Bose-Einstein Correlations in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

W.J. Metzger

Radboud University Nijmegen
X Workshop on Particle Correlations and Femtoscopy
Gyöngyös
25-29 August 2014

BEC Introduction

$$
R_{2}=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)} \Rightarrow \frac{\rho_{2}(Q)}{\rho_{0}(Q)}
$$

Assuming particles produced incoherently with spatial source density $S(x)$,

$$
R_{2}(Q)=1+\lambda|\widetilde{S}(Q)|^{2}
$$

where $\widetilde{S}(Q)=\int \mathrm{d} x e^{i Q x} S(x)$

- Fourier transform of $S(x)$
$\lambda=1 \quad-\quad \lambda<1$ if production not completely incoherent

Assuming $S(x)$ is a Gaussian with radius $r \Longrightarrow$

$$
R_{2}(Q)=1+\lambda \mathrm{e}^{-Q^{2} r^{2}}
$$

Results from $R_{2}, \sqrt{\boldsymbol{s}}=M_{Z}$

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than +- ref. - Average means little

$\sqrt{\boldsymbol{s}}$ dependence of \boldsymbol{r}

No evidence for \sqrt{s} dependence

Mass dependence of $\boldsymbol{r}-\mathrm{BEC}$ and FDC

No evidence for $r \sim 1 / \sqrt{m}$

$$
r(\text { mesons })>r(\text { baryons })
$$

$r_{\pi-\pi} \approx r_{K-K}$

Transverse Mass dependence of \boldsymbol{r} in LCMS

side

out

r decreases with m_{t}
but not equally fast in all components

The L3 Data

- $\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow$ hadrons at $\sqrt{s} \approx M_{\mathrm{Z}}$
- about $36 \cdot 10^{6}$ like-sign pairs of well measured charged tracks from about $0.8 \cdot 10^{6}$ events
- about $0.5 \cdot 10^{6} 2$-jet events - Durham $y_{\text {cut }}=0.006$
- about $0.3 \cdot 10^{6}>2$ jets, " 3 -jet events"
- use mixed events for reference sample, ρ_{0} corrected by MC (no BEC) for kinematics, resonances, etc.

$$
\rho_{0} \Longrightarrow \rho_{0} \cdot \frac{\rho^{\mathrm{MC}}}{\rho_{0}^{\mathrm{MC}}}
$$

Results - 'Classic’ Parametrizations

$R_{2}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon \boldsymbol{Q})$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion

$$
\begin{aligned}
G= & \exp \left(-(r Q)^{2}\right) \\
& \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]
\end{aligned}
$$

Gaussian if $\kappa=0 \kappa=0.71 \pm 0.06$

- symmetric Lévy
$G=\exp \left(-|r Q|^{\alpha}\right)$
$0<\alpha \leq 2$
$\alpha=1.34 \pm 0.04$

Gauss Edgew Lévy
CL: $10^{-15} \quad 10^{-5} \quad 10^{-8}$

Poor χ^{2}. Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$

The τ-model

- Assume avg. production point is related to momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$

$$
\tau=\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time }
$$

$$
\text { and } m_{t}=\sqrt{E^{2}-p_{z}^{2}} \text { is the "transverse" mass }
$$

- Let $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ. Then the emission function is

$$
S(x, p)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-a \tau p) \rho_{1}(p)
$$

- In the plane-wave approx.
f.B.Vano, S.E.K.oonin, Phys.Let.B78(1978)556.

$$
\rho_{2}\left(p_{1}, p_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left(1+\cos \left(\left[p_{1}-p_{2}\right]\left[x_{1}-x_{2}\right]\right)\right)
$$

- Assume $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ is very narrow - a δ-function. Then

$$
R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

BEC in the $\boldsymbol{\tau}$-model

- Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided.
Characteristic function is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$

where

- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}

$$
\begin{aligned}
R_{2}\left(Q, a_{1}, a_{2}\right)= & \gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
& \left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{aligned}
$$

BEC in the $\boldsymbol{\tau}$-model

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ-model from Lз Z decay

Resonances in anticorrelation region confuse things
But anticorrelation may be present in unlike sign

If anticorrelation is present in unlike sign, it requires the damping of the exp of the BEC peak

Multiplicity/Jet dependence - OPAL

Multiplicity dependence appears to be largely due to number of jets.

Multiplicity/Jet dependence in τ-model

Use simplified τ-model, $\tau_{0}=0$
to investigate multiplicity and jet dependence
To stabilize fits against large correlation of parameters α and R fix $\alpha=0.44$

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

R increases with multiplicity

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

R not constant
$\Longrightarrow R$ from fit is an average
But maybe not the average we want To get R at avg. multiplicity of sample, should weight pairs by $1 / N_{\text {pairs in event }}$ or calculate average multiplicity as

$\frac{\sum_{\text {events }} N_{\text {event }} N_{\text {pairs in event }}}{N_{\text {pairs }}}$

But the difference is small So I ignore it.
R increases with multiplicity

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY

- R increases with $N_{\text {ch }}$ and with number of jets whereas OPAL found $r_{\text {n-jet }}$ approx. indep. of $N_{c h}$
- Increase of R with $N_{\text {ch }}$ similar for 2- and 3-jet events
- However, $R_{3 \text {-jet }} \approx R_{\mathrm{all}}$

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

- $\lambda_{3 \text {-jet }}>\lambda_{2 \text {-jet }}$ opposite of OPAL
- λ initially decreases with $N_{\text {ch }}$
- then $\lambda_{\text {all }}$ and $\lambda_{3 \text {-jet }}$ approx. constant while $\lambda_{2 \text {-jet }}$ continues to decrease, but more slowly
- whereas OPAL found $\lambda_{\text {all }}$ decreasing approx. linearly with $N_{\text {ch }}$

$\boldsymbol{m}_{\mathbf{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- R decreases with m_{t} for all $N_{\text {ch }}$ smallest when both particles at high p_{t}

$\boldsymbol{m}_{\mathbf{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- λ decreases with m_{t} smallest when both particles at high p_{t}

On what do $\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{\lambda}$ depend?

- r, R increase with $N_{c h}$
- r, R increase with $N_{\text {jets }}$
- for fixed number of jets, R increases with $N_{\text {ch }}$ but r constant with $N_{\text {ch }}$ (OPAL)
- r, R decrease with m_{t}
- Although $m_{\mathrm{t}}, N_{\mathrm{ch}}, N_{\text {jets }}$ are correlated, each contributes to the increase/decrease of R
but only $m_{\mathrm{t}}, N_{\text {jets }}$ contribute to the increase/decrease of r
- λ decreases with $N_{\text {ch }}, N_{\text {jets }}$ though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_{t}

