in the context of our example, are

1. di(xi, θ) = |xi − µ̂|α

2. di(xi, θ) =

(
|xi − µ̂|
σi

)α

The difference between these two is that in the second case the distance is scaled
by the square root of the expected variance of the distance. If all these variances,
σ2

i , are the same, the two definitions are equivalent. It can be shown10 that the first
distance measure with α = 1 leads to µ̂ given by the sample median. The second
distance measure with α = 2 is just χ2.

The first publication in which least squares was used is by Legendre. In an
1805 paper entitled “Nouvelles méthodes pour la determination des orbites des
comètes” he writes:

Il faut ensuite, lorsque toutes les conditions du problême sont exprimées
convenablement, determiner les coëfficiens de manière à rendre les er-
reurs les plus petites qu’il est possible. Pour cet effet, la méthode qui
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me parâıt la plus simple et la plus générale, consiste à rendre minimum
la somme des quarrés des erreurs.

Least squares was not the only method in use in those days. In 1792 Laplace
minimized the sum of absolute errors, although he later switched to least squares.
Bessel and Encke also used least squares. In 1831, Cauchy suggested, “que la plus
grande de toutes les erreurs, abstraction faite du signe, devienne un minimum”, i.e.,
to minimize the maximum of the absolute values of the deviations, max |xi − µ̂|.
This ‘minimax’ principle gives a very robust estimation but is not very efficient.4

We have noted that the χ2 of equation 8.100 is a χ2 of n− 1 degrees of freedom.
Thus, if we were to repeat the identical experiment many times, the values of χ2

obtained would be distributed as χ2(n − 1), provided that the assumed p.d.f. of
the xi is correct. We would not expect then to get a value of χ2 which would be
very improbable if the assumed p.d.f. were correct. This could provide a reason for
deciding that the assumed p.d.f. is incorrect. This built-in test of the validity of the
assumed p.d.f. is a feature which was missing in the maximum likelihood method.
We will return to this and other hypothesis tests in sections 10.4 and 10.6.

In the example we assumed that the xi were normally distributed about µ with
standard deviation σi. If this were not the case, the distribution of the quantity χ2

for repetitions of the experiment would not follow the expected χ2(n− 1) distribu-
tion. Consequently, the chance of getting a particular value of χ2 would not be that
given by the χ2 distribution. In other words, the quantity that we have called χ2 is
a χ2 r.v. only if our assumption that the xi are distributed normally is correct.

Assuming that we have not rejected the p.d.f., we need to estimate the variance
of µ̂. First we can use error propagation (section 8.3.6) to calculate the variance of
µ̂, given by equation 8.101, from the variances of the xi. In our example µ̂ is linear
in the xi; hence the method is exact (equation 8.49):

V [µ̂] =
∑(

∂µ̂

∂xi

)2

V [xi] =

(
1

∑
(1/σi)2

)2∑ V [xi]

σ4
i

=
1

∑ 1
σ2

i

which agrees with the variance found in the maximum likelihood method (equa-
tion 8.60).

We see that in this example (although not in general true) the variance of the
estimator does not depend on the value of χ2. However, it does depend on the
shape of χ2(µ):

χ2(µ) =
∑(

xi − µ
σi

)2

∂χ2

∂µ

∣∣∣∣∣
µ̂

= −
∑ 2(xi − µ̂)

σ2
i

= 0

∂2χ2

∂µ2

∣∣∣∣∣
µ̂

= 2
∑ 1

σ2
i

=
2

V [µ̂]
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-

6

µ̂

χ2
min

µ

χ2(µ)All higher order derivatives are zero, a con-
sequence of the efficiency of the estimator and
the linear relationship between χ2 and `. Thus
the χ2 is a parabola:

χ2(µ) = χ2(µ̂) +
(µ̂− µ)2

V [µ̂]

Corresponding to what we did in the maxi-
mum likelihood method, we construct the er-
ror on µ̂ by finding that value of µ for which χ2(µ) − χ2(µ̂) has a particular
value. From the above equation we see that a χ2-difference of 1 occurs when
(µ̂− µ)2 = V [µ̂], i.e., for those values of µ which are one standard deviation from
µ̂, or more generally a value of µ for which χ2(µ) = χ2(µ̂) = n2 corresponds to an
n standard deviation difference from µ̂.

8.5.2 The Linear Model

In the preceding example we had a number of measurements of a fixed quantity.
Now let us suppose that we have a number of measurements yi of a quantity y which
depends on some other quantity x. Assume, for now, that the values xi are known
exactly, i.e., without error. For each xi, y is measured to be yi with expected error
σi. We assume that σi does not depend on yi.

One of the reasons for doing a fit to a curve is to enable us to predict the
most likely value of future measurements at a specified x. For example, we wish to
calibrate an instrument. Then the predictor variable x would be the value that the
instrument reads. The response variable y would be the true value. A fit averages
out the fluctuations in the individual readings as much as possible. This only works,
of course, if the form used for the curve in the fit is at least approximately correct.
Although we will use a one-dimensional predictor variable x, the generalization to
more dimensions is straightforward: x→ x.

Assume now that we have a model for y vs. x in terms of certain parameters θ
which are coefficients of known functions of x:

y(x) = θ1h1(x) + θ2h2(x) + θ3h3(x) + . . .+ θjhj(x) (8.102)

This is the curve which we fit to the data. There are k parameters, θj, to be
estimated. The important features of this model are that the hj are known, distin-
guishable, functions of x, single-valued over the range of x, and that y is linear in
the θj. The word ‘linear’ in the term ‘linear model’ thus refers to the parameters θj

and not to the variable x. In some cases the linear model is just an approximation
arrived at by retaining only the first few terms of a Taylor series. The functions hj

must be distinguishable, i.e., no hj may be expressible as a linear combination of
the other hj; otherwise the corresponding θj will be indeterminate.
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We want to determine the values of the θj for which the model (eq. 8.102) best
fits the measurements. We assume that any deviation of a point yi from this curve
is due to measurement error or some other unbiased effects beyond our control, but
whose distribution is known from previous study of the measuring process to have
variance σ2

i . It need not be a Gaussian. We take as our measure of the distance of
the point yi from the hypothesized curve the squared distance in units of σi, as in
our example above.

The general term for this fitting procedure is ‘Regression Analysis’. This term
is of historical origin and like many such terms it is not particularly appropriate;
nothing regresses. The term is not much used in physics, where we prefer to speak of
least squares fits, but is still in common use in the social sciences and in statistics
books. Some authors make a distinction between regression analysis and least
squares, reserving the term regression for the case where the yi (and perhaps the
xi) are means (or other descriptive statistics) of some random variable, e.g., y the
average height and x the average weight of Dutch male university students. The
mathematics is, however, the same.

-

6

x

y
true curve�

p.d.f. of yi at xi
�

xi

y(xi)

yi

1

1

We assume that the actual measurements are described by

yi = y(xi) + εi =
k∑

j=1

θjhj(xi) + εi (8.103)

where the unknown error on yi has the properties: E [εi] = 0, V [εi] = σ2
i , and σ2

i is
known. The εi do not have to be normally distributed for most of what we shall do;
where a Gaussian assumption is needed, we will say so. Note that if at each xi the
yi does not have a normal p.d.f., we may be able to transform to a set of variables
which does.

Further, we assume for simplicity that each yi is an independent measurement,
although correlations can easily be taken into account by making the error matrix
non-diagonal, as will be discussed. The xi may be chosen any way we wish, including
several xi which are equal. However, we shall see that we need at least k distinct
values of x to determine k parameters θj.
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Estimator

The problem is now to determine the ‘best’ values of k parameters, θj, from n
measurements, (xi, yi). The deviations from the true curve are εi. Therefore the
“χ2” is

Q2 =
n∑

i=1

ε2i
σ2

i

(8.104)

=
n∑

i=1

(
yi − y(xi)

σi

)2

=
n∑

i=1

1

σ2
i


yi −

k∑

j=1

θjhj(xi)




2

(8.105)

This is a true χ2, i.e., distributed as a χ2 p.d.f., only if the εi are normally dis-
tributed. To emphasize this we use the symbol Q2 instead of χ2.

We do not know the actual value of Q2, since we do not know the true values
of the parameters θj. The least squares method estimates θ by that value θ̂ which
minimizes Q2. This is found from the k equations (l = 1, . . . , k)

∂Q2

∂θl
= 2

n∑

i=1

1

σ2
i


yi −

k∑

j=1

θjhj(xi)


 (−hl(xi)) = 0

which we rewrite as

n∑

i=1

hl(xi)

σ2
i

k∑

j=1

θ̂jhj(xi) =
n∑

i=1

yi

σ2
i

hl(xi) (8.106)

This is a set of k linear equations in k unknowns. They are called the normal
equations. It is easier to work in matrix notation. We write

y =



y1
...
yn


 ; θ =



θ1
...
θk


 ; ε =



ε1
...
εn




H =




h1(x1) h2(x1) . . . hk(x1)
h1(x2) h2(x2) . . . hk(x2)

...
...

. . .
...

h1(xn) h2(xn) . . . hk(xn)




Then

H θ =




∑k
j=1 θjhj(x1)∑k
j=1 θjhj(x2)

...∑k
j=1 θjhj(x2)
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and the model (eq. 8.103) can be rewritten

y = H θ + ε (8.107)

Since E [ε] = 0, we obtain E
[
y
]

= H θ. In other words, the expectation value of
each measurement is exactly the value given by the model.

The errors σ2
i can also be incorporated in a matrix, which is diagonal given our

assumption of independent measurements,

V [y] =



σ2

1 . . . 0
...

. . .
...

0 . . . σ2
n




If the measurements are not independent, we incorporate that by setting the off-
diagonal elements to the covariances of the measurements. In this matrix notation,
the equations for Q2 (equations 8.104 and 8.105) become

Q2 = εTV −1ε (8.108)

=
(
y −H θ

)T
V −1

(
y −H θ

)
(8.109)

To find the estimates of θ we solve

∂Q2

∂θ
= −2HTV −1

(
y −H θ

)
= 0 (8.110)

which gives the normal equations corresponding to equations 8.106, but now in
matrix form:

HT V −1 H θ̂ = HT V −1 y
(k×n) (n×n) (n×k) (k×1) (k×n) (n×n) (n×1)

(8.111)

where we have indicated the dimension of the matrices. The normal equations are
solved by inverting the square matrix HTV −1H, which is a symmetric matrix since
V is symmetric. The solution is then

θ̂ =
(
HTV −1H

)−1
HTV −1y (8.112)

It is useful to note that the actual sizes of the errors σ2
i do not have to be known

to find θ̂; only their relative sizes. To see this, write V = σ2W , where σ2 is an
arbitrary scale factor and insert this in equation 8.112. The factors σ2 cancel; thus
σ2 need not be known in order to determine θ̂.

Now let us evaluate the expectation of θ̂:

E
[
θ̂
]

= E
[(
HTV −1H

)−1
HTV −1y

]
=
(
HTV −1H

)−1
HTV −1E

[
y
]

=
(
HTV −1H

)−1 (
HTV −1H

)
θ = θ
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Thus θ̂ is unbiased, assuming that the model is correct. This is true even for small
n. (Recall that maximum likelihood estimators are often biased for finite n.)

Procedures exist for solving the normal equations without the intermediate step
of matrix inversion. Such methods are usually preferable in that they usually suffer
less from round-off problems.

In some cases, it is more convenient to solve these equations by numerical ap-
proximation methods. As discussed at the end of section 8.4.6, programs exist to
find the minimum of a function. For simple cases like the linear problem we have
considered, use of such programs is not very wasteful of computer time, and its
simplicity decreases the probability of an experimenter’s error and probably saves
his time as well. If the problem is not linear, a case which we shall shortly discuss,
such an approach is usually best.

We have stated that there must be no linear relationship between the hj. If
there is, then the columns of H are not all independent, and since V is symmetric,
HTV −1H will be singular. The best approach is then to eliminate some of the h’s
until the linear relationships no longer exist. Also, there must be at least k distinct
xi; otherwise the same matrix will be singular.

Note that if the number of parameters k is equal to the number of distinct values
of x, i.e., n = k assuming all xi are distinct, then

(
HTV −1H

)−1
= H−1V

(
HT

)−1

Substituting in equation 8.112 yields θ̂ = H−1 y, assuming that HTV −1H is not

singular. Thus θ̂ is independent of the errors. The curve will pass through all the
points, if that is possible. It may not be possible; the assumed model may not be
correct.

Variance

The covariance matrix of the estimators is given by

V
[
θ̂
]

=
[(
HTV −1H

)−1
HTV −1

]

︸ ︷︷ ︸
V
[
y
] [(

HTV −1H
)−1

HTV −1
]T

︸ ︷︷ ︸
(k×k) (k×n) (n×n) (n×k)

(8.113)

This can be demonstrated by working out a simple example. Alternatively, it follows
from propagation of errors (section 8.3.6): Since we are converting from errors on
y to errors on θ̂, the matrix D (equation 8.53) is

D(θ̂) =




∂θ̂1

∂y1

∂θ̂2

∂y1
. . . ∂θ̂k

∂y1

∂θ̂1

∂y2

∂θ̂2

∂y2
. . . ∂θ̂k

∂y2

...
...

. . .
...

∂θ̂1

∂yn

∂θ̂2

∂yn
. . . ∂θ̂k

∂yn
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The elements of D are found by differentiating equation 8.112, which gives

DT
ij = Dji =

∂θ̂i

∂yj

=
[(
HTV −1H

)−1
HTV −1

]

ij
(8.114)

or

D =
[(
HTV −1H

)−1
HT V −1

]T
(8.115)

The covariance (equation 8.113) then follows from equation 8.52, V
[
θ̂
]

= DTV
[
y
]
D.

What we here call V
[
y
]

is what we previously just called V . It is a square,

symmetric matrix. Hence V −1 is also square and symmetric and therefore (V −1)T =

V −1. For the same reason
[(
HTV −1H

)−1
]T

=
(
HTV −1H

)−1
. Therefore, equation

8.113 can be rewritten:

V
[
θ̂
]

=
(
HTV −1H

)−1
HTV −1V V −1H

(
HTV −1H

)−1

=
(
HTV −1H

)−1
HTV −1H

(
HTV −1H

)−1

V
[
θ̂
]

=
(
HTV −1H

)−1
(8.116)

Equation 8.112 for the estimator θ̂ and equation 8.116 for its variance constitute
the complete method of linear least squares.

σ2 unknown

If V (y) is only known up to an overall constant, i.e., V = σ2W with σ2 unknown,
it can be estimated from the minimum value of Q2: Defining Q2 in terms of W , its
minimum value is given by equation 8.108 with θ = θ̂:

Q2
min =

(
y −H θ̂

)T
W−1

(
y −H θ̂

)
(8.117)

If the εi are normally distributed, Q2 = σ2χ2 where the χ2 has n − k degrees of
freedom. The expectation of Q2 is then

E
[
Q2
]

= E
[
σ2χ2

]
= σ2(n− k)

Therefore,

σ̂2 =
Q2

min

n− k (8.118)

is an unbiased estimate of σ2. It can be shown∗ that this result is true even when
the εi are not normally distributed.

∗See Kendall & Stuart10, vol. II, sect. 19.9 and exercise 19.5.
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Interpolation

Having found θ̂, we may wish to calculate the value of y for some particular value
of x. In fact, the reason for doing the fit is often to be able to interpolate or
extrapolate the data points to other values of x. This is done by substituting the
estimators in the model. The variance is found by error propagation, reversing the
procedure used above to find the variance of θ̂. The estimate ŷ0 of y at x = x0 and
its variance are therefore given by

ŷ0 = H0θ̂ (8.119)

V [ŷ0] = H0 V (θ̂)HT
0 = H0

(
HT V −1

[
y
]
H
)−1

HT
0 (8.120)

where H0 = (h1(x0) h2(x0) . . . hk(x0) ), i.e., the H-matrix for the single point
x0.

8.5.3 Derivative formulation

We can derive the above results in another way. The covariance matrix can be
found from the derivatives of Q2: Starting from equation 8.109,

∂Q2

∂θ

∣∣∣∣∣
θ=θ̂

= −2HTV −1
(
y −H θ̂

)
(8.121)

∂2Q2

∂θ2

∣∣∣∣∣
θ=θ̂

= +2HTV −1H = 2V −1
[
θ̂
]

(8.122)

This is a very useful way to calculate the covariance, which we have already seen in
our simple example of repeated measurements of a fixed quantity in the introduction
(sect. 8.5.1).

In fact, the solution θ̂ can be written in terms of the derivatives of Q2 making
it unnecessary to construct H, V , and the associated matrix products. To see this
we substitute the second derivative, equation 8.122, in equation 8.112. Since we are
trying to find θ̂, we do not yet know it, and we can not evaluate the derivative at
θ = θ̂. We therefore evaluate it at some guessed value, θ0. Thus,

θ̂ = 2


 ∂

2Q2

∂θ2

∣∣∣∣∣
θ=θ0




−1

HTV −1y

=


 ∂

2Q2

∂θ2

∣∣∣∣∣
θ=θ0




−1 
 ∂

2Q2

∂θ2

∣∣∣∣∣
θ=θ0

· θ0 −
∂Q2

∂θ

∣∣∣∣∣
θ=θ0




= θ0 −

 ∂

2Q2

∂θ2

∣∣∣∣∣
θ=θ0




−1

· ∂Q
2

∂θ

∣∣∣∣∣
θ=θ0

(8.123)

This is the Newton-Raphson method of solving the equations ∂Q2

∂θ
= 0. It is exact,

i.e., independent of the choice of θ0 for the linear model where the form of Q2 is a
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parabola. In the non-linear case, the method can still be used, but iteratively; its
success will depend on how close θ0 is to θ̂ and on how non-linear the problem is.

The derivative formulation for the least squares solution is frequently the most
convenient technique in practical problems. The derivatives we need are

∂Q2

∂θi
=

∂

∂θi

∑

m

ε2m
σ2

m

= 2
∑

m

εm
σ2

m

∂εm
∂θi

and
∂2Q2

∂θi∂θj

= 2
∑

m

1

σ2
m

∂εm
∂θi

∂εm
∂θj

+ 2
∑

m

εm
σ2

m

∂2εm
∂θi∂θj

In the linear case, ∂2εm

∂θi∂θj
= 0, and ∂εm

∂θi
= −hi(xm). Thus, the necessary derivatives

are easy to compute.
Finally, we note that the minimum value of Q2 is given by

Q2(θ̂) = Q2(θ0) +
∂Q2

∂θ

∣∣∣∣∣
θ=θ0

· (θ̂ − θ0) +
1

2
(θ̂ − θ0)

T ∂2Q2

∂θ2

∣∣∣∣∣
θ=θ0

(θ̂ − θ0) (8.124)

where we have expanded Q2(θ̂) about θ0. Third and higher order terms are zero for
the linear model.

Just as in the example in the introduction to least squares, we can show, by
expanding Q2 about θ̂ that the set of values of θ given by Q2(θ) = Q2

min + 1 define
the one standard deviation errors on θ̂. This is the same as the geometrical method
to find the errors in maximum likelihood analysis (sect. 8.4.5), except that here
the difference in Q2 is 1 whereas the difference in ` was 1/2. This is because the
covariance matrix here is given by twice the inverse of the second derivative matrix,
whereas it was equal to the inverse of the second derivative matrix in the maximum
likelihood case.

So far we have made no use of the assumption that the εi are Gaussian dis-
tributed. We have only used the conditions E(εi) = 0 and V [εi] = σ2

i known and
the linearity of the model.

8.5.4 Gauss-Markov Theorem

This is the theorem which provides the method of least squares with its firm mathe-
matical foundation. In 1812 Laplace showed that the method of least squares gives
unbiased estimates, irrespective of the parent distribution. Nine years later Gauss
proved that among the class of estimators which are both linear combinations of
the data and unbiased estimators of the parameters, the method of least squares
gives estimates having the least possible variance. This was treated more gener-
ally by Markov in 1912. It was extended in 1934 by Aitken to the case where the
observations are correlated and have different variances.

We will simply state the theorem without proof:∗ If E [εi] = 0 and the covariance
matrix of the εi, V [ε] is finite and fixed, i.e., independent of θ and y, (it does not

∗For a proof, see for example, Kendall & Stuart10, chapter 19, or Eadie et al.4
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have to be diagonal), then the least squares estimate, θ̂ is unbiased and has the
smallest variance of all linear (in y), unbiased estimates, regardless of the p.d.f. for
the εi.

Note that
• This theorem concerns only linear unbiased estimators. It may be possible,

particularly if ε is not normally distributed, to find a non-linear unbiased
estimator with a smaller variance. Biased estimators with a smaller variance
may also exist.

• Least squares does not in general give the same result as maximum likelihood
(unless the εi are Gaussian) even for linear models. In this case, linear least
squares is often to be preferred to linear maximum likelihood where appli-
cable and convenient, since linear least squares is unbiased and has smallest
variance. An exception may occur in small samples where the data must be
binned in order to do a least squares analysis, causing a loss of information.

• The assumptions are important: The measurement errors must have zero
mean and they must be homoscedastic (the technical name for constant vari-
ance). Non-zero means or heteroscedastic variances may reveal themselves in
the residuals, yi − f(xi), cf.. section 10.6.8.

8.5.5 Examples

A Straight-Line Fit

As an example of linear least squares we do a least squares fit of independent
measurements yi at points xi assuming the model y = a+ bx. Thus,

θ =
(
a
b

)
; h =

(
1
x

)
; H =




1 x1

1 x2
...

...
1 xn




and y = H θ + ε

Since the measurements are independent, the covariance matrix is diagonal with

Vii(y) = Vii(ε) = σ2
i and Q2 = εTV −1 ε =

n∑

i=1

ε2i
σ2

i

=
n∑

i=1

(
yi − a− bxi

σi

)2

Hence, using the derivative method,

∂Q2

∂a
= 0 −→ â =

1
∑n

i=1
1
σ2

i

n∑

i=1

yi − b̂xi

σ2
i

∂Q2

∂b
= 0 −→ b̂ =

1
∑n

i=1
x2

i

σ2
i

n∑

i=1

xiyi − âxi

σ2
i
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Solving, we find

b̂ =

(∑ xiyi

σ2
i

)(∑ 1
σ2

i

)
−
(∑ yi

σ2
i

)(∑ xi

σ2
i

)

(∑ x2
i

σ2
i

)(∑ 1
σ2

i

)
−
(∑ xi

σ2
i

)2

which can in turn be substituted in the expression for â.

Alternatively, we can solve the matrix equation,

θ̂ =
(
HTV −1H

)−1
HTV −1y

which, of course, gives the same result.

Note that if all σi are the same, σi = σ, then

â = ȳ − b̂x̄ and b̂ =
xy − x̄ȳ
x2 − x̄2

(8.125)

These are the formulae which are programmed into many pocket calculators. As
such, they should only be used when the σi are all the same. These formulae are,
however, also applicable to the case where not all σi are the same if the sample
average indicated by the bar is interpreted as meaning a weighted sample average

with weights given by 1/σ2
i , e.g., ȳ =

∑
yi/σ2

i∑
1/σ2

i
. The proof is left as an exercise

(ex. 40).

Note that at least two of the xi must be different. Otherwise, the denominator
in the expression for b̂ is zero. This illustrates the general requirement that there
must be at least as many distinct values of xi as there are parameters in the model;
otherwise the matrix HTV −1H will be singular.

The errors on the least squares estimates of the parameters are given by equation
8.122 or 8.116. With all σi the same, equation 8.116 gives

V
[
θ̂
]

=
(
HTV −1H

)−1
=
(
HTH

)−1
σ2

= σ2



(

1 . . . 1
x1 . . . xn

)



1 x1
...

...
1 xn







−1

= σ2
(

n
∑
xi∑

xi
∑
x2

i

)−1

=
σ2

n
∑
x2

i − (
∑
xi)

2

( ∑
x2

i −∑xi

−∑ xi n

)
=

σ2

n
∑

(xi − x̄)2

( ∑
x2

i −∑ xi

−∑xi n

)

Thus, (
V [â] cov(â, b̂)

cov(â, b̂) V
[
b̂
]
)

=
σ2

n
(
x2 − x̄2

)
(
x2 −x̄
−x̄ 1

)
(8.126)

Note that by translating the x-axis such that x̄ becomes zero, the estimates of the
parameters become uncorrelated.
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Here too, it is possible to use this formula for the case where not all σi are the
same. Besides taking the bar as a weighted average, one must also replace σ2 by
its weighted average,

σ2 =

∑
σ2

i /σ
2
i∑

1/σ2
i

=
n

∑
1/σ2

i

(8.127)

Note that the errors are smallest for the largest spread in the xi. Thus we will
attain the best estimates of the parameters by making measurements only at the
extreme values of x. This procedure is, however, seldom advisable since it makes it
impossible to test the validity of the model, as we shall see.

Having found â and b̂, we can calculate the value of y for any value of x by
simply substituting the estimators in the model. The estimate ŷ0 of y at x = x0 is
therefore given by

ŷ0 = â+ b̂x0 (8.128)

We note in passing that this gives ŷ0 = ȳ for x0 = x̄. The variance of ŷ0 is found
by error propagation:

V [ŷ0] = V [â] + x2
0V
[
b̂
]
+ 2x2

0 cov(â, b̂)

Substituting from equation 8.126 gives

V [ŷ0] =
σ2

n


1 +

σ2(x0 − x̄)2

n
(
x2 − x̄2

)


 (8.129)

Thus, the closer x0 is to x̄, the smaller the error in ŷ0.

A Polynomial Fit

To fit a parabola

y = a0 + a1x+ a2x
2

the matrix H is

H =




1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n




Assuming that all the σi are equal, equation 8.112 becomes

θ̂ =



â0

â1

â2


 =




∑
i 1

∑
i xi

∑
i x

2
i∑

i xi
∑

i x
2
i

∑
i x

3
i∑

i x
2
i

∑
i x

3
i

∑
i x

4
i




−1


∑
i yi∑

i xiyi∑
i x

2
i yi




The extension to higher order polynomials is obvious. Unfortunately, there is no
simple method to invert such matrices, even though the form of the matrix appears
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very regular and symmetric. Numerical inversion suffers from rounding errors when
the order of the polynomial is greater than six or seven.

One can hope to mitigate these problems by choosing a set of orthogonal poly-
nomials, e.g., Legendre or Tchebycheff (Chebyshev) polynomials, instead of powers
of x. The off-diagonal terms then involve products of orthogonal functions summed
over the events. The expectation of such products is zero, and hence the sum of
their products over a large number of events should be nearly zero. The matrix is
then nearly diagonal and less prone to numerical problems.

Even better is to find functions which are exactly orthogonal over the measured
data points, i.e., functions, ξ, for which

n∑

i=1

ξj(xi)ξk(xi)(V
−1)jk = δjk

The matrix which has to be inverted, HTV −1H, is then simply the unit matrix. An
additional feature of such a parametrization is that the estimates of the parameters
are independent; the covariance matrix for the parameters is diagonal. Such a set of
functions can always be found, e.g., using Schmidt’s orthogonalization method∗ or,
more simply, using Forsythe’s method.37 Its usefulness is limited to cases where we
are merely seeking a parametrization of the data (for the purpose of interpolation
or extrapolation) rather than seeking to estimate the parameters of a theoretical
model.

8.5.6 Constraints in the linear model

If the parameters to be estimated are constrained, we can, as in the maximum
likelihood case (section 8.4.8), try to write the model in terms of new parameters
which are unconstrained. Alternatively, we can use the more general method of
Lagrangian multipliers, which we will now discuss for least squares fits.

Suppose the model is y = H θ+ε for n observations yi and k parameters θj. The

Hij may take any form, e.g., Hij = xj−1
i for a polynomial fit to the observations yi

taken at points xi as in the previous section.

Suppose that the deviations εi have covariance matrix V and that the parameters
θ are subject to m linear constraints,

k∑

j=1

`ijθj = Ri , i = 1, . . . , m (8.130)

or, in matrix notation,

L θ = R (8.131)

∗See, e.g., Margenau & Murphy36.
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The least squares estimate of θ is then found using a k-component vector of La-
grangian multipliers, 2λ, by finding the extremum of

Q2 =
(
y −H θ

)T
V −1

(
y −H θ

)
+ 2λT (L θ − R) (8.132)

where the first term is the usual Q2 and the second term represents the constraints.
Differentiating with respect to θ and with respect to λ, respectively, yields the
normal equations

HTV −1H θ̂ + LTλ̂ = HTV −1y (8.133a)

L θ̂ = R (8.133b)

which can be combined to give

(
C LT

L 0

)(
θ̂
λ̂

)
=
(
S
R

)
(8.134)

where

C = HTV −1H (8.135)

S = HTV −1y (8.136)

Assuming that both C and LC−1LT can be inverted, the normal equations can be
solved for θ̂ and λ̂ giving3,4

(
θ̂
λ̂

)
=
(
F GT

G E

)(
S
R

)
(8.137)

where∗

W =
(
LC−1LT

)−1
(8.138)

F = C−1 − C−1LTW LC−1

=
(
1− C−1LTW L

)
C−1 (8.139)

G = W LC−1 (8.140)

E = −W (8.141)

The solutions can then be written

θ̂ = F S +GTR = F HTV −1y +GTR (8.142)

λ̂ = GS + E R = GHTV −1ε (8.143)

∗Note that Eadie et al.4 contains a misprint in these equations.
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The covariance matrix can be shown3,4 to be given by

V
[
θ̂
]

= F (8.144)

V
[
λ̂
]

= W (8.145)

cov
(
θ̂, λ̂

)
= 0 (8.146)

In the unconstrained case the solution was θ̂ = C−1S with covariance matrix
V
[
θ̂
]

= C−1. These results are recovered from the above equations by setting terms
involving L or R to zero. From equations 8.139 and 8.144 we see that the constraints
reduce the variance of the estimators, as should be expected since introducing con-
straints adds information. We also see that the constraints introduce (additional)
correlations between the θ̂i.

It can be shown4 that the θ̂ are unbiased, and that E
[
λ̂
]

= 0 as expected.

8.5.7 Improved measurements through constraints

An important use of constraints in the linear model is to improve measurements.
As an example, suppose that one measures the three angles of a triangle. We know,
of course, that the sum of the three angles must be 180◦. However, because of the
resolution of the measuring apparatus, it probably will not be. In particle physics
one often applies the constraints of energy and momentum conservation to the
measurements of the energies and momenta of particles produced in an interaction.∗

By using this knowledge we can obtain improved values of the measurements.
To do this, we make use of the linear model with constraints as developed in the

previous section. We assume that there is just one measurement of each quantity.
If there is more than one, they can be averaged and the average used in the fit. The
model is here the simplest imaginable, y = θ, i.e., what we want to estimate is the
response variable itself. The measurements are then described by (equation 8.103)

yi =
n∑

j=1

θiδij + εi = θi + εi

Thus the matrix H is just the unit matrix, and, in the absence of constraints, the
normal equations have the trivial (and obvious) solution (equation 8.112)

θ̂ =
(
HTV −1H

)−1
HTV −1y = y

The best value of a measurement (θ̂i) is just the measurement itself (yi).
With m linear constraints (equation 8.130 or 8.131) the solution follows imme-

diately from the previous section by setting H = 1. The improved values of the
measurements are then the θ̂i. Note that the constraints introduce a correlation
between the measurements.

∗In particle physics this procedure is known as kinematical fitting since the constraints usually
express the kinematics of energy and momentum conservation.
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8.5.8 Linear Model with errors in both x and y

So far we have considered the xi to be known exactly. Now let us drop this restriction
and allow the xi as well as the yi to have errors: σx i and σy i, respectively.

Straight-line fit
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We begin by treating the case of a
straight-line fit, y = a + bx, from section
8.5.5.

As before, we take Q2 as the sum of
the squares of the distances between the
fit line and the measured point scaled by
the error on this distance. However, this
distance is not unique. This is illustrated
in the figure where the ellipse indicates
the errors on xi and yi. For a point on
the line, Pj, the distance to D is PjD and
the error is the distance along this line from the point D to the error ellipse, RjD:

dj =
PjD

RjD

Since we want the minimum of Q2, we also want to take the minimum of the dj,
i.e., the minimum of

d2
i =

(x− xi)
2

σ2
xi

+
(y − yi)

2

σ2
yi

(8.147)

where we have assumed that the errors on xi and yi are uncorrelated. Substituting
y = a+ bx and setting ddi

dx
= 0 results in the minimum distance being given by

d2
i min =

(yi − a− bxi)
2

σ2
y i + b2σ2

x i

This same result can be found by taking the usual definition of the distance,

d2
i =

(
yi − y(xi)

σi

)2

=

(
yi − a− bxi

σi

)2

where σi is no longer just the error on yi, σy i, but is now the error on yi − a− bxi

and is found by error propagation to be

σ2
i = σ2

y i + b2σ2
x i

Here the error propagation is exact since yi − a− bxi is linear in xi.
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We must now find the minimum of

Q2 =
n∑

i=1

(yi − a− bxi)
2

σ2
y i + b2σ2

x i

(8.148)

The easiest method is to program it and use a minimization program. However,
lets see how far we can get analytically.

Differentiating with respect to a gives

∂Q2

∂a
= −2

n∑

i=1

yi − a− bxi

σ2
y i + b2σ2

x i

Setting this to zero and solving for a results in

â =

∑n
i=1

yi−b̂xi

σ2
y i+b̂2σ2

x i∑n
i=1

1
σ2

y i+b̂2σ2
x i

We note that if all σx i = 0 this reduces to the expression found in section 8.5.5.
Unfortunately, the differentiation with respect to b is more complicated. In practice
it is most easily done numerically by choosing a series of values for b̂, calculating â
from the above formula and using these values of â and b̂ to calculate Q2, repeating
the process until the minimum Q2 is found.

The errors on â and b̂ are most easily found from the condition thatQ2−Q2
min = 1

corresponds to one standard deviation errors.
If all σx i are the same and also all σy i are the same, the situation simplifies

considerably. The above expression for â becomes

â = ȳ − b̂x̄ (8.149)

and differentiation with respect to b leads to

∂Q2

∂b
= −2

n∑

i=1

yi − â− b̂xi

σ2
y + b2σ2

x

+
b̂σ2

x

∑n
i=1(yi − â− b̂xi)

2

σ2
y + b2σ2

x

= 0

Substituting the expression for â into this equation then yields

b̂2σ2
x ∆xy − b̂ (σ2

x ∆y2 − σ2
y ∆x2)− σ2

y ∆xy = 0 (8.150)

where

∆x2 = x2 − x̄2

∆y2 = y2 − ȳ2

∆xy = xy − x̄ȳ
This is a quadratic equation for b̂. Of the two solutions it turns out that the one
with a negative sign before the square root gives the minimum Q2; the one with
the plus sign gives the maximum Q2 of all straight lines passing through the point
(x̄, ȳ). We note that these solutions for â and b̂ reduce to those found in section
8.5.5 when there is no uncertainty on x (σx = 0).
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In general

Now let us consider a more complicated case. Let us represent a data point by the

vector zi =
(
xi

yi

)
. If the model is a more complicated function than a straight

line, or if there is a non-zero correlation between xi and yi, the distance measure di

defined in equation 8.147 becomes

d2
i = (zc

i − zi)
T Vi

−1 (zc
i − zi)

where Vi is the covariance matrix for data point i, Vi =
(

σ2
x i cov(xi, yi)

cov(xi, yi) σ2
y i

)

and the point on the curve closest to zi is represented by zc
i =

(
xc

i

yc
i

)
. The com-

ponents of zc
i are related by the model: yc

i = HT(xc
i) θ, which can be regarded as

constraints for the minimization of Q2. We then use Lagrangian multipliers and
minimize

Q2 =
n∑

i=1

[
(zc

i − zi)
T Vi (z

c
i − zi) + λi

(
yc

i −HT(xc
i)θ
)]

(8.151)

with respect to the unknowns:

k parameters θ

n unknowns xc
i

n unknowns yc
i

n unknowns λi

by setting the derivatives of Q2 with respect to each of these unknowns equal to
zero. The solution of these 3n+ k equations is usually quite messy and a numerical
search for the minimum Q2 is more practical.

8.5.9 Non-linear Models

For simplicity we again assume that the xi are exactly known.
If the deviations of the measurements yi from the true value y(xi) are normally

distributed, the likelihood function is

L(y; θ) =
n∏

i=1

1√
2πσi

exp


−1

2

(
yi − y(xi; θ)

σi

)2



` = lnL = −n
2

ln(2π) +
n∑

i=1


− ln σi −

1

2

(
yi − y(xi; θ)

σi

)2



and L is maximal when

Q2 =
n∑

i=1

(
yi − y(xi; θ)

σi

)2
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is minimal. Thus the least squares method yields the same estimates as the maxi-
mum likelihood method, and accordingly has the same desirable properties.

When the deviations are not normally distributed, the least squares method may
still be used, but it does not have such general optimal properties as to be useful for
small n. Even asymptotically, the estimators need not be of minimum variance.4

In practice, the minimum of Q2 is usually most easily found numerically using
a search program such as MINUIT. However, an iterative solution3,5 of the normal
equations (subject to constraints) may yield considerable savings in computer time.

8.5.10 Summary

The most important properties of the least squares method are

• In the linear model, it follows from the Gauss-Markov theorem that least
squares estimators have optimal properties: If the measurement errors have
zero expectation and finite, fixed variance, then the least squares estimators
are unbiased and have the smallest variance of all linear, unbiased estimators.

• If the errors are Gaussian, least squares estimators are the same as maximum
likelihood estimators.

• If the errors are Gaussian, the minimum value of Q2 provides a test of the
validity of the model, at least in the linear model (cf. sections 10.4.3 and
10.6.3).

• If the model is non-linear in the parameters and the errors are not Gaussian,
the least squares estimators usually do not have any optimal properties.

The least squares method discussed so far does not apply to histograms or other
binned data. Fitting to binned data is treated in section 8.6.

8.6 Estimators for binned data

The methods of parameter estimation treated so far were developed and applied
either to points (events) sampled from some p.d.f. (moments and maximum likeli-
hood) or to measurements, i.e., the results of some previous analysis (least squares
and maximum likelihood). Here we want to apply a least squares method to a
sample of events in order to estimate parameters of the underlying p.d.f., much as
we did with maximum likelihood.

8.6.1 Minimum Chi-Square

The astute reader will have noticed that the least squares method requires measure-
ments yi with variance V [yi] for values xi of the predictor variable. What do we
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do when the data are simply observations of the values of x for a sample of events?
This was easily treated in the maximum likelihood method. For a least squares
type of estimator we must transform this set of observations into estimates of y at
various values of x.

To do this we collect the observations into mutually exclusive and exhaustive
classes defined with respect to the variable x. (The extension to more than one
variable is straightforward.) An example of such a classification is a histogram and
we shall sometimes refer to the classes as bins, but the concept is more general than
a histogram. Assume that we have k classes and let πi be the probability, calculated
from the assumed p.d.f., that an observation falls in the ith class. Then

k∑

i=1

πi = 1

and the distribution of observations among the classes is a multinomial p.d.f. Let
n be the total number of observations and ni the number of observations in the ith

class. Then pi = ni/n is the fraction of observations in the ith class.
The minimum chi-square method consists of minimizing

Q2
1 = n

k∑

i=1

(pi − πi)
2

πi
=

k∑

i=1

(ni − nπi)
2

nπi
(8.152)

= n

(
k∑

i=1

p2
i

πi

− 1

)

The estimators θ̂j are then the solutions of

∂Q2
1

∂θj
= n

k∑

i=1

∂Q2
1

∂πi

∂πi

∂θj
= −n

k∑

i=1

(
pi

πi

)2 ∂πi

∂θj
= 0 (8.153)

This appears rather similar to the usual least squares method. The ‘measure-
ment’ is now the observed number of events in a bin, and the model is that there
should be nπi events in the bin. Recall (section 3.3) that the multinomial p.d.f.
has for the ith bin the expectation µi = nπi and variance σ2

i = nπi(1 − πi). For a
large number of bins, each with small probability πi, the variance is approximately
σ2

i = nπi and the covariances, cov(ni, nj) = −nπiπj, i 6= j, are approximately zero.
The ‘error’ used in equation 8.152 is thus that expected from the model and is
therefore a function of the parameters. In the least squares method we assumed,
as a condition of the Gauss-Markov theorem, that σ2

i was fixed. Since that is here
not the case, the Gauss-Markov theorem does not apply to minimum χ2.

This use of the error expected from the model may seem rather surprising, but
nevertheless this is the definition of Q2

1. We note that in least squares the error
was actually also an expected error, namely the error expected from the measuring
apparatus, not the error estimated from the measurement itself.
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In practice, Q2
1 may be difficult to minimize owing to the dependence of the

denominator on the parameters. This consideration led to the modified minimum
chi-square method where one minimizes Q2

2, which is defined using an approximation
of the observed, i.e., estimated, error, σ2

i ≈ ni, which is valid for large ni:

Q2
2 = n

k∑

i=1

(pi − πi)
2

pi

=
k∑

i=1

(ni − nπi)
2

ni

(8.154)

= n

(
k∑

i=1

π2
i

pi

− 1

)

The estimators θ̂j are then the solutions of

∂Q2
2

∂θj
= n

k∑

i=1

∂Q2
2

∂πi

∂πi

∂θj
= 2n

k∑

i=1

(
πi

pi

)
∂πi

∂θj
= 0 (8.155)

From the approximations involved, it is clear that neither Q2 is a true χ2 for
finite n. However, both become a χ2(k − s) asymptotically, where s is the number
of parameters which are estimated. Also, it can be shown10 that the estimators
found by both methods are ‘best asymptotically normal’ (BAN) estimators, i.e.,
that the estimators are consistent, asymptotically normally distributed, efficient (of

minimum variance), and that ∂θ̂
∂pi

exists and is continuous for all i. Both Q2
1 and Q2

2

thus lead asymptotically to estimators with optimal properties.

8.6.2 Binned maximum likelihood

Alternatively, one can use the maximum likelihood method on the binned data.
The multinomial p.d.f. (eq. 3.3) in our present notation is

f =
n!

n1!n2! . . . nk!
πn1

1 πn2
2 . . . πnk

k = n!
k∏

i=1

πni
i

ni!

Dropping factors which are independent of the parameters, the log-likelihood which
is to be maximized is given by

` = lnL =
k∑

i=1

ni ln πi (8.156)

Note that in the limit of zero bin width this is identical to the usual log-likelihood
of equation 8.57. The estimators θ̂j are the values of θ for which ` is maximum and
are given by

∂`

∂θj

=
k∑

i=1

ni
∂ ln πi

∂πi

∂πi

∂θj

= n
k∑

i=1

(
pi

πi

)
∂πi

∂θj

= 0 (8.157)

These maximum likelihood estimators are also BAN.
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This formulation assumes that the total number of observations, n =
∑
ni, is

fixed, as did the minimum chi-square methods of the previous section. If this is
not the case, the binned maximum likelihood method is easily extended. As in
section 8.4.7, the joint p.d.f. is multiplied by a Poisson p.d.f. for the total number
of observations. Equivalently (cf. exercise 13), we can write the joint p.d.f. as a
product of k Poisson p.d.f.’s:

f =
k∏

i=1

νni
i e

−νi

ni!

where νi is the expected number of observations in bin i. This leads to

`E =
k∑

i=1

ni ln νi −
k∑

i=1

νi (8.158)

In terms of the present notation, νi = νtotπi. But now νtot =
∑
νi is not necessarily

equal to n.

8.6.3 Comparison of the methods

Asymptotically, all three of these methods are equivalent. How do we decide which
one to use? In a particular problem, one method could be easier to compute.
However, given the computer power most physicists have available, this is seldom
a problem. The question is then which method has the best behavior for finite n.

• Q2
1 requires a large number of bins with small πi for each bin in order to

neglect the correlations and to approximate the variance by nπi. Assuming
that the model is correct, this will mean that all ni must be small.

• In addition, Q2
2 requires all ni to be large in order that

√
ni be a good estimate

of the variance. Thus the ni must be neither too large nor too small. In
particular, an ni = 0 causes Q2

2 to blow up.

• The binned maximum likelihood method does not suffer from such problems.

In view of the above, it is perhaps not surprising that the maximum likelihood
method usually converges faster to efficiency. In this respect the modified minimum
chi-square (Q2

2) is usually the worst of the three methods.10

One may still choose to minimize Q2
1 or Q2

2, perhaps because the problem is

linear so that the equations ∂Q2

∂θj
= 0 can be solved simply by a matrix inversion

instead of a numerical minimization. One must then ensure that there are no small
ni, which in practice is usually taken to mean that all ni must be greater than 5 or
10. Usually one attains this by combining adjacent bins. However, one can just as
well combine non-adjacent ones. Nor is there any requirement that all bin widths
be equal. One must simply calculate the πi properly, i.e., as the integral of the
p.d.f. over the bin, which is not always adequately approximated by the bin width
times the value of the p.d.f. at the center of the bin.
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Since the maximum likelihood method is usually preferred, we can ask why we
bin the data at all. Although binning is required in order to use a minimum chi-
square method, we can perfectly well do a maximum likelihood fit without binning.
Although binning loses information, it may still be desirable in the maximum like-
lihood method in order to save computing time when the data sample is very large.
In choosing the bin sizes one should pay particular attention to the amount of in-
formation that is lost. Large bins lose little information in regions where the p.d.f.
is nearly constant. Nor is much information lost if the bin size is small compared to
the experimental resolution in the measurement of x. It would seem best to try to
have the information content of the bins approximately equal. However, even with
this criterion the choice of binning is not unique. It is then wise to check that the
results do not depend significantly on the binning.

“There are nine and sixty ways of constructing tribal lays.
And – every – single – one – of – them – is – right!”

—Rudyard Kipling

8.7 Practical considerations

In this section we try to give some guidance on which method to use and to treat
some complications that arise in real life.

8.7.1 Choice of estimator

Criteria

Faced with different methods which lead to different estimators we must decide
which estimator to use. Eadie et al.4 give the following order of importance of
various criteria for the estimators:

1. Consistency. The estimator should converge to the true value with increasing
numbers of observations. If this is not the case, a procedure to remove the
bias should be applied.

2. Minimum loss of information. When an estimator summarizes the results of
an experiment in a single number, it is of vital interest to subsequent users of
the estimate that no other number could contain more information about the
parameter of interest.

3. Minimum variance (efficiency). The smaller the variance of the estimator, the
more certain we are that it is near the true value of the parameter (assuming
it is unbiased).
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4. Robustness. If the p.d.f. is not well known, or founded on unsafe assumptions,
it is desirable that the estimate be independent of, or insensitive to, departures
from the assumed p.d.f. In general, the information content of such estimates
is less since one chooses to ignore the information contained in the form of
the p.d.f.

5. Simplicity. When a physicist reads the published value of some parameter,
he usually presumes that the estimate of the parameter is unbiased, normally
distributed, and uncorrelated with other estimates. It is therefore desirable
that estimators have these simple properties. If the estimate is not simple,
it should be stated how it deviates from simplicity and not given as just a
number ± an error.

6. Minimum computer time. Although not fundamental, this may be of practical
concern.

7. Minimum loss of physicist’s time. This is also not fundamental; its importance
is frequently grossly overestimated.

Compromising between these criteria

The order of the desirable properties above reflects a general order of importance.
However, in some situations a somewhat different order would be better. For ex-
ample, the above list places more importance on minimum loss of information than
on minimum variance. These two criteria are related. The minimum variance is
bounded by the inverse of the information. However this limit is not always attain-
able. In such cases it is possible that two estimates t1 and t2 of θ are such that
I2(θ) > I1(θ) but V [t1] < V [t2]. The recommendation here is to choose t2, the esti-
mate with the greater information. The reason is that, having more information, it
will be more useful later when the result of this experiment is combined with results
of other experiments. On the other hand, if decisions must be made, or conclusions
drawn, on the basis of just this one experiment, then it would be better to choose
t1, the estimate with the smaller variance.

Obtaining simplicity

It may be worth sacrificing some information to obtain simplicity.

Estimates of several parameters can be made uncorrelated by diagonalizing the
covariance matrix and finding the corresponding linear combinations of the param-
eters. But the new parameters may lack physical meaning.

Techniques for bias removal will be discussed below (sect. 8.7.2).

When sufficient statistics exist, they should be used, since they can be estimated
optimally (cf. section 8.2.8).
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Asymptotically, most usual estimators are unbiased and normally distributed.
The question arises how good the asymptotic approximation is in any specific case.
The following checks may be helpful:

• Check that the log-likelihood function or χ2 is a parabolic function of the
parameters.

• If one has two asymptotically efficient estimators, check that they give con-
sistent results. An example is the minimum chi-square estimate from two
different binnings of the data.

• Study the behavior of the estimator by Monte Carlo techniques, i.e., make
a large number of simulations of the experiment and apply the estimator to
each Monte Carlo simulation in order to answer questions such as whether the
estimate is normally distributed. However, this can be expensive in computer
time.

A change of parameters can sometimes make an estimator simpler. For instance
the estimate of θ2 = g(θ1) may be simpler than the estimate of θ1. However, it is in
general impossible to remove both the bias and the non-normality of an estimator
in this way4.

Economic considerations

Economy usually implies fast computing. Optimal estimation is frequently iterative,
requiring much computer time. The following three approaches seek a compromise
between efficiency (minimum variance) and economic cost.

• Linear methods. The fastest computing is offered by linear methods, since
they do not require iteration. These methods can be used when the expected
values of the observations are linear functions of the parameters. Among linear
unbiased estimators, the least squares method is the best, which follows from
the Gauss-Markov theorem (sect. 8.5.4).

When doing empirical fits, rather than fits to a known (or hypothesized) p.d.f.,
choose a p.d.f. from the exponential family (sect. 8.2.7) if possible. This leads
to easy computing and has optimal properties.

• Two-step methods. Some computer time can be saved by breaking the prob-
lem into two steps:

1. Estimate the parameters by a simple, fast, inefficient method, e.g., the
moments method.

2. Use these estimates as starting values for an optimal estimation, e.g.,
maximum likelihood.
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Although more physicist’s time may be spent in evaluating the results of the
first step, this might also lead to a better understanding of the problem.

• Three-step method.

1. Extract from the data a certain number of statistics which summarize
the observations compactly, and if possible in a way which increases in-
sight into the problem. For example, one can make a histogram, which
reduces the number of observations to the number of bins in the his-
togram. Another example is the summary of an angular distribution by
the coefficients of the expansion of the distribution in spherical harmon-
ics. These coefficients are rapidly estimated by the moments method
(sect. 8.3.2) and their physical meaning is clear.

2. Estimate the parameters of interest using this summary data. If the
summary data have an intuitive physical meaning this estimation may
be greatly simplified.

3. Use the preliminary estimates from the second step as starting values for
an optimal estimation directly from the original data.

The third step should not be forgotten. It is particularly important when the
information in the data is small (‘small statistics’). Because of the third step,
the second step does not have to be exact, but only approximate.

8.7.2 Bias reduction

We have already given a procedure for bias reduction in section 8.3.1 for the case
of an estimator ĝ which is calculated from an unbiased estimator θ̂ by a change of
variable ĝ = g(θ̂). Now let us consider two general methods.

Exact distribution of the estimate known

If the p.d.f. of the estimator is exactly known, the bias b = E
[
θ̂
]
− θ can be calcu-

lated. If b does not depend on the parameters, we can use the unbiased estimator
θ̂
′

= θ̂− b instead of the biased estimator θ̂. The variances of θ̂
′

and θ̂, are the same
since b is exactly known.

However, b is usually not exactly known since it usually depends on some of
the parameters of the p.d.f. It must therefore be estimated. Assuming that we can
make an unbiased estimate of the bias, b̂, the unbiased estimator of the parameter
is θ̂

′

= θ̂ − b̂, which results in a larger variance for θ̂
′

than for θ̂.

Exact distribution of the estimate unknown

There is a straightforward method4 to use in the case that the p.d.f. is not well
known or no unbiased estimate of b is possible. Suppose that θ̂ is a biased estimator
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which is asymptotically unbiased (as maximum likelihood estimators frequently
are). Express θ̂ as a power series in 1

N
, where N is the number of events. The

leading term is then θ, independent of N . The N−1 term is the leading bias term.
Now split the data into two samples, each of N

2
events. Let the estimate from the

two N
2

samples be θ̂1 and θ̂2. The expectation of the above expansion will be

E
[
θ̂
]

= θ +
1

N
β +O

(
1

N2

)

E
[
θ̂1
]

= E
[
θ̂2
]

= θ +
2

N
β +O

(
1

N2

)

Thus,

E
[
2θ̂ − 1

2
(θ̂1 + θ̂2)

]
= θ +O

(
1

N2

)

and we see that we have a method to reduce the bias from O
(

1
N

)
to O

(
1

N2

)
. The

variance is, however, in general increased by a term of order 1
N

.
A generalization of this method,10 known as the jackknife,∗ estimates θ by

θ̂ = Nθ̂N − (N − 1)θ̂N−1 (8.159)

where θ̂N is the estimator using all N events and θ̂N−1 is the average of the N − 1
estimates possible using N − 1 events.

A more general method, of which the jackknife is an approximation, is the
bootstrap method introduced by Efron.38,39 Instead of using each subset of N − 1
observations, it uses samples of size M ≤ N randomly chosen from the data. The
number of possible distinct samples is NN , which is very large even for moderate
N . Then the bootstrap sampling distribution for an estimator is a good approxi-
mation of the true sampling distribution, converging to it as N → ∞ under fairly
general conditions. This method is something like Monte Carlo, but uses the data
themselves instead of a known (or hypothesized) distribution.

8.7.3 Robust estimation

When the form of the p.d.f. is not exactly known, the following questions arise:

1. What kind of parameters can be estimated without any assumption about the
form of the p.d.f.? Such estimators are usually called ‘distribution-free’. This
term may be misleading, for although the estimate itself does not depend on
the assumption of a p.d.f., its properties, e.g., the variance, do depend on the
actual (unknown) p.d.f.

2. How reliable are the estimates if the assumed form of the p.d.f. is not quite
correct?

∗Named after a large folding pocket knife, this procedure, like its namesake, serves as a handy
tool in a variety of situations where specialized techniques may not be available.
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Center of a symmetric distribution

There is relatively little known about robust estimation. The only case treated ex-
tensively in the literature is the estimation of the center of an unknown, symmetric
distribution. The center of a distribution may be defined by a ‘location parameter’
such as the mean, the median, the mode, the midrange, etc. Several of these esti-
mators were mentioned in section 8.1. The sample mean is the most obvious and
most often used estimator of location because

• By the central limit theorem it is consistent whenever the variance of the p.d.f.
is finite.

• It is optimal (unbiased and minimum variance) when the p.d.f. is a Gaussian.

However, if the distribution is not normal, the sample mean may not be the best
estimator. For symmetric distributions of finite range, e.g., the uniform p.d.f. or a
triangular p.d.f., the location is determined by specifying the end points of the dis-
tribution. The midrange is then an excellent estimator. However, for distributions
of infinite range, the midrange is a poor estimator.

The following table4 shows asymptotic efficiencies, i.e., the ratio of the minimum
variance bound to the variance of the estimator, of location estimators for various
p.d.f.’s.

Distribution Sample Sample Sample
median mean midrange

Normal 0.64 1.00 0.00
Cauchy 0.82 0.00 0.00
Double exponential 1.00 0.50 0.00
Uniform 0.00 0.00 1.00

None of these three estimators is asymptotically efficient for all four distribu-
tions. Nor has any of these estimators a non-zero asymptotic efficiency for all four
distributions. As an example take a distribution which is the sum of a normal
distribution and a Cauchy distribution having the same mean:

f(x) = β N(x;µ, σ2) + (1− β)C(x;µ, α) , 0 ≤ β ≤ 1

Because of the Cauchy admixture, the sample mean has infinite variance, as we
see in the table, while the sample median has at worst (β = 1) a variance of
1/0.64 = 1.56 times the minimum variance bound. This illustrates that the median
is generally more robust than the mean.

Other methods to improve robustness involve ‘trimming’, i.e., throwing away
the highest and lowest points before using one of the above estimators. This is
particularly useful when there are large tails which come mostly from experimental
problems. Such methods are further discussed by Eadie et al.4



170 CHAPTER 8. PARAMETER ESTIMATION

Center of an asymmetric distribution

Consider the estimation of the center of a narrow ‘signal’ distribution superim-
posed on an unknown but wider ‘background’ distribution. The asymmetry of the
background makes it difficult to use any of the above-mentioned estimators.

A common technique is to parametrize the signal and background in some arbi-
trary way and to do a maximum likelihood or least squares fit to obtain optimum
values of the parameters, including the location parameter of interest. This is
a non-robust method because the location estimate depends on the background
parametrization and on correlations with other parameters.

A robust technique for this problem is to estimate the mode of the observed
distribution. The mode is nearly invariant under variations of a smooth background.
An obvious way to estimate the mode is to histogram the data and take the center
of the most populated bin. Such a method depends on the binning used. A better
method is given by the following procedure: Find the two observations which are
separated by the smallest distance, and choose the one which has the closer next
nearest neighbor. The estimate of the mode is then taken as the position of this
observation. A generalization of this method is that of k nearest neighbors, where
the density of observations at a given point is estimated by the reciprocal of the
distance between the smallest and largest of the k observations closest to the point.

8.7.4 Detection efficiency and Weights

We are often not able to observe directly the phenomenon we wish to study. The
apparatus generally introduces some distortion or bias, the effect of which must be
taken into account. Such distortion may take the form of a detection efficiency,
i.e., the apparatus may not detect all events and the efficiency of detection may
depend on the values of the variables being measured. This problem has already
been mentioned in section 4.2.

The method used to account for this distortion depends on the severity of the
problem. If the detection efficiency varies greatly over the range of the variables, it
will be necessary to treat the problem exactly in order to avoid losing a great deal
of information. On the other hand, if the detection efficiency is nearly uniform (say
to within 20%), an approximate method will suffice.

Maximum likelihood—ideal method

As already mentioned in section 4.2, the p.d.f. of the observations is the product of
the underlying physical p.d.f. and the efficiency function. It often happens that the
physical p.d.f. can be written as the product of two p.d.f.’s where the parameters
we want to estimate occur in only one of the two. For example, consider the
production of particles in an interaction. The energies of the produced particles
will not depend on where the interaction took place. The p.d.f. is then a product of
a p.d.f. for the place where the interaction takes place and a p.d.f. for the interaction
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itself. Accordingly we write the physical p.d.f. as

f(x, y; θ, ψ) = p(x; θ) q(y;ψ)

where the p.d.f.’s p and q are, as usual, normalized:
∫
p dx =

∫
q dy = 1. Let e(x, y)

be the detector efficiency, i.e., the p.d.f. describing the probability that an event is
observed. Then the p.d.f. of the actual observations is

g(x, y; θ, ψ) =
p(x; θ) q(y;ψ) e(x, y)

∫
p(x; θ) q(y;ψ) e(x, y) dx dy

Note that the efficiency may depend on both x and y. The likelihood of a given set
of observations is then

L(x1, . . . xN , y1
. . . y

N
; θ, ψ) =

N∏

i=1

g(xi, yi
; θ, ψ) =

N∏

i=1

gi

Hence, ` = lnL = W +
N∑

i=1

ln(ei qi) (8.160)

where W =
N∑

i=1

ln pi −N ln
∫
pqe dxdy (8.161)

and where pi = p(xi; θ)

Suppose now that we are not interested in estimating ψ, but only θ. Then the second
term of equation 8.160 does not depend on the parameters and may be ignored. The
estimates θ̂ and their variances are then found in the usual way treating W as the
log-likelihood.

In practice, difficulties arise when pqe is not analytically normalized, but must
be normalized numerically by time-consuming Monte Carlo. Moreover, the results
depend on the form of q, which may be poorly known and of little physical interest.
For these reasons one prefers to find a way of eliminating q from the expressions.
Since this will exclude information, it will increase the variances, but at the same
time make the estimates more robust.

Troll, to thyself be true—enough.
—Ibsen, “Peer Gynt”

Maximum likelihood—approximate method

We replace W in equation 8.161 by

W ′ =
N∑

i=1

(
1

ei
ln pi

)
(8.162)
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Intuitively, the observation of an event with efficiency ei corresponds, in some
sense, to wi = 1/ei events having actually occurred. Then the likelihood for all of
the events, i.e., the one which is observed and the ones which are not, is pwi

i , which
results in W ′.

Whatever the validity of this argument, it turns out4 that the estimate θ̂
′

ob-
tained by maximizing W ′ is, like the usual maximum likelihood estimate, asymp-
totically normally distributed about the true value. However, care must be taken
in evaluating the variance. Using the second derivative matrix of W ′ is wrong since
it assumes that

N∑

i=1

wi = N

events have been observed. One approach to curing this problem is to renormalize
the weights by using w

′

i = Nwi/
∑
wi instead of wi. However, this is only satisfac-

tory if the weights are all nearly equal.
The correct procedure, which we will not derive, results in4

V
(
θ̂
′
)

= H−1H ′H−1 (8.163)

where the matrices H and H ′ are given by

Hjk = E

[
1

e

(
∂ ln p

∂θj

)(
∂ ln p

∂θk

)]

H ′
jk = E

[
1

e2

(
∂ ln p

∂θj

)(
∂ ln p

∂θk

)]

which may be estimated by the sample mean:

Ĥjk =
1

N

N∑

i=1

1

eip2
i

(
∂pi

∂θj

)(
∂pi

∂θk

)
(8.164a)

Ĥ ′
jk =

1

N

N∑

i=1

1

e2i p
2
i

(
∂pi

∂θj

)(
∂pi

∂θk

)
(8.164b)

evaluated at θ = θ̂
′

. If e is constant, this reduces to the usual estimator of the
covariance matrix given in equations 8.78 and 8.80.

Alternatively, one can estimate the matrix elements from the second derivatives:

Hjk = − ∂2W ′

∂θj∂θk

∣∣∣∣∣
θ=θ̂

; Ĥjk = − 1

N

N∑

i=1

[
1

ei

∂2 ln pi

∂θj∂θk

]

θ=θ̂
(8.165a)

H ′
jk = −1

e

∂2W ′

∂θj∂θk

∣∣∣∣∣
θ=θ̂

; Ĥjk = − 1

N

N∑

i=1

[
1

e2i

∂2 ln pi

∂θj∂θk

]

θ=θ̂
(8.165b)

If e is constant, this reduces to the usual estimator of the covariance matrix given
in equations 8.84 and 8.85.
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To summarize: Find the estimates θ̂
′

by maximizing W ′ (eq. 8.162). If possible
compute H and H ′ by equation 8.164 or 8.165; if the derivatives are not known an-
alytically, use equation 8.165, evaluating ∂2W ′

∂θj∂θk
numerically. The covariance matrix

is then given by equation 8.163.
It is clear from the above formulae that the appearance of one event with a

very large weight will ruin the method, since it will cause W ′ (equation 8.162) to
be dominated by one term and will make the variance very large. Accordingly, a
better estimate may be obtained by rejecting events with very large weights.

Minimum chi-square—approximate method

Consider a histogram with k bins containing ni events in the ith bin. Suppose that a
model predicts the normalization n =

∑
ni as well as the shape of the distribution.

Denote the expected number of events in the ith bin by

ai(θ) = A(θ)

∫
i pqe dx∫
pqe dx

(8.166)

where A(θ) =
∑
ai is the predicted total number of events and

∫
i indicates an

integral over bin i.
The minimum chi-square and modified minimum chi-square formulae (section

8.6.1) become

Q2
1 =

k∑

i=1

(ni − ai)
2

ai
,

∂Q2
1

∂θ
= −

k∑

i=1

[(
ni

ai

)2

− 1

]
∂ai

∂θ

Q2
2 =

k∑

i=1

(ni − ai)
2

ni
,

∂Q2
2

∂θ
= −2

k∑

i=1

[
1− ai

ni

]
∂ai

∂θ

So far, this is exact. Now let us introduce the approximate method by removing
the dependence on q from equation 8.166. Let bi be the predicted number of events in
bin i when e = 1. We want to correct the numbers bi using the known experimental
efficiency to obtain numbers ci such that

E [ci] = ai (8.167)

From its definition, bi is given by

bi = B(θ)

∫
i pq dx∫
pq dx

= A(θ)

∫
i pq dx∫
pqe dx

where B(θ) is the total number of events predicted when e = 1. Combining this
equation with equation 8.166, we find

ai = bi

∫
i pqe dx
∫
i pq dx
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The inverse of this ratio of integrals can be rewritten as

∫
i pqew dx
∫
i pqe dx

= Ei [w]

where w = 1
e

is the weight. This expectation can be estimated by the sample mean
of the weights of the events in the bin:

̂Ei [w] =

∑ni
j=1wij

ni

where wij is the weight (1/ei) of the jth event in the ith bin.
We now define

ci =
bini∑ni
j=1 wij

From the preceding equations it is clear that this ci satisfies equation 8.167.
The expressions for Q2 then use ci instead of ai. Writing σ2

i for ai in the case of
Q2

1 and for ni in the case of Q2
2, both may be written as

Q2 =
k∑

i=1

1

σ2
i

(
ni − bi

ni∑
j wij

)2

=
k∑

i=1

1

σ′2
i


∑

j

wij − bi



2

where
1

σ′2
i

=
1

σ2
i

(
ni∑
j wij

)2

The ‘error’, σ′
i, is then given by

σ′2
i = E







ni∑

j=1

wij − bi



2

 = E







ni∑

j=1

wij




2

− b2i

since E
[∑ni

j=1wij

]
= bi. Further, one can show that

E







ni∑

j=1

wij




2

 = E




ni∑

j=1

w2
ij


 + E




ni∑

j=1

ni∑

k=1
k 6=j

wijwik


 ≈ E [ni]E

[
w2

i

]
+ b2i

E [w2
i ] can be estimated by the sample mean

̂E [w2
i ] =

1

ni

ni∑

j=1

w2
ij

E [ni] can be estimated in two ways: from the model, which gives the minimum
chi-square method; or from the data, which gives the modified minimum chi-square



8.7. PRACTICAL CONSIDERATIONS 175

method. The resulting expressions for Q2 are

Ê [ni] = ci ; Q′2
1 =

k∑

i=1




(∑ni
j=1wij − bi

)2

bi

∑ni
j=1

w2
ij∑ni

j=1
wij


 (8.168)

Ê [ni] = ni ; Q′2
2 =

k∑

i=1




(∑ni
j=1wij − bi

)2

∑ni
j=1w

2
ij


 (8.169)

Clearly both Q′ approach the corresponding Q as the weights all approach 1. As in
the unweighted case, the minimum chi-square method (Q1) is better justified than
the modified minimum chi-square method (Q2). However, if bi is a linear function
of the parameters, the solution of the modified method can in principle be written
explicitly, which is much faster than a numerical minimization.

But who can discern his errors?
Clear thou me from hidden faults.

—Psalm 19.12

8.7.5 Systematic errors

If a meter has a random error, then its readings are distributed in some way about
the true value. If the error distribution is not specified further, you expect it to
be Gaussian. Thus if it is simply stated that the error is 1%, you expect that this
distribution will be a Gaussian distribution with a standard deviation of 1% of the
true value. The standard deviation of a single reading will be 1% of that reading.
But by making many (N) readings and averaging them, you obtain an estimate of
the true value which has a much smaller variance. Usually, the variance is reduced
by a factor 1/N , which follows from the central limit theorem.

If the meter has a systematic error such that it consistently reads 1% too high,
the situation is different. The readings are thus correlated. Averaging a large
number of readings will not decrease this sort of error, since it affects all the readings
in the same way. With more readings, the average will not converge to the true
value but to a value 1% higher. It is as though we had a biased estimator.

Systematic errors can be very difficult to detect. For example, we might measure
the voltage across a resistor for different values of current. If the systematic error
was 1 Volt, all the results would be shifted by 1 Volt in the same direction. If we
plotted the voltages against the currents, we would find a straight line, as expected.
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However, the line would not pass through the origin. Thus, we could in principle
discover the systematic effect. On the other hand, with a systematic error of 1% on
the voltage, all points would be shifted by 1% in the same direction. The voltages
plotted against the currents would lie on a straight line and the line would pass
through the origin. The voltages would thus appear to be correctly measured.
But the slope of the line would be incorrect. This is the worst kind of systematic
error—one which cannot be detected statistically. It is truly a ‘hidden fault’.

The size of a systematic error may be known. For example, consider temperature
measurements using a thermocouple. You calibrate the thermocouple by measuring
its output voltages V1 and V2 for two known temperatures, T1 and T2, using a volt-
meter of known resolution. You then determine some temperatures T by measuring
voltages V and using the proportionality of V to T to calculate T :

T =
T2 − T1

V2 − V1
(V − V1) + T1

The error on T will include a systematic contribution from the errors on V1 and V2

as well as a random error on V . In this example the systematic error is known.
In other cases the size of the systematic error is little more than a guess. Suppose

you are studying gases at various pressures and you measure the pressure using a
mercury manometer. Actually it only measures the difference in pressure between
atmospheric pressure and that in your vessel. For the value of the atmospheric
pressure you rely on that given by the nearest meteorological station. But how big
is the difference in the atmospheric pressure between the station at the time the
atmospheric pressure was measured and your laboratory at the time you did the
experiment?

Or, suppose you are measuring a (Gaussian) signal on top of a background. The
estimate of the signal (position, width, strength) may depend on the functional
form chosen for the background. If you do not know what this form is, you should
try various forms and assign systematic errors based on the resulting variations in
the estimates.

Experimental tips

To clear your experiment of ‘hidden faults’ you should begin in the design of the
experiment. Estimate what the systematic errors will be, and, if they are too large,
design a better experiment.

Build consistency checks into the experiment, e.g., check the calibration of an
instrument at various times during the course of the experiment.

Try to convert a systematic error into a random error. Many systematic effects
are a function of time. Examples are electronics drifts, temperature drifts, even
psychological changes in the experimenter. If you take data in an orderly sequence,
e.g., measuring values of y as a function of x in the order of increasing x, such drifts
are systematic. So mix up the order. By making the measurements in a random
order, these errors become random.
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The correct procedure depends on what you are trying to measure. If there are
hysteresis effects in the apparatus, measuring or setting the value of a quantity,
e.g., a magnetic field strength, from above generally gives a different result than
setting it from below. Thus, if the absolute values are important such adjustments
should be done alternatively from above and from below. On the other hand, if
only the differences are important, e.g., you are only interested in a slope, then all
adjustments should be made from the same side, as the systematic effect will then
cancel.

Error propagation with systematic errors

Having eliminated what systematic effects you can, you must evaluate the rest.
Different independent systematic errors are, since independent, added in quadra-
ture.∗ Since random and systematic errors are independent, they too can be added
in quadrature to give the total error. Nevertheless, the two types of error are often
quoted separately, e.g.,

R = −1.9± 0.1± 0.4

where (conventionally) the first error is statistical and the second systematic. Such a
statement is more useful to others, particularly if they want to combine your result
with other results which may have the same systematic errors. For this reason,
the various contributions to the systematic errors should also be given separately,
particularly those which could be common to other experiments. One also sees in
this example that more data would not help since the systematic error is much
larger than the statistical error.

Error propagation is done using the covariance matrix in the usual way except
that we keep track of the statistical and systematic contributions to the error.
Suppose that we have two ‘independent’ measurements x1 and x2 with statistical
errors σ1 and σ2 and with a common systematic error s. For pedagogical purposes
we can think of the xi as being composed of two parts, xi = xR

i + xS
i , where xR

i has
only a random statistical error, σi, and xS

i has only a systematic error, s. Then xR
1

and xR
2 are completely independent and xS

1 and xS
2 are completely correlated. The

variance of xi is then

V [xi] = E
[
x2

i

]
− (E [xi])

2

= E
[(
xR

i + xS
i

)2
]
−
(
E
[
xR

i + xS
i

])2

= σ2
i + s2

The covariance is

cov(x1, x2) = E [x1x2]− E [x1]E [x2]

= E
[(
xR

1 + xS
1

) (
xR

2 + xS
2

)]
− E

[
xR

1 + xS
1

]
E
[
xR

2 + xS
2

]

∗This assumes that the errors are normally distributed. If you know this not to be the case,
you should try to combine the errors using the correct p.d.f.’s.
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Each term involves four products. Those involving an xR
i cancel leaving

cov(x1, x2) = cov(xS
1 , x

S
2) = s2

Thus the covariance matrix is

V =
(
σ2

1 + s2 s2

s2 σ2
2 + s2

)

So far we have considered systematic errors which are constants. They also
occur as fractions or percentages. The systematic error s is then not a constant but
proportional to the measurement (actually to the true value, but for small errors
the difference is by definition negligible): s = εx with, e.g., ε = 0.01 for a 1% error.
The above analysis is still valid: xS

1 and xS
2 are still completely correlated. The

resulting covariance matrix is

V =
(
σ2

1 + ε2x2
1 ε2x1x2

ε2x1x2 σ2
2 + ε2x2

2

)

Generalization is rather obvious. If there are several independent sources of
systematic error then they are added in quadrature. If there are more variables the
matrix is larger. For example, consider three variables with independent statistical
errors, a common systematic error s and in addition an independent systematic
error t which is shared by x1 and x2 but not x3. The covariance matrix is then

V =



σ2

1 + s2 + t2 s2 + t2 s2

s2 + t2 σ2
2 + s2 + t2 s2

s2 s2 σ2
3 + s2




Least squares fit with systematic errors

Consider a least squares fit where the y-values have not only a statistical error σ,
but also a common systematic error s. The covariance matrix for y is then

Vij

[
y
]

= δijσ
2 + s2

This is just the covariance matrix previously considered in section 8.5.5 with the
addition of s2 to every element. As an example, consider a fit to a straight line,
y = a + bx. Using this V and ε = y − a − bx, in Q2 = εTV ε and solving ∂Q2

∂a
= 0

and ∂Q2

∂b
= 0 leads to the same expressions for the estimators as before (equation

8.125). A common systematic shift of all points up or down clearly has no effect
on the slope, and therefore we expect the same variance for b̂ as before. However,
a systematic shift in y will affect the intercept; consequently, we expect a larger
variance for â.



Chapter 9

Confidence intervals

In the previous chapter we have discussed methods to estimate the values of un-
known parameters. As the uncertainty, or “error”, δθ̂, on the estimate, θ̂, we have
been content to state the standard deviations and correlation coefficients of the
estimate as found from the covariance matrix or the estimated covariance matrix.
This is inadequate in certain cases, particularly when the sampling p.d.f., i.e., the
p.d.f. of the estimator is non-Gaussian. In this chapter our interest is to find the
range

θa ≤ θ ≤ θb

which contains the true value θt of θ with “probability” β. We shall see that when
the sampling p.d.f. is Gaussian, the interval [θa, θb] for β = 68.3% is the same as
the interval of ±1 standard deviation about the estimated value.

9.1 Introduction

In parameter estimation we found an estimator for a parameter θ̂ and its variance
σ2

θ̂
= V

[
θ̂
]

and we wrote the result as θ = θ̂ ± σθ̂. Assuming a normal distribution

for θ̂, one is then tempted to say, as we did in section 8.2.4, that the probability is
68.3% that

θ̂ − σθ̂ ≤ θt ≤ θ̂ + σθ̂ (9.1)

Now, what does this statement mean? If we interpret it as 68.3% probability that
the value of θt is within the stated range, we are using Bayesian probability (cf.
section 2.4.4) with the assumption of uniform prior probability. This assumption is
not always justifiable and often is wrong, as is illustrated in the following example:
An empty dish is weighed on a balance. The result is 25.31 ± 0.14 g. A sample
of powder is placed on the dish, and the weight is again determined. The result is
25.51± 0.14 g. By subtraction and combination of errors, the weight of the powder
is found to be 0.20 ± 0.20 g. Our first conclusion is that the scientist should have
used a better balance. Next we try to determine some probabilities. From the

179
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normal distribution, there is a probability of about 16% that a value lies lower than
µ − σ. In this example that means that there is a chance of about 16% that the
powder has negative weight (an anti-gravity powder!). The problem here is Bayes’
postulate of uniform prior probability. We should have incorporated in the prior
knowledge the fact that the weight must be positive, but we didn’t.

Let us avoid the problems of Bayesian prior probability and stick to the fre-
quentist interpretation. This will lead us to the concept of confidence intervals,
developed largely by Neyman,40 which give a purely frequentist interpretation to
equation 9.1. We shall return to the Bayesian interpretation in section 9.9.

Suppose we have a p.d.f. f(x; θ) which depends on one parameter θ. The prob-
ability content β of the interval [a, b] in X-space is

β = P (a ≤ X ≤ b) =
∫ b

a
f(x; θ) dx (9.2)

Common choices for β are 68.3% (1σ), 95.4% (2σ), 99.7% (3σ), 90% (1.64σ), 95%
(1.96σ), and 99% (2.58σ), where the correspondence between percent and a number
of standard deviations (σ) assumes that f is a Gaussian p.d.f.

If the function f and the parameter θ are known we can calculate β for any a
and b. If θ is unknown we try to find another variable z = z(x, θ) such that its
p.d.f., g(z), is independent of θ. If such a z can be found, we can construct an
interval [za, zb], where zx = z(x, θ), such that

β = P (za ≤ Z ≤ zb) =
∫ zb

za

g(z) dz (9.3)

It may then be possible to use this equation together with equation 9.2 to find an
interval [θ−, θ+] such that

P (θ− ≤ θt ≤ θ+) = β (9.4)

The meaning of this last equation must be made clear. Contrast the following
two quite similar statements:

1. The probability that θt is in the interval [θ−, θ+] is β.

2. The probability that the interval [θ−, θ+] contains θt is β.

The first sounds like θt is the r.v. and that the interval is fixed. This is incorrect—
we are frequentists here, and so θt is not a r.v. The second statement sounds like a
statement about θ− and θ+, which is the correct meaning of equation 9.4. θ− and
θ+ are the results of the experiment, and hence r.v.’s. To put it slightly differently:
Performing the experiment as we have done, we have the probability, β, of finding
an interval, [θ−, θ+], which contains the (unknown) true value of θ, θt. If we were to
repeat the experiment many times, a fraction β of the experiments would yield an
interval containing the true value, i.e., an interval which “covers” the true value.

Turned around, this means that if we assert on the basis of our experiment that
the true value of θ lies in the interval [θ−, θ+], we will be right in a fraction β of
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the cases. Thus, β expresses the degree of confidence (or belief) in our assertion;
hence the name confidence interval. The quantity β is known by various names:
confidence coefficient, coverage probability, confidence level. However, the
last term, “confidence level”, is inadvisable, since it is also used for a different
concept, which we will encounter in goodness-of-fit tests (cf. section 10.6).

The interval [θ−, θ+] corresponding to a confidence coefficient β is in general not
unique; many different intervals exist with the same probability content.

We can, of course, choose to state any one of these intervals. Commonly used
criteria to remove this arbitrariness are

1. Symmetric interval: θ̂ − θ− = θ+ − θ̂.

2. Shortest interval: θ+ − θ− is the smallest possible, given β.

3. Central interval: the probability content below and above the interval are
equal, i.e., P (θ < θ−) = P (θ > θ+) = (1− β)/2.

For a symmetric distribution having a single maximum these criteria are equivalent.
We usually prefer intervals satisfying one (or more) of these criteria. However, non-
central intervals will be preferred when there is some reason to be more careful on
one side than on the other, e.g., the amount of tritium emitted from a nuclear power
station.

Normally distributed estimators. To illustrate the above procedure: Let t(x)
be an estimator of a parameter having true value θ. As we have seen in the previous
chapter, many estimators are (at least asymptotically) normally distributed about
the true value. Then t is a r.v. distributed as N(t; θ, σ2). Equation 9.2 is then

β = P (a ≤ T ≤ b) =
∫ b

a
N(t; θ, σ2) dt = erf

(
b− θ
σ

)
− erf

(
a− θ
σ

)
(9.5)

since the c.d.f. of the normal p.d.f. is the error function (cf. section 3.6).
If θ is not known, we can not evaluate the integral. Instead, assuming that σ is

known, we transform to the r.v. z = t − θ. The interval [c, d] for z corresponds to
the interval [θ + c, θ + d] for t. Hence, equation 9.3 becomes

β = P (θ + c ≤ T ≤ θ + d) =
∫ θ+d

θ+c
N(t; θ, σ2) dt = erf

(
d

σ

)
− erf

(
c

σ

)
(9.6)

We can, for a given β, now choose an interval [θ+ c, θ+ d] satisfying this equation.
Now t ≤ θ + d implies that θ ≥ t− d and t ≥ θ + c implies that t− c ≥ θ. Hence,
the above interval in t-space corresponds to the interval [t−d, t− c] in θ-space, and
we have the desired confidence interval for θ:

β = P (t− d ≤ θ ≤ t− c) (9.7)
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Again, we emphasize that although this looks like a statement concerning the proba-
bility that θ is in this interval, it is not, but instead means that we have a probability
β of being right when we assert that θ is in this interval.

If neither θ or σ is known, one chooses the standardized variable z = t−θ
σ

. The
probability statement about Z is

β = P (c ≤ Z ≤ d) =
∫ d

c
N(z; 0, 1) dz = erf(d)− erf(c) (9.8)

which can be converted into a probability statement for θ:

β = P (t− dσ ≤ θ ≤ t+ cσ) (9.9)

For the normal distribution this conversion is easy, due to the symmetry of the
distribution between Z and θ. Note however that equation 9.9 does not help us
very much since we do not know σ. We will discuss this further in section 9.4.2

9.2 Confidence belts

Now let us see how we construct confidence intervals for an arbitrary p.d.f.40 Suppose
that t(x) is an estimator of the parameter θ with p.d.f. f(t|θ). For a given value of
θ, there will be values of t, t−(θ) and t+(θ) such that

β = P (t− ≤ T ≤ t+) =
∫ t+

t−
f(t|θ) dt (9.10)

These values of t then define an interval in t-space, [t−, t+], with probability content
β. Usually the choice of t− and t+ is not unique, but may be fixed by an additional
criterion, e.g., by requiring a central interval:

∫ t−

−∞
f(t|θ) dt =

1− β
2

=
∫ +∞

t+
f(t|θ) dt (9.11)

6

-
t

θ

θ−(t̂)

θ+(t̂)

θt

t̂t−(θt) t+(θt)

t−(θ)

or θ+(t)

t+(θ)

or θ−(t)

We do not, of course, know the
true value of θ, and hence we are
unable to solve this equation for t−
and t+. Nevertheless, we can make
a plot of t−(θ) and t+(θ) vs. θ,
which can also be viewed as a plot
of, respectively, θ+(t) and θ−(t) vs.
t. The region between the t− and
t+ curves is known as a confidence
belt.

For an unbiased, normally dis-
tributed estimator, as in the previ-
ous section, f(t|θ) = N(t; θ, σ2) and the lines for β = 0.683 would be, from equation
9.11, t−(θ) = θ − σ and t+(θ) = θ + σ.
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For any value of θ, the chance of finding a value of t in the interval [t−(θ), t+(θ)]
is β, by construction. Conversely, having done an experiment giving a value t = t̂,
the values of θ− and θ+ corresponding to t+ = t̂ and t− = t̂ can be read off of the
plot as indicated. The interval [θ−, θ+] is then a confidence interval of probability
content β for θ. This can be seen as follows:

Suppose that θt is the true value of θ. A fraction β of experiments will then
result in a value of t in the interval [t−(θt), t+(θt)]. Any such value of t would yield,
by the above-indicated method, an interval [θ−, θ+] which would include θt. On the
other hand, the fraction 1− β of experiments which result in a value of t not in the
interval [t−(θt), t+(θt)] would yield an interval [θ−, θ+] which would not include θt.
Thus the probability content of the interval [θ−, θ+] is also β.

To summarize, given a measurement t̂, the central β confidence interval (θ− ≤
θ ≤ θ+) is the solution of

∫ t̂

−∞
f(t|θ+) dt =

1− β
2

=
∫ +∞

t̂
f(t|θ−) dt (9.12)

If f(t) is a normal p.d.f., which is often (at least asymptotically, as we have seen in
chapter 8) the case, this interval is identical for β = 68.3% to [θ̂−σθ̂ < θ < θ̂+σθ̂]. If

f(t) is not Gaussian, the interval of ±1σ (σ2 the variance of θ̂) does not necessarily
correspond to β = 68.3%. In this case the uncertainty should be given which does
correspond to β = 68.3%. Such an interval is not necessarily symmetric about θ̂.

In ‘pathological’ cases, the confidence belt may wiggle in such a way that the
resulting confidence interval consists of several disconnected pieces. While mathe-
matically correct, the use of such disconnected intervals may not be very meaningful.

9.3 Confidence bounds

As mentioned above, the choice of confidence interval is usually not unique. In
many cases we prefer a central interval. But sometimes an extremely non-central
interval is preferable from a physical standpoint. In particular, confidence bounds,
i.e., upper or lower limits, are useful when the ‘best’ value of a parameter is found
to be close (or perhaps beyond) a physical boundary.

For an upper limit, t+(θ) is chosen infinite (or equal to the maximum allowed
value of t). Then, the function t−(θ) is defined (equation 9.10) by

β = P (T > t−) =
∫ +∞

t−
f(t|θ) dt

For a measurement t̂, θ+ is read from this t−(θ) curve as in the previous section. In
other words, the upper limit, θ+ is the solution of

β = P (θ < θ+) =
∫ +∞

t̂
f(t|θ+) dt (9.13)
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The statement is then that θ < θ+ with confidence β, and such an assertion will be
correct in a fraction β of the cases.

Lower limits are defined analogously: The lower limit θ−, for which θ > θ− with
confidence β, is found from

β = P (θ > θ−) =
∫ t̂

−∞
f(t|θ−) dt (9.14)

Note that we have defined these limits as > and <, whereas we used ≥ and ≤
for confidence intervals. Some authors also use ≥ and ≤ for confidence bounds. For
continuous estimators, this makes no difference. However, for discrete estimators,
e.g., a number of events, the integral over the p.d.f. of the estimator is replaced by
a sum, and then this difference is important. This will be discussed further for the
Poisson p.d.f. (section 9.6).

9.4 Normal confidence intervals

The example of a normally distributed estimator has already been discussed in the
introduction (section 9.1). There we saw that the situation is different depending
on whether σ is or is not known.

9.4.1 σ known

If the variance, σ2, of the estimator is known, the confidence interval is easily calcu-
lated, as shown in the introduction. Suppose we have n measurements of an exact
quantity, µ, like the mass of a ball, using an apparatus of known resolution, σa. The
estimate, µ̂ = x̄, of the quantity is then normally distributed as N(µ̂;µ, σ2 = σ2

a/n),
and confidence intervals (equation 9.7) are computed using σ and the error function
(equation 9.6). The central confidence belt is defined by straight lines correspond-
ing to t± = µ± bσ, where b is the number of standard deviations corresponding to
probability β.

9.4.2 σ unknown

But suppose that we do not know the resolution of the apparatus. As shown in the
introduction, it is still possible to give a confidence interval, but only in terms of σ
(equations 9.8 and 9.9). Since σ is not known, this is not particularly useful.

Rather, the approach is to estimate σ from the data. In the simple example of a
set of n measurements of the same quantity, x, with an apparatus of constant, but
unknown resolution, σ, the mean is estimated by µ̂ = x̄. As we have seen (equation
8.7), the resolution is then estimated by

σ̂ = s =

√
n

n− 1
(x− x̄)2
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and the variance of the estimator is estimated by

V [µ̂] =
s2

n

Although z = x−µ
σ

is distributed as a standard normal p.d.f., i.e., z2 is distributed
as χ2, the corresponding variable for the case of unknown σ,

t =
x− µ
σ̂

=
(x− µ)/σ

σ̂/σ
=

z

σ̂/σ

is not. Instead, it follows Student’s t distribution (section 3.12). It is therefore not
correct to determine a confidence interval for µ from the normal p.d.f.

Qualitatively we can understand that the confidence region will be somewhat
larger with σ unknown than with σ known, since the region must also take into
account fluctuations of s from the true value of σ. It can be shown5,10 that the
central β-confidence interval is given by

µ± = µ̂± T ( 1
2
(1 + β);n− 1)

√
V [µ̂] (9.15)

The factor T is derived from the c.d.f. of Student’s t distribution. It is the value of
t for which the c.d.f. is equal to 1

2
(1 + β):

∫ T

−∞
t(x;n− 1) dx =

1

2
(1 + β) (9.16)

In the case of a least squares fit to measurements yi, all having the same (un-
known) Gaussian error σ, this generalizes to

θi± = θ̂i ± T ( 1
2
(1 + β);n− k)

√
V
[
θ̂i

]
(9.17)

where n is the number of points and k the number of parameters in the model.

9.5 Binomial confidence intervals

For a binomial p.d.f., B(n;N, p), for which we want to estimate the parameter p, the
experimental observation is the number of successes, n, in N trials. The estimator
of p is then n/N .
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For a given number of trials and various
values of p, the confidence-belt diagram
can be constructed as before using sums
instead of integrals. Since the estimator of
p, t = n/N can take on only discrete val-
ues, the t−(p) and t+(p) curves will have a
staircase-like form. Also, it will not usu-
ally be possible to find an interval for β
exactly equal to say 95%. One normally
then takes the next higher possible value,
i.e., one takes an interval with probability
content slightly larger that 95%.

6

-
t = n/N

p

t−(p)

t+(p)

For example, to find the 95% central confidence interval for p, given that we
observe n successes in N trials, we first find the regions p < p+ and p > p− using
the discrete analogues of equations 9.13 and 9.14 to find 97.5% upper and lower
limits

P (p < p+) =
N∑

k=n+1

B(k;N, p+) ≥ 0.975 (9.18a)

P (p > p−) =
n−1∑

k=0

B(k;N, p−) ≥ 0.975 (9.18b)

The smallest value of p+ and the largest value of p− satisfying these equations give
the central 95% confidence interval [p−, p+]. In other words, we find the upper and
lower limits for 1− 1−β

2
and then exclude these regions.

Using the ≥ in these equations rather than taking the values of p for which the
equality is most nearly satisfied means that if no value gives an equality, we take
the next larger value for p+ and the next smaller value for p−. This is known as
being conservative. It implies that for some values of p we have overcoverage,
which means that for some values of p the coverage probability is actually greater
than the 95% that we claim, i.e., that P (p− < p < p+) > 0.95 instead of = 0.95.
This is not desirable, but the alternative would be to have undercoverage for other
values of p. Since we do not know what the true value of p is—if we did know, we
would not be doing the experiment—the lesser of two evils is to accept overcoverage
in order to rule undercoverage completely out.

9.6 Poisson confidence intervals

9.6.1 Large N

If the number of observed events is large, the Poisson p.d.f. is well approximated
by a Gaussian, and the Gaussian p.d.f. may be used to determine the confidence
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interval.

9.6.2 Small N — Confidence bounds

If the number of events is smaller a confidence interval may be determined in the
same way as for the binomial p.d.f.

However, for very small numbers of events one frequently prefers to state upper
or lower limits. The Poisson p.d.f. is a particularly important case for such limits,
since many random processes follow the Poisson p.d.f. (section 3.4).

Some experiments search for rare or ‘forbidden’ processes and conclude by stat-
ing upper limits for their occurrence. For example, we may search for the decay
µ→ eγ, which is forbidden in the standard theory of weak interactions, but which
would be allowed in various proposed generalizations of this theory. Detection of
such a decay would show that the standard theory was only an approximate theory,
and the rate, i.e., the fraction of µ’s which decay through this mode, would help to
choose among the various alternative theories. Usually such experiments find a few
events which are consistent with the searched-for process, but which are not neces-
sarily evidence for it because of possible background processes. The experimental
result is then stated as an upper limit for the process.

On the other hand, a theory may predict that some process must not be zero.
Then an experiment will seek to give a lower limit.

When n events have been observed, the β upper limit µ+ for the parameter µ
of the Poisson p.d.f. is, from equation 9.13, the solution of

β = P (µ < µ+) =
∞∑

k=n+1

P (k;µ+) =
∞∑

k=n+1

e−µ+
µk

+

k!

= 1−
n∑

k=0

P (k;µ+) = 1−
n∑

k=0

e−µ+
µk

+

k!
(9.19)

The solution is easily found using the fact that the sum in the right-hand side of
equation 9.19 is related to the c.d.f. of the χ2-distribution for 2(n + 1) degrees of
freedom.4,41 Thus,

1− β =
n∑

k=0

P (k;µ+) = P
[
χ2(2n+ 2) > 2µ+)

]
=
∫ ∞

2µ+

χ2(2n+ 2) dχ2 (9.20)

The upper limit µ+ can thus be found from a table of the c.d.f. of χ2(2n + 2).
Lacking a table, equation 9.19 can be solved by iteration.

Let us emphasize, perhaps unnecessarily, exactly what the upper limit means: If
the true value of µ is really µ+, the probability that a repetition of the experiment
will find a number of events which is as small or smaller than n is 1− β; for a true
value of µ larger than µ+, the chance is even smaller. Thus we say that we are
‘β confident’ that µ is less than µ+. In making such statements, we will be right in
a fraction β of the cases.
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Similarly, the β lower limit, µ−, is the solution of

β =
n−1∑

k=0

P (k;µ−) =
n−1∑

k=0

e−µ−
µk
−
k!

(9.21)

which can be found from the c.d.f. of the χ2-distribution for 2n degrees of freedom.
Thus,

β =
n−1∑

k=0

P (k;µ−) = P
[
χ2(2n) > 2µ−)

]
=
∫ ∞

2µ−

χ2(2n) dχ2 (9.22)

The fact that it is here 2n degrees of freedom instead of 2(n + 1) as for the upper
limit is because there are only n terms in the sum of equation 9.22 whereas there
were n+ 1 terms in the upper limit case, equation 9.20.

9.6.3 Background

As mentioned above, there is usually background to the signal. The background
is also Poisson distributed. The sum of the two Poisson-distributed quantities is
also Poisson distributed (section 3.6), with mean equal to the sum of the means of
the signal and background, µ = µs + µb. Assume that µb is known with negligible
error. However, we do not know the actual number of background events, nb, in our
experiment. We only know that nb ≤ n. If µb +µs is large we may approximate the
Poisson p.d.f. by a Gaussian and take the number of background events as n̂b ≈ µb.
Then µ̂s = n− n̂b = n− µb, with variance V [µ̂s] = V [n] + V [n̂b] = n + µb.

An upper limit may be found by replacing µ+ in equation 9.19 by (µ+ + µb). A
lower limit may be found from equation 9.21 by a similar substitution. The results
are

µ+ = µ+(nobackground)− µb (9.23)

µ− = µ−(nobackground)− µb (9.24)

A difficulty arises when the number of observed events is not large compared
to the expected number of background events. The situation is even worse when
the expected number of background events is greater than the number of events
observed. For small enough n and large enough µb, equation 9.23 will lead to a
negative upper limit. So, if you follow this procedure, you may end up saying
something like “the number of whatever-I-am-trying-to-find is less than −1 with
95% confidence.” To anyone not well versed in statistics this sounds like nonsense,
and you probably would not want to make such a silly sounding statement. Of
course, 95% confidence means that 5% of the time the statement is false. This is
simply one of those times, but still it sounds silly. We will return to this point in
section 9.12.
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9.7 Use of the likelihood function or χ2

We have seen in section 8.4.5 how to estimate the variance of a maximum likelihood
estimator. Using the asymptotic normality of maximum likelihood estimators, we
can find confidence intervals as for any normally distributed quantity with known
variance (equations 9.6 and 9.7):

θ̂ − d ≤ θ ≤ θ̂ + c with confidence β = erf

(
d

σθ̂

)
− erf

(
c

σθ̂

)

With smaller samples it is usually most convenient to use the likelihood ratio
(difference in log likelihood) to estimate the confidence interval. Then, relying on
the assumption that a change of parameters would lead to a Gaussian likelihood
function (cf. section 8.4.5), the region for which ` > `max − a2/2, or equivalently
(cf. section 8.5.1) χ2 < χ2

min + a2, corresponds to a probability content

β =
∫ +a

−a
N(z; 0, 1) dz = erf(a)− erf(−a)

In ‘pathological’ cases, i.e., cases where there is more than one maximum, as
pictured here, the situation is less clear. Applying the above procedure would lead
to disconnected intervals, whereas the interval for the transformed parameter would
give a single interval. It is sometimes said that it is nevertheless correct to state a
β confidence interval as

6

-

`

θ1 θ2 θ3 θ4
θ1 ≤ θ ≤ θ2 or θ3 ≤ θ ≤ θ4

However, this statement seems to be the
result of confusing confidence intervals
with fiducial intervals (section 9.8). Be
that as it may, the usefulness of such in-
tervals is rather dubious, and in any case
gives an incomplete picture of the situation. One should certainly give more details
than just stating these intervals.

The application of other methods of estimating the variance of θ̂ to finding
confidence intervals for finite samples is discussed in some detail by Eadie et al.4

9.8 Fiducial intervals

Confidence intervals, as developed by Neyman and discussed in the previous sec-
tions, uses a fully frequentist approach to probability. At the time that Neyman
was developing confidence intervals, R. A. Fisher was following a somewhat differ-
ent approach to interval estimation. His intervals are called fiducial intervals. A
third approach is the Bayesian one, which will be presented in the next section.
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Fisher’s concept of information (section 8.2.5) is intimately related to the like-
lihood function. So too is his fiducial interval.

In section 8.4.2 we saw that asymptotically the likelihood function L(x; θ) be-
comes (under rather general assumptions) a Gaussian function of the parameters
θ. This does not mean (as we have repeatedly emphasized) that L is a p.d.f. for
θ. That only happens in a Bayesian interpretation, which we are not making here.
Recall that the principle of maximum likelihood, i.e., that the best estimate of θ
is that value of θ for which the likelihood function is a maximum, was not derived,
but assumed on intuitive grounds. In the same way we go now a step further and
assume, again intuitively, that L represents our level of credence in a value of θ. A
fiducial interval for a degree of credence β is defined as an interval [θ1, θ2] such that

β =

∫ θ2
θ1
L dθ

∫+∞
−∞ L dθ

(9.25)

This procedure is supported by the connection we have seen (section 8.4.2)
between the asymptotic Gaussian shape of L and the variance of the maximum
likelihood estimator. And just as with the maximum likelihood method, the attrac-
tiveness of fiducial intervals is based on asymptotic properties.

As with confidence intervals, a supplementary criterium, such as a central inter-
val, is needed in addition to equation 9.25 to uniquely define a fiducial interval.

Often the confidence interval and fiducial interval approaches lead to the same
interval. However, the approach, and hence the meaning, is different. The confi-
dence approach says that if we assert that the true value is in a 95% interval we
will be right 95% of the time. However, in the fiducial approach the same assertion
means that we are 95% sure that we are right this time. This shift in emphasis is
the same as in the meaning of the likelihood function itself: We can regard L(x; θ)
as an elementary probability in which θ is fixed and x varies, i.e., as the p.d.f. for
the r.v. X. On the other hand, we can regard it as a likelihood in which x is fixed
and θ varies, as is done in the maximum likelihood method. Similarly, in interval
estimation, we can regard θ as a constant and set up containing intervals which are
random variables (the confidence interval approach); or we can regard the observa-
tions as fixed and set up intervals based on some undefined intensity of belief in the
values of the parameter generating the observations (the fiducial interval approach).

Today, fiducial intervals are seldom used, since they lack a firm mathematical
basis. If one is a frequentist, one generally prefers confidence intervals.

9.9 Credible (Bayesian) intervals

Confidence intervals are based on the frequentist interpretation of probability and
are statements about the probability of experimental results. Fiducial intervals are
also based on the frequentist interpretation of probability (the parameters θ have
fixed true values) but represent our credence (or belief) about the values of the
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parameters. However, we may prefer to use Bayesian probability. In this case we can
construct intervals, [a, b], called credible intervals, Bayesian confidence intervals,
or simply Bayesian intervals, such that β is the probability that parameter θ is
in the interval:

β = P (a ≤ θ ≤ b) =
∫ b

a
f(θ|x) dθ (9.26)

where f(θ|x) is the Bayesian posterior p.d.f. As with confidence and fiducial inter-
vals, supplementary conditions, such as centrality, are needed to uniquely specify
the interval. We have seen in section 8.4.5 that, assuming Bayes’ postulate, f(θ|x)
is just the likelihood function L(x; θ), apart, perhaps, from normalization.

9.10 Discussion of intervals

We have presented three approaches to interval estimation: confidence intervals,
fiducial intervals, and credible (or Bayesian) intervals. In cases where the likelihood
function is a Gaussian function of the parameters, as is usually true asymptotically,
these approaches (with a suitable choice of prior in the Bayesian case) all lead to the
same interval. Though this is comforting, we must realize that in less ideal circum-
stances the intervals given by the different approaches may be different. This does
not mean that any of the approaches is wrong, but rather that they are answering
different questions or making different assumptions.

The virtue of the confidence interval approach is its firm grounding in frequentist
probability. The Bayesian approach is also firmly grounded, but loses something
in objectivity by its subjective Bayesian interpretation of probability as a degree of
belief. Further, it suffers from its need for an arbitrary choice of prior probability
(Bayes’ postulate). The fiducial approach is well-grounded only where its results
are identical to the other approaches. Extension to other cases is more a question
of intuition.

We thus are inclined to prefer the confidence interval approach even though it
is a very complicated procedure compared to the other approaches. However, the
confidence interval approach is unable to incorporate prior information, as we will
see in the next section.

9.11 Measurement of a bounded quantity

Let us return to the example in the introduction (section 9.1). A dish is weighed, a
sample is placed on the dish and the combination is weighed, and then the mass of
the sample is estimated by subtracting the mass of the dish from the mass of the
dish plus sample. If the mass of the sample is smaller than or comparable to the
resolution of the balance, the confidence interval [−∞, 0] will have a non-negligible
probability content. This is clearly ridiculous and comes about because we have
not made use of our knowledge that the mass must be positive. Such a situation
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can also occur when we must subtract a number of background events from the
observed number of events to find the number of events in the signal; a number of
events also can not be negative.

The problem is how to incorporate this constraint (or prior knowledge) into
the confidence interval. In the confidence interval approach there is no way to
do this. The best we can do is to choose an interval which does not contain the
forbidden region (< 0 in our example). Consider the figure showing confidence
belts in section 9.2. Suppose that we know that θt > θmin. We can think of several
alternatives to the interval [θ−, θ+] when θ− < θ+:

1. [θmin, θ+]. But this is the same interval we would have found using a confidence
belt with t+ shifted upwards such that the t+ curve passes through the point
(θmin, t̂ ). This confidence belt clearly has a smaller β. This places us in the
position of stating the same confidence for two intervals, the one completely
contained in, and smaller than, the other.

2. [θmin, θ
′′

+], where θ
′′

+ is the solution of tmin(θ) = tmin, with tmin = t+(θmin). This
is the interval we would have stated had we found t̂ = t+(θmin). So, apparently
the fact that we found a lower value of t̂ does not mean anything—any value of
t̂ smaller than t+(θmin) leads to the same confidence interval! This procedure
is clearly unsatisfactory.

3. [θmin, θ
′

+], where θ
′

+ is determined from a new confidence belt constructed
such that the t+ curve passes through the point (θmin, t̂ ). The t− curve is
taken as that curve which together with this new t+ curve gives the required
β. This approach seems better than the previous two. However, it is still
unsatisfactory since it relies on the measurement to define the confidence
belt.

The situation is even worse if not only θ−(t̂) < θmin but also θ+(t̂) > θmax. Then
we find ourselves in the absurd situation of, e.g., stating the conclusion of our
experiment as −0.2 < θ < 1.2 with 95% confidence when we know that 0 < θ < 1—
we are only 95% confident that θ is within its physical limits! The best procedure
to follow has been the subject of much interest lately among high energy physicists,
particularly those trying to measure the mass of the neutrino and those searching
for hypothetical new particles. The most reasonable procedure seems to be42 that of
Feldman and Cousins,43 who rediscovered a prescription previously given by Kendall
and Stuart.10

On the other hand, in the fiducial approach physical boundaries are easily in-
corporated. The likelihood function is simply set to zero for unphysical values of
the parameters and renormalized. Equation 9.25 is thus replaced by

β =

∫ θ2
θ1
L dθ

∫ θmax
θmin
L dθ

(9.27)
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Also the Bayesian approach has no difficulty in incorporating the physical limits.
They are naturally imposed on the prior probability. If the prior probability is
uniform within the physical limits, the result is the same interval as in the fiducial
approach (equation 9.27).

Note, however, that in order to combine with the results of other experiments,
the (nonphysical) estimate and its variance should be stated, as well as the con-
fidence interval. This, in fact, should also be done for quantities which are not
bounded.

9.12 Upper limit on the mean of a Poisson p.d.f.

with background

In section 9.6.3 we introduced the problem of measuring an upper limit on the
number of (Poisson distributed) events for a particular process in the presence of
background. This is related to the problems of the previous section. The number of
events can not be negative; it is a bounded quantity. Within the classical confidence
limit approach, the most reasonable procedure here too is that of Feldman and
Cousins43.

Another approach is to determine an upper limit by an extension of the argument
of section 9.6.44,41 As in that section, let n be the number of events observed, nb the
expected number of background events, and µ+ the upper limit on µs. Then µ+ is
that value of µs such that any random repetition of the current experiment would,
if µs actually equals µ+, result in more than n events and would also have nb ≤ n,
all with probability β. Thus, in equation 9.19 the sum, which is the probability of
≤ n events given µ = µ+, is replaced by the same probability given µ = µb + µ+

normalized to the probability that nb ≤ n.

β = 1− P (≤ n events)

P (≤ n background events)

= 1− e−(µµ++b)∑n
k=0

(µ++µb)k

k!

e−µb
∑n

k=0
µk

b

k!

(9.28)

This equation must be solved for µ+. In practice this is best done numerically,
adjusting µ+ until the desired β is obtained. However, to incorporate the probability
that nb ≤ n, we have been Bayesian. The result is thus a credible upper limit rather
than a classical upper limit.

When µb is not known to a negligible error, the same approach can be used.
However, we must integrate over the p.d.f. for nb. It is most convenient to use a
Monte Carlo technique. We generate a sample of Monte Carlo experiments taking µb

randomly distributed according to our knowledge of µb (usually normally) and with
a fixed µs. Experiments with nb > n are rejected. The sum in equation 9.19 or 9.21
is then estimated by the fraction of remaining Monte Carlo experiments satisfying
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the corresponding probability. The process is repeated for different values of µs

until the desired value of β is found.45



“Which way ought I to go to get from here?”
“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

—Lewis Carroll, “Alice in Wonderland”

Chapter 10

Hypothesis testing

10.1 Introduction

In chapter 8 we were concerned with estimating parameters of a p.d.f. using a statis-
tic calculated from observations assumed to be distributed according to that p.d.f.
In chapter 9 we sought an interval which we were confident (to some specified de-
gree) contained the true value of the parameter. In this chapter we will be concerned
with whether some previously designated value of the parameter is compatible with
the observation, or even whether the assumed p.d.f. is compatible. In a sense, this
latter question logically precedes the estimation of the value of a parameter, since
if the p.d.f. is incompatible with the data there is little sense in trying to estimate
its parameters.

When the hypothesis under test concerns the value of a parameter, the problems
of hypothesis testing and parameter testing are related and techniques of parameter
estimation will lead to analogous testing procedures. If little is known about the
value of a parameter, you will want to estimate it. However, if a theory predicts
it to have a certain value, you may prefer to test whether the data are compatible
with the predicted value. In either case you should be clear which you are doing.
That others are often confused about this is no excuse.

10.2 Basic concepts

The question here is thus one of hypothesis testing. We make some hypothesis
and want to use experimental observations to test whether it is correct. Not all
scientific hypotheses can be tested statistically. For instance, the hypothesis that

195
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every particle in the universe attracts every other particle can not be tested sta-
tistically. Statistical hypotheses concern the distributions of observable random
variables. Suppose we have N such observations. We denote them by a vector x
in an N -dimensional space, Ω, called the sample space (section 2.1.2), which is the
space of all possible values of x, i.e., the space of all possible results of an experi-
ment. A statistically testable hypothesis is one which concerns the probability of a
particular observation X, P (X ∈ Ω).

Suppose that x consists of a number of independent measurements of a r.v., xi.
Let us give four examples of statistical hypotheses concerning x:

1. The xi are distributed normally with particular values of µ and σ.

2. The xi are distributed normally with a particular value of µ.

3. The xi are distributed normally.

4. The results of two experiments, x1i and x2i are distributed identically.

Each of these hypotheses says something about the distribution of probability over
the sample space and is hence statistically testable by comparison with observations.

Examples 1 and 2 specify a p.d.f. and certain values for one or both of its pa-
rameters. Such hypotheses are called parametric hypotheses. Example 3 specifies
the form of the p.d.f., but none of its parameters, and example 4 does not even
specify the form of the p.d.f. These are examples of non-parametric hypothe-
ses, i.e., no parameter is specified in the hypothesis. We shall mainly concentrate
on parametric hypotheses, leaving non-parametric hypotheses to section 10.7.

Examples 1 and 2 differ in that 1 specifies all of the parameters of the p.d.f.,
whereas 2 specifies only a subset of the parameters. When all of the parameters are
specified the hypothesis is termed simple; otherwise composite. If the p.d.f. has n
parameters, we can define an n-dimensional parameter space. A simple hypothesis
selects a unique point in this space. A composite hypothesis selects a subspace
containing more than one point. The number of parameters specified exactly by
the hypothesis is called the number of constraints. The number of unspecified
parameters is called the number of degrees of freedom of the hypothesis. Note the
similarity of terminology with that used in parameter estimation:

Parameter Estimation Hypothesis Testing

n = number of observations parameters

k = number of parameters parameters specified
to be by the hypothesis

estimated (constraints)

n− k = number of degrees of freedom
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To test an hypothesis on the basis of a random sample of observations, we must
divide the sample space Ω into two subspaces. If the observation x lies in one of these
subspaces, call it ω, we shall reject the hypothesis; if x lies in the complementary
region, ω∗ = Ω − ω, we shall accept the hypothesis. The subspace ω is called the
critical region of the test, and ω∗ is called the acceptance region.

A few words are in order regarding this terminology. In science we can never
completely reject or accept an hypothesis. Nevertheless, the words “reject” and
“accept” are in common usage. They should be understood as meaning “the ob-
servations are unfavorable” or “favorable” to the hypothesis. Since acceptance or
rejection is never certain, it is clear that we also need to be able to state our de-
gree of confidence in acceptance or rejection, just as when constructing confidence
intervals we did so with a specified confidence.

The hypothesis being tested is generally designated H0 and is called the null
hypothesis. For the time being, we will assume that H0 is a simple hypothesis,
i.e., it specifies the p.d.f. completely. We can then calculate the probability that
a random observation will fall in the critical region, and we can choose this region
such that this probability is equal to some pre-chosen value, α,

P (x ∈ ω|H0) = α (10.1)

This value α is thus the probability of rejecting H0 if H0 is true. It is called the
size of the test or the level of significance, although this latter term can be
misleading. For a discrete p.d.f. the possible values of α will also be discrete, while
for a continuous p.d.f. any value of α is possible.

In general, there will be many, often an infinity, of subspaces ω of the same size
α. Which of them should we use? In other words, which of all possible observations
should we regard as favoring and which as disfavoring H0?

To decide which subspace to take as ω, we need to know what the alternatives
are. It is perfectly possible that an observation is unlikely under H0 but even more
unlikely under an alternative hypothesis. Forced to choose between the two we
would not want to reject H0. Thus whether we accept or reject H0 depends on
what the alternative hypothesis, usually designated H1, is.

It should now be clear that a critical region (or, synonymously, a test) must be
judged by its properties both when H0 is true and when H0 is false. We want to
accept H0 if it is true and reject it if it is false. Our decision, i.e., acceptance or
rejection, can be wrong in two ways:

1. Error of the first kind, or loss, or false negative: H0 is true, but we
reject it.

2. Error of the second kind, or contamination, or false positive: H0 is
false, but we accept it.

The probability of making an error of the first kind is equal to the size of the
critical region, α. The probability of making an error of the second kind depends
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on the alternative hypothesis and is denoted∗ by β:

P (x ∈ ω∗|H1) = β (10.2)

The complementary probability,

P (x ∈ ω|H1) = 1− β (10.3)

is called the power of the test of H0 against H1. The specification of H1 when
giving the power is clearly essential since β depends on H1.

Clearly, we would like a test to have small values of both α and β. However,
it is usually a trade-off: decreasing α frequently increases β and vice versa. Let us
consider two examples where H0 and H1 are both simple hypotheses.

Example 1. Consider H0 and H1 both of which hypothesize that the r.v. X
is normally distributed with standard deviation σ. The difference between the
hypotheses lies in the value of µ. For H0 it is µ0 and for H1 it is µ1. We make two
independent observations x1 and x2 to test H0 against H1.

The two observations can be represented by a point in Ω, which is a plane having
x1 and x2 as axes. The joint p.d.f. under H0 is a bivariate normal distribution
centered at the point A, i.e., at x1 = x2 = µ0. The density of points about A in
the figure is meant to represent this p.d.f. Under H1 the p.d.f. is the same except
that it is centered at the point B, x1 = x2 = µ1.

A test of H0 could be made by defining ω by the line PQ with H0
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to be rejected if the point representing
the observations lies above the line PQ.
Another possible critical region is that
between the lines CA and AD. Both of
these regions have the same probability
under H0 and hence the same size, α.

However, the values of β are much
different. The first test will almost al-
ways reject H0 when H1 is true, while
the second test will often wrongly ac-
cept H0. Thus β is much larger for the
second test, and hence the power of the
first test is larger. It should be obvious
that the more powerful test is prefer-
able.

Example 2. In the previous example the sample space was only two dimensions.
When the dimensionality is larger, it is inconvenient to formulate the test in terms of
the complete sample space. Rather, a small number

∗The symbols α and β are used by most authors for the probabilities of errors of the first and
second kind. However, some authors use 1− β where we use β.
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(frequently one) of test statistics is
defined and the test is formulated in
terms of them. In fact, as we shall later
see, in some cases a single test statis-
tic provides the best test. Recall that
a statistic is a function only of the ob-
servations and does not depend on any
assumptions about the p.d.f.

Suppose that we want to distin-
guish K−p elastic scattering events
from inelastic scattering events where
a π0 is produced. The hypotheses are
then

H0: K−p→K−p
H1: K−p→K−pπ0

If the experiment measures the mo-
menta and energies of charged particles
but does not detect neutral particles, a
convenient test statistic is the missing
mass, the mass of the neutral system
in the final state. This is easily calculated from the energies and momenta of the
initial- and final-state charged particles. The true value of the missing mass is
M = 0 under H0, and M = 135 MeV/c2 under H1. We can choose a critical region
M > Mc. The corresponding loss and contamination are shown in the figure. The
choice of Mc will be governed by balancing our interest in both small loss and small
contamination.

Note that the actual contamination in our sample of elastic events depends on
the a priori abundance of inelastic events produced. If this is small compared to
that of elastic events, we can tolerate a large value of β.

10.3 Properties of tests

In parameter estimation we were faced with the problem of choosing the best esti-
mator. Here a similar situation arises: we seek the best test. To aid us, we examine
some properties of tests.

10.3.1 Size

In the previous section we defined (equation 10.1) the size, α, of a test as the
probability that the test would reject the null hypothesis when it is true. If H0 is
a simple hypothesis, the size of a test can be calculated. In other cases it is not
always possible. Clearly a test of unknown size is worthless.
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10.3.2 Power

We have defined (equation 10.3) the power, 1 − β, of a test of one hypothesis H0

against another hypothesis H1 as the probability that the test would reject H0 when
H1 is true. If H1 is a simple hypothesis, the power of a test can be calculated. If
H1 is composite, the power can still be calculated, but is in general no longer a
constant but a function of the parameters.

Suppose that H0 and H1 specify the same p.d.f., the difference being the value
of the parameter θ:

H0: θ = θ0

H1: θ 6= θ0

The contamination, β, is then a function of θ, as is the power:

p(θ) = 1− β(θ) (10.4)

Note that by definition, p(θ0) = 1− β(θ0) = α.
Tests may then be compared on the basis of their power function. If H0 and

H1 are both simple, the best test of size (at significance level) α is the test with
maximum power at θ = θ1, the value specified by H1. In the figure, test B has the
largest power for θ > θ′ and in particular at θ = θ1, whereas test C is more powerful
for θ0 < θ < θ′.

-
θ0 θ′ θ1 θ0

p(θ)

1

α

B
A

C

If for a given value of θ a test is
at least as powerful as any other
possible test of the same size, it
is called a most powerful (MP)
test at that value of θ, and its crit-
ical region is called a best criti-
cal region (BCR). A test which
is most powerful for all regions of θ
under consideration is called a uni-
formly most powerful (UMP)
test. Clearly, if a test is MP at θ1

and the test is independent of θ1, then it is UMP. It is frequently not possible to
find an UMP test, although we will see in section 10.4.1 that if H0 and H1 are both
simple hypotheses, then an UMP test always exists. Unfortunately, in real life an
UMP test does not usually exist. An UMP test which is also unbiased (section
10.3.4) is called UMPU.

10.3.3 Consistency

A highly desirable property of a test is that, as the number of observations in-
creases, it should distinguish better between the hypotheses. A test is termed
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consistent if the power tends to
unity as the number of observations
increases:

lim
N→∞

P (x ∈ ω|H1) = 1

where x is the set of N observations
and ω is the critical region under
H0. The power function thus tends
to a step function as N →∞.

10.3.4 Bias

A test is biased if the power func-
tion is smaller at a value of θ corresponding to H1 than at the value, θ0, specified
by H0, i.e., when there exists a value θ for which

p(θ) = 1− β(θ) < α , θ 6= θ0

An example is test B at θ = θ1 in the figure. In such a case the chance of accepting
H0 is greater when θ = θ1 than when θ = θ0, which means we are more likely to
accept H0 when it is false than when it is true. Such a test is clearly undesirable in
general.
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In some situations it may be
preferable to use a biased test. For
example, test B may be chosen
rather than test A if it is particu-
larly important to be able to dis-
criminate against θ = θ2, where test
B is more powerful than A. How-
ever, in so doing all discrimination
between H0 and H1 in the region of
θ1 is lost.

The definition of a biased test can be formulated in a way which is also applicable
for composite hypotheses. Let H0 specify that θ is in some interval θ0. Then a test
is unbiased if

P (x ∈ ω|θ)
{≤ α, for all θ ∈ θ0

≥ α, for all θ /∈ θ0

In real life it is usually possible to find an unbiased test.

10.3.5 Distribution-free tests

Most of the time we do not invent our own tests, but instead use some standard
test. To be ‘standard’, the distribution of the test statistic, and hence the size of
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the critical region, must be independent of the p.d.f. specified by H0. It can only
depend on whether H0 is true. Such a test is called distribution-free. An example
is the well-known Pearson’s χ2 test, which we shall meet shortly.

It should be emphasized that it is only the size or level of significance of the
test which does not depend on the distributions specified in the hypotheses. Other
properties of the test do depend on the p.d.f.’s. In particular, the power will depend
on the p.d.f. specified in H1.

10.3.6 Choice of a test

Traditionally, the choice of a test is done by first specifying the loss α and then
choosing the test on the basis of the power. This procedure assumes that the risk
of an error of the first kind (loss) is a given constant, and that one only has to
minimize the risk of an error of the second kind (contamination).
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However, this is frequently not the
case. We want to have both kinds of
errors as small as possible. It is then
advantageous to take both α and β as
variables in comparing the tests. As-
sume, for simplicity, that both H0 and
H1 are simple, specifying θ0 and θ1, re-
spectively. Then, for a given test and
a given value of α = p(θ0), one can de-
termine β = 1 − p(θ1). Repeating for
different values of α, a curve giving β
as a function of α can be constructed,
as shown in the figure.

The dashed line in the figure corre-
sponds to 1 − β = α, so that all unbi-
ased test curves will lie entirely below this line, passing through the points (1,0)
and (0,1). Since we desire to have both α and β small, test C in the figure is clearly
inferior to the others for all values of α and β. If both H0 and H1 are simple, there
always exists a test (the Neyman-Pearson test, cf. section 10.4.1) which is at least
as good as any other test for all α and β. If this test is too complicated, or in the
case of composite hypotheses, one could be in the position of choosing, for example,
between tests A and B. Clearly, test A should be chosen for α < α1 and test B for
α > α1.

If the hypotheses are composite, the figure can become a multidimensional dia-
gram with new axes corresponding to θ or to other unspecified parameters. Or each
test can be represented by a family of curves in the α-β plane.

A minor difficulty arises when discrete distributions are involved, since only a
discrete set of α’s are then available, and the α-β curves are discontinuous.

The above techniques allow one to choose the best test. Whether it is good
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enough depends on the cost (in terms of such things as time and money) of making
an error, i.e., a wrong decision.

10.4 Parametric tests

10.4.1 Simple Hypotheses

The Neyman-Pearson test

When bothH0 and H1 are simple hypotheses, the problem of finding the best critical
region (BCR), or most powerful (MP) test, of size α is particularly straightforward,
as was shown by Neyman and Pearson.46

We suppose that the r.v. x is distributed under H0 as f(x; θ0) and under H1 as
g(x; θ1). Then equations 10.1 and 10.3 can be written

P (x ∈ ωα | H0) =
∫

ωα

f(x; θ0) dx = α (10.5)

P (x ∈ ωα | H1) =
∫

ωα

g(x; θ1) dx = 1− β (10.6)

We want to find the critical region ωα which, for a given value of α, maximizes
1− β. Rewriting equation 10.6, we have

1− β =
∫

ωα

g(x; θ1)

f(x; θ0)
f(x; θ0) dx

= Eωα

[
g(x; θ1)

f(x; θ0)

∣∣∣∣∣H0

]

which is the expectation of g(x; θ1)/f(x; θ0) in the region ωα assuming that H0 is
true. This will be maximal if we choose the region ωα as that region containing the
points x for which this ratio is the largest. In other words, we order the points x
according to this ratio and add these points to ω until ω has reached the size α.
The BCR thus consists of the points x satisfying

f(x; θ0)

g(x; θ1)
≤ cα

where cα is chosen such that ωα is of size α (equation 10.5).
This ratio is, for a given set of data, just the ratio of the likelihood functions,

which is known as the likelihood ratio. We therefore use the test statistic

λ =
L(x|H0)

L(x|H1)
(10.7)

and

reject H0 if λ ≤ cα

accept H0 if λ > cα

This is known as the Neyman-Pearson test.
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An Example

As an example, consider the normal distribution treated in example 1 of section
10.2. BothH0 and H1 hypothesize a normal p.d.f. of the same variance, but different
means, µ0 under H0 and µ1 under H1. The variance is, for both hypotheses, specified
as σ2. The case where the variance is not specified is treated in section 10.4.3. The
likelihood function under Hi for n observations is then

L(x|Hi) = (2π)−n/2 exp


−1

2

n∑

j=1

(xj − µi)
2

σ2




= (2π)−n/2 exp
[
− n

2σ2

{
s2 + (x̄− µi)

2
}]

where x̄ and s2 are the sample mean and sample variance, respectively. Hence, our
test statistic is (equation 10.7)

λ =
L(x|H0)

L(x|H1)
= exp

[
n

2σ2

{
(x̄− µ1)

2 − (x̄− µ0)
2
}]

= exp
[
n

2σ2

{
2x̄(µ0 − µ1) + (µ2

1 − µ2
0)
}]

and the BCR is defined by λ ≤ cα or

x̄(µ0 − µ1) +
1

2
(µ2

1 − µ2
0) ≤

σ2

n
ln cα

which becomes

x̄ ≥ 1

2
(µ1 + µ0)−

σ2

n

ln cα
µ1 − µ0

if µ1 > µ0 (10.8)

x̄ ≤ 1

2
(µ1 + µ0) +

σ2

n

ln cα
µ0 − µ1

if µ1 < µ0 (10.9)

Thus we see that the BCR is determined by the value of the sample mean. This
should not surprise us if we recall that x̄ was an efficient estimator of µ (section
8.2.7).

In applying the test, we reject H0 if µ1 > µ0 and x̄ is above a certain critical
value (equation 10.8), or if µ1 < µ0 and x̄ is below a certain critical value (equation
10.9).

To find this critical value, we recall that x̄ itself is a normally distributed r.v.
with mean µ and variance σ2/n. (This is the result of the central limit theorem,
but when the p.d.f. for x is normal, it is an exact result for all n.) We will treat the
case of µ1 > µ0 and leave the other case as an exercise for the reader.

For µ1 > µ0, the right-hand side of equation 10.8 is just x̄α given by
√

n

2πσ2

∫ ∞

x̄α

exp
[
− n

2σ2
(x̄− µ0)

2
]

dx̄ = α
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Transforming to a standard normal variable,

z =
x̄− µ0

σ/
√
n

(10.10)

we can rewrite this in terms of the standard normal integral, which is given by the
error function (section 3.6):

α =
1√
2π

∫ ∞

zα

e−z2/2 dz =
1√
2π

∫ −zα

−∞
e−z2/2 dz = erf(−zα) (10.11)

For example, for α = 0.05 we find in a table that zα = 1.645. For µ0 = 2, σ = 1,
and n = 25, this value of zα inserted in equation 10.10 yields x̄α = 2.33. Then if
x̄ > 2.33, we reject H0 with a level of significance of 5%.

The power of the test can also be easily computed in this example. It is

√
n

2πσ2

∫ ∞

x̄α

exp
[
− n

2σ2
(x̄− µ1)

2
]

dx̄ = 1− β

which, in terms of the error function and the zα defined above, can be written

1− β = 1− erf

(√
n

σ
(µ0 − µ1) + zα

)
= erf

(√
n

σ
(µ1 − µ0)− zα

)
(10.12)

We see that the power increases monotonically with both n and µ1 − µ0.

10.4.2 Simple H0 and composite H1

In the previous section we have seen how to construct the best test between two
simple hypotheses. Unfortunately, no such generally optimal method exists when
H0 and/or H1 is not simple.

Suppose that we want to test a simple H0 against a composite H1. Let us first
treat an H1 which is just a collection of simple hypotheses, e.g., under H0 θ = θ0,
and under H1 θ = θ1 or θ2 or θ3 or . . . θn. We could imagine testing H0 against each
of these alternatives separately using a MP test as found in section 10.4.1. However,
this would lead in general to a different critical region in each case and most likely
to acceptance of H0 in some cases and rejection in others. We are therefore led to
inquire whether there exists one BCR for all the alternative values. A test using
such a BCR would be UMP.

UMP test for the exponential family

Unfortunately, an UMP test does not generally exist. One important case where
an UMP test does exist is when the p.d.f. of H0 and H1 is of the exponential
family (section 8.2.7), but then only for ‘one-sided’ tests.4 We illustrate this for the
Gaussian p.d.f. from our results of section 10.4.1.
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In that example we saw that for µ1 > µ0 a BCR was given by x̄ ≥ bα and for
µ1 < µ0 by x̄ ≤ aα. Thus if H1 contains only values greater than, or only values
less than µ0, we have a (one-sided) UMP test, but not if H1 allows values of µ
on both sides of µ0. In such cases we would intuitively expect that a compromise
critical region defined by x̄ ≤ aα/2 or x̄ ≥ bα/2 would give a satisfactory ‘two-
sided’ test, and this is what is usually used. It is, of course, less powerful than
the one-sided tests in their regions of applicability as is illustrated in the figure.

-

1

0

p

α

µ0 µ

Critical region in both tails equally.
Critical region in lower tail.
Critical region in upper tail.

Maximizing local power

If no UMP test exists, it can be a good idea to look for a test which is most
powerful in the neighborhood of the null hypothesis. This is the place where a test
will usually be least powerful. Consider the two simple hypotheses, both specifying
the same p.d.f.,

H0: θ = θ0 H1: θ = θ1 = θ0 + ∆

where ∆ is small.
The log-likelihood can be expanded about θ0,

lnL(x; θ1) = lnL(x; θ0) + ∆
∂ lnL
∂θ

∣∣∣∣∣
θ=θ0

+ . . .

Since we are treating two simple tests, we can use the Neyman-Pearson test (equa-
tion 10.7) to reject H0 if the likelihood ratio is smaller than some critical value:

λ =
L(x|H0)

L(x|H1)
≤ cα

This is equivalent to
lnL(x; θ0)− lnL(x; θ1) ≤ ln cα
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or (assuming ∆ > 0)

∂ lnL
∂θ

∣∣∣∣∣
θ=θ0

≥ kα , kα = − ln cα
∆

Now, if the observations are independent and identically distributed, we know from
section 8.2.5 that under H0 the expectation of L is a maximum and

E

[
∂ lnL
∂θ

∣∣∣∣∣
θ=θ0

]
= 0

E



(
∂ lnL
∂θ

)2

 = nI

for n independent observations, where I is the information on θ for 1 observation.
Under suitable conditions ∂ lnL

∂θ
is approximately normally distributed with mean 0

and variance nI. The value of kα corresponding to a particular choice of size α can
then be found as in section 10.4.1 (equation 10.11):

α = erf(−zα) , where zα =
kα√
nI

In this way, a locally most powerful test is approximately given by rejecting H0 if

∂ lnL
∂θ

∣∣∣∣∣
θ=θ0

≥ zα

√
nI , α = erf(−zα) (10.13)

10.4.3 Composite hypotheses—same parametric family

We now turn to the more general case where both H0 and H1 are composite hy-
potheses. We make a distinction between the case where the p.d.f.’s specified in
the hypotheses belong to one continuous family from the case where they belong to
distinct families. In the first case the only difference between the hypotheses is the
specification of the parameters, e.g.,

H0: f(x; θ) , with θ < θ0

H1: f(x; θ) , with θ > θ0

However, in the second case the p.d.f.’s are different and may even involve different
numbers of parameters. In this section we will treat the first case.

Likelihood ratio test

We have seen (section 8.4) that the maximum likelihood method gave estimators
which, under certain conditions, had desirable properties. A method of test con-
struction closely related to it is the likelihood ratio method proposed by Neyman
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and Pearson47 in 1928. It has played a similar role in the theory of tests to that
of the maximum likelihood method in the theory of estimation. As we have seen
(sect. 10.4.1), this led to a MP test for simple hypotheses.

Assume that the N observations, x, are independent and that both hypotheses
specify the p.d.f. f(x; θ). Then the likelihood function is

L(x; θ) =
N∏

i=1

f(xi; θ)

We denote the total parameter space by Θ and a subspace of it by ν. Then the
hypotheses can be specified by

H0: θ ∈ ν
H1: θ ∈ Θ− ν

Examples, where for simplicity we assume that there are only two parameters θ =
(θ1, θ2), are

Example 1 2 3

H0 θ1 = a and θ2 = b θ1 = c , θ2 unspecified θ1 + θ2 = d
H1 θ1 6= a and/or θ2 6= b θ1 6= c , θ2 unspecified θ1 + θ2 6= d

In the first example H0 is in fact a simple hypothesis.
We use the term conditional maximum likelihood for the maximum of the like-

lihood function for θ in the region specified by H0. Similarily, the unconditional
maximum likelihood is the maximum of the likelihood in the entire parameter space.
We define as the test statistic the maximum likelihood ratio, λ, as the ratio of
the conditional maximum likelihood to the unconditional maximum likelihood:

λ =
Lν max(x; θ)

LΘmax(x; θ)
(10.14)

Clearly, 0 ≤ λ ≤ 1. Given what we know about the maximum likelihood method for
parameter estimation, it certainly seems reasonable that this statistic would provide
a reasonable test. In the limit of H0 and H1 both being simple, it is equivalent to the
Neyman-Pearson test (equation 10.7, section 10.4.1). The success of the maximum
likelihood ratio as a test statistic is due to the fact that it is always a function of
a sufficient statistic for the problem. Its main justification is its past success. It
has been found very frequently to result in a workable test with good properties, at
least for large sets of observations.

The hypotheses to be tested can usually be written in the form

H0: θi = θi0 for i = 1, 2, . . . , r (denote this by θr = θr0)
θj unspecified for j = 1, 2, . . . , s (denote this by θs)

H1: θi 6= θi0 for i = 1, 2, . . . , r (denote this by θr 6= θr0)
θj unspecified for j = 1, 2, . . . , s
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Hypotheses which do not specify exact values for parameters, but rather relation-
ships between parameters, e.g., θ1 = θ2, can usually be reformulated in terms of
other parameters, e.g., θ′1 = θ1 − θ2 = 0 and θ′2 = θ1 + θ2 unspecified. We can
introduce the more compact notation of L(x; θr, θs), i.e., we write two vectors of
parameters, first those which are specified under H0 and second those which are not.
The unspecified parameters θs are sometimes referred to as ‘nuisance’ parameters.

In this compact notation, the test statistic can be rewritten as

λ =
L
(
x; θr0,

ˆ̂
θs

)

L
(
x; θ̂r, θ̂s

) (10.15)

where
ˆ̂
θs is the value of θs at the maximum of L in the restricted region ν and θ̂r

and θ̂s are the values of θr and θs at the maximum of L in the full region Θ.
If H0 is true, we expect λ to be near to 1. The critical region will therefore be

λ ≤ cα (10.16)

where cα must be determined from the p.d.f. of λ, g(λ), under H0. Thus, for a test
of size α, cα is found from

α =
∫ cα

0
g(λ) dλ (10.17)

It is thus necessary to know how λ is distributed. Furthermore, to perform this
integration, g(λ) must not depend on any of the unspecified (nuisance) parameters.
Luckily, this is so for most statistical problems.

Example: As an example, let us again take a normal p.d.f. with H0 specifying
the mean as µ = µ0 and H1 specifying µ 6= µ0. Both hypotheses leave σ unspecified;
thus σ is a nuisance parameter. Then

L(x;µ, σ) = (2πσ2)−N/2
N∏

i=1

exp

[
−1

2

(
xi − µ
σ

)2
]

We have seen (section 8.4.1) that the unconditional maximum likelihood estimators
are

µ̂ = x̄

σ̂2 = s2 =
1

N

N∑

i=1

(xi − x̄)2

Thus, the unconditional likelihood is

L(x; µ̂, σ̂) = (2πs2)−N/2 exp
[
−1

2
N
]
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Under H0, the maximum likelihood estimator is

ˆ̂σ
2

=
1

N

N∑

i=1

(xi − µ0)
2 = s2 + (x̄− µ0)

2

Therefore the conditional maximum likelihood is given by

L(x;µ0, ˆ̂σ) =
{
2π
[
s2 + (x̄− µ0)

2
]}−N/2

exp
[
−1

2
N
]

The likelihood ratio is then

λ =

{
s2

s2 + (x̄− µ0)2

} 1
2
N

(10.18)

Consequently,

λ2/N =
1

1 + t2

N−1

, t2 =
N(x̄− µ0)

2

1
N−1

∑N
i=1(xi − x̄)2

(10.19)

This t is a Student’s t-statistic with N − 1 degrees of freedom (equation 3.39). We
see that λ is a monotonically decreasing function of t2. Recall that the t-distribution
is symmetric about zero. The critical region, λ < λα, therefore corresponds to the
two regions t < t−α/2 and t > tα/2. The values of t±α/2 corresponding to a particular
test size α can be found from the Student’s t-distribution, and from that value the
corresponding value of λα follows using the above equation. It can be shown that
this test is UMPU.10

Asymptotic distribution of the likelihood ratio

In order to determine the critical region of the likelihood ratio, λ, it is necessary to
know how it is distributed under H0. Sometimes we can find this distribution quite
easily, as in the example of the previous section. But often it is difficult, since the
distribution is unknown or since it is awkward to handle. One can sometimes use
Monte Carlo, but this is not always satisfactory. The usual procedure is to consider
the asymptotic distribution of the likelihood ratio, and use it as an approximation
to the true distribution.

We know that asymptotically the maximum likelihood estimator θ̂ attains the
minimum variance bound and that θ̂ becomes normally distributed according to the
likelihood function. Suppressing the normalization factor, the likelihood function is
of the form

L(x; θ) = L(x; θr, θs) ∝ exp
[
−1

2
(θ̂ − θ)TI(θ̂ − θ)

]
(10.20)

where I is the information matrix for θ,

I =



Ir

... Irs

· · · ... · · ·
IT

rs

... Is
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Thus, equation 10.20 can be written

L(x; θr, θs) ∝ exp
{
−1

2

[
(θ̂r − θr)

TIr(θ̂r − θr)

+ 2 (θ̂r − θr)
TIrs(θ̂s − θs)

+ (θ̂s − θs)
TIs(θ̂s − θs)

]} (10.21)

At the maximum of L under H1, θ̂r = θr and θ̂s = θs. Thus the exponent of
equation 10.21 is zero and equation 10.21 becomes L ∝ 1. Under H0, we must

replace θ̂s in equation 10.21 by
ˆ̂
θs At the maximum of L, we have

ˆ̂
θs = θs. Thus,

under H0 equation 10.21 becomes

L ∝ exp
[
−1

2
(θ̂r − θ0r)

TIr(θ̂r − θ0r)
]

Taking the ratio, we find

λ = exp
[
−1

2
(θ̂r − θ0r)

TIr(θ̂r − θ0r)
]

or
−2 lnλ = (θ̂r − θ0r)

TIr(θ̂r − θ0r)

From the property that L is normally distributed, it follows that −2 lnλ is a dis-
tributed as χ2 with r degrees of freedom under H0, where r is the number of
parameters specified under H0. For a test of size α, we therefore reject H0 if

−2 lnλ > χ2
α where

∫ ∞

χ2
α

χ2(r) dχ2 = α

Under H1, it turns out that −2 lnλ is distributed as a non-central χ2 with r
degrees of freedom and non-centrality parameter

K = (θ̂r − θ0r)
TIr(θ̂r − θ0r)

The non-central χ2 distribution, χ′2(r,K), is the distribution of a sum of variables
distributed normally with a non-zero mean and unit variance. It can be used to
calculate the power of the test:4,10

p = 1− β =
∫ ∞

χ2
α

dF1

where F1 is the c.d.f. of χ′2.
The asymptotic properties of the likelihood ratio test which have been found in

this section depend on the asymptotic properties of the likelihood function, which
in turn rest on regularity assumptions about the likelihood function. In particular,
we have assumed that the range of the p.d.f. does not depend on the value of a
parameter. Nevertheless, it turns out that under certain conditions −2 lnλ is even
then distributed as χ2, but with 2r instead of r degrees of freedom.10
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Small sample behavior of the likelihood ratio

Although the asymptotic properties of the likelihood ratio for hypotheses having
p.d.f.’s of the same family are quite simple, the small sample behavior is not so
easy. The usual approach is to find a correction factor, f , such that −(2 lnλ)/f is
distributed as χ2(r) even for small N .4,10 Only the case of the linear model will be
treated here.

Linear model: A particular case is the linear model (section 8.5.2) in which the
N observations yi are assumed to be related to other observations xi, within random
errors εi, by a function linear in the k parameters θj,

yi = y(xi) + εi =
k∑

j=1

θjhj(xi) + εi

We assume that the εi are normally distributed with mean 0 and variance σ2. We
wish to test whether the θj have the specified values θ0j , or more generally, whether
they satisfy some set of r linear constraints,

Aθ = b (10.22)

where A and b are specified under H0. Under H1, the θ may take on any set of
values not satisfying the constraints of equation 10.22.

The likelihood for both H0 and H1 is given by

L(x; θ) = (2πσ2)−N/2 exp


− 1

2σ2

N∑

i=1


yi −

k∑

j=1

θjhj(xi)




2



= (2πσ2)−N/2 exp
[
−1

2
Q2
]

We now distinguish two cases:

Variance known. We first treat the case of known variance σ2. The esti-
mates of the parameters are given by the least squares solutions (section 8.5), with
constraints for H0 yielding θ̂0j and without constraints for H1 yielding θ̂1j . The
likelihood ratio, λ, is then given by

−2 lnλ =
1

σ2

N∑

i=1


yi −

k∑

j=1

θ̂0jhj(xi)




2

− 1

σ2

N∑

i=1


yi −

k∑

j=1

θ̂1jhj(xi)




2

= Q2
0 −Q2

1

(10.23)
It has been shown4 that the second term can be expressed as the first term plus a
quadratic form in the εi, and hence that −2 lnλ is distributed as a χ2 of r degrees
of freedom. This result is true exactly for all N , not just asymptotically. It also
holds if the errors are not independent but have a known covariance matrix.
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The test thus consists of performing two least squares fits, one with and one
without the constraints of H0. Each fit results in a value of Q2, the difference of
which, Q2

0−Q2
1, is a χ2(r). H0 is then rejected if Q2

0−Q2
1 > χ2

α where
∫∞
χ2

α
χ2(r) dχ2 =

α.
We can qualitatively understand this result in the following way: Asymptoti-

cally, Q2
0 is a χ2(N −k+ r) and Q2

1 is a χ2(N −k). From the reproductive property
of the χ2 distribution (section 3.11), the difference of these χ2 is also a χ2 with a
number of degrees of freedom equal to the difference of degrees of freedom of Q2

0

and Q2
1, namely r. Thus the above result follows.

Variance unknown. If the variance σ2 is unknown, it must be estimated from
the data. Under H0 the estimate of σ2 is

s2
0 =

1

N

N∑

i=1


yi −

k∑

j=1

θ̂0jh(xi)




2

and the maximum likelihood becomes

L(x;H0) =
1

(2π)N/2(s2
0)

N/2
exp

[
−N

2

]

The expressions for H1 are similar. The likelihood ratio is then

λ =

(
s2
1

s2
0

)N/2

(10.24)

or λ−2/N = 1 +
s2
0 − s2

1

s2
1

(10.25)

It can be shown that (s2
0 − s2

1)/σ
2 and s2

1/σ
2 are independently distributed as

χ2 with r and N − k degrees of freedom, respectively. The ratio,

F =
N − k
r

s2
0 − s2

1

s2
1

(10.26)

is therefore distributed as the F -distribution (section 3.13). H0 is then rejected if
F > Fα, where

∫∞
Fα
F (r,N − k) dF = α.

However, under H1, (s2
0−s2

1)/σ
2 is distributed as a non-central χ2. This leads to

a non-central F -distribution from which the power of the test can be calculated.10

10.4.4 Composite hypotheses
—different parametric families

When the p.d.f. specified by H1 can not be attained by varying the parameters
of the p.d.f. of H0, we speak of different parametric families of functions. The
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distribution of the likelihood ratio then usually turns out to depend on N as well
as on which hypothesis is true. The likelihood ratio can still be used as a test, but
these dependences must be properly taken into account.4 The tests are therefore
more complicated.

The easiest method to treat this situation is to construct a comprehensive family
of functions

h(x; θ, φ, ψ) = (1− θ)f(x;φ) + θg(x;ψ)

by introducing an additional parameter θ.
What we really want to test is H0 against H1,

H0: f(x;φ) , φ unspecified

H1: g(x;ψ) , ψ unspecified

Instead, we can use the composite function to test H0 against H ′
1:

H0: h(x; θ, φ, ψ) , θ = 0, φ, ψ unspecified

H ′
1: h(x; θ, φ, ψ) , θ 6= 0, φ, ψ unspecified

using the maximum likelihood ratio as in the previous section:

λ =
L(x; θ = 0,

ˆ̂
φ, ψ)

L(x; θ̂, φ̂, ψ̂)
=




f(x;
ˆ̂
φ)

(1− θ̂)f(x; φ̂) + θ̂g(x; ψ̂)




N

(10.27)

Then under H0, −2 lnλ is distributed asymptotically as χ2(1) since one constraint
(θ = 0) has been imposed on the parameter space.

The power of the test can be found using the fact that, under H1, −2 lnλ
is distributed as a non-central χ2, χ′2(1, K) with 1 degree of freedom and non-
centrality parameter K = θ2/S where

S = E




[
f(x;φ)− g(x;ψ)

]2

[
(1− θ)f(x;φ) + θg(x;ψ)

]2


 (10.28)

Since this test compares f(x;φ) with a mixture of f and g, it is not expected to be
very powerful.

In practice, one would also make a test of H1 against the mixture, i.e., define a
new H ′

0 corresponding to θ = 1, and test this against the mixture H ′
1 in the same

manner as above, hoping that H0 or H ′
0, but not both, would be rejected.

10.5 And if we are Bayesian?

If we are Bayesian, our belief in (the probability of) H0 or H1 is simply given by
Bayes’ theorem. After an experiment giving result x, the probability of Hi (i = 0, 1)
is

P (Hi|x) =
P (x|Hi)

P (x|H0) + P (x|H1)
Pp(Hi) (10.29)
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where Pp(Hi) is the probability of Hi before (prior to) doing the experiment and
P (x|Hi) is the probability of obtaining the result x if Hi is true, which is identical
to L(x|Hi). We can compare P (H0|x) and P (H1|x), e.g., by their ratio. If both H0

and H1 are simple hypotheses,

P (H0|x)
P (H1|x)

=
P (x|H0)

P (x|H1)

Pp(H0)

Pp(H1)
(10.30)

= λ
Pp(H0)

Pp(H1)
(10.31)

where λ is just the likelihood ratio (eq. 10.7). This leads to statements such as
“the probability of H0 is, e.g., 20 times that of H1”. Note, however, that here, as
always with Bayesian statistics, it is necessary to assign prior probabilities. In the
absence of any prior knowledge, Pp(H0) = Pp(H1). The test statistic is then λ, just
as in the Neyman-Pearson test (section 10.4.1). However now the interpretation is
a probability rather than a level of significance.

Suppose that H1 is a composite hypothesis where a parameter θ is unspecified.
Equation 10.30 remains valid, but with

P (x|H1) =
∫
f(x, θ|H1) dθ (10.32)

=
∫
P (x|θ,H1) f(θ|H1) dθ (10.33)

Now, P (x|θ,H1) is identical to L(x; θ) under H1 and f(θ|H1) is just the prior p.d.f.
of θ under H1. In practice, this may not be so easy to evaluate. Let us therefore
make some simplifying assumptions for the purpose of illustration. We know that
asymptotically L(x; θ) is proportional to a Gaussian function of θ (eq. 8.72). Let us
take a prior probability uniform between θmin and θmax and zero otherwise. Then,
with σ2

θ̂
the variance of the estimate, θ̂, of θ, equation 10.33 becomes

P (x|H1) = Lmax(x; θ)
∫

exp

(
−(θ − θ̂)2

2σ2
θ̂

)
1

θmax − θmin
dθ (10.34)

=
Lmax(x; θ)

θmax − θmin

∫ θmax

θmin

exp

(
−(θ − θ̂)2

2σ2
θ̂

)
dθ (10.35)

= Lmax(x; θ)
σθ̂

√
2π

θmax − θmin
(10.36)

where we have assumed that the tails of the Gaussian cut off by the integration
limits θmin, θmax are negligible. Thus equation 10.30 becomes

P (H0|x)
P (H1|x)

= λ
Pp(H0)

Pp(H1)

θmax − θmin

σθ̂

√
2π

(10.37)
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where λ is now the maximum likelihood ratio λ = L(x|H0)/Lmax(x|H1). Note that
there is a dependence not only on the prior probabilities of H0 and H1, but also on
the prior probability of the parameter θ.

Someone remarked to me once:
“Physicians shouldn’t say, ‘I have cured this man’,

but, ‘this man didn’t die under my care’.”
In physics too, instead of saying,

“I have explained such and such phenomenon”,
one might say, “I have determined causes for it

the absurdity of which cannot be conclusively proved.”
—Georg Christoph Lichtenberg

10.6 Goodness-of-fit tests

10.6.1 Confidence level

As in the previous section, we are concerned with testing an hypothesis H0 at
some significance level α. Again, H0 will be rejected if a test statistic has a value
which lies in the critical region ω. The difference with the previous section lies
in the alternative hypothesis H1. Now H1 is simply not H0, i.e., H1 is the set of
all possible alternatives to H0. Thus H1 can not be formulated and consequently,
the chance of an error of the second kind can not be known. Nor can most of the
tests of the previous section (including the use of Bayesian probability) be applied,
involving as they do the likelihood ratio, for if we do not specify H1, we can not
calculate the likelihood under H1.

Goodness-of-fit tests compare the experimental data with the p.d.f. specified
under H0 and lead to the statement that the data are consistent or inconsistent
with H0. Usually one states a confidence level, e.g., “The data are consistent with
H0 at a confidence level of 80%.” The confidence level∗ (cl), also known as
P -value,† is the size that the test would have if the critical region were such that
the test statistic were at the boundary between rejection and acceptance of H0. In
other words, it is the probability, assuming H0 is true, of obtaining a value of the
test statistic as “bad” as or “worse” than that actually obtained. Thus, a high
confidence level means that if H0 is true there is a large chance of obtaining data
‘similar’ to ours. On the contrary, if cl is small there is a small chance and H0 can

∗Many authors use 1− cl where we use cl.
†P -value is the preferable term, since it eliminates confusion with the confidence level of confi-

dence intervals (chapter 9), which, although related, is different. Nevertheless, the term confidence
level is more widely used, especially by physicists.
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be rejected. Despite the suggestive “P”, the P -value is not a probability; it is a
random variable.

We shall only consider distribution-free tests, for the practical reason that they
are widely applicable. To apply a test, one needs to know the p.d.f. of the test
statistic in order to calculate the confidence level. For the well-known tests tables
and/or computer routines are widely available. For a specific problem it may be
possible to construct a better test, but it may not be so much better that it is worth
the effort.

10.6.2 Relation between Confidence level and Confidence

Intervals

The same integrals are involved in confidence intervals and goodness-of-fit tests. To
illustrate this, consider a r.v., x, which is distributed normally, f(x) = N(x;µ, σ2).
For n points, assuming σ2 known, the estimator of the mean, t = x̄, is also normally
distributed:

f(t) = N(t;µ, σ2/n)

The coverage probability (or confidence coefficient or confidence level) of the confi-
dence interval [µ−, µ+], e.g., for a central confidence interval from equation 9.12, is
given by equation 9.10,

β =
∫ t+(µ)

t−(µ)
N(t;µ, σ2/n) dt (10.38)

which holds for any value of µ.
If H0 states that x is distributed normally with mean µ = 0,

H0 : f(x) = N(x; 0, σ2) or f(t) = N(t; 0, σ2/n)

and if the data give t = x̄, the confidence level or P -value (for a symmetric two-sided
test) is

cl =
∫ −|x̄|

−∞
N(t; 0, σ2/n) dt+

∫ +∞

+|x̄|
N(t; 0, σ2/n) dt

= 1−
∫ +|x̄|

−|x̄|
N(t; 0, σ2/n) dt (10.39)

Note the similarity of the integrals in equations 10.38 and 10.39. We see that
the coverage probability of the interval [−|x̄|,+|x̄|], β, is related to the P -value by
cl = 1−β. However, for the confidence interval, the coverage probability is specified
first and the interval, [µ−, µ+], is the random variable, while for the goodness-of-fit
test the hypothesis is specified (µ = µ0) and the P -value is the r.v.

Referring to the confidence belt figure of section 9.2, and supposing that θt is
the hypothesized value of the parameter µ0, t−(µ0) and t+(µ0) are the values of
t̂ which would give cl = 1 − β. Put another way, if we decide to reject H0 if
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cl < α, then the regions outside the confidence belt for β = 1− α is the rejection
region. Thus the confidence belt defines the acceptance region of the corresponding
goodness-of-fit test.

10.6.3 The χ2 test

Probably the best known and most used goodness-of-fit test is the χ2 test. We have
already frequently alluded to it. We know (section 3.11) that the sum of N normally
distributed r.v.’s is itself a r.v. which is distributed as χ2(N). Hence, assuming that
our measurements, yi, have a normally distributed error, σi, the sum

X2 =
N∑

i=1

(yi − fi)
2

σ2
i

(10.40)

where fi is the value that yi is predicted to have under H0, will be distributed as
χ2(N). The cl is easily calculable from the χ2 distribution:

cl =
∫ ∞

X2
χ2(z;N) dz (10.41)

This X2 is just the quantity that is minimized in a least squares fit (where we
denoted it by Q2). In the linear model, assuming Gaussian errors, X2 = Q2

min is
still distributed as χ2 even though parameters have been estimated by the method.
However the number of degrees of freedom is reduced to N − k, where k is the
number of parameters estimated by the fit. If constraints have been used in the fit
(cf. section 8.5.6), the number of degrees of freedom is increased by the number of
constraints, since each constraint among the parameters reduces by one the number
of free parameters estimated by the fit. If the model is non-linear, X2 = Q2

min is
only asymptotically distributed as χ2(N − k).

It is sometimes argued that the χ2 test should be two-tailed rather than one-
tailed, i.e., that H0 should be rejected for unlikely small values of X2 as well as
for unlikely large values. Arguments given for this practice are that such small
values are likely to have resulted from computational errors, overestimation of the
measurement errors σi, or biases (unintentional or not) in the data which have not
been accounted for in making the prediction. However, while an improbably small
value of X2 might well make one suspicious that one or more of these considerations
had occurred (and indeed several instances of scientific fraud have been discovered
this way), such a low X2 can not be regarded as a reason for rejecting H0.

10.6.4 Use of the likelihood function

It is often felt that since the likelihood function is so useful in parameter estimation
and in the formulation of tests of hypotheses, it should also be useful as a goodness-
of-fit test. Frequently the statement is made that it can not be used for this purpose.
In fact, it can be used, but it is usually difficult to do so.



10.6. GOODNESS-OF-FIT TESTS 219

The problem is that in order to use the value of L as a test, we must know how L
is distributed in order to be able to calculate the confidence level. Suppose that we
have N independent observations, xi, each distributed as f(x). The log likelihood
is then just

` =
N∑

i=1

ln f(xi)

If no parameter is estimated from the data, the mean of ` is just

E [`] =
∫ N∑

i=1

ln f(xi)L dx1 dx2... dxN = N
∫

ln f(x) f(x) dx

Similarly higher moments could be calculated, and from these moments (just the
first two if N is large and the central limit theorem is applicable) the distribution
of `, g(`), could be reconstructed. The confidence level would then be given by

cl =
∫ `

−∞
g(`) d` (10.42)

If parameters are estimated by maximum likelihood, the calculations become
much more complicated. A simple, but expensive, solution is to generate Monte
Carlo experiments. From each Monte Carlo experiment one calculates ` and thus
obtains an approximate distribution for ` from which the cl can be determined.

10.6.5 Binned data

We now consider tests of binned data.∗ Since binning data loses information, we
should expect such tests to be inferior to tests on individual data. Further, we must
be sure to have a sufficient number of events in each bin, since most of the desirable
properties of the tests are only true asymptotically.

However, binning the data removes the difficulty that H1 is completely unspec-
ified, since the number of events in a bin must be distributed multinomially. Thus
both H0 and H1 specify the multinomial p.d.f. Some or all of the parameters are
specified under H0; none of them are specified under H1 further than that they are
different from those specified under H0.

Likelihood ratio test

Suppose that we have k bins with ni events in bin i and
∑k

i=1 ni = N . Let H0

be a simple hypothesis, i.e., all parameters are specified. Let pi be the probability
content of bin i under H0 and qi the probability content under the true p.d.f., which

∗Although we use the term ‘binned’, which suggests a histogram, any classification of the
observations may be used. See also section 8.6.1.
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we of course do not know. The likelihood under H0 and under the true p.d.f. are
then, from the multinomial p.d.f., given by

L0(n|p) = N !
k∏

i=1

pni
i

ni!

L(n|q) = N !
k∏

i=1

qni
i

ni!

An estimate q̂i of the true probability content can be found by maximizing L(n|q)
subject to the constraint

∑k
i=1 qi = 1. The result∗ is

q̂i =
ni

N

The test statistic is then the likelihood ratio (cf. section 10.4.3)

λ =
L0(n|p)
L(n|q̂) = NN

k∏

i=1

(
pi

ni

)ni

(10.43)

The exact distribution of λ is not known. However, we have seen in section 10.4.3
that −2 lnλ is asymptotically distributed as χ2(k− 1) under H0, where the number
of degrees of freedom, k−1, is the number of parameters specified. The multinomial
p.d.f. has only k − 1 parameters (pi) because of the restriction

∑k
i=1 pi = 1. If H0

is not simple, i.e., not all pi are specified, the test can still be used but the number
of degrees of freedom must be decreased accordingly.

Pearson’s χ2 test

The classic test for binned data is the χ2 test proposed by Karl Pearson48 in 1900.
It makes use of the asymptotic normality of a multinomial p.d.f. to find that under
H0 the statistic

X2 =
k∑

i=1

(ni −Nπi)
2

Nπi
(10.44)

is distributed asymptotically as χ2(k − 1).
If H0 is not simple, its free parameters can be estimated, (section 8.6.1) by

the minimum chi-square method. In that method, the quantity which is minimized
with respect to the parameters (equation 8.152) is just Pearson’s X2. The minimum
value thus found therefore serves to test the hypothesis. It can be shown that in
this case X2 is asymptotically distributed as χ2(k− s− 1) where s is the number of
parameters which are estimated. This is also true if the binned maximum likelihood

∗This was derived for the binomial p.d.f. in section 8.4.7. It may be trivially extended to the
multinomial case by treating each bin separately as binomially distributed between that bin and
all the rest.
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method (section 8.6.2) is used to estimate the parameters.10 Similarly, the quantity
which is minimized in the modified minimum chi-square method (equation 8.154)
is also asymptotically distributed as χ2(k − s− 1).

But what if we estimate the parameters by a different method? In particular, as
is frequently the case, what if we estimate the parameters by maximum likelihood
using the individual data rather than the binned data? It then turns out10 that
X2 is still distributed as χ2, but with a number of degrees of freedom, d, between
that of the binned fit and the fully specified case, i.e., k − s− 1 ≤ d ≤ k − 1. The
exact number of degrees of freedom depends on the p.d.f. The test is then no longer
distribution free, although for large k and small s it is nearly so.

Equation 10.44 assumes that H0 only predicts the shape of the distribution,
i.e., the probability, πi, that an event will be in bin i, with

∑
πi = 1. If also the

total number of events is predicted by H0, the distribution is no longer multinomial,
but rather a multinomial times a Poisson or, equivalently, the product of k Poisson
distributions. The test statistic is then

X2 =
k∑

i=1

(ni − νi)
2

νi
(10.45)

where, under H0, νi is the mean (and variance) of the Poisson distribution for
bin i. Since each bin is independent, there are now k degrees of freedom, and X2 is
distributed asymptotically as χ2(k − s).

Pearson’s χ2 test makes use of the squares of the deviations of the data from
that expected under H0. Tests can be devised which use some other measure of
deviation, replacing the square of the absolute value of the deviation by some other
power and scaling the deviation or not by the expected variance. Such tests are,
however, beyond the scope of this course.

Choosing optimal bin size

If one is going to bin his data, he must define the bins. If the number of bins is
small, too much information may be lost. But a large number of bins may mean that
there are too few events per bin. Most of the results for binned data are only true
asymptotically, e.g., the normal limit of the multinomial p.d.f. or the distribution
of −2 lnλ or X2 as χ2.

There are, in fact, two questions which play a role here. The first is whether the
binning may be decided on the basis of the data; the second concerns the minimum
number of events per bin. At first glance it would seem that the bin boundaries
should not depend on the observations themselves, i.e., that we should decide on
the binning before looking at the data. If the bin boundaries depend on the data,
then the bin boundaries are random variables, and no provision has been made in
our formalism for fluctuations in the position of these boundaries. On the other
hand, the asymptotic formalism holds for any set of fixed bins, and so we might
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expect that it does not matter which of these sets we happen to choose, and this
has indeed been shown to be so.10

Intuitively, we could expect that we should choose bins which are equiprobable
under H0. Pearson’s χ2 test is consistent (asymptotically unbiased) whatever the
binning, but for finite N it is not, in general, unbiased. It can be shown4,10 that
for equiprobable bins it is locally unbiased, i.e., unbiased against alternatives which
are very close to H0, which is certainly a desirable property.

Having decided on equiprobable bins, the next question is how many bins.
Clearly, we must not make the number of bins k too large, since the multinor-
mal approximation to the multinomial p.d.f. will no longer be valid. A rough rule
which is commonly used is that no expected frequency, Npi, should be smaller
than ∼ 5. However, according to Kendall and Stuart,10 there seems to be no gen-
eral theoretical basis for this rule. Cochran goes even further and claims4 that the
asymptotic approximation remains good so long as not more than 20% of the bins
have an expected number of events between 1 and ∼ 5.

This does not necessarily mean that it is best to take k = N/5 bins. By maxi-
mizing local power, one can try to arrive at an optimal number of bins. The result4

is

k = b

[√
2(N − 1)

λα + λ1−p0

]2/5

(10.46)

where α = 1 − ∫ λα
−λα

N(x; 0, 1) dx is the size
of the test for a standard normal distribu-
tion and p0 is the local power. In general,
for a simple hypothesis a value for b between
2 and 4 is good, the best value depending
on the p.d.f. under H0. Typical values for k
(N/k) using b = 2 are given in the following
table. We see from the table that there is
only a mild sensitivity of the number of bins
to α and p0. For N = 200, 25–30 bins would
be reasonable.

p0

N α 0.5 0.8

200 0.01 27 (7.4) 24 (8.3)
0.05 31 (6.5) 27 (7.4)

500 0.01 39 (13) 35 (14)
0.05 45 (11) 39 (13)

Thus we are led to the following recommendations for binning:

1. Determine the number of bins, k, using equation 10.46 with b ∼ 2 to 4.

2. If N/k turns out to be too small, decrease k to make N/k ≥ 5.

3. Define the bins to have equal probability content, either from the p.d.f. spec-
ified by H0 or from the data.

4. If parameters have to be estimated (H0 does not specify all parameters), use
maximum likelihood on the individual observations, but remember that the
test statistic is then only approximately distribution-free.
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Even with the above prescription, the specification of the bins is still not unique.
The usual method in one dimension would be to define a bin as an interval in the
variable, bini = (xi, xi + δi). However, there is nothing in the above prescription to
forbid defining a single bin as consisting of more than one (nonadjacent) intervals.
This might even be desirable from the point of view H0. For example, H0 might
specify a p.d.f. that is symmetric about 0, and we might only be interested in testing
this hypothesis against alternatives which are also symmetric about 0. Then it
would be appropriate to define bins as intervals in |x| rather than in x.

In more than one dimension the situation is more ambiguous. For example,
should we use large intervals in x and small intervals in y or vice versa? The choice
depends on the individual situation. One should prefer smaller bins in the variable
for which H0 is most sensitive. On the other hand, if the p.d.f. under H0 does not
include resolution effects, one should not use bins much smaller than the resolution.

There is, obviously, one taboo: You must not try several different choices of
binning and choose the one which gives the best (or worst) confidence level.

10.6.6 Run test

χ2 tests make use of the squares of the deviations of the data from that expected
under H0. Thus they only use the size of the deviations and ignore their signs.
However, the signs of the deviations are also important, and systematic deviations
of the same sign indicate that the hypothesis is unlikely, as is illustrated in the figure.

A test which uses only the sign of the devia-
tions is the run test. A run is defined as a set of
adjacent points all having the same sign of devia-
tion. The data and curve in the figure have devi-
ations AAABBBBBBAAA, where A represents
a positive and B a negative deviation. There are
thus three runs, which seems rather small. We
would expect the chance of an A to equal that of
a B and to show no correlation between points if
the hypothesis were true. This implies that we
should expect runs to be short; a long run of 6
points as in the figure should be unlikely. In fact,
this expectation is strictly true only if H0 is a simple hypothesis.

To be more quantitative, let kA be the number of positive deviations and kB

the number of negative deviations. Let k = kA + kB. Given kA and kB, we can
calculate the probability that there will be r runs. If either kA or kB is zero, there
is, necessarily only one run, and P (r = 1) = 1.

Given kA and kB, the number of different ways to arrange them is
(
k

kA

)
=

k!

kA!kB!
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Suppose that there are r runs. First, suppose that r is even and that the sequence
begins with an A. Then there are kA A-points and r/2− 1 divisions between them.
For the example of the figure this is AAA|AAA. With kA A’s there are kA−1 places
to put the first dividing line, since it can not go at the ends. Then there are kA− 2
places to put the second dividing line, since it can not go at the ends or next to
the first dividing line. In total there are

(
kA−1
r/2−1

)
ways to arrange the dividing lines

among the A’s. There is a similar factor for arrangement of the B’s and a factor
2 because we assumed we started with an A and it could just have well been a B.
Thus the probability of r runs, for r even, is

P (r) =
2
(

kA−1
r/2−1

)(
kB−1
r/2−1

)

(
k

kA

) (10.47)

Similarly, one finds for r odd

P (r) =

(
kA−1

(r−3)/2

)(
kB−1

(r−1)/2

)
+
(

kA−1
(r−1)/2

)(
kB−1

(r−3)/2

)

(
k

kA

) (10.48)

From these it can be shown that the expectation and variance of r are

E [r] = 1 +
2kAkB

k
(10.49)

V [r] =
2kAkB(2kAkB − k)

k2(k − 1)
(10.50)

The critical region of the test is defined as improbably low values of r, r < rα. For
kA and kB greater than about 10 or 15, one can use the Gaussian approximation for
r. For smaller numbers one can compute the probabilities directly using equations
10.47 and 10.48. In our example, kA = kB = 6. From equations 10.49 and 10.50 we
expect r = 7 with variance 2.73, or σ = 1.65. We observe 3 runs, which differs from
the expected number by 4/1.65 = 2.4 standard deviations. Using the Gaussian
approximation, this corresponds to a (one-tailed) confidence level of 0.8%. Exact
calculation using equations 10.47 and 10.48 yields P (1) + P (2) + P (3) = 1.5%.
Whereas the χ2 is acceptable (χ2 = 12 for 12 points), the run test suggests that the
curve does not fit the data.

The run test is much less powerful than a χ2 test, using as it does much less
information. But the two tests are completely independent and hence they can
be combined. An hypothesis may have an acceptable χ2, but still be wrong and
rejectable by the run test. Unfortunately, the run test is applicable only when H0

is simple. If parameters have been estimated from the data, the distribution of the
number of runs is not known and the test can not be applied.

10.6.7 Tests free of binning

Since binning loses information, we should expect tests which do not require binning
to be in principle better than tests which do.
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The successful bin-free tests are based on the c.d.f., F (x), under H0 and consist
of in some way comparing this c.d.f. with the data. To do so involves the concept
of order statistics, which are just the observations, xi, ordered in some way, i.e.,
renumbered as x(j). In one dimension this is trivial. For n observations, the order
statistics obey

x(1) ≤ x(2) ≤ . . . ≤ x(n)

In more than one dimension it is rather arbitrary, implying as it were a reduction of
the number of dimensions to one. Even in one dimension the ordering is not free of
ambiguity since we could equally well have ordered in descending order. We could
also make a change of variable which changes the order of the data.

We define the sample c.d.f. for n observations as

Sn(x) =





0 , x < x(1)
r
n

, x(r) ≤ x < x(r+1)

1 , x(n) ≤ x
(10.51)

which is simply the fraction of the observations not exceeding x. Clearly, under H0,
Sn(x)→ F (x) as n→∞. The tests consist of comparing Sn(x) with F (x). We shall
discuss two such tests, the Smirnov-Cramér-von Mises test and the Kolmogorov test.
Unfortunately, both are only applicable to simple hypotheses, since the distribution
of the test statistic is not distribution-free when parameters have been estimated
from the data.

Smirnov-Cramér-von Mises test

As a measure of the difference between Sn(x) and F (x) this test uses the statistic

W 2 =
∫ 1

0
[Sn(x)− F (x)]2 dF

=
∫ +∞

−∞
[Sn(x)− F (x)]2 f(x) dx

which is the expectation of [Sn(x)− F (x)]2 under H0. Inserting Sn (equation 10.51)
and performing the integral results in

nW 2 =
1

12n
+

n∑

i=1

[
F (x(i))−

2i− 1

2n

]2
(10.52)

The asymptotic distribution of nW 2 has been
found, and from it critical regions have been
computed. Those corresponding to frequently
used test sizes are given in the following table.
The asymptotic distribution is reached remark-
ably rapidly. To the accuracy of this table,∗ the
asymptotic limit is reached4,10 for n ≥ 3.

Test size Rejection region
α nW 2 >

0.10 0.347
0.05 0.461
0.01 0.743
0.001 1.168

∗A more complete and more accurate table is given by Anderson and Darling.49
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Kolmogorov test

This test also compares Sn and F (x), but only uses the maximum difference: The
Kolmogorov (or Smirnov, or Kolmogorov-Smirnov) test statistic is the maximum
deviation of the observed distribution Sn(x) from the c.d.f. F (x) under H0:

Dn = max {|Sn(x)− F (x)|} for all x (10.53)

The asymptotic distribution of Dn

yields the critical regions shown in the
table. This approximation is consid-
ered satisfactory for more than about
80 observations.4,10 Computer routines
also exist.∗

Test size Rejection region
α

√
nDn >

0.01 1.63
0.05 1.36
0.10 1.22
0.20 1.07

Alternatively, one can take the maximum positive deviation,

D+
n = max {+ [Sn(x)− F (x)]} for all x (10.54)

It can be shown that 4n(D+
n )2 is distributed asymptotically as a χ2 of 2 degrees of

freedom. The same holds for D−
n ,

D−
n = max {− [Sn(x)− F (x)]} for all x (10.55)

Or, as proposed by Kuiper,51 one can use

V = D+
n +D−

n (10.56)

Asymptotic critical regions of V can be calculated.50,52

The sensitivity of the Kolmogorov test to deviations from the c.d.f. is not in-
dependent of x. It is more sensitive around the median value and less sensitive
in the tails. This occurs because the difference |Sn(x)− F (x)| does not, under H0

have a probability distribution that is independent of x. Rather, its variance is
proportional to F (x) [1− F (x)], which is largest at F = 0.5. Consequently, the
significance of a large deviation in a tail is underweighted in the test. The Kol-
mogorov test therefore turns out to be more sensitive to departures of the data
from the median of H0 than to departures from the width. Various modifications of
the Kolmogorov test statistic have been proposed49,53,54 to ameliorate this problem.

Although the distribution of the test statistic, Dn, is generally unknown if pa-
rameters have been estimated from the data, there are cases where the distribution
has been calculated, e.g., when H0 specifies an exponential distribution whose mean
is estimated from the data.55 It also may be possible to determine the distribution
of the test statistic yourself, e.g., using Monte Carlo techniques.

∗See, e.g., Numerical Recipes.50



10.6. GOODNESS-OF-FIT TESTS 227

10.6.8 But use your eyes!

A few words of caution are appropriate at this point. As illustrated by the figure
at the start of the section on the run test (section 10.6.6), one test may give an
acceptable value while another does not. Indeed, it is in the nature of statistics
that this must sometimes occur.

Also, a fit may be quite good over part of the range of the variable and quite bad
over another part. The resulting test value will be some sort of average goodness,
which can still have an acceptable value. And so: Do not rely blindly on a test. Use
your eyes. Make a plot and examine it.

There are several useful plots you can make. One is, as was done to illustrate
the run test, simply a plot of the data with the fit distribution superimposed. Of
course, the error bars should be indicated. It is then readily apparent if the fit
is bad only in some particular region, and frequently you get an idea of how to
improve the hypothesis. This is illustrated in the figure where the fit (dashed line)
in (a) is perfect, while in (b) higher order terms are clearly needed and in (c) either
higher orders or a discontinuity are required.

6

-
x

y

(a) (b) (c)

Since it is easier to see departures from a horizontal straight line, you could
instead plot the residuals, yi − f(xi), or even better, the residuals divided by their
error, (yi − f(xi))/δ, where δ can be either the error on the data, or the expected
error from a fit.

It may happen that there is only one or just a few data points which account for
almost all the deviation from the fit. These are known as outliers. One is tempted
to throw such points away on the assumption that they are due to some catastrophic
error in the data taking, e.g., writing down 92 instead of 29. However, one must be
careful. Statistics can not really help here. You have to decide on the basis of what
you know about your apparatus. Automatic outlier rejection should be avoided. It
is said∗ that the discovery of the hole in the ozone layer above the south pole was

∗Cited by Barlow1 from New Scientist, 31 March 1988.
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delayed several years because computer programs automatically rejected the data
which indicated its presence.

It’s not right to pick only what you like,
but to take all of the evidence.

—Richard P. Feynman

I don’t see the logic of rejecting data
just because they seem increcible.

—Sir Fred Hoyle
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10.7 Non-parametric tests

The main classes of non-parametric problems which can be solved by distribution-
free methods are

1. The two-sample problem. We wish to test whether two (or more generally k)
samples are distributed according to the same p.d.f.

2. Randomness. A series of n observations of a single variable is ordered in some
way, e.g., in the time at which the observation was made. We wish to test
that all of the observations are distributed according to the same p.d.f., i.e.,
that there has been no change in the p.d.f. as a function of, e.g., time.

3. Independence of variables. We wish to test that a bivariate (or multivariate)
distribution factorizes into two independent marginal distributions, i.e., that
the variables are independent (cf. section 2.2.4).

These are all hypothesis-testing problems, which are similar to the goodness-of-
fit problem in that the alternative hypothesis is simply not H0.

The first two of the above problems are really equivalent to the third, even
though the first two involve observations of just one quantity. For problem 1, we
can combine the two samples x

(1)
i and x

(2)
i into one sample by defining a second

variable yi = 1 or 2 depending on whether xi is from the first or the second sample.
Independence of x and y is then equivalent to independence of the two samples. For
problem 2, suppose that the xi of problem 3 are just the observations of problem 2
and that the yi are the order of the observations. Then independence of xi and yi

is equivalent to no order dependence of the observations of problem 1. Let us begin
then with problem 3.

10.7.1 Tests of independence

We have a sample of observations consisting of pairs of real numbers, (x, y) dis-
tributed according to some p.d.f., f(x, y), with marginal p.d.f.’s, g(x) and h(y). We
wish to test

H0: f(x, y) = g(x) h(y)

Sample correlation coefficient

An obvious test statistic is the sample correlation coefficient (cf. equation 2.25).

r =
1
n

∑n
i=1 xiyi − x̄ȳ
sxsy

=
xy − x̄ȳ
sxsy

(10.57)

where x̄ and ȳ are the sample means and sx and sy are the sample variances of x
and y, respectively, and xy is the sample mean of the product xy. Under H0, x and
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y are independent, which leads to the following expectations:

E
[∑

xiyi

]
=
∑

E [xiyi] =
∑

E [xi]E [yi] = nE [x]E [y]

Since E [x̄ȳ] = E [x]E [y], it follows that

E [r] = 0

Higher moments of r can also be easily calculated. It turns out that the variance
is V [r] = 1

n−1
. Thus, the first two moments are exactly equal to the moments

of the bivariate normal distribution with zero correlation. Further, the third and
fourth moments are asymptotically approximately equal to those of the normal
distribution. From this it follows10 that

t = r

√
n− 2

1− r2
(10.58)

is distributed approximately as Student’s t-distribution with (n − 2) degrees of
freedom, the approximation being very accurate even for small n. The confidence
level can therefore be calculated from the t-distribution. H0 is then rejected for
large values of |t|.

Rank tests

The rank of an observation xi is simply its position, j, among the order statistics
(cf. section 10.6.7), i.e., the position of xi when all the observations are ordered. In
other words,

rank(xi) = j if x(j) = xi (10.59)

The relationship between statistics, order statistics and rank is illustrated in the
following table:

i 1 2 3 4 5 6

statistic (measurement) xi 7.1 3.4 8.9 1.1 2.0 5.5

order statistic x(i) 1.1 2.0 3.4 5.5 7.1 8.9

rank rank(xi) 5 3 6 1 2 4

For each pair of observations (xi, yi), the difference in rank

Di = rank(xi)− rank(yi) (10.60)

is calculated. Spearman’s rank correlation coefficient is then defined as

ρ = 1− 6

n3 − n
n∑

i=1

D2
i (10.61)
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which can take on values between −1 and 1. If x and y are completely correlated,
xi and yi will have the same rank and Di will be zero, leading to ρ = 1. It can be
shown1,10 that for large n (≥ 10) ρ has the same distribution as r in the previous
section, and Student’s t-distribution can be used, substituting ρ for r in equation
10.58.

10.7.2 Tests of randomness

Given n observations, xi, ordered according to some other variable, e.g., time, called
the trend variable, we wish to test whether the xi are random in, i.e., independent
of, the trend variable, t. H0 is then that all the xi are distributed according to the
same p.d.f.

As already remarked, we can test for randomness in the same way as for inde-
pendence by making a y-variable equal to the trend variable, yi = ti.

If the trend is assumed to be monotonic, additional tests are possible. The
reader is referred to Kendall and Stuart.10

10.7.3 Two-sample tests

Given independent samples of n1 and n2 observations, we wish to test whether they
come from the same p.d.f. The hypothesis to be tested is thus

H0: f1(x) = f2(x)

If both samples contain the same number of observations (n1 = n2), we can group
the two samples into one sample of pairs of observations and apply one of the tests
for independence. However, we can also adapt (without the restriction n1 = n2)
any of the goodness-of-fit tests (section 10.6) to this problem.

Kolmogorov test

The Kolmogorov test (cf. section 10.6.7) adapted to the two-sample problem com-
pares the sample c.d.f.’s of the two samples. Equations 10.53-10.55 become

Dn1n2 = max {|Sn1(x)− Sn2(x)|} for all x (10.62)

D±
n1n2

= max {± [Sn1(x)− Sn2(x)]} for all x (10.63)

However, now the critical values given in section 10.6.7 are in terms of
√

n1n2

n1+n2
Dn1n2

rather than
√
nDn and 4 n1n2

n1+n2
(D±

n1n2
)2 rather than 4nD±

n , respectively.

Run test

The two samples are combined keeping track of the sample from which each obser-
vation comes. Runs in the sample number, rather than in the sign of the deviation,
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are then found. In the notation of section 10.6.6, A and B correspond to an obser-
vation coming from sample 1 and sample 2, respectively. The test then follows as
in section 10.6.6.

χ2 test

Consider two histograms with identical binning. Let nji be the number of entries
in bin i of histogram j. Each histogram has k bins and a total of Nj entries. The
Pearson χ2 statistic (equation 10.44) becomes a sum over all bins of both histograms,

X2 =
2∑

j=1

k∑

i=1

(nji −Njpi)
2

Njpi

(10.64)

Under H0 the probability content pi of bin i is the same for both histograms and it
is estimated from the combined histogram:

p̂i =
n1i + n2i

N1 +N2

Substituting this for pi in equation 10.64 results, after some work, in

X2 = (N1 +N2)

[
1

N1

k∑

i=1

n2
1i

n1i + n2i
+

1

N2

k∑

i=1

n2
2i

n1i + n2i
− 1

]
(10.65)

In the usual limit of a large number of events in each bin, X2 is distributed as a
χ2(k − 1). The number of degrees of freedom is k − 1, since that is the number of
parameters specified by H0. In other words, there are 2(k−1) free bins, and (k−1)
parameters are estimated from the data, leaving (k − 1) degrees of freedom.

This is directly generalizable to more than two histograms. For r histograms,

X2 =




r∑

j=1

Nr


 ·



r∑

j=1

(
1

Nr

k∑

i=1

n2
ji∑r

j=1 nji

)
− 1


 (10.66)

which, for all nji large, behaves as χ2 with (r − 1)(k − 1) degrees of freedom.

Mann-Whitney test

As previously mentioned, the two-sample problem can be viewed as a test of inde-
pendence for which, as we have seen, rank tests can be used. A rank test appropriate
for this problem is the Mann-Whitney test, which is also known as the Wilcoxon∗

test, the rank sum test, or simply the U -test. Let the observations of the first sam-
ple be denoted xi and those of the second sample yi. Rank them together. This

∗Wilcoxon proposed the test before Mann and Whitney, but his name is also used for another
test, the Wilcoxon matched pairs test, which is different. The use of Mann-Whitney here eliminates
possible confusion.
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results in a series like xyyxxyx. For each x value, count the number of y values
that follow it and add up these numbers. In the above example, there are 3 y values
after the first x, 1 after the second, 1 after the third, and 0 after the fourth. Their
sum, which we call Ux is 5. Similarly, Uy = 3 + 3 + 1 = 7. In fact, you only have to
count for one of the variables, since

Ux + Uy = NxNy

Ux can be computed in another way, which may be more convenient, by finding the
total rank, Rx, of the x’s, which is the sum of the ranks of the xi. In the example
this is Rx = 1 + 4 + 5 + 7 = 17. Then Ux is given by

Ux = NxNy +
Nx(Nx + 1)

2
− Rx (10.67)

Under H0, one expects Ux = Uy = 1
2
NxNy. Asymptotically, Ux is distributed

normally1,10 with mean 1
2
NxNy and variance 1

12
NxNy(Nx + Ny + 1), from which

(two-tailed) critical values may be computed. For small samples, one must resort
to tables.

This test can be easily extended10 to r samples: For each of the 1
2
r(r− 1) pairs

of samples, Ux is calculated (call it Upq for the samples p and q) and summed

U =
r∑

p=1

r∑

q=p+1

Upq (10.68)

Asymptotically U is distributed normally under H0 with mean and variance:

E [U ] =
1

4


N2 −

r∑

p=1

N2
p


 (10.69)

V [U ] =
1

72


N2(2N + 3)−

r∑

p=1

N2
p (2Np + 3)


 (10.70)

where N =
∑r

p=1Np.

10.7.4 Two-Gaussian-sample tests

The previous two-sample tests make no assumptions about the distribution of the
samples and are completely general. If we know something about the distribution
we can make more powerful tests. Often, thanks to the central limit theorem, the
distribution is (at least to a good approximation) Gaussian. If this is not the case,
a simple transformation such as x → ln x, x → x2, or x → 1/x may result in
a distribution which is nearly Gaussian. If we are testing whether two samples
have the same distribution, testing the transformed distribution is equivalent to
testing the original distribution. We now consider tests for two samples under the
assumption that both are normally distributed.
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Test of equal mean

As we have already done several times when dealing with normal distributions, we
distinguish between cases where the variance of the distributions is or is not known.

Known σ: Suppose we have two samples, xi and yi, both known to have a Gaus-
sian p.d.f. with variance σ2

x and σ2
y , respectively. If σ2

x = σ2
y, the hypothesis that

the two Gaussians are the same is equivalent to the hypothesis that their means are
the same, or that the difference in their means, θ = µx − µy, is zero. An obvious
test that the means are equal, also valid when σ2

x 6= σ2
y is given by an estimate of

this difference, θ̂ = µ̂x − µ̂y, which has variance

V
[
θ̂
]

= V [µ̂x] + V [µ̂y] =
σ2

x

Nx
+
σ2

y

Ny

We know that the difference of two normally distributed random variables is also
normally distributed. Therefore, θ̂ will be distributed as a Gaussian with variance
V
[
θ̂
]

and mean 0 or non-0 under H0 and H1, respectively. H0 is then rejected for

large |θ̂| and the size of the test follows from the integral of the Gaussian over the
critical region as in sections 10.4.1 and 10.4.2. This is, of course, just a question of
how many standard deviations θ̂ is from zero, and rejection of H0 if θ̂ is found to
be too many σ from zero.

Unknown σ: If the parent p.d.f. of each sample is known to be normal, but its
variance is unknown, we can estimate the variance for each sample:

σ̂2
x =

∑Nx
i=1(xi − x̄)2

Nx − 1
; σ̂2

y =

∑Ny

i=1(yi − ȳ)2

Ny − 1
(10.71)

A Student’s-t variable can then be constructed. Recall that such a r.v. is the ratio of
a standard Gaussian r.v. to the square root of a reduced χ2 r.v. Under H0, µx = µy

and θ̂ = (x̄ − ȳ)/

√
σ2

x

Nx
+

σ2
y

Ny
is normally distributed with mean 0 and variance 1.

From equation 10.71 we see that

χ2 =
(Nx − 1)σ̂2

x

σ2
x

+
(Ny − 1)σ̂2

y

σ2
y

(10.72)

is distributed as χ2 with Nx+Ny−2 degrees of freedom, the loss of 2 degrees of free-

dom coming from the determination of x̄ and ȳ. The ratio, θ̂/
√
χ2/(Nx +Ny − 2),

is then distributed as Student’s t. However, we can calculate this only if σx and σy

can be eliminated from the expression. This occurs if σx = σy, resulting in

t =
x̄− ȳ

S
√

1
Nx

+ 1
Ny

(10.73)

where S2 =
(Nx − 1)σ̂2

x + (Ny − 1)σ̂2
y

Nx +Ny − 2
(10.74)
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Note that S2 is in fact just the estimate of the variance obtained by combining both
samples.

We emphasize that this test rests on two assumptions: (1) that the p.d.f. of
both samples is Gaussian and (2) that both Gaussians have the same variance. The
latter can be tested (cf. section 10.7.4). As regards the former, it turns out that
this test is remarkably robust. Even if the parent p.d.f. is not Gaussian, this test is
a good approximation.10 This was also the case for the sample correlation (section
10.7.1).

Correlated samples: In the above we have assumed that the two samples are
uncorrelated. A common case where samples are correlated is in testing the effect of
some treatment. For example, the light transmission of a set of crystals is measured.
The crystals are then treated in some way and the light transmission is measured
again. One could compare the means of the sample before and after treatment.
However, we can introduce a correlation by using the simple mathematical relation∑
xi −

∑
yi =

∑
(xi − yi). A crystal whose light transmission was lower than

the average before the treatment is likely also to be below the average after the
treatment, i.e., there is a positive correlation between the transmission before and
after. This reduces the variance of the before-after difference, θ: σ2

θ = σ2
x + σ2

y −
2ρσxσy. We do not have to know the correlation, or indeed σx or σy, but can
estimate the variance of θ = x− y directly from the data:

σ̂2
θ =

1

N − 1

N∑

i=1

(
θ2

i − θ̄2
)

(10.75)

Again we find a Student’s-t variable: θ̂ = θ̄ is normally distributed with variance
σ2

θ/N . Thus,
√
Nθ̄/σθ is a standard normal r.v. Further, (N − 1)σ̂2

θ/σ
2
θ is a χ2 r.v.

of N − 1 degrees of freedom. Hence, the ratio

t =
θ̄
√
N

σ̂θ

(10.76)

is a Student’s-t variable of N − 1 degrees of freedom, one degree of freedom being
lost by the determination of θ̄, a result already known from equation 3.39.

Test of equal variance

One could approach this problem as above for the means, i.e., estimate the variance
of each sample and compare their difference with zero. However, this requires
knowing the means or, if unknown, estimating them. Further, we must know how
this difference is distributed.

A more straightforward approach makes use of the F -distribution (cf. section
3.13), which is the p.d.f. for the ratio of two reduced χ2 variables. For each sample,
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the estimate of the variance (equation 8.3 or 8.7 depending on whether the mean is
known) divided by the true variance is related to a χ2 (cf. equation 10.72). Thus

F =
χ2

x/(Nx − 1)

χ2
y/(Ny − 1)

=
σ̂2

x/σ
2

σ̂2
y/σ

2
(10.77)

is distributed as the F -distribution. The σ2 cancels in this expression, and con-
sequently F can be calculated directly from the data. We could just as well have
used 1/F instead of F ; both have the same p.d.f. By convention F is taken > 1.
The parameters of the F -distribution are ν1 = Nx − 1, ν2 = Ny − 1 if σ̂2

x is in the
numerator of equation 10.77.

“Never trust to general impressions, my boy,
but concentrate yourself upon details.”

—Arther Conan Doyle: Sherlock Holmes in
“A Case of Identity”

10.7.5 Analysis of Variance

Analysis of Variance (AV or ANOVA), originally developed by R. A. Fisher in the
1920’s, is widely used in the social sciences, and there is much literature—entire
books—about it. In the physical sciences it is much less frequently used and so
will be only briefly treated here in the context of testing whether the means of k
normal samples are equal. The method is much more general. In particular, it can
be used for parameters in the linear model. As usual, Kendall and Stuart10 provide
a wealth of information.

The basic method: One-way classification

Given k samples, each normally distributed with the same unknown variance, σ2, we
want to test whether the means of all samples are the same. Suppose that sample
i contains Ni measurements and has a sample moment ȳi, which estimates its true
mean µi. Using all N =

∑k
i=1Ni measurements we can calculate the overall sample

mean ȳ in order to estimate the overall true mean µ. The null hypothesis is that
µ = µi for all i.

If the µi differ we can expect the ȳi to differ more from ȳ than would be expected
from the variance of the parent Gaussian alone. Unfortunately, we do not know σ,
which would enable us to calculate this expectation. We can, however, estimate
σ from the data. We can do this in two ways: from the variation of y within
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the samples and from the variation of ȳ between samples. The results of these
two determinations can be compared and tested for equality. To do this we will
construct an F variable (section 3.13). Recall that F is the ratio of two reduced χ2

variables.
The expected error on the estimated mean is σ/

√
N . Therefore, under H0

χ2(k) =
k∑

i=1

(ȳi − µ)2

σ2/Ni

is distributed as χ2(k). Since µ is unknown, we replace it by its estimate (obtained
from the entire sample) to obtain a χ2 of k − 1 degrees of freedom:

χ2(k − 1) =
k∑

i=1

Ni (ȳi − ȳ)2

σ2
(10.78)

A second χ2 variable is obtained from the estimate of σ for each sample

σ̂2
i =

1

Ni − 1

Ni∑

j=1

(
y

(i)
j − ȳi

)2
(10.79)

(where y
(i)
j is element j of sample i) by a weighted average:

σ̂2 =
1

N − k
k∑

i=1

(Ni − 1) σ̂2
i (10.80)

which is a generalization of equation 10.74. Then (N − k)σ̂2/σ2 is a χ2 r.v. with
N − k degrees of freedom, since k sample means, ȳi, have also been determined.

The ratio of these two χ2 variables, normalized by dividing by their respective
numbers of degree of freedom, is an r.v. distributed as F (k − 1, N − k):

F =
1

k−1

∑k
i=1Ni(ȳi − ȳ)2

1
N−k

∑k
i=1

∑Ni
j=1(y

(i)
j − ȳi)2

(10.81)

If the hypothesis of equal means is false, the ȳi will be different and the numerator of
equation 10.81 will be larger than expected under H0 while the denominator, being
an average of the sample variance within samples, will be unaffected (remember that
the true variance of all samples is known to be the same). Hence large values of F
are used to reject H0 with a confidence level determined from the one-tailed critical
values of the F distribution. If there are only two samples, this analysis is equivalent
to the previously described two-sample test using Student’s t distribution.

Multiway analysis of variance

Let us examine the situation of the previous section in a slightly different way. An
estimate of the variance of the (Gaussian) p.d.f. is given by σ̂2 = Q/(N − 1) where
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the “sum of squares” (SS), denoted here by Q (in contrast to previous sections
where Q2 was used), is given (cf. equation 8.118) by

Q = (N − 1) σ̂2 =
N∑

i=1

(yi − ȳ)2 (10.82)

Under H0, Q/σ
2 is a χ2 ofN−1 degrees of freedom. Equation 10.82 can be rewritten

Q =
k∑

i=1

Ni∑

j=1

(y
(i)
j − ȳ)2 (10.83)

=
k∑

i=1

Ni∑

j=1

(
y

(i)
j − ȳi + ȳi − ȳ

)2

=
k∑

i=1





Ni∑

j=1

[(
y

(i)
j − ȳi

)2
+ (ȳi − ȳ)2

]
+ 2 (ȳi − ȳ)

Ni∑

j=1

(
y

(i)
j − ȳi

)




The second term is zero since both its sums are equal:

Ni∑

j=1

y
(i)
j =

Ni∑

j=1

ȳi = Niȳi

Hence,

Q = (N − 1) σ̂2 =
k∑

i=1

(Ni − 1) σ̂2
i +

k∑

i=1

Ni (ȳi − ȳ)2 (10.84)

There are thus two contributions to our estimate of the variance of the p.d.f.: The
first term is the contribution of the variance of the measurements within the samples;
the second is that of the variance between the samples. Also the number of degrees
of freedom are partitioned. As we have seen in the previous section, the first and
second terms are related to χ2 variables of N − k and k − 1 degrees of freedom,
respectively, and their sum, N − 1, is the number of degrees of freedom of the χ2

variable associated with σ̂2.
Now suppose the samples are classified in some way such that each sample has

two indices, e.g., the date of measurement and the person performing the measure-
ment. We would like to partition the overall variance between the various sources:
the variance due to each factor (the date and the person) and the innate residual
variation. In other words, we seek the analog of equation 10.84 with three terms.
We then want to test whether the mean of the samples is independent of each factor
separately.

Of course, the situation can be more complicated. There can be more than two
factors. The classification is called “crossed” if there is a sample for all combinations
of factors. More complicated is the case of “nested” classification where this is not
the case. Further, the number of observations in each sample can be different. We
will only treat the simplest case, namely two-way crossed classification.
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We begin with just one observation per sample. As an example, suppose that
there are a number of technicians who have among their tasks the weighing of
samples. As a check of the procedure, a reference sample is weighed once each day
by each technician. One wants to test (a) whether the balance is stable in time,
i.e., gives the same weight each day, and (b) that the weight found does not depend
on which technician performs the measurement.

In such a case the measurements can be placed in a table with each row cor-
responding to a different value of the first factor (the date) and each column to a
value of the second factor (the technician). Suppose that there are R rows and C
columns. The total number of measurements is then N = RC. We use subscripts
r and c to indicate the row and column, respectively. The sample means of row r
and column c are given, respectively, by

ȳr. =
1

C

C∑

c=1

yrc ; ȳ.c =
1

R

R∑

r=1

yrc (10.85)

In this notation a dot replaces indices which are averaged over, except that the
dots are suppressed if all indices are averaged over (ȳ ≡ ȳ..). We now proceed as
in equations 10.82-10.84 to separate the variance (or more accurately, the sum of
squares, SS) between rows from the rest:

Q =
∑

r

∑

c

(yrc − ȳ)2 (10.86)

=
∑

r

∑

c

(yrc − ȳr)
2 + C

∑

r

(ȳr. − ȳ)2 (10.87)

where C is, of course, the same for all rows and hence can be taken out of the sum
over r. The second term, to be denoted QR, is the contribution to the SS due to
variation between rows while the first term contains both the inter-column and the
innate, or residual, contributions.

We can, in the same way, separate the SS between rows from the rest. The result
can be immediately written down by exchanging columns and rows in equation
10.87:

Q =
∑

c

∑

r

(yrc − ȳ.c)
2 +R

∑

c

(ȳ.c − ȳ)2 (10.88)

The residual contribution, QW, to the SS can be obtained by subtracting the inter-
row and inter-column contributions from the total:

QW = Q−QR −QC

=
∑

r

∑

c

(yrc − ȳ)2 − C
∑

r

(ȳr. − ȳ)2 −R
∑

c

(ȳ.c − ȳ)2

which, using the fact that

∑

r

∑

c

yrc = C
∑

r

ȳr. = R
∑

c

ȳ.c = CR ȳ (10.89)
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can be shown to be equal to

QW =
∑

r

∑

c

(yrc − ȳr. − ȳ.c + ȳ)2

We have thus split the variance into three parts. The number of degrees of freedom
also partitions:

Two-way Crossed Classification – Single Measurements

Factor SS d.o.f.

Row QR = C
∑

r(ȳr. − ȳ)2 R− 1
Column QC = R

∑
c(ȳ.c − ȳ)2 C − 1

Residual QW =
∑

r

∑
c(yrc − ȳr. − ȳ.c + ȳ)2 RC − R− C + 1

Total Q =
∑

r

∑
c(yrc − ȳ)2 RC − 1

Divided by their respective numbers of degrees of freedom, the SS are, under
H0, all estimators of σ2. The hypotheses HR

0 , that the means of all rows are equal,
and HC

0 , similarly defined for columns, can be separately tested by the one-tailed
F -test using, respectively,

FR =
1

R−1
QR

1
(R−1)(C−1)

QW

, FC =
1

C−1
QC

1
(R−1)(C−1)

QW

(10.90)

Let us now look at this procedure somewhat more formally. What we, in fact,
have done is used the following model for our measurements:

yrc = µ+ θr + ωc ,
∑

r

θr =
∑

c

ωc = 0 (10.91)

which is a linear model with R+C+1 parameters subject to R+C constraints. The
measurements are then equal to µ+θr +ωc + εrc where the measurement errors, εrc,
are assumed to be normally distributed with the same variance. The hypothesis to
be tested is that all the θr and ωc are 0. The θr and the ωc can be tested separately.
The least squares estimator for θr is

θ̂r =
1

C

∑

c

yrc − µ̂ = ȳr. − ȳ (10.92)

If all θr are zero, which is the case under H0, then

χ2 =
∑

r

θ̂2
r

σ2/C
=
C
∑

r(ȳr. − ȳ)2

σ2
=
QR

σ2
(10.93)

is a χ2 of R− 1 degrees of freedom. However, since σ2 is unknown, we can not use
this χ2 directly.
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As shown above, a second, independent χ2 can be found, namely QW/σ
2, which

is from that part of the sum of squares not due to inter-row or inter-column variation.
This χ2 is then combined with that of equation 10.93 to make an F -test. for the
hypothesis that all θr are zero. Similarly, an F -test can be derived for the hypothesis
that all ωc are zero. The method can be extended to much more complicated linear
models.

However, we will go just one step further: two-way crossed classification with
several, K, observations per class. We limit ourselves to the same number, K, for
all classes. It is now possible to generalize the model by allowing “interaction”
between the factors. The model is

yrck = µ+ θr + ωc + υrc ,
∑

r

θr =
∑

c

ωc =
∑

r

∑

c

υrc = 0 (10.94)

where k is the index specifying the observation within class rc.
In our example of different technicians and different dates, the variance among

technicians can now depend on the date. (On a day a technician does not feel well
the measurements might show more variation.)

The null hypothesis that all θr, ωc, and υrc are zero is equivalent to three hy-
potheses all being true, namely HR

0 that all θr are zero, a similar HC
0 for columns,

and H I
0 that all υrc are zero. These three hypotheses can all be tested separately.

Here too, the procedure of equations 10.82-10.84 can be followed with the ad-
dition of a sum over k. The result is the partition of the sum of squares over four
terms:

Two-way Crossed Classification

Factor SS d.o.f.

Row QR = CK
∑

r(ȳr.. − ȳ)2 R − 1
Column QC = RK

∑
c(ȳ.c. − ȳ)2 C − 1

Interaction QI = K
∑

r

∑
c(ȳrc. − ȳr.. − ȳ.c. + ȳ)2 RC − R− C + 1

Residual QW =
∑

r

∑
c

∑
k(yrck − ȳrc.)

2 RC(K − 1)

Total Q =
∑

r

∑
c

∑
k(yrck − ȳ)2 RCK − 1

where the averages are, e.g.,

ȳr.. =
1

CK

∑

c

∑

k

yrck , ȳrc. =
1

K

∑

k

yrck

F -tests can be constructed using QR, QC, and QI together with QW.
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1. In statistics we will see that the moments of the parent distribution can be
‘estimated’, or ‘measured’, by calculating the corresponding moment of the

data, e.g., x = 1
n

∑
xi gives an estimate of the mean µ and

√
1
n

∑
(xi − x)2

estimates σ, etc.

(a) Histogram the following data using a suitable bin size.

90 90 79 84 78 91 88 90 85 80
88 75 73 79 78 79 67 83 68 60
73 79 69 74 76 68 72 72 75 60
61 66 66 54 71 67 75 49 51 57
62 64 68 58 56 79 63 68 64 51
58 53 65 57 59 65 48 54 55 40
49 42 36 46 40 37 53 48 44 43
35 39 30 41 41 22 28 36 39 51

These data will be available in a file, which can be read, e.g., in FORTRAN

by

READ(11,’(10F4.0)’) X

where X is an array defined by REAL X(80).

(b) Estimate the mean, standard deviation, skewness, mode, median and
FWHM (full width at half maximum) using the data and using the his-
togram bin contents and the central values of the bins.

You may find the FORTRAN subroutine FLPSOR useful: CALL FLPSOR(X,N),
where N is the dimension, e.g., 80, of the array X. After calling this routine,
the order of the elements of X will be in ascending order.

2. Verify by making a histogram of 1000 random numbers that your random
number generator indeed gives an approximately uniform distribution in the
interval 0 to 1.

Make a two-dimensional histogram using successive pairs of random num-
bers for the x and y coordinates. Does this two-dimensional distribution also
appear uniform? Calculate the correlation coefficient between x and y.

3. Let Xi, i = 1, 2, ..., n, be n independent r.v.’s uniformly distributed between
0 and 1, i.e., the p.d.f. is f(x) = 1 for 0 ≤ x ≤ 1 and f(x) = 0 otherwise. Let
Y be the maximum of the n Xi: Y = max(X1, X2, ..., Xn). Derive the p.d.f.
for Y , g(y). Hint: What is the c.d.f. for Y ?

4. For two r.v.’s, x and y, show that

V [x + y] = V [x] + V [y] + 2 cov(x, y)
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5. Show that the skewness can be written

γ1 =
1

σ3

(
E
[
x3
]
− 3E [x]E

[
x2
]
+ 2E [x]3

)

6. The Chebychev Inequality. Assume that the p.d.f. for the r.v. X has mean µ
and variance σ2. Show that for any positive number k, the probability that x
will differ from µ by more than k standard deviations is less than or equal to
1/k2, i.e., that

P (|x− µ| ≥ kσ) ≤ 1

k2

7. Show that | cov(x, y)| ≤ σxσy, i.e., that the correlation coefficient, ρx,y =
cov(x, y)/σxσy, is in the range −1 ≤ ρ ≤ 1 and that ρ = ±1 if and only if x
and y are linearly related.

8. A beam of mesons, composed of 90% pions and 10% kaons, hits a Čerenkov
counter. In principle the counter gives a signal for pions but not for kaons,
thereby identifying any particular meson. In practice it is 95% efficient at
giving a signal for pions, and also has a 6% probability of giving an accidental
signal for a kaon. If a meson gives a signal, what is the probability that the
particle was a pion? If there is no signal, what is the probability that it was
a kaon?

9. Mongolian swamp fever (MSF) is such a rare disease that a doctor only expects
to meet it once in 10000 patients. It always produces spots and acute lethargy
in a patient; usually (60% of cases) they suffer from a raging thirst, and
occasionally (20% of cases) from violent sneezes. These symptoms can arise
from other causes: specifically, of patients who do not have MSF, 3% have
spots, 10% are lethargic, 2% thirsty, and 5% complain of sneezing. These four
probabilities are independent.

Show that if you go to the doctor with all these symptoms, the probability
of your having MSF is 80%. What is the probability if you have all these
symptoms except sneezing?

10. Suppose that an antimissile system is 99.5% efficient in intercepting incoming
ballistic missiles. What is the probability that it will intercept all of 100
missiles launched against it? How many missiles must an aggressor launch to
have a better than even chance of one or more penetrating the defenses? How
many missiles would be needed to ensure a better than even chance of more
than two missiles evading the defenses?

11. A student is trying to hitch a lift. Cars pass at random intervals, at an average
rate of 1 per minute. The probability of a car giving a student a lift is 1%.
What is the probability that the student will still be waiting:
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(a) after 60 cars have passed?

(b) after 1 hour?

12. Show that the characteristic function of the Poisson p.d.f.,

P (r;µ) =
µre−µ

r!

is
φ(t) = exp

[
µ
(
eıt − 1

)]

Use the characteristic function to prove the reproductive property of the Pois-
son p.d.f.

13. A single number often used to characterize an angular distribution is the
forward-backward ratio, F/B, or the forward-backward asymmetry, F

N
,where

F is the number of events with cos θ > 0, B is the number of events with
cos θ < 0, and N = F + B is the total number of events. Assume that the
events are independent and that the event rate is constant, for both forward
and backward events.

Clearly, only two of the three variables, F , B, N , are independent. We can
regard this situation in two ways:

(a) The number of events N is Poisson distributed with mean µ and they
are split into F and B = N −F following a binomial p.d.f., B(F ;N, pF ),
i.e., the independent variables are N and F .

(b) The F events andB events are both Poisson distributed (with parameters
µF and µB), and the total is just their sum, i.e., the independent variables
are F and B.

Show that both ways lead to the same p.d.f.

14. Show that the Poisson p.d.f. tends to a Gaussian with mean µ and variance
σ2 = µ for large µ, i.e.,

P (r;µ) −→ N(r;µ, µ)

For µ = 5.3, what is the probability of 2 or less events? Approximating the
discrete Poisson by the continuous Gaussian p.d.f., ≤ 2 should be regarded as
< 2.5, half way between 2 and 3. What is the probability in this approxima-
tion?

15. For a Gaussian p.d.f.:

(a) What is the probability of a value lying more than 1.23σ from the mean?

(b) What is the probability of a value lying more than 2.43σ above the mean?



254

(c) What is the probability of a value lying less than 1.09σ below the mean?

(d) What is the probability of a value lying above a point 0.45σ below the
mean?

(e) What is the probability that a value lies more than 0.5σ but less than
1.5σ from the mean?

(f) What is the probability that a value lies above 1.2σ on the low side of
the mean, and below 2.1σ on the high side?

(g) Within how many standard deviations does the probability of a value
occurring equal 50%?

(h) How many standard deviations correspond to a one-tailed probability of
99%?

16. During a meteor shower, meteors fall at the rate of 15.7 per hour. What is the
probability of observing less than 5 in a given period of 30 minutes? What
value do you find if you approximate the Poisson p.d.f. by a Gaussian p.d.f.?

17. Four values (3.9, 4.5, 5.5, 6.1) are drawn from a normal p.d.f. whose mean is
known to be 4.9. The variance of the p.d.f. is unknown.

(a) What is the probability that the next value drawn from the p.d.f. will
have a value greater than 7.3?

(b) What is the probability that the mean of three new values will be between
3.8 and 6.0?

18. Let x and y be two independent r.v.’s, each distributed uniformly between 0
and 1. Define z± = x± y.

(a) How are z+ and z− distributed?

(b) What is the correlation between z+ and z−; between z+ and y?

It will probably help your understanding of this situation to use Monte Carlo
to generate points uniform in x and y and to make a two-dimensional his-
togram of z+ vs. z−.

19. Derive the reproductive property of the Gaussian p.d.f., i.e., show that if x and
y are independent r.v.’s distributed normally as N(x;µx, σ

2
x) and N(y;µy, σ

2
y),

respectively, then z = x+y is also normally distributed as N(z;µz, σ
2
z). Show

that µz = µx + µy and σ2
z = σ2

x + σ2
y. Derive also the p.d.f. for z = x − y,

for z = (x + y)/2, and for z = x̄ =
∑n

i=1 xi/n when all the xi are normally
distributed with the same mean and variance.



255

20. For the bivariate normal p.d.f. for x, y with correlation coefficient ρ, transform
to variables u, v such that the covariance matrix is diagonal and show that

σ2
u =

σ2
x cos2 θ − σ2

y sin2 θ

cos2 θ − sin2 θ

σ2
v =

σ2
y cos2 θ − σ2

x sin2 θ

cos2 θ − sin2 θ

where tan 2θ =
2ρσxσy

σ2
x − σ2

y

21. Show that for the bivariate normal p.d.f., the conditional p.d.f., f(y|x), is a
normal p.d.f. with mean and variance,

E [y|x] = µy + ρ
σy

σx
(x− µx) and V [y|x] = σ2

y(1− ρ2)

22. For a three-dimensional Gaussian p.d.f. the contours of constant probability
are ellipsoids defined by constant

G = (x− µ)TV −1(x− µ)

Find the probability that a point is withing the ellipsoid defined by G = 1.

23. Given n independent variables, xi, distributed according to fi having mean,
µi, and variance, Vi = σ2

i , show that S =
∑
xi has mean µS = E [S] =

∑
µi

and variance V [S] =
∑
Vi =

∑
σ2

i . What are the expected value and variance
of the average of the xi, x̄ = 1

n

∑
xi?

24. Derive the reproductive property of the Cauchy p.d.f. Does the p.d.f. of the
sum of n independent, Cauchy-distributed r.v.’s, approach the normal p.d.f.
in the limit n→∞?

25. Let x and y be independent r.v.’s, each distributed normally with mean 0 and
variances σ2

x and σ2
y, respectively.

(a) Derive the p.d.f. of the r.v. z = x/y.

(b) Describe a method to generate random numbers distributed as a standard
Cauchy p.d.f. Try it.

26. (a) Show that for n independent r.v.’s, xi, uniformly distributed between 0
and 1, the p.d.f. for

g =

∑n
i=1 xi − n

2√
n
12

approaches N(g; 0, 1) for n→∞.
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(b) Demonstrate the result (a) by generating by Monte Carlo the distribution
of g for n = 1, 2, 3, 5, 10, 50 and comparing it to N(g; 0, 1).

(c) If the xi are uniformly distributed in the intervals [0.0, 0.2] and [0.8, 1.0].
i.e.,

f(x) = 1
0.4
, 0.0 ≤ x ≤ 0.2 or 0.8 ≤ x ≤ 1.0

= 0 , otherwise,

what distribution will g approach? Demonstrate this by Monte Carlo as
in (b).

27. Show that the weighting method used in the two-dimensional example of crude
Monte Carlo integration (sect. 6.2.5, eq. 6.5) is in fact an application of the
technique of importance sampling.

28. Perform the integral I =
∫ 1
0 x

3 dx by crude Monte Carlo using 100, 200, 400,
and 800 points. Estimate not only I, but also the error on I. Does the error
decrease as expected with the number of points used?

Repeat the determination of I 50 times using 200 (different) points each time
and histogram the resulting values of I. Does the histogram have the shape
that you expect? Also evaluate the integral by the following methods and
compare the error on I with that obtained by crude Monte Carlo:

(a) using hit or miss Monte Carlo and 200 points.

(b) using crude Monte Carlo and stratification, dividing the integration re-
gion in two, (0,0.5) and (0.5,1), and using f · 200 points in (0,0.5) and
(1− f) · 200 points in (0.5,1), where f = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9. Plot the error on I vs. f .

(c) as (b) but for f=0.5 with various intervals, (0,c) and (c,1), for c = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Make a plot of the estimated
error on I vs. c.

(d) using crude Monte Carlo and antithetic variables x and (1− x) and 200
points.

(e) as (d) but with only 100 points.

(f) using importance sampling with the function g(x) = x2 and 200 points.

29. Generate 20000 Monte Carlo points with x > 0 distributed according to the
distribution

f(x) =
1

2

(
1

τ
e−x/τ +

1

λ
e−x/λ

)

for τ = 3 and λ = 10. Do this for (a) the weighting, (b) the rejection,
and (c) the composite methods using inverse transformations. Which method
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is easiest to program? Which is fastest? Make histograms of the resulting
distribution in each case and verify that the distribution is correct.

If you can only detect events with 1 < x < 10, what fraction of the events will
you detect? Suppose in addition, that your detector has a detection efficiency
given by

e =
{

0, if x < 1 or x > 10
(x− 1)/9, if 1 < x < 10

How can you arrive at a histogram for the x-distribution of the events you
detect? There are various methods. Which should be the best?

30. Generate 1000 points, xi, from the Gaussian p.d.f. N(x; 10, 52). Use each of
the following estimators to estimate the mean of X: sample mean, sample
median, and trimmed sample mean (10%).

Repeat assuming we only measure values of X in the interval (5,25), i.e. if
an xi is outside this range, throw it away and generate a new value.

Repeat this all 25 times, histogramming each estimation of the mean. From
these histograms determine the variance of each of the six estimators.

31. Under the assumptions that the range of the r.v. X is independent of the
parameter θ and that the likelihood, L(x; θ), is regular enough to allow inter-
changing ∂2

∂θ2 and
∫

dx, derive equation 8.23,

Ix(θ) = −E
[
∂

∂θ
S(x; θ)

]

32. Show that the estimator σ̂2 =
∑

(xi − µ)2/n is an efficient estimator of the
variance of a Gaussian p.d.f. of known mean by showing that its variance is
equal to I−1.

33. Using the method of section 8.2.7, find an efficient and unbiased estimator for
σ2 of a normal p.d.f. when µ is known and there is thus only one parameter
for the distribution.

34. We count the number of decays in a fixed time interval, T . We do this N times
yielding the results ni, i = 1, ..., N . The source is assumed to consist of a large
number of atoms having a long half-life. The data, ni, are therefore assumed
to be distributed according to a Poisson p.d.f., the parameter of which can be
estimated by µ̂ = n̄ (section 8.3.2). Suppose, however, that we want instead
to estimate the probability of observing no decays in the time interval, T .

(a) What is the estimator in the frequency method of estimation?

(b) Derive a less biased estimator.

(c) Derive the variances of both the estimator and the less biased estimator.
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35. (a) Derive equations 8.41 and 8.42, i.e., show that the variance of the rth

sample moment is given by

V [ xr ] =
1

n

[
E
[
x2r
]
− (E [xr])2

]

and that

cov [xr, xq ] =
1

n

[
E
[
xr+q

]
− E [xr]E [xq]

]

(b) Derive an expression in terms of sample moments to estimate the vari-

ance, V
[
σ̂2
]
, of the moments estimator of the parent variance, σ̂2 =

m̂2 − m̂2
1

36. We measure the mean values of x and y with variances σ2
x and σ2

y. The
covariance is zero. Find the variances and covariances of r and θ given by

r2 = x2 + y2 and tan θ =
y

x

37. We measure x = 10.0± 0.5 and y = 2.0± 0.5. What is then our estimate of
x/y? Use Monte Carlo to investigate the validity of the error propagation.

38. We measure cos θ and sin θ, both with standard deviation σ. What is the ml

estimator for θ?

39. Decay times of radioactive atoms are described by an exponential p.d.f. (equa-
tion 3.10):

f(t; τ) =
1

τ
e−t/τ

(a) Having measured the times ti of n decays, how would you estimate τ
and the variance V [τ̂ ] (1) using the moments method and (2) using the
maximum likelihood method? Which method do you prefer? Why?

(b) Generate 100 Monte Carlo events according to this p.d.f. with τ = 10, (cf.
exercise 29) and calculate τ̂ and V [τ̂ ] using both the moments and the
maximum likelihood methods. Are the results consistent with τ = 10?
Which method do you prefer? Why?

(c) Use a minimization program, e.g., MINUIT, to find the maximum of the
likelihood function for the Monte Carlo events of (39b). Evaluate V [τ̂ ]
using both the second-derivative matrix and the variation of l by 1/2.
Compare the results for τ̂ and V [τ̂ ] with those of (39b).

(d) Repeat (39b) 1000 times making histograms of the value of τ̂ and of the
estimate of the error on τ̂ for each method. Do you prefer the moments
or the maximum likelihood expression for V [τ̂ ]? Why?
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(e) Suppose that we can only detect times t < 10. What is then the likeli-
hood function? Use a minimization program to find the maximum of the
likelihood function and thus τ̂ and its variance. Does this value agree
with τ = 10?

(f) Repeat (39b) and (39e) with 10000 Monte Carlo events.

40. Verify that a least squares fit of independent measurements to the model
y = a+ bx results in estimates for a and b given by

â = ȳ − b̂x̄ and b̂ =
xy − x̄ȳ
x2 − x̄2

where the bar indicates a weighted sample average with weights given by 1/σ2
i ,

as stated in section 8.5.5.

41. Use the method of least squares to derive formulae to estimate the value (and
its error), y± δy, from a set of n measurements, yi ± δyi. Assume that the yi

are uncorrelated. Comment on the relationship between these formulae and
those derived from ml (equations 8.59 and 8.60).

42. Perform a least squares fit of a parabola

y(x) = θ1 + θ2x + θ3x
2

for the four independent measurements: 5 ± 2, 3 ± 1, 5 ± 1, 8 ± 2 measured
at the points x = −0.6,−0.2, 0.2, 0.6, respectively. Determine not only the θ̂i

and their covariances, but also calculate the value of y and its uncertainty at
x = 1.

To invert a matrix you can use the routine RSINV:

CALL RSINV (N,A,N,IFAIL)

where A is a symmetric, positive matrix of dimension (N,N). If the matrix
inversion is successful, IFAIL is returned as 0.

43. The three angles of a triangle are independently measured to be 63◦, 34◦, and
85◦, all with a resolution of 1◦.

(a) Calculate the least squares estimate of the angles subject to the require-
ment that their sum be 180◦.

(b) Calculate the covariance matrix of the estimators.

44. Generate events as in exercise 39b. Histogram the times ti and use the two
minimum chi-square methods and the binned maximum likelihood method to
estimate the lifetime τ . Use a minimization program, e.g., MINUIT, to find
the minima and maximum. Compare the results of these three methods and
those of exercise 39b.
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45. In section 8.7.3 is a table comparing the efficiencies of various location es-
timators for various distributions. Generate 10000 random numbers from a
standard normal distribution and estimate the mean using each of the esti-
mators in the table. Repeat this 1000 times making histograms of the values
of each estimator. The standard deviation of these histograms is an estimate
of the standard deviation of the estimator. Are these in the ratio expected
from the table?

46. Consider a long-lived radioactive source.

(a) In our detector it produces 389 counts in the first minute and 423 counts
in the second minute. Assuming a 100% efficient detector, what is the
best estimation of the activity of the source?

(b) What can you say about the best value and uncertainty for the activity
of the source from the following set of independent measurements?

1.08± 0.13 , 1.04± 0.07 , 1.13± 0.10 Bq.

47. A current is determined by measuring the voltage V across a standard re-
sistor. The voltmeter has a resolution σV and a systematic error sV . We
measure two currents using the same resistor and voltmeter. Since the resis-
tance is unchanged between the measurements, we regard its uncertainty as
entirely systematic. Find the covariance matrix for the two currents, which
are calculated using Ohm’s law, Ii = Vi/R.

48. We measure a quantity X 25 times using an apparatus of unknown but con-
stant resolution. The average value of the measurements is x̄ = 128. The
estimate of the variance is s2 = 1

24

∑
(x − x̄)2 = 225. What is the 95% confi-

dence interval on the true value, µ, of the quantity X?

49. You want to determine the probability, p, that a student passes the statis-
tics exam. Since there are only two possible outcomes, pass and fail, the
appropriate p.d.f. is binomial, B(k;N, p).

(a) Construct the confidence belt for a 95% central confidence interval for p
for the case that 10 students take the exam and k pass, i.e., draw k+(p)
and k−(p) curves on a p vs. k plot.

(b) Assume that 8 of the 10 pass. Find the 95% central confidence interval
from the plot constructed in (a) and by solving equation 9.18.

50. An experiment studying the decay of the proton (an extremely rare process, if
it occurs at all) observes 7 events in 1 year for a sample of 106 kg of hydrogen.

(a) Assume that there is no background. Give a 90% central confidence
interval and a 90% upper limit for the expected number of proton decays
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and from these calculate the corresponding interval and limit for the
mean lifetime of the proton.

(b) Repeat (a) assuming that background processes are expected to con-
tribute an average of 3 events per year.

(c) Repeat (a) assuming 8 expected background events per year.

51. Construct a most powerful (MP) test for one observation, x, for the hypothesis
that X is distributed as a Cauchy distribution,

f(x) =
1

π [1 + (x− θ)2]

with θ = 0 under H0 and θ = 1 under H1. What is the size of the test if you
decide to reject H0 when x > 0.5?

52. Ten students each measure the mass of a sample, each with an error of 0.2 g:

10.2 10.4 9.8 10.5 9.9 9.8 10.3 10.1 10.3 9.9 g

(a) Test the hypothesis that they are all measurements of a sample whose
true mass is 10.1 g.

(b) Test the hypothesis that they are all measurements of the same sample.

53. On Feb. 23, 1987, the Irvine-Michigan-Brookhaven experiment was counting
neutrino interactions in their detector. The time that the detector was on
was split into ten-second intervals, and the number of neutrino interactions
in each interval was recorded. The number of intervals containing i events is
shown in the following table. There were no intervals containing more than 9
events.

Number of events 0 1 2 3 4 5 6 7 8 9

Number of intervals 1042 860 307 78 15 3 0 0 0 1

This date was also the date that astronomers first saw the supernova S1987a.

(a) Test the hypothesis that the data are described by a Poisson distribution.

(b) Test the hypothesis that the data are described by the sum of two Poisson
distributions, one for a signal of 9 events within one ten-second interval,
and another for the background of ordinary cosmic neutrinos.

54. Marks on an exam are distributed over male and female students as follows
(it is left to your own bias to decide which group is male):
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Group 1 39 18 3 22 24 29 22 22 27 28 23 48

Group 2 42 23 36 35 38 42 33

Assume that test scores are normally distributed within each group.

(a) Assume that the variance of the scores of both groups is the same, and
test the hypothesis that the mean is also the same for both groups.

(b) Test the assumption that the variance of the scores of both groups is the
same.

55. The light transmission of crystals is degraded by ionizing radiation. Folklore,
and some qualitative physics arguments, suggest that it can be (partially)
restored by annealing. To test this the light transmission of 7 crystals, which
have been exposed to radiation, is measured. The crystals are then annealed,
and their light transmission again measured. The results:

Crystal 1 2 3 4 5 6 7

Before 29 30 42 34 37 45 32
After 36 26 46 36 40 51 33

difference 7 −4 4 2 3 6 1

Assume that the uncertainty in the measurement of the transmission is nor-
mally distributed.

(a) Test whether the light transmission has improved using only the mean
of the before and after measurements.

(b) Test whether the light transmission has improved making use of the
measurements per crystal, i.e., using the differences in transmission.

For the following exercises you will be assigned a file containing the data to be
used. It will consist of 3 numbers per event, which may be read, e.g., in FORTRAN

by

READ(11,’(I5)’) NEVENTS

READ(11,’(3F10.7)’) ((E(I,IEV),I=1,3),IEV=1,NEVENTS)

The data may be thought of as being the measurement of the radioactive decay
of a neutral particle at rest into two new particles, one positive and one negative,
with
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E(1,IEV) = x, the mass of the decaying particle as determined from the en-
ergies of the decay products. The mass values have a certain
spread due to the resolution of our apparatus and/or the Heisen-
berg uncertainty principle (for a very short-lived particle).

E(2,IEV) = cos θ, the cosine of the polar angle of the positive decay particle’s
direction.

E(3,IEV) = φ/π, the azimuthal angle, divided by π, of the positive decay par-
ticle’s direction. Division by π results in a more convenient
quantity to histogram.

Assume that the decay is of a vector meson to two pseudo-scalar mesons. The decay
angular distribution is then given by

f(cos θ, φ) =
3

4π

[
1

2
(1− ρ00) +

1

2
(3ρ00 − 1) cos2 θ − ρ1,−1 sin2 θ cos 2φ

−
√

2Reρ10 sin 2θ cosφ
]

A1. Use the moments method to estimate the mass of the particle and the decay
parameters ρ00, ρ1,−1, and Reρ10. Also estimate the variance and standard
deviation of the p.d.f. for x. Estimate also the errors of all of the estimates.

A2. Use the maximum likelihood method to estimate the decay parameters ρ00,
ρ1,−1, and Reρ10 using a program such as MINUIT to find the maximum of the
likelihood function. Determine the errors on the estimates using the variation
of the likelihood.

A3. Assume that x is distributed normally. Determine µ and σ using maximum
likelihood. Also determine the covariance matrix of the estimates.

A4. Assume that x is distributed normally. Determine µ and σ using both the
minimum χ2 and the binned maximum likelihood methods. Do this twice,
once with narrow and once with wide bins. Compare the estimates and their
covariance matrix obtained with these two methods with each other and with
that of the previous exercise.

A5. Test the assumption of vector meson decay against the hypothesis of decay of
a scalar meson, in which case the angular distribution must be isotropic.

For the following exercises you will be assigned a file containing the data to be
used. It is the same situation as in the previous exercises except that it is somewhat
more realistic, having some background to the signal.
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B1. From an examination of histograms of the data, make some reasonable hypothe-
ses as to the nature of the background, i.e., propose some functional form for
the background, fb(x) and fb(cos θ, φ).

B2. Modify your likelihood function to include your hypothesis for the background,
and use the maximum likelihood method to estimate the decay parameters
ρ00, ρ1,−1, and Reρ10 as well as the fraction of signal events. Also determine
the position of the signal, µ, and its width, σ, under the assumption that the
signal x is normally distributed. Determine the errors on the estimates using
the variation of the likelihood.

B3. Develop a way to use the moments method to estimate, taking into account
the background, the decay parameters ρ00, ρ1,−1, and Reρ10. Estimate also the
errors of the estimates.

B4. Determine the goodness-of-fit of the fits in the previous two exercises. There
are several goodness-of-fit tests which could be applied. Why did you choose
the one you did?


