Bose-Einstein Correlations in e<sup>+</sup>e<sup>-</sup> annihilation (a review)

W.J. Metzger

Radboud University Nijmegen

Workshop on Parton Radiation and Fragmentation from LHC to FCC-ee CERN 21 Nov. 2016

#### Introduction - BEC

 $\begin{aligned} R_2 &= \frac{\rho_2(p_1,p_2)}{\rho_1(p_1)\rho_1(p_2)} \Longrightarrow \frac{\rho_2(\vec{Q})}{\rho_0(\vec{Q})} \text{ or } \frac{\rho_2(Q)}{\rho_0(Q)} \quad \rho_0 = 2\text{-particle density of 'reference sample'} \\ \vec{Q} &= \vec{p}_1 - \vec{p}_2 \qquad Q = \sqrt{-(p_1 - p_2)^2} \end{aligned}$ Assuming particles produced incoherently with spatial source density of emission points S(x),

 $R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$ 

where  $\widetilde{S}(Q) = \int dx \ e^{iQx} S(x)$  — Fourier transform of S(x) $\lambda = 1$  —  $\lambda = 0$  if production completely coherent

Assuming S(x) is a spherically symmetric Gaussian distribution with radius r,  $\Longrightarrow$  $R_2(Q) = 1 + \lambda e^{-(Qr)^2}$ 

W.J. Metzger – Parton Radiation and Fragmentation from LHC to FCC-ee – 21 Nov 2016 – p. 1

# Problems with this approach

#### Assumes

- incoherent average over source λ tries to account for
  - partial coherence
  - multiple (distinguishable) sources, long-lived resonances
  - pion purity
- spherical (radius r) Gaussian distribution of particle emitters seems unlikely in e<sup>+</sup>e<sup>-</sup> annihilation — jets
- static source, *i.e.*, no *t*-dependence certainly wrong

#### Final-State Interactions

- 1. Coulomb
  - form not certain (usually use Gamow factor) overcorrects!
  - for  $R_2$ , a few % in lowest Q bin
  - double if +, ref. sample
  - often neglected for R<sub>2</sub>
  - but not negligible for R<sub>3</sub>
- 2. Strong interaction s-wave  $\pi\pi$ phase shifts can be incorporated together with Coulomb into the formula for  $R_2$

Osada, Sano, Biyajima, Z.Phys. C72(1996)285)

tends to increase  $\lambda$ , decrease r -Not used by LEP experiments

# **Reference Sample**

#### Common choices:

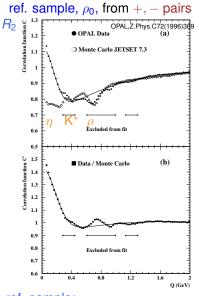
- 1. +, pairs But different resonances than +, +
- Mixed events pair particles from different events But destroys all correlations, not just BEC
- correct by MC (no BEC):

$$\begin{split} \rho_{0} &\Longrightarrow \rho_{0} \frac{\rho_{2}^{\text{MC}}}{\rho_{0}^{\text{MC}}} \\ R_{2} &= \frac{\rho_{2}}{\rho_{0}} \Longrightarrow \frac{\rho_{2}}{\rho_{0}} / \frac{\rho_{2}^{\text{MC}}}{\rho_{0}^{\text{MC}}} \qquad \text{`d} \end{split}$$

'double ratio'

- But is the MC correct?

Long-range correlations inadequately treated in ref. sample:  $R_2(Q) \propto (1 + \lambda e^{-Q^2 r^2}) \cdot (1 + \delta Q)$  or even  $\cdot (1 + \delta Q + \epsilon Q^2)$ Parton Radiation and Fragmentation from LHC to FCC-ee 21 Nov 2016



р. З

#### What have we learned from LEP?

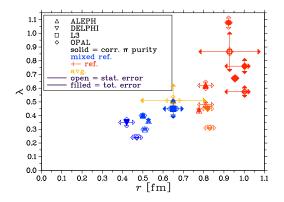
The simple picture is inadequate

- 1.  $R_2$  is not Gaussian
- 2.  $R_2 \neq 1 + \lambda |\tilde{S}(Q)|$ i.e.  $\neq 1 + \text{positive-definite term}$  $\exists$  also a region where  $R_2 < 1$ , i.e., anticorrelation
- 3.  $R_2 \neq R_2(Q)$ , but  $R_2(\vec{Q})$
- 4. R<sub>2</sub> depends on jet structure

Other aspects of BEC:

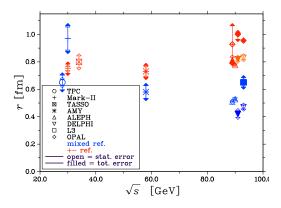
- 1.  $\sqrt{s}$  dependence
- 2. comparison of  $2-\pi$  and  $3-\pi$  BEC suggests complete incoherence, but large errors
- 3.  $r_{\pi^0\pi^0} \approx \text{or} < r_{\pi^{\pm}\pi^{\pm}}$  ? LEP inconclusive
- cross talk?, i.e. is there BEC if π's from different jets? suggests no, but very large uncertainties

#### Results from $R_2$ , $\sqrt{s} = M_Z$



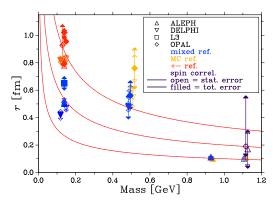
- correction for  $\pi$  purity increases  $\lambda$ - mixed ref. gives smaller  $\lambda$ , *r* than + - ref. - Average means little

# $\sqrt{s}$ dependence of r



No evidence for  $\sqrt{s}$  dependence But uncertainties large

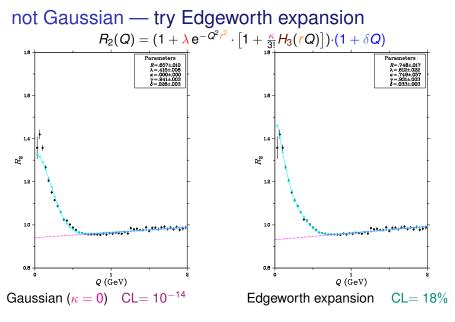
#### Mass dependence of r — BEC and FDC



No evidence for  $r \sim 1/\sqrt{m}$  r(mesons) > r(baryons) $r_{\pi-\pi} \approx r_{\text{K-K}}$ r(baryons) is very small —  $r_{\text{p}} = 0.1$  fm while size of p is 1 fm ???

#### Disclaimer

- There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will concentrate on pion results.



#### But note large $\delta$ – see later

W.J. Metzger

#### $3\pi$ BEC

with  $R_3^{\text{genuine}}(Q_3) = R_3(Q_3) - \text{contribution from } 2-\pi \implies \omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{R_2(Q_3) - 1}}$ Using  $R_3^{\text{genuine}}$  from data,  $R_2$  from fit

> (a) (b) L3 2 2 1.75 1.75 1.5 1.5 З<sup>1.25</sup> 1.25 0.75 0.75 0.5 0.5 0.25 0.25 Edgeworth aussiar 0 0.6 0.4 0.2 0.4 0.8 0.2 0.6 0.8 Q<sub>3</sub> [GeV] Q<sub>3</sub>[GeV]

Conclusion: Data consistent with  $\omega = 1$ ,

*i.e.*, with completely incoherent pion production Possibly a problem for string models!

#### But large uncertainties

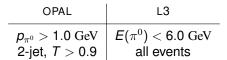
W.J. Metzger

# 2-particle BEC $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$

- Naively expect same BEC for  $\pi^0\pi^0$  and  $\pi^{\pm}\pi^{\pm}$
- ► Hadronization with local charge conservation, *e.g.*, string, ⇒ r<sub>00</sub> < r<sub>±±</sub> But most π's from resonances — dilutes this effect.
- Many measurements of BEC with charged π's
- but few with  $\pi^0$ 's

```
in e<sup>+</sup>e<sup>-</sup>: L3, P.L. B524 (2002) 55
OPAL, P.L. B559 (2003) 131
```

Selection:



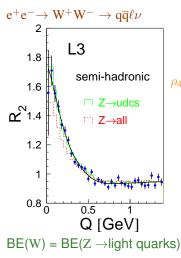
# 2-particle BEC $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$

|                                                  |    | Expt.                                             | $ ho_0$                | <i>r</i> (fm)                                                                                          | $\lambda$                                                                                       |
|--------------------------------------------------|----|---------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| BEC from Z decays<br>Gaussian<br>parametrization | 00 | L3 $E_{\pi}$ < 6 GeV<br>OPAL $E_{\pi}$ > 1, 2-jet | -                      | $\begin{array}{c} 0.31 \pm 0.10 \\ 0.59 \pm 0.09 \end{array}$                                          |                                                                                                 |
|                                                  | ±± | L3 $3-\pi$<br>L3 $E_{\pi}$ < 6 GeV<br>OPAL        | mix<br>mix<br>MC<br>+- | $\begin{array}{c} 0.65 \pm 0.04 \\ 0.65 \pm 0.07 \\ 0.46 \pm 0.01 \\ 1.00^{+0.03}_{-0.10} \end{array}$ | $\begin{array}{c} 0.45 \pm 0.07 \\ 0.47 \pm 0.08 \\ 0.29 \pm 0.03 \\ 0.76 \pm 0.06 \end{array}$ |

- ▶ L3:  $r_{00} < r_{\pm\pm}$  and  $\lambda_{00} < \lambda_{\pm\pm}$ , both 1.5 $\sigma$
- ► ALEPH, DELPHI find  $r_{\pm\pm}(\text{mix})/r_{\pm\pm}(+-) \approx 0.68, 0.51$ Applying this to OPAL  $r_{\pm\pm} \approx 0.6 \pm 0.1 - \text{So}, r_{00} \approx r_{\pm\pm}$
- ▶ L3 and OPAL  $\pi^0\pi^0$  results disagree by  $2\sigma$
- ▶ Is the L3-OPAL  $\pi^0 \pi^0$  difference due to  $E_{\pi}$  and/or 2-jet selection ???

Statistics and Systematics make any conclusions tenuous

# Another source of $q\overline{q}$ : W



 $e^+e^-\!\rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q} ~~\sqrt{s}\approx 190\text{--}200\,\text{GeV}$ 

If independent decay of W<sup>+</sup>W<sup>-</sup>, *i.e.*, no BEC between pions from different W's

 $\begin{array}{rcl} \rho_{4q}(p_1,p_2) = & \rho^+(p_1,p_2) & 1,2 \text{ from } W^+ \\ & + & \rho^-(p_1,p_2) & 1,2 \text{ from } W^- \\ & + & \rho^+(p_1)\rho^-(p_2) & 1 \text{ from } W^+, 2 \text{ from } W^- \\ & + & \rho^+(p_2)\rho^-(p_1) & 1 \text{ from } W^-, 2 \text{ from } W^+ \end{array}$ 

Assuming  $\rho^+ = \rho^- = \rho_{2q}$ , W separation ~ 0.1 fm  $\rho_{4q}(p_1, p_2) = 2\rho_{2q}(p_1, p_2) + 2\rho_{2q}(p_1)\rho_{2q}(p_2)$ 

Inter-W BEC  $\implies$  W decays *not* independent  $\implies$  this relation does *not* hold.

#### Measure

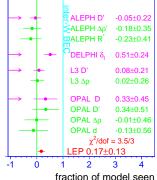
- $\rho_{4q}(p_1, p_2)$  from  $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$
- $\rho_{2q}(p_1, p_2)$  from  $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}\ell\nu$
- $\rho_{2q}(p_1)\rho_{2q}(p_2)$  from  $\rho_{mix}(p_1, p_2)$  obtained by mixing  $\ell^+ \nu q \bar{q}$  and  $q \bar{q} \ell^- \nu$  events

 $W^+W^- \rightarrow q\overline{q}q\overline{q}$ Measure violation of  $\rho_{4q}(Q) = 2\rho_{2q}(Q) + 2\rho_{mix}(Q)$ 

by

$$\begin{aligned} \Delta \rho(Q) &= \rho_{4q}(Q) - [2\rho_{2q}(p_1, p_2) + 2\rho_{mix}(p_1, p_2) \\ D(Q) &= \frac{\rho_{4q}(Q)}{2\rho_{2q}(Q) + 2\rho_{mix}(Q)} \\ \delta_{I}(Q) &= \frac{\Delta \rho(Q)}{2\rho_{mix}(Q)} \end{aligned}$$

# Compare to expectation of BE<sub>32</sub> model in PYTHIA



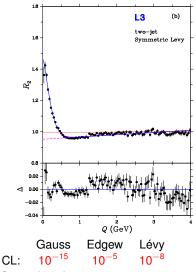
p. 14

$$\begin{split} & \delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \Delta_{\rm I}(Q) \text{ measures$$

### Results - 'Classic' Parametrizations

 $R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$ 

- Gaussian  $G = \exp(-(rQ)^2)$
- Edgeworth expansion  $G = \exp\left(-(rQ)^2\right) \cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if  $\kappa = 0$ Fit:  $\kappa = 0.71 \pm 0.06$
- symmetric Lévy  $G = \exp(-|rQ|^{\alpha})$   $0 < \alpha \le 2$ Gaussian if  $\alpha = 2$ Fit:  $\alpha = 1.34 \pm 0.04$



Poor  $\chi^2$ . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of  $R_2$  in the region 0.6 < Q < 1.5 GeV Anti-Correlation!

W.J. Metzger

Parton Radiation and Fragmentation from LHC to FCC-ee

21 Nov 2016

-

## The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett. B663(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point highly correlated with momentum of produced particle:

 $\overline{\pmb{x}}^{\mu}(\pmb{p}^{\mu})=\pmb{a} au\pmb{p}^{\mu}$ 

where for 2-jet events,  $a = 1/m_t$ 

 $au = \sqrt{\overline{t}^2 - \overline{r}_z^2}$  is the "longitudinal" proper time

and  $m_{\rm t} = \sqrt{E^2 - p_z^2}$  is the "transverse" mass

and dist. of prod. points about their mean is very narrow ( $\delta$ -function)

• Then, with  $H(\tau)$  the distribution of proper time

 $R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$ 

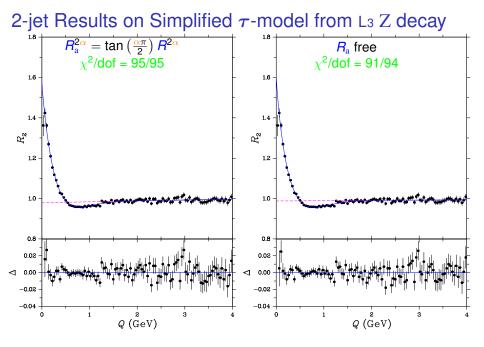
- Assume a one-sided Lévy distribution for H(τ)
   3 parameters:
  - $\alpha$  is the index of stability;
  - $\tau_0$  is the proper time of the onset of particle production;
  - $\Delta \tau$  is a measure of the width of the distribution.
- Then,  $R_2$  depends on  $Q, a_1, a_2$

#### BEC in the au-model

$$R_{2}(\boldsymbol{Q},\boldsymbol{a}_{1},\boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[ \frac{\tau_{0} Q^{2}(\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left( \frac{\alpha \pi}{2} \right) \left( \frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[ - \left( \frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon \boldsymbol{Q})$$

Simplification:

- effective radius, *R*, defined by  $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately,  $\tau_0 = 0$
- ► Then  $R_{2}(Q) = \gamma \left[ 1 + \lambda \cos \left( (R_{a}Q)^{2\alpha} \right) \exp \left( - (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where  $R_{a}^{2\alpha} = \tan \left( \frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization:  $R_{2}(Q) = \gamma \left[ 1 + \lambda \qquad \exp \left[ -|rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$
- R describes the BEC peak
- *R*<sub>a</sub> describes the anticorrelation dip
- $\tau$ -model: both anticorrelation and BEC are related to 'width'  $\Delta \tau$  of  $H(\tau)$



p. 18

# **Elongation?**

- ► Previous results using fits of Gaussian or Edgeworth found (in LCMS)  $r_{side}/r_L \approx 0.8$  for all events
- ▶ But we find that Gaussian and Edgeworth fit *R*<sub>2</sub>(*Q*) poorly
- $\tau$ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the  $\tau$ -model description to allow elongation

#### Elongation in the Simplified $\tau$ -model?

LCMS: 
$$Q^{2} = Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} - (\Delta E)^{2}$$
$$= Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} (1 - \beta^{2}) , \qquad \beta = \frac{p_{1out} + p_{2out}}{E_{1} + E_{2}}$$
Replace 
$$R^{2}Q^{2} \Longrightarrow A^{2} = R_{L}^{2}Q_{L}^{2} + R_{side}^{2}Q_{side}^{2} + \rho_{out}^{2}Q_{out}^{2}$$
Then in  $\tau$ -model,
$$R_{2}(Q_{L}, Q_{side}, Q_{out}) = \gamma \left[ 1 + \lambda \cos\left(\tan\left(\frac{\alpha\pi}{2}\right)A^{2\alpha}\right)\exp\left(-A^{2\alpha}\right) \right]$$
$$\cdot \left(1 + \epsilon_{L}Q_{L} + \epsilon_{side}Q_{side} + \epsilon_{out}Q_{out}\right)$$

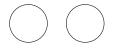
Elongation is real But  $\tau$ -model must be modified: *Q*-dependence  $\implies \vec{Q}$ -dependence

#### Another way to get Anti-correlation

Białas and Zalewski, Phys. Lett. B727(2013)182

Białas, Florkowski and Zalewski, Phys. Lett. B748(2015)9

Pions are not point particles.



pions far apart - BEC

pions close together



pions overlapping - no longer pions - So, no BEC

This excluded volume leads to anti-correlation dip. at approx. the right place – different for Long, side, out

# Another parametrization: Levy Polynomial Expansion

De Kock, Eggers, Csögő, ArXiv:1206.1680

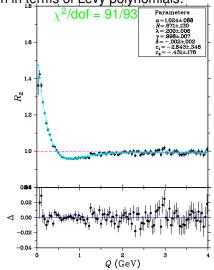
Expansion of the Symmetric Lévy distribution in terms of Lévy polynomials:

$$R_{2} = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$$
$$G = \exp(-|rQ|^{\alpha}) \left[ 1 + \sum_{n=1}^{\infty} c_{n} L_{n}(rQ \mid \alpha) \right]$$

Fits L3 data as well as simplified  $\tau$ -model

Advantage of Levy exp: model independent

Advantage of simplified  $\tau$ -model: anticorrelation region is simply related to one parameter,  $R_{\rm a}$ 



#### Multiplicity/Jet/rapidity dependence in $\tau$ -model

Use simplified  $\tau$ -model,  $\tau_0 = 0$  to investigate multiplicity and jet dependence

To stabilize fits against large correlation of parameters  $\alpha$  and R, fix  $\alpha = 0.44$ 

#### Jets

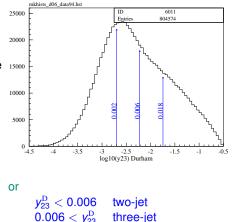
Jets — JADE and Durham algorithms

- force event to have 3 jets:
  - normally stop combining when all 'distances' between jets are > y<sub>cut</sub>
  - instead, stop combining when there 1500 are 3 jets left
  - y<sub>23</sub> is the smallest 'distance' between any 2 of the 3 jets
- y<sub>23</sub> is value of y<sub>cut</sub> where number of jets changes from 3 to 2

define regions of  $y_{23}^{\rm D}$  (Durham):  $y_{23}^{\rm D} < 0.002$  narrow two-jet

 $0.002 < y_{23}^{\rm D} < 0.006$  less narrow two-jet

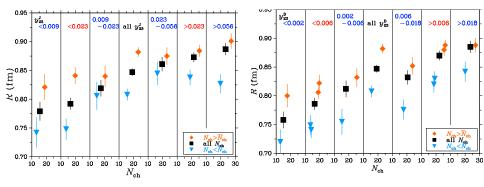
- $0.006 < y_{23}^{\rm D} < 0.018$  narrow three-jet  $0.018 < y_{23}^{\rm D}$  wide three-jet
- and similarly for  $y_{23}^{J}$  (JADE): 0.009, 0.023, 0.056



# Multiplicity dependence in au-model

Using simplified  $\tau$ -model,  $\alpha = 0.44$ ,  $\tau_0 = 0$ 

L3 PRELIMINARY



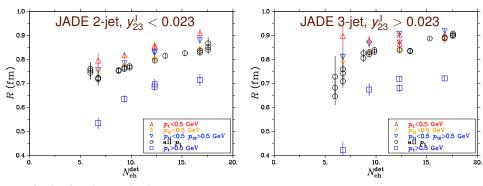
- R increases with y<sub>23</sub>, i.e., going from narrow 2-jet to wide 3-jet
- R increases with multiplicity at all y<sub>23</sub>

#### $m_{\rm t}$ dependence in au-model

Using simplified  $\tau$ -model,  $\alpha = 0.44$ ,  $\tau_0 = 0$ 

#### L3 PRELIMINARY

and cutting on  $p_t = 0.5 \text{ GeV} (m_t = 0.52 \text{ GeV})$ 

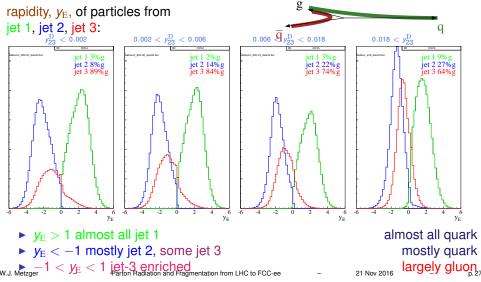


for both 2-jet and 3-jet events,
 R decreases with m<sub>t</sub> for all N<sub>ch</sub>
 smallest when both particles at high m<sub>t</sub>

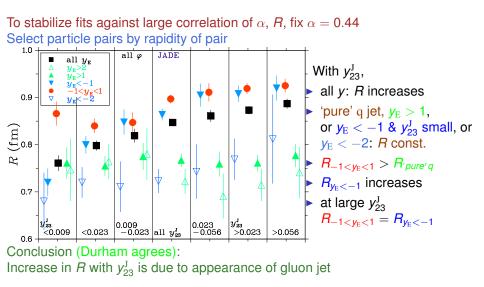
W.J. Metzger

#### Jets and Rapidity order jets by energy: $E_1 > E_2 > E_3$ Note: thrust only defines axis $|\vec{n}_T|$ , not its direction.

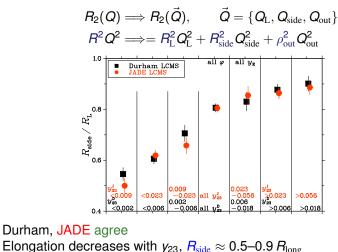
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere



#### Jets and Rapidity – simplified au-model – L3 preliminary



#### $\tau$ -model elongation – L3 preliminary ad hoc extension of $\tau$ -model: in LCMS



► agrees with Gaussian/Edgeworth fits (all events) Gaussian:  $r_{side}/r_{L} = 0.80 \pm 0.02 \pm ^{0.03}_{0.18}$ Edgeworth:  $r_{side}/r_{L} = 0.81 \pm 0.02 \pm ^{0.03}_{0.19}$ 

W.J. Metzger

Parton Radiation and Fragmentation from LHC to FCC-ee

# Conclusions

- 1. LEP has made a good start in investigating fragmentation with BEC But, statistics limited to
  - 1-D parametrizations
  - or very global 3-D parametrizations
- 2. Anticorrelation region
  - On what does it depend?
  - ▶ Is strong *x*-*p* correlation (as in  $\tau$ -model) the correct explanation?
  - pion size?
  - something else?
  - 3-D fits needed for different regions, e.g., y<sub>23</sub>, y, m<sub>t</sub>
- 3. Parametrization
  - model independent, e.g., Lévy polynomial expansion
  - ▶ *τ*-model
    - Known to be inadequate: elongation
    - Particularly suspect: assumption of strong x-p corelation in transverse plane
    - relaxing this correlation requires additional parameters, dimensions
  - other model?
- 4. Does *r* depend on mass, charge?  $\pi$ -K-p,  $\pi^0$ - $\pi^{\pm}$

# Desiderata

- 1.  $\pi/K/p$  identification
- 2. good track efficiency (enters as the square for pairs)
- 3. good two-track resolution
- 4. good  $\pi^0$  measurement
- 5. good  $K^0$ ,  $\Lambda$  measurement
- 6. good b-tag efficiency
- 7. much higher statistics than LEP
  - enable narrower bins to better determine BEC parametrization
  - enable more differential look at event structure, e.g., R<sub>in plane</sub> = R<sub>out of plane</sub>?
  - L3 analyses I showed used 10<sup>6</sup> events
  - ► an example: is *R* the same for quark, gluon? need pure gluon jets: double b-tag qqg event with large *E*g ⇒ about 1/1000 of the events So 10<sup>9</sup> events needed to do for gluon what we now do for quarks
  - ► 1-D to 3-D requires  $N_{\text{bins}}^3$  as many events For 100 bins  $10^6$  events  $\implies 10^{12}$  events
  - expected 10<sup>12</sup> Z events per year per expt looks pretty good