Bose-Einstein Correlations in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation (a review)

W.J. Metzger

Radboud University Nijmegen

Workshop on Parton Radiation and Fragmentation from LHC to FCC-ee CERN
21 Nov. 2016

Introduction - BEC

$$
\begin{gathered}
R_{2}=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(\rho_{1}\right) \rho_{1}\left(\rho_{2}\right)} \Longrightarrow \frac{\rho_{2}(\vec{Q})}{\rho_{0}(\vec{Q})} \text { or } \frac{\rho_{2}(Q)}{\rho_{0}(Q)} \quad \begin{array}{r}
\rho_{0}=2 \text {-particle density of 'reference sample' } \\
\vec{Q}=\vec{p}_{1}-\vec{p}_{2} \quad
\end{array} \begin{array}{l}
Q=\sqrt{-\left(p_{1}-p_{2}\right)^{2}}
\end{array}
\end{gathered}
$$

Assuming particles produced incoherently with spatial source density of emission points $S(x)$,

$$
R_{2}(Q)=1+\lambda|\widetilde{S}(Q)|^{2}
$$

where $\tilde{S}(Q)=\int \mathrm{d} x \mathrm{e}^{i Q x} S(x)$

- Fourier transform of $S(x)$
$\lambda=1$
$\lambda=0$ if production completely coherent
Assuming $S(x)$ is a spherically symmetric Gaussian distribution with radius r, \Longrightarrow

$$
R_{2}(Q)=1+\lambda \mathrm{e}^{-(Q r)^{2}}
$$

Problems with this approach

Assumes

- incoherent average over source λ tries to account for
- partial coherence
- multiple (distinguishable) sources, long-lived resonances
- pion purity
- spherical (radius r) Gaussian distribution of particle emitters seems unlikely in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - jets
- static source, i.e., no t-dependence certainly wrong

Final-State Interactions

1. Coulomb

- form not certain
(usually use Gamow factor) overcorrects!
- for R_{2}, a few \% in lowest Q bin
- double if,+ - ref. sample
- often neglected for R_{2}
- but not negligible for R_{3}

2. Strong interaction - s-wave $\pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_{2}

Osada, Sano, Biyajima, Z.Phys. C72(1996)285)
tends to increase λ, decrease r Not used by LEP experiments

Reference Sample

Common choices:
1.,+- pairs

But different resonances than,++
2. Mixed events - pair particles from different events
But destroys all correlations, not just BEC
correct by MC (no BEC):

$$
\rho_{0} \Longrightarrow \rho_{0} \frac{\rho_{2}^{\mathrm{MC}}}{\rho_{0}^{\mathrm{MC}}}
$$

$$
R_{2}=\frac{\rho_{2}}{\rho_{0}} \Longrightarrow \frac{\rho_{2}}{\rho_{0}} / \frac{\rho_{2}^{\mathrm{MC}}}{\rho_{0}^{\mathrm{MC}}}
$$

'double ratio'

- But is the MC correct?
ref. sample, ρ_{0}, from,+- pairs
R_{2}

Long-range correlations inadequately treated in ref. sample:
$\underset{\text { w.J. Metzger }}{R_{2}(Q)} \propto\left(1_{-}+\lambda \mathrm{e}^{-Q^{2} r^{2}}\right) \cdot(1+\delta \mathbb{Q}) \underset{\text { Parton Radiation and Fragmentation from LHC to FCC-ee }}{\text { or even }} \cdot\left(1+\delta \boldsymbol{Q}+\epsilon \boldsymbol{Q}_{\text {21 Nov } 2016}^{2}\right.$

What have we learned from LEP?

Other aspects of BEC:

The simple picture is inadequate

1. R_{2} is not Gaussian
2. $R_{2} \neq 1+\lambda|\widetilde{S}(Q)|$
i.e. $\neq 1+$ positive-definite term
\exists also a region where $R_{2}<1$,
i.e., anticorrelation
3. $R_{2} \neq R_{2}(Q)$, but $R_{2}(\vec{Q})$
4. R_{2} depends on jet structure
5. \sqrt{s} dependence
6. comparison of $2-\pi$ and $3-\pi$ BEC suggests complete incoherence, but large errors
7. $r_{\pi^{0} \pi^{0}} \approx$ or $<r_{\pi^{ \pm} \pi^{ \pm}}$?

LEP inconclusive
4. cross talk?, i.e. is there BEC if π 's from different jets?
suggests no,
but very large uncertainties

Results from $\boldsymbol{R}_{2}, \sqrt{\boldsymbol{s}}=M_{\mathrm{Z}}$

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than +- ref. - Average means little

$\sqrt{\boldsymbol{s}}$ dependence of \boldsymbol{r}

No evidence for \sqrt{s} dependence

But uncertainties large

Mass dependence of $\boldsymbol{r}-\mathrm{BEC}$ and FDC

No evidence for $r \sim 1 / \sqrt{m}$

$$
r(\text { mesons })>r(\text { baryons })
$$

$r_{\pi-\pi} \approx r_{K-K}$
r (baryons) is very small $\quad-\quad r_{\mathrm{p}}=0.1 \mathrm{fm}$ while size of p is $1 \mathrm{fm} ? ? ?$

Disclaimer

- There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will concentrate on pion results.

not Gaussian — try Edgeworth expansion

$$
R_{2}(Q)=\left(1+\lambda \mathrm{e}^{-Q^{2} r^{2}} \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]\right) \cdot(1+\delta Q)
$$

Gaussian $(\kappa=0) \quad \mathrm{CL}=10^{-14}$

Edgeworth expansion $\quad C L=18 \%$

But note large δ - see later

3π BEC

with $R_{3}^{\text {genuine }}\left(Q_{3}\right)=R_{3}\left(Q_{3}\right)-$ contribution from $2-\pi \quad \Longrightarrow \quad \omega=\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{R_{2}\left(Q_{3}\right)-1}}$
Using $R_{3}^{\text {genuine }}$ from data, R_{2} from fit
L3, PLB540 (2002) 185

Conclusion: Data consistent with $\omega=1$, i.e., with completely incoherent pion production Possibly a problem for string models!

But large uncertainties

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

- Naively expect same BEC for $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$
- Hadronization with local charge conservation, e.g., string,

$$
\Longrightarrow r_{00}<r_{ \pm \pm}
$$

But most π 's from resonances - dilutes this effect.

- Many measurements of BEC with charged π 's
- but few with π^{0} 's

$$
\begin{aligned}
& \text { in } \mathrm{e}^{+} \mathrm{e}^{-} \text {: L3, P.L. B524 (2002) } 55 \\
& \text { OPAL, P.L. B559 (2003) } 131
\end{aligned}
$$

Selection:

OPAL	L3
$p_{\pi^{0}}>1.0 \mathrm{GeV}$	$E\left(\pi^{0}\right)<6.0 \mathrm{GeV}$
2 -jet, $T>0.9$	all events

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

BEC from Z decays	$\begin{array}{ll}00 & \text { L3 } E_{\pi}<6 \mathrm{GeV} \\ & \text { OPAL } E_{\pi}>1,2 \text {-jet }\end{array}$	MC mix	0.31 ± 0.10 0.59 ± 0.09	$\begin{aligned} & 0.16 \pm 0.09 \\ & 0.55 \pm 0.14 \end{aligned}$
parametrization	士土 L3	mix	0.65 ± 0.04	0.45 ± 0.07
	L3 3- π	mix	0.65 ± 0.07	0.47 ± 0.08
	L3 $E_{\pi}<6 \mathrm{GeV}$	MC	0.46 ± 0.01	0.29 ± 0.03
	OPAL	+-	$1.00_{-0.10}^{+0.03}$	0.76 ± 0.06

- L3: $r_{00}<r_{ \pm \pm}$and $\lambda_{00}<\lambda_{ \pm \pm}$, both 1.5σ
- ALEPH, DELPHI find $r_{ \pm \pm}(\operatorname{mix}) / r_{ \pm \pm}(+-) \approx 0.68,0.51$

Applying this to OPAL $r_{ \pm \pm} \approx 0.6 \pm 0.1-$ So, $r_{00} \approx r_{ \pm \pm}$

- L3 and OPAL $\pi^{0} \pi^{0}$ results disagree by 2σ
- Is the L3-OPAL $\pi^{0} \pi^{0}$ difference due to E_{π} and/or 2-jet selection ???

Statistics and Systematics make any conclusions tenuous

Another source of $q \bar{q}: W$

$\mathrm{BE}(\mathrm{W})=\mathrm{BE}(\mathrm{Z} \rightarrow$ light quarks $)$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}} \quad \sqrt{\boldsymbol{s}} \approx 190-200 \mathrm{GeV}$
If independent decay of $\mathrm{W}^{+} \mathrm{W}^{-}$,
i.e., no BEC between pions from different W's

$$
\begin{aligned}
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right) & =\rho^{+}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{+} \\
& +\rho^{-}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{1}\right) \rho^{-}\left(p_{2}\right) & & 1 \text { from } \mathrm{W}^{+}, 2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{2}\right) \rho^{-}\left(p_{1}\right) & & 1 \text { from } \mathrm{W}^{-}, 2 \text { from } \mathrm{W}^{+}
\end{aligned}
$$

Assuming $\rho^{+}=\rho^{-}=\rho_{2 q}$, W separation $\sim 0.1 \mathrm{fm}$

$$
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right)=2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{2 \mathrm{q}}\left(p_{1}\right) \rho_{2 \mathrm{q}}\left(p_{2}\right)
$$

Inter-W BEC \Longrightarrow W decays not independent
\Longrightarrow this relation does not hold.

Measure

- $\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q} q} \overline{\mathrm{q}}$
- $\rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \ell \nu$
- $\rho_{2 q}\left(p_{1}\right) \rho_{2 q}\left(p_{2}\right)$ from $\rho_{\text {mix }}\left(p_{1}, p_{2}\right)$ obtained by mixing $\ell^{+} \nu \mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{q} \overline{\mathrm{q}} \ell^{-} \nu$ events

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$

Measure violation of

$$
\rho_{4 \mathrm{q}}(Q)=2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\text {mix }}(Q)
$$

by

$$
\begin{aligned}
\Delta \rho(Q) & =\rho_{4 \mathrm{q}}(Q)-\left[2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{\operatorname{mix}}\left(p_{1}, p_{2}\right)\right] \\
D(Q) & =\frac{\rho_{4 \mathrm{q}}(Q)}{2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\operatorname{mix}}(Q)} \\
\delta_{\mathrm{I}}(Q) & =\frac{\Delta \rho(Q)}{2 \rho_{\operatorname{mix}}(Q)}
\end{aligned}
$$

Compare to expectation of BE_{32} model in PYTHIA
$\delta_{\mathrm{I}}(Q)$ measures genuine inter-W BEC

$$
\begin{array}{cc}
\text { DELPHI: } 0.51 \pm 0.24 & \sim 2 \sigma \\
\text { average: } 0.17 \pm 0.13 & \sim 1 \sigma
\end{array}
$$

Conclusion: BEC (mostly) between π 's from same string
But errors are large
and event selection (4 well separated jets)
suppresses small Q for π pairs from different strings

Results - 'Classic’ Parametrizations

$R_{2}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon Q)$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion
$G=\exp \left(-(r Q)^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]$
Gaussian if $\kappa=0$
Fit: $\kappa=0.71 \pm 0.06$
- symmetric Lévy

$$
\begin{aligned}
& G=\exp \left(-|r Q|^{\alpha}\right) \\
& 0<\alpha \leq 2
\end{aligned}
$$

Gaussian if $\alpha=2$
Fit: $\alpha=1.34 \pm 0.04$

Gauss Edgew Lévy

Poor χ^{2}. Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$ Anti-Correlation!

The τ-model

- Assume avg. production point highly correlated with momentum of produced particle:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$
$\tau=\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}}$ is the "longitudinal" proper time
and $m_{t}=\sqrt{E^{2}-p_{z}^{2}}$ is the "transverse" mass and dist. of prod. points about their mean is very narrow (δ-function)

- Then, with $H(\tau)$ the distribution of proper time

$$
R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

- Assume a one-sided Lévy distribution for $H(\tau)$

3 parameters:

- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}

BEC in the τ-model

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{a}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ-model from Lз Z decay

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $r_{\text {side }} / r_{\mathrm{L}} \approx 0.8$ for all events
- But we find that Gaussian and Edgeworth fit $R_{2}(Q)$ poorly
- τ-model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the τ-model description to allow elongation

Elongation in the Simplified τ-model?

LCMS: $\quad Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{\text {lout }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

Replace $\quad R^{2} Q^{2} \Longrightarrow A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
Then in τ-model,

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma & {\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right] } \\
& \cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
\end{aligned}
$$

			χ^{2} / dof	CL
for 2-jet events:	τ-model	$R_{\text {side }} / R_{\mathrm{L}}=0.61 \pm 0.02$	$14847 / 14921$	66%
	Edgeworth	$r_{\text {side }} / r_{\mathrm{L}}=0.64 \pm 0.02$	$14891 / 14919$	56%

Elongation is real
But τ-model must be modified: Q-dependence $\Longrightarrow \vec{Q}$-dependence

Another way to get Anti-correlation

Pions are not point particles.

pions far apart - BEC
pions close together
pions overlapping - no longer pions - So, no BEC

This excluded volume leads to anti-correlation dip. at approx. the right place - different for Long, side, out

Another parametrization: Levy Polynomial Expansion

Expansion of the Symmetric Lévy distribution in terms of Lévy polynomials:

$$
\begin{aligned}
R_{2} & =\gamma \cdot[1+\lambda G] \cdot(1+\epsilon Q) \\
G & =\exp \left(-|r Q|^{\alpha}\right)\left[1+\sum_{n=1}^{\infty} c_{n} L_{n}(r Q \mid \alpha)\right]
\end{aligned}
$$

Fits L3 data as well as simplified τ-model Advantage of Levy exp:
model independent
Advantage of simplified τ-model:
anticorrelation region is
simply related to one parameter, R_{a}

Multiplicity/Jet/rapidity dependence in τ-model

Use simplified τ-model, $\tau_{0}=0$
to investigate multiplicity and jet dependence
To stabilize fits against large correlation of parameters α and R, fix $\alpha=0.44$

Jets

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of $y_{\text {cut }}$ where number of jets changes from 3 to 2
define regions of y_{23}^{D} (Durham):

$$
\begin{array}{lll}
y_{23}^{\mathrm{D}}<0.002 & \text { narrow two-jet } & \text { or } \\
0.002<y_{23}^{2}<0.006 & \text { less narrow two-jet } & \\
0.006<y_{23}^{\mathrm{D}}<0.018 & \text { narrow thre-e-jet } & 0.1 \\
0.018<y_{23}^{\mathrm{D}} & \text { wide three-jet } & \\
\text { and similarly for } y_{23}^{\mathrm{J}} \text { (JADE): } 0.009,0.023,0.056
\end{array}
$$

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

- R increases with y_{23}, i.e., going from narrow 2 -jet to wide 3 -jet
- R increases with multiplicity at all y_{23}

$\boldsymbol{m}_{\mathrm{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- for both 2-jet and 3-jet events, R decreases with m_{t} for all $N_{\text {ch }}$ smallest when both particles at high m_{t}

Jets and Rapidity

order jets by energy: $E_{1}>E_{2}>E_{3}$
Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction.
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere
rapidity, y_{E}, of particles from jet 1, jet 2, jet 3:

- $y_{E}>1$ almost all jet 1
- $y_{\mathrm{E}}<-1$ mostly jet 2, some jet 3

almost all quark mostly quark largely gluon

Jets and Rapidity - simplified τ-model - \llcorner preliminary

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.44$ Select particle pairs by rapidity of pair

Conclusion (Durham agrees):
Increase in R with y_{23}^{J} is due to appearance of gluon jet

τ-model elongation $-\llcorner 3$ preliminary

ad hoc extension of τ-model: in LCMS

$$
\begin{aligned}
& R_{2}(Q) \Longrightarrow R_{2}(\vec{Q}), \quad \vec{Q}=\left\{Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right\} \\
& R^{2} Q^{2} \Longrightarrow=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}
\end{aligned}
$$

- Durham, JADE agree
- Elongation decreases with $y_{23}, R_{\text {side }} \approx 0.5-0.9 R_{\text {long }}$
- agrees with Gaussian/Edgeworth fits (all events) Gaussian: $r_{\text {side }} / r_{\mathrm{L}}=0.80 \pm 0.02 \pm_{0.18}^{0.03}$
Edgeworth: $r_{\text {side }} / r_{L}=0.81 \pm 0.02 \pm_{0.19}^{0.03}$

Conclusions

1. LEP has made a good start in investigating fragmentation with BEC

But, statistics limited to

- 1-D parametrizations
- or very global 3-D parametrizations

2. Anticorrelation region

- On what does it depend?
- Is strong x - p correlation (as in τ-model) the correct explanation?
- pion size?
- something else?
- 3-D fits needed for different regions, e.g., $y_{23}, y, m_{\mathrm{t}}$

3. Parametrization

- model independent, e.g., Lévy polynomial expansion
- τ-model
- Known to be inadequate: elongation
- Particularly suspect: assumption of strong $x-p$ corelation in transverse plane
- relaxing this correlation requires addtional parameters, dimensions
- other model?

4. Does r depend on mass, charge? $\pi-K-p, \quad \pi^{0}-\pi^{ \pm}$

Desiderata

1. $\pi / \mathrm{K} / \mathrm{p}$ identification
2. good track efficiency (enters as the square for pairs)
3. good two-track resolution
4. good π^{0} measurement
5. good K^{0}, \wedge measurement
6. good b-tag efficiency
7. much higher statistics than LEP

- enable narrower bins to better determine BEC parametrization
- enable more differential look at event structure, e.g., $R_{\text {in plane }}=R_{\text {out of plane }}$?
- L3 analyses I showed used 10^{6} events
- an example: is R the same for quark, gluon? need pure gluon jets: double b-tag qqg event with large E_{g} \Longrightarrow about $1 / 1000$ of the events
So 10^{9} events needed to do for gluon what we now do for quarks
- 1-D to 3-D requires $N_{\text {bins }}^{3}$ as many events For 100 bins 10^{6} events $\Longrightarrow 10^{12}$ events
- expected $10^{12} \mathrm{Z}$ events per year per expt looks pretty good

