Bose-Einstein Correlations in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation and
 pp interactions

W.J. Metzger

Radboud University Nijmegen

XII Workshop on Particle Correlations and Femtoscopy
 Amsterdam
 12-16 June 2017

$\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow$ hadrons

- a clean environment for studying hadronization
- everything is jets - no spectators
- at $\sqrt{s}=M_{\mathrm{Z}}$ almost all events are 2-jet $\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow \mathrm{q} \overline{\mathrm{q}} \quad$ or 3-jet $\quad \mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{g}$

- event hadronization axis is the $q \bar{q}$ direction estimate by the thrust axis, i.e., axis \vec{n}_{T} for which $T=\frac{\sum\left|\vec{p}_{i} \cdot \vec{T}_{T}\right|}{\sum\left|\vec{p}_{i}\right|}$ is maximal
- 3-jet events are planar.

Estimate event plane by thrust, major axes. Major is analogous to thrust, but in plane perpendicular to \vec{n}_{T}.

- Require \vec{n}_{T} within central tracking chamber

$\Longrightarrow 4 \pi$ acceptance

Jets in $\mathrm{e}^{+} \mathrm{e}^{-}$

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are only 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of y_{cut} where number of jets
 changes from 3 to 2
define regions of y_{23}^{D} (Durham):

		or	$y_{23}^{\mathrm{D}}<0.002$
two-jet	$y_{23}^{\mathrm{D}}<0.006$		narrow two-jet
three-jet	$0.006<y_{23}^{\mathrm{D}}$		$0.002<y_{23}^{\mathrm{D}}<0.006$

The τ-model

- Assume avg. production point of a particle is highly correlated with its momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$

$$
\begin{aligned}
& \qquad \tau=\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time } \\
& \text { and } m_{t}=\sqrt{E^{2}-p_{2}^{2}} \text { is the "transverse" mass } \\
& \text { and dist. of prod. points about their mean is very narrow (} \delta \text {-function) }
\end{aligned}
$$

- Then, with $H(\tau)$ the distribution of proper time $R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)$
- Assume a one-sided Lévy distribution for $H(\tau)$ 3 parameters:
- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.

BEC in the τ-model

Then, 2- π correlation function, R_{2}, depends on $Q=\sqrt{-\left(p_{1}-p_{2}\right)^{2}}, a_{1}, a_{2}$:

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ-model from Lз Z decay

Extension of Simplified τ-model to 3D

In τ-model $R_{2}=R_{2}(Q)$ depends on Q, but not on its components separately \Longrightarrow emission volume is spherically symmetric.
In particular, $R_{\text {side }}=R_{\mathrm{L}}$
LCMS: $\quad Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{\text {1out }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

Replace $\quad R^{2} Q^{2} \Longrightarrow A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
Then in τ-model,

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma & {\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right] } \\
& \cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
\end{aligned}
$$

$\begin{array}{lllcc} & & & \chi^{2} / \text { dof } & \mathrm{CL} \\ \text { for 2-jet events: } & \tau \text {-model } & R_{\text {side }} / R_{\mathrm{L}}=0.61 \pm 0.02 & 14847 / 14921 & 66 \% \\ & \text { consistent with conventional Gaussian } & \text { Edgeworth parametrization }\end{array}$
Edgeworth $\quad r_{\text {side }} / r_{\mathrm{L}}=0.64 \pm 0.02 \quad 14891 / 14919 \quad 56 \%$
emission volume is elongated
Conclusion: τ-model must be modified: Q-dependence $\Longrightarrow \vec{Q}$-dependence

Nevertheless

- simplified τ-model provides good parametrization of $R_{2}(Q)$
- with "radius" parameters:
- R describing BE correlation
- R_{a} describing anti-correlation dip

So we continue to use this parametrization.
Fit parameters α and R are highly correlated.
To stabilize fits against this large correlation, fix $\alpha=0.44$

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

JADE

Durham

- R increases with y_{23}, i.e., going from narrow 2 -jet to wide 3 -jet
- R increases with multiplicity at all y_{23}

Jets and Rapidity

Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction. order jets by energy: $E_{1}>E_{2}>E_{3}$
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere rapidity, y_{E}, of particles from jet 1, jet 2, jet 3 :

$$
\begin{gathered}
y_{\mathrm{E}}>1 \\
y_{\mathrm{E}}<-1 \\
-1<y_{\mathrm{E}}<1
\end{gathered}
$$

almost all jet 1 mostly jet 2, some jet 3 jet-3 enriched

almost all quark mostly quark largely gluon

Jets and Rapidity - simplified τ-model - \llcorner preliminary

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.44$
Select particle pairs by rapidity y_{E} of pair

With y_{23}^{J},
all y : R increases
'pure' q jet, $y_{\mathrm{E}}>1$, or $y_{\mathrm{E}}<-1 \& y_{23}^{\mathrm{J}}$ small, or $y_{\mathrm{E}}<-2$: R const.
$R_{-1<y_{E}<1}>R_{\text {'pure' }}{ }^{\prime}$
$R_{y_{E}<-1}$ increases
at large y_{23}^{J}
$R_{-1<y_{\mathrm{E}}<1}=R_{\text {YE }_{\mathrm{E}}<-1}$

Conclusion (Durham agrees):
Increase in R with y_{23}^{J} is due to appearance of gluon jet

3D τ-model ad hoc extension - \llcorner preliminary

$$
\begin{array}{ll}
R^{2} Q^{2} \Longrightarrow R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2} & \text { LCMS } \\
R^{2} Q^{2} \Longrightarrow R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+r_{\text {out }}^{2} q_{\text {out }}^{2} & \text { LCMS-rest }
\end{array}
$$

R_{L} constant with y_{23}

$R_{\text {side }}$ increases

$r_{\text {out }}$ increases but less than $R_{\text {side }}$

- jets with gluon contribution (3-jet with $y_{\mathrm{E}}<1$): out direction preferentially in event plane 'pure quark' jet ($y_{23}^{J}<0.009$ or $y_{E}>1$): out direction more isotropic in ϕ
- Conclusion: Increase in R is mainly due to increase in transverse plane, particularly out of event plane
- Agrees with conclusion that increase is mainly due to harder gluon: Gluon makes event 'fatter'

Anti-Correlation Region in pp min. bias

In addition to L 3 observation of anticorrelation in $\mathrm{e}^{+} \mathrm{e}^{-}\left(E_{\mathrm{cms}}=M_{\mathrm{z}}\right)$,
CMS has observed it in pp min. bias at 7 TeV JHEP 05 (2011) 29 and found that τ-model parametrization gives reasonable description And it is also seen in ATLAS data $\sqrt{s}=7 \mathrm{TeV} \quad$ R. Astalos̆ phD thesis 2015 htpp//hal.handele.net2066/143448 but unpublished and not (yet?) approved by collaboration
We next look at the ATLAS data and make some comparisons between $\mathrm{e}^{+} \mathrm{e}^{-}$: L3 data, $0.8 \cdot 10^{6}$ events, $\sqrt{s}=M_{\mathrm{z}}$,
min. bias pp: ATLAS data (Astaloš thesis) 10^{7} events, $\sqrt{s}=7 \mathrm{TeV},|\eta|<2.5$

BEC peak best described by τ-model with R_{a} free and syym. Lévy
BEC peak next best described by a quantum optical exponential parametrization and by τ-model $\left(R_{\mathrm{a}}\right.$ constrained) $\quad \chi^{2}(Q \leq 0.36)=115,116,157,186$ anticorrelation region also in pp - only τ-model with R_{a} free describes it Only τ-model with R_{a} free describes entire range of Q

Effect of fit range

So, use the parametrization that fits (best): τ-model with R_{a} free and Q_{u} sufficiently beyond the anticorrelation region

- syst. dependence on fit range, but much less than other parametrizations
- $\alpha \approx 0.25$ somewhat less than $\mathrm{e}^{+} \mathrm{e}^{-} 2$-jet value of $0.41 \pm 0.02_{-0.06}^{+0.04}$
- R, R_{a} larger than in $\mathrm{e}^{+} \mathrm{e}^{-} 0.79,0.69 \mathrm{fm}$

Anti-Correlation Region

 $\mathrm{e}^{+} \mathrm{e}^{-}$jet dependence:

Going from narrow 2-jet to wide 3-jet, anticorrelation region becomes deeper and moves slightly lower in Q

anticorrelation region is deeper and at higher Q in $\mathrm{e}^{+} \mathrm{e}^{-}$than in pp
with increasing N minimum moves to lower Q (effect is larger in pp than in $\mathrm{e}^{+} \mathrm{e}^{-}$) and becomes less deep (also seen by CMS)

Another way to get Anti-correlation

Pions are not point particles.

pions far apart - BEC
pions close together
pions overlapping - no longer pions - So, no BEC

This excluded volume leads to anti-correlation dip. at approx. the right place - different for Long, side, out

Mass dependence of \boldsymbol{r} - BEC and FDC

$$
\mathrm{e}^{+} \mathrm{e}^{-} \sqrt{s}=M_{\mathrm{Z}}
$$

Gaussian

parametrization

Large systematic dependence on ref. sample - So, using mixed ref. sample: No evidence for $r \sim 1 / \sqrt{m}$
$r_{\pi-\pi} \approx r_{\mathrm{K}-\mathrm{K}}$
r (mesons) $>r$ (baryons)
r (baryons) is very small $\quad-\quad r_{p}=0.1 \mathrm{fm}$ while size of p is $1 \mathrm{fm} ? ? ?$
If correct, seems to rule out Białas-Zalewski
Are there pp or heavy-ion results on r (baryons)?

Conclusions

- τ-model parametrization of BEC provides a good description of 2π BEC
- in $\mathrm{e}^{+} \mathrm{e}^{-}$and
- in pp min. bias, especially if R_{a} is a free parameter
- anti-correlation:
- in $\mathrm{e}^{+} \mathrm{e}^{-}$deeper than in pp
- in heavy-ion, anti-correlation is missing (so far as I know)
- speculation: $\mathrm{e}^{+} \mathrm{e}^{-}$: 1 string; pp: a few strings; heavy-ion: a great many strings With additional strings, 2 components to BEC:
- π 's from same string (τ-model, anti-correlaton, small R)
- or from different strings (classical parametrization, no anti-correlation, larger R)
- But $R_{2}(Q)$ needs to be extended to $R_{2}(\vec{Q})$
- in $\mathrm{e}^{+} \mathrm{e}^{-}$and pp R increases with increasing $N_{\text {ch }}$
- in $\mathrm{e}^{+} \mathrm{e}^{-} R$ depends on jet structure
- R increases with y_{23}
- much, but not all, of increase is due to increase in y_{23}
- this increase is in transverse plane, not in longitudinal direction
- anti-correlation region becomes deeper with increasing y_{23}
- R and R_{a} larger and α smaller in pp than in $\mathrm{e}^{+} \mathrm{e}^{-}$2-jet but large syst errors from fit range in pp

