Bose-Einstein Correlations in e^+e^- annihilation

W.J. Metzger

Radboud University Nijmegen

X Workshop on Particle Correlations and Femtoscopy Gyöngyös 25–29 August 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

BEC Introduction

$$R_2 = \frac{\rho_2(\rho_1, \rho_2)}{\rho_1(\rho_1)\rho_1(\rho_2)} \Rightarrow \frac{\rho_2(Q)}{\rho_0(Q)}$$

Assuming particles produced incoherently with spatial source density S(x),

 $R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ — Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a Gaussian with radius $r \implies R_2(Q) = 1 + \lambda e^{-Q^2 r^2}$

Results from R_2 , $\sqrt{s} = M_Z$

- correction for π purity increases λ

- mixed ref. gives smaller λ , r than +- ref. - Average means little

\sqrt{s} dependence of r

イロト イロト イヨト イヨト

æ

No evidence for \sqrt{s} dependence

Mass dependence of r — BEC and FDC

r(mesons) > r(baryons)

Transverse Mass dependence of *r* in LCMS

r decreases with $m_{\rm t}$ but not equally fast in all components

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

WPCF p. 6

The L₃ Data

• $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$

- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀
 corrected by MC (no BEC) for kinematics, resonances, etc.

$$\rho_0 \Longrightarrow \rho_0 \cdot \frac{\rho^{\rm MC}}{\rho_0^{\rm MC}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Results – 'Classic' Parametrizations

(Ъ)

Lévy

 10^{-8}

Problem is the dip of R_2 in the region $0.6 < Q < 1.5 \,\text{GeV}$

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$ where for 2-jet events, $a = 1/m_t$ $\tau = \sqrt{\overline{t^2 - \overline{r}_z^2}}$ is the "longitudinal" proper time

and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

- ► Let $\delta_{\Delta}(x^{\mu} \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$
- ► In the plane-wave approx. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right] [x_1 - x_2]\right)\right)$ ► Assume $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ is very narrow — a δ -function. Then

 $R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re} \widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

BEC in the au-model

Assume a Lévy distribution for H(τ)
 Since no particle production before the interaction,
 H(τ) is one-sided.
 Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha}\left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\omega\tau_{0}\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_2 depends on Q, a_1, a_2

$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos\left[\frac{\tau_{0}Q^{2}(a_{1} + a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right)\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right] \\ \cdot \exp\left[-\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right]\right\} \cdot (1 + \epsilon Q)$$

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- ► Then $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization: $R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left[-|rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$
- R describes the BEC peak
- R_a describes the anticorrelation dip
- τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ -model from L₃ Z decay

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めるの

WPCF p. 13

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

WPCF p. 14

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

Multiplicity/Jet dependence - OPAL

Multiplicity dependence appears to be largely due to number of jets.

Multiplicity/Jet dependence in au-model

- Use simplified τ -model, $\tau_0 = 0$ to investigate multiplicity and jet dependence
- To stabilize fits against large correlation of parameters α and R fix $\alpha = 0.44$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

Multiplicity dependence in au-model

R increases with multiplicity

L3 PRELIMINARY

프 > 프

WPCF p. 17

Multiplicity dependence in τ -model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

L3 PRELIMINARY

R increases with multiplicity

 \implies R from fit is an average But maybe not the average we want To get R at avg. multiplicity of sample, should weight pairs by $1/N_{\text{pairs in event}}$ or calculate average multiplicity as

$$\sum_{\text{events}} N_{\text{event}} N_{\text{pairs in event}}$$

 N_{pairs}

But the difference is small

Multiplicity/Jet dependence in au-model

 R increases with N_{ch} and with number of jets whereas OPAL found r_{n-jet} approx. indep. of N_{ch}

- Increase of R with N_{ch} similar for 2- and 3-jet events
- However, $R_{3-jet} \approx R_{all}$

Multiplicity/Jet dependence in au-model

- $\lambda_{3-jet} > \lambda_{2-jet}$ opposite of OPAL
- λ initially decreases with N_{ch}
- then λ_{all} and λ_{3-jet} approx. constant while λ_{2-jet} continues to decrease, but more slowly
- ► whereas OPAL found λ_{all} decreasing approx. linearly with N_{ch}

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

and cutting on $p_t = 0.5 \,\text{GeV} \ (m_t = 0.52 \,\text{GeV})$

 R decreases with m_t for all N_{ch} smallest when both particles at high p_t

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

L3 PRELIMINARY

and cutting on $p_t = 0.5 \,\text{GeV} (m_t = 0.52 \,\text{GeV})$

 λ decreases with m_t smallest when both particles at high p_t

On what do r, R, λ depend?

- ▶ r, R increase with N_{ch}
- r, R increase with N_{jets}
- for fixed number of jets, *R* increases with N_{ch} but *r* constant with N_{ch} (OPAL)
- r, R decrease with m_t
- Although m_t, N_{ch}, N_{jets} are correlated, each contributes to the increase/decrease of R but only m_t, N_{jets} contribute to the increase/decrease of r
- λ decreases with N_{ch}, N_{jets} though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_t

・ロト ・回ト ・ヨト

æ