Bose-Einstein Correlations and Jet Structure in e⁺e⁻ annihilation

W.J. Metzger

Radboud University Nijmegen

VIII Workshop on Particle Correlations and Femtoscopy Frankfurt 10–14 September 2012

Introduction - BEC

$$R_2 = rac{
ho_2(
ho_1,
ho_2)}{
ho_1(
ho_1)
ho_1(
ho_2)} \Longrightarrow rac{
ho_2(Q)}{
ho_0(Q)}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ — Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a symmetric Lévy stable distribution with radius r, index of stability α ($\alpha = 2$ for a Gaussian) \Longrightarrow $R_2(Q) = 1 + \lambda e^{-(Qr)^{\alpha}}$

The L3 Data

- $e^+e^- \longrightarrow hadrons at \sqrt{s} \approx M_Z$
- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{\text{cut}} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ho_0

The τ -model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.B663(2008)214
T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point is proportional to momentum:

$$\overline{\mathbf{x}}^{\mu}(\mathbf{p}^{\mu}) = \mathbf{a} \tau \mathbf{p}^{\mu}$$

For 2-jet events,
$$a = 1/m_t$$
, $\tau = \sqrt{t^2 - r_z^2}$, $m_t = \sqrt{E^2 - p_z^2}$

• Let $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x,p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$

• Assume $\delta_{\Delta}(x - a\tau p)$ is very narrow — a δ -function. Then

$$R_2(p_1, p_2) = 1 + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1Q^2}{2}\right)\widetilde{H}\left(\frac{a_2Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int d\tau H(\tau) \exp(i\omega\tau)$$

- Assume a one-sided Lévy distribution for $H(\tau)$ Three parameters:
 - α is the index of stability;
 - τ_0 is the proper time of the onset of particle production;
 - $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_2 depends on Q, a_1, a_2 :

BEC in the au-model

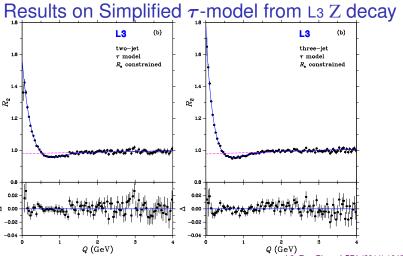
$$\begin{split} R_2(Q, a_1, a_2) &= \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_0 Q^2(a_1 + a_2)}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right. \\ & \left. \cdot \exp \left[- \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q) \end{split}$$

Simplification:

- effective radius, R, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- Then $R_2(Q) = \gamma \left[1 + \lambda \cos\left((R_aQ)^{2\alpha}\right) \exp\left(-(RQ)^{2\alpha}\right)\right] \cdot (1 + \epsilon Q)$ where $R_a^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right) R^{2\alpha}$

Compare to sym. Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \right] \exp \left[-|rQ|^{\alpha} \right] \left[(1 + \epsilon Q)^{\alpha} \right]$$



Simplified τ -model works well – also for 3-jet ^{L3, Eur. Phys. J **c71** (2011) 1648 sym. dists. do not because of anti-correlation region}

So we use the simplified au-model parametrization.

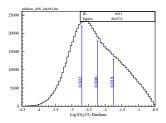
or

Jets

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are > y_{cut}
 - instead, stop combining when there are only 3 jets left
 - y₂₃ is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3

define regions of $y_{23}^{\rm D}$ (Durham):



 $y_{23}^{\rm D} < 0.006$ two-jet $0.006 < y_{23}^{\rm D}$ three-jet

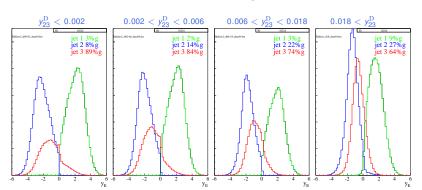
and similarly for y_{23}^{J} (JADE): 0.009, 0.023, 0.056

Jets

order jets by energy: $E_1 > E_2 > E_3$ Coordinate system: $Z \longrightarrow q\overline{q}(g)$

- estimate $q\overline{q}$ axis by thrust axis, *i.*e., axis \vec{n}_T for which $T = \frac{\sum |\vec{p}_i \cdot \vec{n}_T|}{\sum |\vec{p}_i|}$ is maximal
- 3-jet events are planar. Estimate event plane by thrust, major axes. Major is analogous to thrust, but in plane perpendicular to $\vec{n}_{\rm T}$.
- Note: thrust only defines axis $|\vec{n}_{\rm T}|$, not its direction. Choose positive thrust direction such that jet 1 is in positive thrust hemisphere
- Similarly, choose positive major direction such that jet 3 is in positive major hemisphere

rapidity, y_E , of particles from jet 1, jet 2, jet 3:



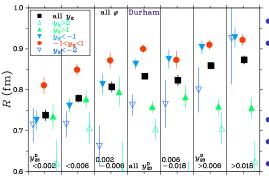
Jets

- y_E > 1 almost all jet 1
- $y_{\rm E} < -1$ mostly jet 2, some jet 3
 - $-1 < y_E < 1$ jet-3 enriched

almost all quark mostly quark

Fits of simplified τ -model – L3 preliminary

To stabilize fits against large correlation of α , R, fix $\alpha = 0.44$ Select particle pairs by rapidity of pair



With y_{23}^{D} ,

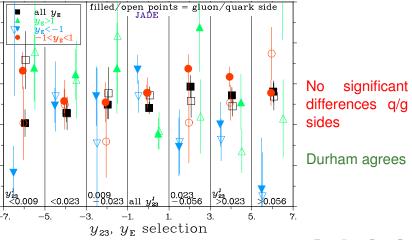
- all y: R increases
- 'pure' q jet, $y_E > 1$, or $y_E < -1 \& y_{23}^D$ small, or $y_E < -2$:
 - R const.
- $R_{-1 < y_{\rm E} < 1} > R_{'pure'q}$
- $R_{y_E < -1}$ increases
- at large y₂₃^D

 $R_{-1 < y_{\rm E} < 1} = R_{y_{\rm E} < -1}$

Conclusion (JADE agrees):

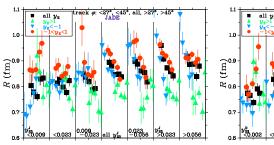
Increase in R with $y_{23}^{\rm D}$ is due to appearance of gluon jet

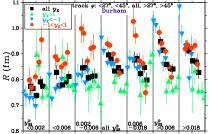
Fits of simplified τ -model – L3 preliminary filled points = ϕ (tracks) on gluon side (in pos. major hemisphere) open points = ϕ (tracks) on quark side (in neg. major hemisphere)



Fits of simplified τ -model – L3 preliminary

 ϕ track-event plane: < 27°, < 45°, all, > 27°, > 45°





2-jet, all $y_{\rm E}$ selections and 3-jet, $y_{\rm E} > 1$: no significant differences between $R_{\rm in\ plane}$, $R_{\rm out\ of\ plane}$ 3-jet, $-1 < y_{\rm E} < 1$ or $y_{\rm E} < -1$: $R_{\rm in\ plane} > R_{\rm out\ of\ plane}$

LCMS and the Simplified au-model

Consider 2 frames:

1. LCMS:
$$Q^{2} = Q_{L}^{2} + Q_{\text{side}}^{2} + Q_{\text{out}}^{2} - (\Delta E)^{2}$$
$$= Q_{L}^{2} + Q_{\text{side}}^{2} + Q_{\text{out}}^{2} (1 - \beta^{2}) , \quad \beta = \frac{\rho_{\text{1out}} + \rho_{\text{2out}}}{E_{1} + E_{2}}$$

Results-3d

2. LCMS-rest: $Q^2 = Q_{\rm L}^2 + Q_{\rm side}^2 + q_{\rm out}^2$, $q_{\rm out}^2 = Q_{\rm out}^2 \left(1 - \beta^2\right)$ $q_{\rm out}$ is $Q_{\rm out}$ boosted (β) along out direction to rest frame of pair

In simplified τ -model, replace R^2Q^2 by

1.
$$A^2 = R_L^2 Q_L^2 + R_{\text{side}}^2 Q_{\text{side}}^2 + \rho_{\text{out}}^2 Q_{\text{out}}^2$$

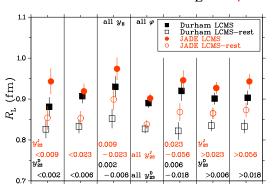
2.
$$B^2 = R_L^2 Q_L^2 + R_{\text{side}}^2 Q_{\text{side}}^2 + r_{\text{out}}^2 q_{\text{out}}^2$$

Then in τ -model, for case 1:

$$R_{2}(Q_{L}, Q_{\text{side}}, Q_{\text{out}}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right] \cdot \left(1 + \epsilon_{L} Q_{L} + \epsilon_{\text{side}} Q_{\text{side}} + \epsilon_{\text{out}} Q_{\text{out}} \right)$$

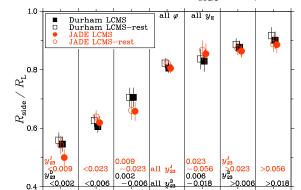
and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

3-d Fits $R_{\rm I}$ – L3 preliminary



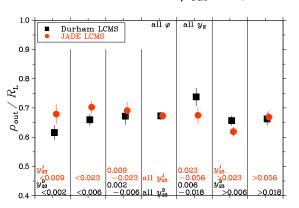
- Durham, JADE agree
- systematic difference LCMS, LCMS-rest
- R_L constant with y₂₃

3-d Fits R_{side} – L3 preliminary

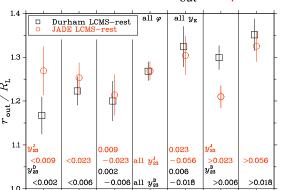


- LCMS, LCMS-rest agree
- Durham, JADE agree
- R_{side} increases with y₂₃, approx. 0.5–0.9 R_L

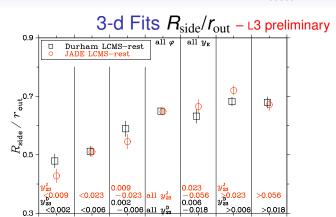
3-d Fits $\rho_{\rm out}$ – L3 preliminary



- Durham, JADE agree
- ρ_{out} constant with y_{23}



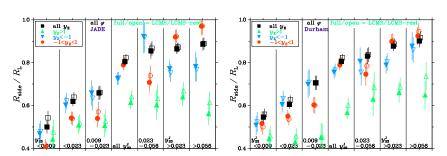
- Durham, JADE roughly agree
- $y_{23}^{\rm J}$: $r_{\rm out}$ approx. constant with y_{23} , approx. 1.27 $R_{\rm L}$ or $y_{23}^{\rm D}$: slightly increasing with y_{23} , approx. 1.15–1.35 $R_{\rm L}$



- Durham, JADE agree
- R_{side} < r_{out} for all y₂₃
 R_{side}/r_{out} smallest for 2-jet
 Not azimuthally symmetric; not even for narrow 2-jet !!!

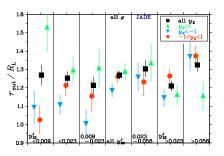
3-d Fits, y_E dependence R_{side} – L3 preliminary

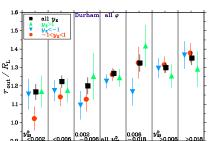
In each $y_{\rm E}$ interval, $R_{\rm L}$, $\rho_{\rm out} \approx {\rm constant}$ with y_{23} (not shown)



 R_{side} increases, less for $y_{\text{E}} > 1$ than for other y_{E} regions

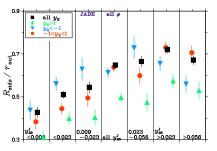
3-d Fits, y_E dependence r_{out} – L3 preliminary

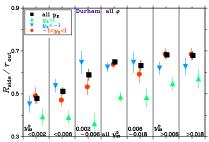




 $r_{\rm out}$ independent of $y_{\rm E}$ for $y_{\rm E} > 1$ $r_{\rm out}$ perhaps increases slightly for $y_{\rm E} < -1$ and $-1 < y_{\rm E} < 1$

3-d Fits, y_E dependence $R_{\text{side}}/r_{\text{out}}$ – L3 preliminary



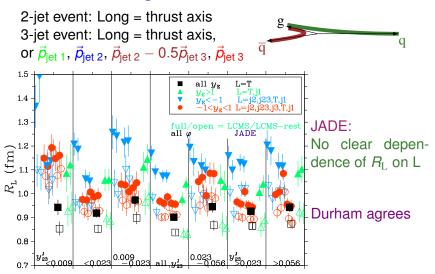


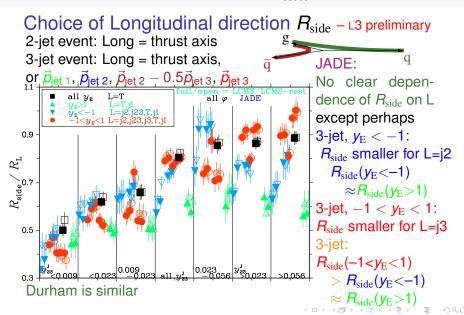
- $R_{\rm side} < r_{\rm out} < 1$ for all y_{23}
- $R_{\text{side}}/r_{\text{out}}$ smaller for $y_{\text{E}} > 1$ 'pure q jet'
- R_{side}/r_{out} smallest for 2-jet
- Not azimuthally symmetric; not even for narrow 2-jet !!!

Choice of Longitudinal direction $R_{\rm L}$ – L3 preliminary

Results-3d

0000

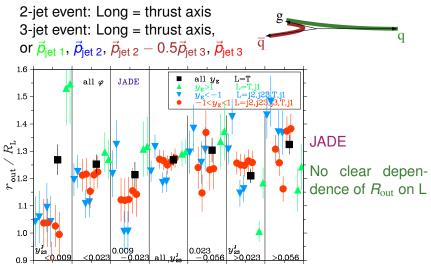




Results-3d

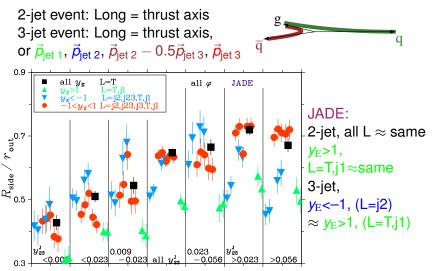
Choice of Longitudinal direction r_{out} – L3 preliminary

Results-3d



Choice of Longitudinal direction $R_{\text{side}}/r_{\text{out}}$ – L3 preliminary

Results-3d

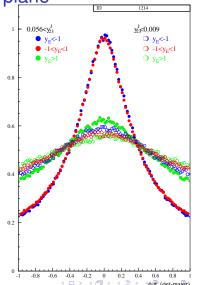


out-event plane

 2-jet: for all y_E, small preference for out direction to be in event plane

- 3-jet: for *y*_E > 1, like 2-jet
- 3-jet: for $y_E < -1$ and $-1 < y_E < 1$,

large preference for out direction to be in event plane



Summary

- 1-d
 - R increases with y_{23} $\sim 0.7-0.9$ fm
 - but not in 'pure quark' regions,
 (y_E > 1 or y_E < -2, all y₂₃) and (y_E < -1 for narrow 2-jet)
 - $R(-1 < y_E < 1) > R(\text{all } y_E) > y_E > 1)$
 - for 3-jet events R is larger in the event plane
- 3-d
 - $R_{\rm L}, \,
 ho_{
 m out} \sim {
 m constant \ with \ } y_{23}$ $R_{\rm L} pprox 0.9 \, {
 m fm \ (LCMS)} \, pprox 0.85 \, {
 m fm \ (LCMS-rest)}$ $ho_{
 m out}/R_{
 m L} pprox 0.65$
 - $R_{\rm side}$ increases with y_{23} $R_{\rm side}/R_{\rm L} \approx 0.5$ –0.9 increase is less for $y_{\rm E} > 1$
 - $r_{\rm out}$ perhaps increases slightly $r_{\rm out}/R_{\rm L} \approx 1.2 1.3$
 - $R_{\rm side}/r_{\rm out}$ < 1 for all y_{23} $R_{\rm side}/r_{\rm out}$ smaller for $y_{\rm E}>1$ 'pure q jet' $R_{\rm side}/r_{\rm out}$ smallest for 2-jet Not azimuthally symmetric; least symmetric for narrow 2-jet events.!!

Summary

- 3-d dependence on Longitudinal axis
 - 3-jet: R_{side} is perhaps smaller using L=j2 for $y_{\text{E}} < -1$ and L=j3 for $-1 < y_{\text{E}} < 1$ Then $R_{\text{side}}(-1 < y_{\text{E}} < 1) > R_{\text{side}}(y_{\text{E}} < -1) \approx R_{\text{side}}(y_{\text{E}} > 1)$
- 3-d: out direction is preferentially in the event plane slight preference for 2-jet and for 3-jet, y_E > 1 strong preference for -1 < y_E < 1 and R_{side}(y_E < -1)

Qualitative Conclusions

- R larger in event plane for 3-jet events agrees with r_{out} > R_{side} and preference of out to lie in event plane.
- For 3-jet, $R_{\rm L}$ and $r_{\rm out}$ are insensitive to choice of L. $R_{\rm side}$ does vary with L, but $R_{\rm side}$ is small. This may explain why τ -model works for 3-jet.
- Behavior of R and R_{side} in different y_E regions suggests R_{gluon} > R_{quark}.
 R and R_{side} are larger in gluon regions; they increase as gluon energy (and hence number of particles from gluon) increases.

Qualitative Conclusions/Speculations

- Picture of 'region of homogeneity' seems to be:
 - squashed ellipsoid
 r_{out} slightly larger than R_L
 R_{side} considerably smaller
 - in 'pure' quark jets (2-jet or 3-jet with y_E > 1)
 ellipsoid oriented approx. isotropically about thrust axis
 - in other cases (3-jet with $y_E < 1$ gluon contribution) r_{out} tends to be in event plane
- But why is R_{side} ≠ r_{out}, i.e., No azimuthal symmetry; not even for narrow 2-jet events? local p_t compensation defining a plane?

There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.

Speculation

- CMS has observed the anti-correlation region as predicted in the τ-model and observed by L3.
 This suggests strings – like in e⁺e⁻.
- In pp, can the onset of hard jet production be seen in the BEC radii? like the third jet e^+e^- .
- Therefore, I suggest studying BEC as a function of p_t of highest p_t particle.