Bose-Einstein Correlations in e⁺e⁻ annihilation and pp interactions

W.J. Metzger

Radboud University Nijmegen

XII Workshop on Particle Correlations and Femtoscopy Amsterdam 12–16 June 2017

$e^+e^- \longrightarrow hadrons$

q

7

- a clean environment for studying hadronization
- everything is jets no spectators
- at $\sqrt{s} = M_Z$ almost all events are

2-jet $e^+e^- \longrightarrow q\overline{q}$

p. 2

• event hadronization axis is the $q\bar{q}$ direction estimate by the thrust axis, *i.e.*, axis \vec{n}_{T} for which

$$\bar{r} = rac{\sum |\vec{p}_i \cdot \vec{n}_{\mathrm{T}}|}{\sum |\vec{p}_i|}$$
 is maximal

- 3-jet events are planar.
 Estimate event plane by thrust, major axes.
 Major is analogous to thrust, but in plane perpendicular to n_T.
- Require $\vec{n}_{\rm T}$ within central tracking chamber $\Rightarrow 4\pi$ acceptance

or

Jets in e⁺e⁻

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are $> y_{cut}$
 - instead, stop combining when there are only 3 jets left
 - y₂₃ is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 3 to 2

define regions of y_{23}^{D} (Durham):

$$\label{eq:constraint} \begin{array}{cccc} & \text{or} & y_{23}^D < 0.002 \\ \text{two-jet} & y_{23}^D < 0.006 & 0.002 < y_{23}^D < 0.006 \\ \text{three-jet} & 0.006 < y_{23}^D & 0.006 < y_{23}^D < 0.018 \\ & 0.018 < y_{23}^D \\ \text{and similarly for } y_{23}^J & (JADE) \text{: } 0.009, \ 0.023, \ 0.056 \\ \end{array}$$

narrow two-jet less narrow two-jet

W.J. Metzger

narrow three-jet wide three-jet

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett. B663(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point of a particle is highly correlated with its momentum:

$$\overline{\mathbf{x}}^{\mu}(\mathbf{p}^{\mu}) = \mathbf{a}\tau\mathbf{p}^{\mu}$$

where for 2-jet events, $a = 1/m_t$

 $au = \sqrt{ar{t}^2 - ar{r}_z^2}$ is the "longitudinal" proper time

and $m_{\rm t} = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

and dist. of prod. points about their mean is very narrow (δ -function)

► Then, with $H(\tau)$ the distribution of proper time

 $R_2(p_1, p_2) = \mathbf{1} + \frac{\lambda}{\mathrm{Re}} \widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

- Assume a one-sided Lévy distribution for H(τ)
 3 parameters:
 - α is the index of stability;
 - τ_0 is the proper time of the onset of particle production;
 - $\Delta \tau$ is a measure of the width of the distribution.

BEC in the au-model

Then, 2- π correlation function, R_2 , depends on $Q = \sqrt{-(p_1 - p_2)^2}$, a_1 , a_2 :

$$R_{2}(\boldsymbol{Q},\boldsymbol{a}_{1},\boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0} Q^{2}(\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon \boldsymbol{Q})$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$

Then

$$R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$$
where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$

Compare to sym. Lévy parametrization:

$$1 + \lambda$$
 $\exp\left[-|rQ|^{-\alpha}\right] (1 + \epsilon Q)$

- R describes the BEC peak
- *R*_a describes the anticorrelation dip

 $R_2(Q) = \gamma$

• τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

W.J. Metzger – XII WPCF – Amsterdam – 12 June 2017 – p.6

Extension of Simplified au-model to 3D

In τ -model $R_2 = R_2(Q)$ depends on Q, but not on its components separately \implies emission volume is spherically symmetric. In particular, $R_{\text{side}} = R_{\text{L}}$ LCMS: $Q^2 = Q_{\text{L}}^2 + Q_{\text{side}}^2 + Q_{\text{out}}^2 - (\Delta E)^2$ $= Q_{\text{L}}^2 + Q_{\text{side}}^2 + Q_{\text{out}}^2 (1 - \beta^2)$, $\beta = \frac{p_{\text{tout}} + p_{2\text{out}}}{E_1 + E_2}$ Beplace $R^2 Q^2 \implies A^2 = R^2 Q^2 + R^2 Q^2 + Q^2$

Replace $R^2 Q^2 \Longrightarrow A^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + \rho_{out}^2 Q_{out}^2$

Then in τ -model,

$$R_{2}(Q_{\rm L}, Q_{\rm side}, Q_{\rm out}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$$
$$\cdot \left(1 + \epsilon_{\rm L} Q_{\rm L} + \epsilon_{\rm side} Q_{\rm side} + \epsilon_{\rm out} Q_{\rm out} \right)$$

for 2-jet events: $\begin{array}{cccc} & & \chi^2/\text{dof} & \text{CL} \\ \text{for 2-jet events:} & & \tau\text{-model} & R_{\text{side}}/R_{\text{L}} = 0.61 \pm 0.02 & 14847/14921 & 66\% \\ \text{consistent with conventional Gaussian Edgeworth parametrization} \\ \text{Edgeworth} & & r_{\text{side}}/r_{\text{L}} = 0.64 \pm 0.02 & 14891/14919 & 56\% \\ \text{emission volume is elongated} \\ \text{Conclusion: } \tau\text{-model must be modified: } Q\text{-dependence} \Longrightarrow \vec{Q}\text{-dependence} \end{array}$

N.J. Metzger –	XII WPCF	-	Amsterdam	-	12 June 2017
----------------	----------	---	-----------	---	--------------

Nevertheless

- simplified *τ*-model provides good parametrization of R₂(Q)
- with "radius" parameters:
 - R describing BE correlation
 - R_a describing anti-correlation dip
- So we continue to use this parametrization.
- Fit parameters α and *R* are highly correlated.
- To stabilize fits against this large correlation, fix $\alpha = 0.44$

Multiplicity dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

L3 PRELIMINARY

JADE

- R increases with y₂₃, i.e., going from narrow 2-jet to wide 3-jet
- R increases with multiplicity at all y₂₃

Jets and Rapidity

Note: thrust only defines axis $|\vec{n}_{T}|$, not its direction.

order jets by energy: $E_1 > E_2 > E_3$

Choose positive thrust direction such that jet 1 is in positive thrust hemisphere

Jets and Rapidity – simplified τ -model – L3 preliminary

To stabilize fits against large correlation of α , *R*, fix $\alpha = 0.44$

W.J. Metzger

p. 11

Amsterdam

- ▶ jets with gluon contribution (3-jet with y_E < 1): out direction preferentially in event plane 'pure quark' jet (y^I₂₃ < 0.009 or y_E > 1): out direction more isotropic in φ
- Conclusion: Increase in R is mainly due to increase in transverse plane, particularly out of event plane
- Agrees with conclusion that increase is mainly due to harder gluon: Gluon makes event 'fatter'

W.J. Metzger

Anti-Correlation Region in pp min. bias

In addition to L3 observation of anticorrelation in e^+e^- ($E_{cms} = M_Z$), CMS has observed it in pp min. bias at 7 TeV JHEP 05 (2011) 29 and found that τ -model parametrization gives reasonable description And it is also seen in ATLAS data $\sqrt{s} = 7 \text{ TeV}$ R. Astalos PhD thesis 2015 http://hdl.handle.net/2066/143448 but unpublished and not (yet?) approved by collaboration

We next look at the ATLAS data and make some comparisons between e^+e^- : L3 data, $0.8 \cdot 10^6$ events, $\sqrt{s} = M_Z$, min. bias pp: ATLAS data (Astaloš thesis) 10^7 events, $\sqrt{s} = 7$ TeV, $|\eta| < 2.5$

BEC peak best described by τ -model with R_a free and \widetilde{sym} . Lévy BEC peak next best described by a quantum optical exponential parametrization and by τ -model (R_a constrained) $\chi^2(Q \le 0.36) = 115, 116, 157, 186$ anticorrelation region also in pp – only τ -model with R_a free describes it Only τ -model with R_a free describes entire range of Q

W.J. Metzger

A

Amsterdam

Effect of fit range So, use the parametrization that fits (best): τ -model with R_a free and Q_U sufficiently beyond the anticorrelation region

- syst. dependence on fit range, but much less than other parametrizations
- $\alpha \approx 0.25$ somewhat less than e⁺e⁻ 2-jet value of 0.41 $\pm 0.02^{+0.04}_{-0.06}$
- R, R_a larger than in e^+e^- 0.79, 0.69 fm

Anti-Correlation Region

e⁺e⁻ jet dependence:

Going from narrow 2-jet to wide 3-jet, anticorrelation region becomes deeper and moves slightly lower in Q

W.J. Metzger

anticorrelation region is deeper and at higher Q in e^+e^- than in pp with increasing N minimum moves to lower Q (effect is larger in pp than in e^+e^-) and becomes less deep (also seen by CMS)

W.J. Metzger	-	XII WPCF	-	Amsterdam	_	12 June 2017	_	p. 17
vv.o. wicizgoi				Amotoroam		12 00110 2017		p. 17

Another way to get Anti-correlation

Białas and Zalewski, Phys. Lett. B727(2013)182

Białas, Florkowski and Zalewski, Phys. Lett. B748(2015)9

Pions are not point particles.

pions far apart - BEC

pions close together

pions overlapping - no longer pions - So, no BEC

This excluded volume leads to anti-correlation dip. at approx. the right place – different for Long, side, out

Mass dependence of r — BEC and FDC

Large systematic dependence on ref. sample – So, using mixed ref. sample: No evidence for $r \sim 1/\sqrt{m}$

$$r_{\pi-\pi} \approx r_{\text{K-K}}$$

- r(mesons) > r(baryons)
- r(baryons) is very small $r_p = 0.1$ fm while size of p is 1 fm ???
- If correct, seems to rule out Białas-Zalewski
- Are there pp or heavy-ion results on r(baryons)?

W.J. Metzger	-	XII WPCF	-
--------------	---	----------	---

Conclusions

• τ -model parametrization of BEC provides a good description of 2π BEC

- ▶ in e⁺e[−] and
- ▶ in pp min. bias, especially if R_a is a free parameter
- anti-correlation:
 - in e⁺e⁻ deeper than in pp
 - in heavy-ion, anti-correlation is missing (so far as I know)
 - speculation: e⁺e⁻: 1 string; pp: a few strings; heavy-ion: a great many strings With additional strings, 2 components to BEC:
 - π 's from same string (τ -model, anti-correlaton, small R)
 - ► or from different strings (classical parametrization, no anti-correlation, larger R)
- But $R_2(Q)$ needs to be extended to $R_2(\vec{Q})$
- ▶ in e⁺e⁻ and pp R increases with increasing N_{ch}
- ▶ in e⁺e[−] R depends on jet structure
 - R increases with y₂₃
 - much, but not all, of increase is due to increase in y₂₃
 - this increase is in transverse plane, not in longitudinal direction
 - anti-correlation region becomes deeper with increasing y₂₃
- R and R_a larger and α smaller in pp than in e⁺e⁻ 2-jet but large syst errors from fit range in pp

W.J.	Metzger
------	---------

Am