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Introduction — BEC

q-particle density ρq(p1, ..., pq) = 1
σtot

dqσq(p1,...,pq)
dp1...dpq

, where σq is inclusive cross section

2-particle correlation:
ρ2(p1, p2)

ρ1(p1)ρ1(p2)

To study only BEC, not all correlations,
let ρ0(p1, p2) be the 2-particle density if no BEC
(= ρ2 of the ‘reference sample’) and define

R2(p1, p2) =
ρ2(p1, p2)

ρ1(p1)ρ1(p2)
·ρ1(p1)ρ1(p2)

ρ0(p1, p2)
=

ρ2(p1, p2)

ρ0(p1, p2)

Since 2-π BEC only at small Q

Q =
√
−(p1 − p2)2=

√
M2

12 − 4m2
π

integrate over other variables: R2(Q) =
ρ(Q)

ρ0(Q)

Assuming particles produced
incoherently
with spatial source density
S(x),

R2(Q) = 1 + |S̃(Q)|2

where S̃(Q)=
∫

dx eiQxS(x)
– Fourier transform of S(x)

Assuming S(x) is a Gaussian
with radius r =⇒
R2(Q) = 1 + e−Q2r2
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R2(Q) = γ · (1 + λG(Q)) · B , G(Q) = e−Q2r2

• γ = normalization (≈ 1)

• B tries to account for long-range
correlations inadequately removed by
reference sample, e.g., B = 1 + δQ

Assumes

• incoherent average over source
λ tries to account for

– partial coherence
– multiple (distinguishable) sources,

long-lived resonances
– pion purity

• spherical (radius r) Gaussian density of
particle emitters
seems unlikely in e+e− annihilation—jets

• static source, i.e., no t-dependence
certainly wrong

Nevertheless, this Gaussian formula is
the most often used parametrization
And it works fairly well
But what do the values of λ and r
actually mean?

When Gaussian parametrization does
not fit well, can expand about the
Gaussian (Edgeworth expansion).
Keeping only the lowest-order
non-Gaussian term,
exp (−Q2r2) becomes

exp
(
−Q2r2

)
·
[
1 +

κ

3!
H3(Qr)

]

(H3 is third-order Hermite polynomial)
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Experimental Problems I

I. Pion purity

1. mis-identified pions – K, p
– correct by MC. – But is it correct?

2. resonances
- long-lived affect λ
BEC peak narrower than resolution
- short-lived, e.g., ρ, - affect r
– correct by MC. – But is it correct?

3. weak decays
- ∼ 20% of Z decays are bb̄

like long-lived resonances,
decrease λ

• per Z: 17.0 π±, 2.3 K±, 1.0 p
(15% non-π)

Origin of π+ in Z decay (%)
(JETSET 7.4)

direct (string fragmentation) 16

decay (short-lived resonances) 62
Γ > 6.7 MeV, τ < 30 fm

(ρ, ω, K∗, ∆, ...)

decay (long-lived resonances) 22
Γ < 6.7 MeV, τ > 30 fm
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Experimental Problems II

II. Reference Sample, ρ0 — it does NOT exist
Common choices:

1. +− pairs But different resonances than ++
– correct by MC. – But is it correct?

2. Monte Carlo — But is it correct?

3. Mixed events – pair particles from different events
But destroys all correlations, not just BEC
– correct by MC. – But is it correct?

4. Mixed hemispheres (for 2-jet events)
– pair particle with particle reflected
from opposite hemisphere
But destroys all correlations
– correct by MC. – But is it correct?

To account for long-range correlations
inadequately removed by reference sample

R2(Q) ∝ (1 + λe−Q2r2
)(1 + δQ)

η K∗ ρ

R2 OPAL,Z.Phys.C72(1996)389
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Results from R2,
√

s = MZ

– correction for π purity increases λ
– mixed ref. gives smaller λ, r than + – ref.
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√
s dependence of r

No evidence for
√

s dependence
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Mass dependence of r — BEC and FDC

No evidence for r ∼ 1/
√

m
r(mesons) > r(baryons) But rbaryon = 0.1 fm ?!
problems in baryon production in PYTHIA used for corrections?
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Elongation of the source

The usual parametrization assumes a symmetric Gaussian source
But, there is no reason to expect this symmetry in e+e−→ qq̄.
Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System

LCMS:

Boost each π-pair along
event axis (thrust or sphericity)

thrust axisQL

Qout

p
→

1

p
→

2

p
→

1+p
→

2

pL1 = −pL2

~p1 + ~p2 defines ‘out’ axis

Qside ⊥ (QL, Qout)
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the LCMS

Advantages of LCMS:

Q2 = Q2
L + Q2

side + Q2
out − (∆E)2

= Q2
L + Q2

side + Q2
out (1 − β2) where β ≡ pout 1 + pout 2

E1 + E2

Thus, the energy difference,
and therefore the difference in emission time of the pions
couples only to the out-component, Qout.

Thus, QL and Qside reflect only spatial dimensions of the source
Qout reflects a mixture of spatial and temporal dimensions.

Parametrization: R2(QL, Qout, Qside) = γ · (1 + λG) · B
where G = azimuthally symmetric Gaussian:

G = exp
(
−r2

LQ
2
L − r2

outQ
2
out − r2

sideQ
2
side + 2ρL,outrLroutQLQout

)

B = (1 + δQL + εQout + ξQside)

W. J. Metzger — BEC in e+e− — IWCF, Hángzhōu — 22 November 2006 9



Elongation Results in the LCMS (L3)

parameter Gaussian Edgeworth

λ 0.41 ± 0.01+0.02
−0.19 0.54 ± 0.02+0.04

−0.26

rL (fm) 0.74 ± 0.02+0.04
−0.03 0.69 ± 0.02+0.04

−0.03

rout (fm) 0.53 ± 0.02+0.05
−0.06 0.44 ± 0.02+0.05

−0.06

rside (fm) 0.59 ± 0.01+0.03
−0.13 0.56 ± 0.02+0.03

−0.12

rout/rL 0.71 ± 0.02+0.05
−0.08 0.65 ± 0.03+0.06

−0.09

rside/rL 0.80 ± 0.02+0.03
−0.18 0.81 ± 0.02+0.03

−0.19

κL – 0.5 ± 0.1+0.1
−0.2

κout – 0.8 ± 0.1 ± 0.3

κside – 0.1 ± 0.1 ± 0.3

δ 0.025 ± 0.005+0.014
−0.015 0.036 ± 0.007+0.012

−0.023

ε 0.005 ± 0.005+0.034
−0.012 0.011 ± 0.005+0.037

−0.012

ξ −0.035 ± 0.005+0.031
−0.024 −0.022 ± 0.006+0.020

−0.025

χ2/DoF 2314/2189 2220/2186

C.L. (%) 3.1 30

• ρL,out = 0 So fix to 0.

• Edgeworth fit
significantly
better than Gaussian

• rside/rL < 1
more than 5 std. dev.
Elongation
along thrust axis

• Models which assume
a spherical source are
too simple.
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Elongation Results
Gauss / 2-D 3-D

Edgeworth rt/rL rside/rL

delphi mixed 2-jet Gauss 0.62±0.02±0.05 —

aleph mixed 2-jet Gauss 0.61±0.01±0.?? —
+,− 2-jet Gauss 0.91±0.02±0.?? —

mixed 2-jet Edgeworth 0.68±0.01±0.?? —
+,− 2-jet Edgeworth 0.84±0.02±0.?? —

opal +,− 2-jet Gauss — 0.82±0.02±0.01
0.05

l3 mixed all Gauss — 0.80±0.02±0.03
0.18

mixed all Edgeworth — 0.81±0.02±0.03
0.19

∼20% elongation along thrust axis

(zeus finds similar results in ep)

ycut

r l
/r

t s
id

e
inclusive

(e)

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.02 0.04 0.06 0.08   
(Durham)

OPAL:

Elongation larger
for narrower jets

W. J. Metzger — BEC in e+e− — IWCF, Hángzhōu — 22 November 2006 11



Transverse Mass dependence of r

longitudinal side out

r decreases with mt for all directions Smirnova&Lörstad,7thInt.Workshop on Correlations and Fluctuations (1996)

Van Dalen,8thInt.Workshop on Correlations and Fluctuations (1998)

but more like r = a + b/
√

mt - - - -
than like r = b/

√
mt ——
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Summary

• Comparison between experiments is difficult.

– reference samples
– MC corrections

• No evidence for
√

s dependence of r

• r(mesons) > r(baryons) — no evidence for r ∼ 1/
√

m

• some evidence for approximate 1/
√

mt dependence of r

• ∼20% elongation along thrust axis — consistent with string model
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New L3 Results

• e+e− −→ hadrons at
√

s ≈ MZ

• about 106 events

• about 0.5 · 106 2-jet events — Durham ycut = 0.006

• use mixed events for reference sample
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Beyond the Symmetric Gaussian — Non-Symmetric?

Decompose Q in various ways in the LCMS: R2 = γ · (1 + λG) · B
1. G = exp

(
−r2

LQ
2
L − r2

sideQ
2
side − r2

o(Q
2
out − (∆E)2)

)

G = exp
(
−r2

LQ
2
L − r2

sideQ
2
side − r2

outQ
2
out

)

2. G = exp
(
−r2

`(Q
2
L − (∆E)2) − r2

T(Q2
side + Q2

out)
)

3. G = exp
(
−r2

1(Q
2
L + Q2

side + Q2
out) − r2

0(−(∆E)2)
)

all events

1 rL = 0.74 ± 0.02 fm rside = 0.59 ± 0.01 fm CL= 3% ∼20% elongation
2 r` = 0.54 ± 0.01 fm rT = 0.57 ± 0.01 fm CL< 10−5 ≈
3 r1 = 0.57 ± 0.07 fm r0 = 0.56 ± 0.08 fm CL= 0.2% =

2-jet events (Durham ycut = 0.006)

1 OPAL ∼20% elongation
2 r` = 0.51 ± 0.02 fm rT = 0.55 ± 0.02 fm CL= 10−4 ≈
3 r1 = 0.55 ± 0.08 fm r0 = 0.53 ± 0.09 fm CL= 42% =

CLs none too good, but R2 ≈ R2(Q) confirms TASSO, Z.Phys.C71(1986)405
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Beyond the Symmetric Gaussian — Non-Symmetric?
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Conclusion: R2 ≈ R2(Q)

Only consider R2(Q) for rest of talk.
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Beyond the Gaussian
Assume static distribution of pion emitters in configuration space, f(r)
with characteristic function (Fourier transform), f̃(Q)

Then R2 = γ ·
[
1 + λ|f̃(Q)|2

]
· (1 + δQ)

• f(r) is Gaussian with mean µ = 0 and variance R2

f̃(Q) = exp
(
ıµQ − (RQ)2

2

)
R2 = γ ·

[
1 + λ exp

(
−(RQ)2

)]
· (1 + δQ)

• approximately Gaussian – Edgeworth expansion
R2 = γ ·

[
1 + λ exp

(
−(RQ)2

)
·
[
1 + κ

3!H3(RQ)
]]

· (1 + δQ)

• f(r) is a symmetric Lévy stable distribution with location parameter x0 = 0,
‘width’ parameter R, and ‘index of stability’, 0 < α ≤ 2

f̃(Q) = exp
(
ıx0Q − |RQ|α

2

)
R2 = γ · [1 + λ exp (−(RQ)α)] · (1 + δQ)

α = 2 corresponds to Gaussian with µ = x0, variance R2

α = 1 corresponds to a Cauchy distribution for f(r)

W. J. Metzger — Beyond Gaussian — IWCF, Hángzhōu — 22 November 2006 17



Beyond the Gaussian
Gaussian
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Poor CLs. Edgeworth and Lévy better than Gaussian, but still poor
Problem is the dip of R2 in the region 0.6 < Q < 1.5GeV

Same conclusions for 3-jet events, all events.
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Beyond the Gaussian

Summary:

• We have assumed a static source — certainly wrong

• BEC depends (at least approximately) only on Q

• r decreases with mt, approximately as 1/
√

mt

may be due to correlation between momentum and production point Bia las et al.

Let’s turn to a model incorporating these points.
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BEC in the τ -model

The τ -model assumes avg. production point proportional to momentum:
Csörgő and Zimányi, Nucl.Phys.A517(1990)588.

xµ(kµ) = dkµ , where for 2-jet events, d = τ/mt (1)
For 3-jet events, d is more complicated — so only consider 2-jet events from here on.

Here, τ =

q

t
2
− r2

z is the “longitudinal” proper time

and mt =
p

E2 − p2
z is the “transverse” mass

With δ∆(xµ − xµ) the distribution of production points about their mean,
and H(τ) the distribution of τ ,
Emission function is S(x, k) =

∫ ∞

0
dτH(τ)δ∆(x − dk)ρ1(k) (2)

In the plane-wave approximation, the two-pion distribution is Yano and Koonin, PL B78(1978)556.

ρ2(k1, k2) =
∫

d4x1d4x2S(x1, k1)S(x2, k2)
(
1 + cos

(
[k1 − k2] [x1 − x2]

) )
(3)

Assume δ∆(x − dk) is very narrow — a δ-function. Then (1),(2),(3) lead to

R2(k1, k2) = 1 + λ ReH̃2

(
Q2

2mt

)
where H̃(ω) =

∫
dτH(τ) exp(iωτ)
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BEC in the τ -model

Assume a Lévy distribution for H(τ)
Since no particle production before the interaction, H(τ) is one-sided.
Characteristic function of H(τ) is

H̃(ω) = exp

[
−1

2

(
∆τ |ω|

)α
(
1 − i sign(ω) tan

(απ

2

) )
+ i ωτ0

]
, α 6= 1

where

• α is the index of stability

• τ0 is the proper time of the onset of particle production

• ∆τ is a measure of the width of the dist.

Then,

R2(Q, mt) = γ
[
1 + λ cos

(
τ0Q2

mt
+ tan

(
απ
2

) (
∆τQ2

2mt

)α)
exp

(
−

(
∆τQ2

2mt

)α)]
(1 + δQ)
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BEC in the τ -model – 2-jet events

R2(Q, mt) = γ
[
1 + λ cos

(
τ0Q2

mt
+ tan

(
απ
2

) (
∆τQ2

2mt

)α)
exp

(
−

(
∆τQ2

2mt

)α)]
(1 + δQ)

Before fitting in two dimensions (Q,mt), assume an “average” mt dependence by
introducing effective radius, R =

√
∆τ/(2mt). Also assume τ0 = 0. Then:

R2(Q) = γ
[
1 + λ cos

[
(RaQ)2α

]
exp

(
−(RQ)2α

)]
(1 + δQ) , R2α

a = tan
(

απ
2

)
R2α

parameter Ra free R2α
a = tan

`

απ
2

´

R2α

α 0.42 ± 0.02 0.42 ± 0.01
λ 0.67 ± 0.03 0.67 ± 0.03
R (fm) 0.79 ± 0.04 0.79 ± 0.03
Ra (fm) 0.59 ± 0.03 —
δ 0.003 ± 0.002 0.003 ± 0.001
γ 0.979 ± 0.005 0.979 ± 0.005

χ2/DoF 97/94 97/95
CL 40% 42%
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Ra free or not gives same results. – Good CL
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BEC in the τ -model – 3-jet events

R2(Q, mt) = γ
[
1 + λ cos

(
τ0Q2

mt
+ tan

(
απ
2

) (
∆τQ2

2mt

)α)
exp

(
−

(
∆τQ2

2mt

)α)]
(1 + δQ)

Although derived for 2-jet events, i.e., using d = τ/mt, lets try it on 3-jet data

Assuming an effective radius, R =
√

∆τ/(2mt). and τ0 = 0. Then:

R2(Q) = γ
[
1 + λ cos

[
(RaQ)2α

]
exp

(
−(RQ)2α

)]
(1 + δQ) , R2α

a = tan
(

απ
2

)
R2α

parameter Ra free R2α
a = tan

`

απ
2

´

R2α

α 0.35 ± 0.01 0.44 ± 0.01
λ 0.84 ± 0.04 0.77 ± 0.04
R (fm) 0.89 ± 0.03 0.84 ± 0.04
Ra (fm) 0.88 ± 0.04 —
δ –0.003 ± 0.002 0.010 ± 0.001
γ 1.001 ± 0.005 0.972 ± 0.001

χ2/DoF 102/94 174/95
CL 27% 10−6

Ra free fits well, but poor fit with Ra set to model relationship
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BEC in the τ -model – 3-jet events
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BEC in the τ -model – 2-jet events
Next we fit the full formula in mt bins:
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R
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Parameters approx. independent of mt

Parameters consistent with “average mt” fit: τ0 ≈ 0
these fits: α ≈ 0.38 ± 0.04

∆τ ≈ 3.6 ± 0.6 fm
“average mt” fit: α = 0.42 ± 0.02
∆τ ≈ 3.5 fm – from R = 0.79 fm and mt = 0.563 GeV
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From α to αs

• LLA parton shower leads to a fractal in momentum space
fractal dimension is related to αs Gustafson et al.

• Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
Metzler and Klafter, Phys.Rep.339(2000)1.

• strong momentum-space/configuration space correlation of τ -model
=⇒ fractal in configuration space with same α

• generalized LPHD suggests particle dist. has same properties as gluon dist.

• Putting this all together leads to Csörgő et al.

αs =
2π

3
α2

• Using our value of α = 0.42 ± 0.02 yields αs = 0.37 ± 0.04

• This value is reasonable for a scale of 1–2 GeV,
where production of hadrons takes place
cf., from τ decays αs(mτ ≈ 1.8 GeV) = 0.35 ± 0.03 PDG
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Emission function of 2-jet events

In the τ -model, the emission function in configuration space is

S(x) =
d4n

dτd3r
=

(mt

τ

)3

H(τ)ρ1

(
k =

rmt

τ

)

For simplicity, assume S(r, z, t) = G(η)I(r)H(τ)
(η = space-time rapidity)

Strongly correlated x, k =⇒ η = y and r = ptτ/mt
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Factorization y,pt OK

G(η) = Ny(η) I(r) =
(

mt
τ

)3
Npt(rmt/τ)

(Ny, Npt are inclusive single-particle distributions)

So, using experimental Ny, Npt distributions
and H(τ) from BEC fits,
we can reconstruct the full emission function, S.
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Emission function of 2-jet events
Integrating over r,
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Expanding ring
Particle production is close to the light-cone
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Summary

• Parametrizing R2 as a function of Q only is a reasonably good approximation

• Symmetric Gaussian, Edgeworth, Lévy parametrizations of R2 do not fit well

• The τ -model with a one-sided Lévy proper-time distribution
leads to R2(Q, mt), which successfully fits R2 for 2-jet events
? both Q- and mt-dependence described correctly
? Note: we found ∆τ to be independent of mt

∆τ enters R2 as ∆τQ2/mt

In Gaussian parametrization, R enters R2 as R2Q2

Thus ∆τ independent of mt corresponds to R ∝ 1/
√

mt

• fractal dimension associated with Lévy α relates α to αs

α = 0.42± 0.02 corresponds to αs = 0.37± 0.04, reasonable for a scale of 1–2 GeV

• Emission function shaped like a boomerang in z-t and an expanding ring in x-y
Particle production is close to the light-cone
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