Parametrization of BEC in $\mathrm{e}^{+} \mathrm{e}^{-}$Annihilation and Reconstruction of the Source Function

W. J. Metzger
(L3 Collaboration)
Radboud University
Nijmegen
XI International Workshop on Correlation and Fluctuation
in Multiparticle Production
Hángzhōu
22 November 2006

Introduction - BEC

$\underline{q \text {-particle density } \rho_{q}\left(p_{1}, \ldots, p_{q}\right)=\frac{1}{\sigma_{\text {tot }}} \frac{\mathrm{d}^{q} \sigma_{q}\left(p_{1}, \ldots, p_{q}\right)}{\mathrm{d} p_{1} \ldots \mathrm{~d} p_{q}} \text {, where } \sigma_{q} \text { is inclusive cross section }}$

2-particle correlation: $\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)}$
To study only BEC, not all correlations, let $\rho_{0}\left(p_{1}, p_{2}\right)$ be the 2-particle density if no BEC ($=\rho_{2}$ of the 'reference sample') and define

$$
R_{2}\left(p_{1}, p_{2}\right)=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)} \cdot \frac{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)}{\rho_{0}\left(p_{1}, p_{2}\right)}=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{0}\left(p_{1}, p_{2}\right)}
$$

Since $2-\pi$ BEC only at small Q

$$
Q=\sqrt{-\left(p_{1}-p_{2}\right)^{2}}=\sqrt{M_{12}^{2}-4 m_{\pi}^{2}}
$$

integrate over other variables: $\quad R_{2}(Q)=\frac{\rho(Q)}{\rho_{0}(Q)}$

$$
R_{2}(Q)=\frac{\rho(Q)}{\rho_{0}(Q)}
$$

Assuming particles produced incoherently
with spatial source density $S(x)$,

$$
R_{2}(Q)=1+|\widetilde{S}(Q)|^{2}
$$

where $\widetilde{S}(Q)=\int \mathrm{d} x e^{i Q x} S(x)$

- Fourier transform of $S(x)$

Assuming $S(x)$ is a Gaussian with radius $r \Longrightarrow$

$$
R_{2}(Q)=\gamma \cdot(1+\lambda G(Q)) \cdot B, \quad G(Q)=e^{-Q^{2} r^{2}}
$$

- $\gamma=$ normalization (≈ 1)
- B tries to account for long-range correlations inadequately removed by reference sample, e.g., $B=1+\delta Q$

Assumes

- incoherent average over source
λ tries to account for
- partial coherence
- multiple (distinguishable) sources,
long-lived resonances
- pion purity
- spherical (radius r) Gaussian density of particle emitters
seems unlikely in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation-jets
- static source, i.e., no t-dependence certainly wrong

Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well
But what do the values of λ and r actually mean?

When Gaussian parametrization does not fit well, can expand about the Gaussian (Edgeworth expansion).
Keeping only the lowest-order non-Gaussian term, $\exp \left(-Q^{2} r^{2}\right)$ becomes

$$
\exp \left(-Q^{2} r^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(Q r)\right]
$$

(H_{3} is third-order Hermite polynomial)

Experimental Problems I

I. Pion purity

1. mis-identified pions $-\mathrm{K}, \mathrm{p}$

- correct by MC. - But is it correct?

2. resonances

- long-lived affect λ

BEC peak narrower than resolution

- short-lived, e.g., ρ, - affect r
- correct by MC. - But is it correct?

3. weak decays

- $\sim 20 \%$ of Z decays are $b \bar{b}$ like long-lived resonances, decrease λ
- per Z: $17.0 \pi^{ \pm}, 2.3 \mathrm{~K}^{ \pm}, 1.0 \mathrm{p}$
(15\% non- π)

Origin of π^{+}in Z decay	$(\%)$ (JETSET 7.4)
direct (string fragmentation)	16
decay (short-lived resonances) $\Gamma>6.7 \mathrm{MeV}, \tau<30 \mathrm{fm}$ $\left(\rho, \omega, \mathrm{K}^{*}, \Delta, \ldots\right)$	62
decay (long-lived resonances) $\Gamma<6.7 \mathrm{MeV}, \tau>30 \mathrm{fm}$	22

Experimental Problems II

II. Reference Sample, ρ_{0} — it does NOT exist Common choices:

1. +- pairs But different resonances than ++ - correct by MC. - But is it correct?
2. Monte Carlo - But is it correct?
3. Mixed events - pair particles from different events But destroys all correlations, not just BEC - correct by MC. - But is it correct?
4. Mixed hemispheres (for 2-jet events) - pair particle with particle reflected from opposite hemisphere
But destroys all correlations - correct by MC. - But is it correct?

To account for long-range correlations inadequately removed by reference sample $R_{2}(Q) \propto\left(1+\lambda e^{-Q^{2} r^{2}}\right)(1+\delta Q)$

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than $+-r e f$.

\sqrt{s} dependence of r

No evidence for \sqrt{s} dependence

Mass dependence of r - BEC and FDC

No evidence for $r \sim 1 / \sqrt{m}$
r (mesons) $>r$ (baryons) But $r_{\text {baryon }}=0.1 \mathrm{fm}$?!
problems in baryon production in PYTHIA used for corrections?

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System

LCMS:

Boost each π-pair along event axis (thrust or sphericity)

$$
p_{\mathrm{L} 1}=-p_{\mathrm{L} 2}
$$

$$
\vec{p}_{1}+\vec{p}_{2} \text { defines 'out' axis }
$$

$$
Q_{\text {side }} \perp\left(Q_{\mathrm{L}}, Q_{\text {out }}\right)
$$

the LCMS

Advantages of LCMS:

$$
\begin{aligned}
Q^{2} & =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\mathrm{out}}^{2}-(\Delta E)^{2} \\
& =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\mathrm{out}}^{2}\left(1-\beta^{2}\right) \quad \text { where } \beta \equiv \frac{p_{\mathrm{out} 1}+p_{\mathrm{out} 2}}{E_{1}+E_{2}}
\end{aligned}
$$

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\text {out }}$.

Thus, Q_{L} and $Q_{\text {side }}$ reflect only spatial dimensions of the source $Q_{\text {out }}$ reflects a mixture of spatial and temporal dimensions.

Parametrization: $\quad R_{2}\left(Q_{\mathrm{L}}, Q_{\text {out }}, Q_{\text {side }}\right)=\gamma \cdot(1+\lambda G) \cdot B$
where $G=$ azimuthally symmetric Gaussian:

$$
\begin{aligned}
& G=\exp \left(-r_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}-r_{\text {out }}^{2} Q_{\text {out }}^{2}-r_{\text {side }}^{2} Q_{\text {side }}^{2}+2 \rho_{\mathrm{L}, \text { out }} r_{\mathrm{L}} r_{\text {out }} Q_{\mathrm{L}} Q_{\text {out }}\right) \\
& B=\left(1+\delta Q_{\mathrm{L}}+\varepsilon Q_{\text {out }}+\xi Q_{\text {side }}\right)
\end{aligned}
$$

Elongation Results in the LCMS (L3)

parameter	Gaussian	Edgeworth
λ	$0.41 \pm 0.01_{-0.19}^{+0.02}$	$0.54 \pm 0.02_{-0.26}^{+0.04}$
$r_{\mathrm{L}}(\mathrm{fm})$	$0.74 \pm 0.02_{-0.03}^{+0.04}$	$0.69 \pm 0.02_{-0.03}^{+0.04}$
$r_{\text {out }}(\mathrm{fm})$	$0.53 \pm 0.02_{-0.05}^{+0.06}$	$0.44 \pm 0.02_{-0.05}^{+0.06}$
$r_{\text {side }}(\mathrm{fm})$	$0.59 \pm 0.01_{-0.13}^{+0.03}$	$0.56 \pm 0.02_{-0.12}^{+0.03}$
$r_{\text {out }} / r_{\mathrm{L}}$	$0.71 \pm 0.02_{-0.08}^{+0.05}$	$0.65 \pm 0.03_{-0.09}^{+0.06}$
$r_{\text {side }} / r_{\mathrm{L}}$	$0.80 \pm 0.02_{-0.18}^{+0.03}$	$0.81 \pm 0.02_{-0.19}^{+0.03}$
κ_{L}	-	$0.5 \pm 0.1_{-0.2}^{+0.1}$
$\kappa_{\text {out }}$	-	$0.8 \pm 0.1 \pm 0.3$
$\kappa_{\text {side }}$	-	$0.1 \pm 0.1 \pm 0.3$
δ	$0.025 \pm 0.005_{-0.015}^{+0.014}$	$0.036 \pm 0.007_{-0.023}^{+0.012}$
ϵ	$0.005 \pm 0.005_{-0.034}^{+0.032}$	$0.011 \pm 0.005_{-0.017}^{+0.037}$
ξ	$-0.035 \pm 0.005_{-0.024}^{+0.031}$	$-0.022 \pm 0.006_{-0.025}^{+0.020}$
χ^{2} / DoF	$2314 / 2189$	$2220 / 2186$
$\mathrm{C} . \mathrm{L} .(\%)$	3.1	30

- $\rho_{\mathrm{L}, \text { out }}=0$ So fix to 0 .
- Edgeworth fit significantly better than Gaussian
- $r_{\text {side }} / r_{\mathrm{L}}<1$ more than 5 std. dev. Elongation along thrust axis
- Models which assume a spherical source are too simple.

Elongation Results

			Gauss $/$ Edgeworth	2-D $r_{\mathrm{t}} / r_{\mathrm{L}}$	3-D $r_{\text {side }} / r_{\mathrm{L}}$
DELPHI	mixed	2-jet	Gauss	$0.62 \pm 0.02 \pm 0.05$	-
ALEPH	mixed	2-jet	Gauss	$0.61 \pm 0.01 \pm 0 . ? ?$	-
	,+-	2-jet	Gauss	$0.91 \pm 0.02 \pm 0 . ? ?$	-
	mixed	2-jet	Edgeworth	$0.68 \pm 0.01 \pm 0 . ? ?$	-
,+-	2-jet	Edgeworth	$0.84 \pm 0.02 \pm 0 . ? ?$	-	
OPAL	,+-	2-jet	Gauss	-	$0.82 \pm 0.02 \pm_{0.05}^{0.01}$
L3	mixed	all	Gauss	-	$0.80 \pm 0.02 \pm_{0}^{0.03}$
	mixed	all	Edgeworth	-	$0.81 \pm 0.02 \pm_{0.19}^{0.03}$

$\sim 20 \%$ elongation along thrust axis (ZEUS finds similar results in ep)

OPAL:
Elongation larger for narrower jets

Transverse Mass dependence of r

longitudinal
side
out

r decreases with m_{t} for all directions
Smirnova\&Lörstad, $7^{\text {th }}$ Int. Workshop on Correlations and Fluctuations (1996) Van Dalen, $8^{\text {th }}$ Int. Workshop on Correlations and Fluctuations (1998)
but more like

$$
r=a+b / \sqrt{m_{\mathrm{t}}}
$$

$$
\text { than like } \quad r=b / \sqrt{m_{\mathrm{t}}}
$$

Summary

- Comparison between experiments is difficult.
- reference samples
- MC corrections
- No evidence for \sqrt{s} dependence of r
- r (mesons) $>r$ (baryons) \quad no evidence for $r \sim 1 / \sqrt{m}$
- some evidence for approximate $1 / \sqrt{m_{\mathrm{t}}}$ dependence of r
- $\sim 20 \%$ elongation along thrust axis - consistent with string model

New L3 Results

- $\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow$ hadrons at $\sqrt{s} \approx M_{\mathrm{Z}}$
- about 10^{6} events
- about $0.5 \cdot 10^{6} 2$-jet events - Durham $y_{\text {cut }}=0.006$
- use mixed events for reference sample

Beyond the Symmetric Gaussian - Non-Symmetric?

Decompose Q in various ways in the LCMS:

$$
R_{2}=\gamma \cdot(1+\lambda G) \cdot B
$$

1. $G=\exp \left(-r_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}-r_{\text {side }}^{2} Q_{\text {side }}^{2}-r_{\mathrm{o}}^{2}\left(Q_{\text {out }}^{2}-(\Delta E)^{2}\right)\right)$

$$
G=\exp \left(-r_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}-r_{\text {side }}^{2} Q_{\text {side }}^{2}-r_{\text {out }}^{2} Q_{\text {out }}^{2}\right)
$$

2. $G=\exp \left(-r_{\ell}^{2}\left(Q_{\mathrm{L}}^{2}-(\Delta E)^{2}\right)-r_{\mathrm{T}}^{2}\left(Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\right)\right)$
3. $G=\exp \left(-r_{1}^{2}\left(Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\right)-r_{0}^{2}\left(-(\Delta E)^{2}\right)\right)$

all events				
1	$r_{\mathrm{L}}=0.74 \pm 0.02 \mathrm{fm}$	$r_{\text {side }}=0.59 \pm 0.01 \mathrm{fm}$	$\mathrm{CL}=3 \%$	$\sim 20 \%$ elongation
2	$r_{\ell}=0.54 \pm 0.01 \mathrm{fm}$	$r_{\top}=0.57 \pm 0.01 \mathrm{fm}$	$\mathrm{CL}<10^{-5}$	\approx
3	$r_{1}=0.57 \pm 0.07 \mathrm{fm}$	$r_{0}=0.56 \pm 0.08 \mathrm{fm}$	$\mathrm{CL}=0.2 \%$	$=$
2-jet events (Durham $y_{\text {cut }}=0.006$)				
1	OPAL	$\sim 20 \%$ elongation		
2	$r_{\ell}=0.51 \pm 0.02 \mathrm{fm}$	$r_{\top}=0.55 \pm 0.02 \mathrm{fm}$	$\mathrm{CL}=10^{-4}$	\approx
3	$r_{1}=0.55 \pm 0.08 \mathrm{fm}$	$r_{0}=0.53 \pm 0.09 \mathrm{fm}$	$\mathrm{CL}=42 \%$	$=$

CLs none too good, but $R_{2} \approx R_{2}(Q)$
confirms TASSO, Z.Phys.C71(1986)405

Beyond the Symmetric Gaussian - Non-Symmetric?

$Q_{\mathrm{L}, \mathrm{B}}^{2}=Q_{\mathrm{L}}^{2}-(\Delta E)^{2}$

$$
Q_{\top}^{2}=Q_{\text {side }}^{2}+Q_{\text {out }}^{2}
$$

$$
\begin{gathered}
q_{0}^{2}=(\Delta E)^{2} \\
\mathbf{q}^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}
\end{gathered}
$$

Conclusion: $R_{2} \approx R_{2}(Q)$
Only consider $R_{2}(Q)$ for rest of talk.

Beyond the Gaussian

Assume static distribution of pion emitters in configuration space, $f(r)$ with characteristic function (Fourier transform), $\tilde{f}(Q)$
Then $\quad R_{2}=\gamma \cdot\left[1+\lambda|\tilde{f}(Q)|^{2}\right] \cdot(1+\delta Q)$

- $f(r)$ is Gaussian with mean $\mu=0$ and variance R^{2} $\tilde{f}(Q)=\exp \left(\imath \mu Q-\frac{(R Q)^{2}}{2}\right) \quad R_{2}=\gamma \cdot\left[1+\lambda \exp \left(-(R Q)^{2}\right)\right] \cdot(1+\delta Q)$
- approximately Gaussian - Edgeworth expansion

$$
R_{2}=\gamma \cdot\left[1+\lambda \exp \left(-(R Q)^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(R Q)\right]\right] \cdot(1+\delta Q)
$$

- $f(r)$ is a symmetric Lévy stable distribution with location parameter $x_{0}=0$, 'width' parameter R, and 'index of stability', $0<\alpha \leq 2$ $\tilde{f}(Q)=\exp \left(\imath x_{0} Q-\frac{|R Q|^{\alpha}}{2}\right) \quad R_{2}=\gamma \cdot\left[1+\lambda \exp \left(-(R Q)^{\alpha}\right)\right] \cdot(1+\delta Q)$
$\alpha=2$ corresponds to Gaussian with $\mu=x_{0}$, variance R^{2}
$\alpha=1$ corresponds to a Cauchy distribution for $f(r)$

Beyond the Gaussian

Far from Gaussian.

Edgeworth

$$
\kappa=0.71 \pm 0.06
$$

Lévy

$\alpha=1.34 \pm 0.04$

Poor CLs. Edgeworth and Lévy better than Gaussian, but still poor
Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$
Same conclusions for 3-jet events, all events.

Beyond the Gaussian

Summary:

- We have assumed a static source - certainly wrong
- BEC depends (at least approximately) only on Q
- r decreases with m_{t}, approximately as $1 / \sqrt{m_{\mathrm{t}}}$ may be due to correlation between momentum and production point

Let's turn to a model incorporating these points.

BEC in the τ-model

The τ-model assumes avg. production point proportional to momentum:
Csörgő and Zimányi, Nucl.Phys.A517(1990)588.

$$
\begin{equation*}
\bar{x}^{\mu}\left(k^{\mu}\right)=d k^{\mu}, \text { where for 2-jet events, } d=\tau / m_{\mathrm{t}} \tag{1}
\end{equation*}
$$

For 3 -jet events, d is more complicated - so only consider 2 -jet events from here on.

$$
\text { Here, } \tau=\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time }
$$

$$
\text { and } m_{\mathrm{t}}=\sqrt{E^{2}-p_{z}^{2}} \text { is the "transverse" mass }
$$

With $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ the distribution of production points about their mean, and $H(\tau)$ the distribution of τ,
Emission function is

$$
\begin{equation*}
S(x, k)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-d k) \rho_{1}(k) \tag{2}
\end{equation*}
$$

In the plane-wave approximation, the two-pion distribution is Yano and Koonin, PL B78(1978)556.

$$
\begin{equation*}
\rho_{2}\left(k_{1}, k_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, k_{1}\right) S\left(x_{2}, k_{2}\right)\left(1+\cos \left(\left[k_{1}-k_{2}\right]\left[x_{1}-x_{2}\right]\right)\right) \tag{3}
\end{equation*}
$$

Assume $\delta_{\Delta}(x-d k)$ is very narrow - a δ-function. Then (1),(2),(3) lead to

$$
R_{2}\left(k_{1}, k_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}^{2}\left(\frac{Q^{2}}{2 \bar{m}_{\mathrm{t}}}\right) \text { where } \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

BEC in the τ-model

Assume a Lévy distribution for $H(\tau)$
Since no particle production before the interaction, $H(\tau)$ is one-sided.
Characteristic function of $H(\tau)$ is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$

where

- α is the index of stability
- τ_{0} is the proper time of the onset of particle production
- $\Delta \tau$ is a measure of the width of the dist.

Then,

$$
R_{2}\left(Q, \bar{m}_{\mathrm{t}}\right)=\gamma\left[1+\lambda \cos \left(\frac{\tau_{0} Q^{2}}{\bar{m}_{\mathrm{t}}}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2 \overline{m_{\mathrm{t}}}}\right)^{\alpha}\right) \exp \left(-\left(\frac{\Delta \tau Q^{2}}{2 \bar{m}_{\mathrm{t}}}\right)^{\alpha}\right)\right](1+\delta Q)
$$

BEC in the τ-model - 2 -jet events

$R_{2}\left(Q, \bar{m}_{\mathrm{t}}\right)=\gamma\left[1+\lambda \cos \left(\frac{\tau_{0} Q^{2}}{\bar{m}_{\mathrm{t}}}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2 \overline{m_{\mathrm{t}}}}\right)^{\alpha}\right) \exp \left(-\left(\frac{\Delta \tau Q^{2}}{2 \overline{m_{\mathrm{t}}}}\right)^{\alpha}\right)\right](1+\delta Q)$
Before fitting in two dimensions $\left(Q, \bar{m}_{\mathrm{t}}\right)$, assume an "average" \bar{m}_{t} dependence by introducing effective radius, $R=\sqrt{\Delta \tau /\left(2 \bar{m}_{\mathrm{t}}\right)}$. Also assume $\tau_{0}=0$. Then: $R_{2}(Q)=\gamma\left[1+\lambda \cos \left[\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right] \exp \left(-(R Q)^{2 \alpha}\right)\right](1+\delta Q), \quad R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$

parameter	R_{a} free	$R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
α	0.42 ± 0.02	0.42 ± 0.01
λ	0.67 ± 0.03	0.67 ± 0.03
$R(\mathrm{fm})$	0.79 ± 0.04	0.79 ± 0.03
$R_{\mathrm{a}}(\mathrm{fm})$	0.59 ± 0.03	-
δ	0.003 ± 0.002	0.003 ± 0.001
γ	0.979 ± 0.005	0.979 ± 0.005
$\chi^{2} /$ DoF	$97 / 94$	$97 / 95$
CL	40%	42%

R_{a} free or not gives same results. - Good CL

BEC in the τ-model - 3-jet events

$R_{2}\left(Q, \bar{m}_{\mathrm{t}}\right)=\gamma\left[1+\lambda \cos \left(\frac{\tau_{0} Q^{2}}{\bar{m}_{\mathrm{t}}}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2 \bar{m}_{\mathrm{t}}}\right)^{\alpha}\right) \exp \left(-\left(\frac{\Delta \tau Q^{2}}{2 \bar{m}_{\mathrm{t}}}\right)^{\alpha}\right)\right](1+\delta Q)$ Although derived for 2-jet events, i.e., using $d=\tau / m_{\mathrm{t}}$, lets try it on 3-jet data Assuming an effective radius, $R=\sqrt{\Delta \tau /\left(2 \bar{m}_{\mathrm{t}}\right)}$. and $\tau_{0}=0$. Then:
$R_{2}(Q)=\gamma\left[1+\lambda \cos \left[\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right] \exp \left(-(R Q)^{2 \alpha}\right)\right](1+\delta Q), \quad R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$

parameter	R_{a} free	$R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
α	0.35 ± 0.01	0.44 ± 0.01
λ	0.84 ± 0.04	0.77 ± 0.04
$R(\mathrm{fm})$	0.89 ± 0.03	0.84 ± 0.04
$R_{\mathrm{a}}(\mathrm{fm})$	0.88 ± 0.04	-
δ	-0.003 ± 0.002	0.010 ± 0.001
γ	1.001 ± 0.005	0.972 ± 0.001
$\chi^{2} /$ DoF	$102 / 94$	$174 / 95$
CL	27%	10^{-6}

R_{a} free fits well, but poor fit with R_{a} set to model relationship

BEC in the τ-model - 3-jet events

R_{a} set to model

R_{a} free fits well, but poor fit with R_{a} set to model relationship

BEC in the τ-model - 2-jet events

Next we fit the full formula in m_{t} bins:

CLs are reàasonable

Q (GeV)

Parameters consistent with "average m_{t} " fit: $\quad \tau_{0} \approx 0$
these fits: $\quad \alpha \approx 0.38 \pm 0.04$ "average $m_{\mathrm{t}}{ }^{\prime \prime}$ fit: $\quad \alpha=0.42 \pm 0.02$
$\Delta \tau \approx 3.6 \pm 0.6 \mathrm{fm} \quad \Delta \tau \approx 3.5 \mathrm{fm}-\mathrm{from} R=0.79 \mathrm{fm}$ and $\bar{m}_{\mathrm{t}}=0.563 \mathrm{GeV}$

From α to α_{s}

- LLA parton shower leads to a fractal in momentum space fractal dimension is related to α_{s}

Gustafson et al.

- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion Metzler and Klafter, Phys.Rep.339(2000)1.
- strong momentum-space/configuration space correlation of τ-model \Longrightarrow fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$
\alpha_{\mathrm{s}}=\frac{2 \pi}{3} \alpha^{2}
$$

- Using our value of $\alpha=0.42 \pm 0.02$ yields $\alpha_{\mathrm{s}}=0.37 \pm 0.04$
- This value is reasonable for a scale of $1-2 \mathrm{GeV}$, where production of hadrons takes place $c f$., from τ decays $\quad \alpha_{\mathrm{s}}\left(m_{\tau} \approx 1.8 \mathrm{GeV}\right)=0.35 \pm 0.03$

Emission function of 2-jet events

In the τ-model, the emission function in configuration space is

$$
S(x)=\frac{\mathrm{d}^{4} n}{\mathrm{~d} \tau \mathrm{~d}^{3} r}=\left(\frac{m_{\mathrm{t}}}{\tau}\right)^{3} H(\tau) \rho_{1}\left(k=\frac{r m_{\mathrm{t}}}{\tau}\right)
$$

For simplicity, assume $\quad S(r, z, t)=G(\eta) I(r) H(\tau)$

$$
\text { (} \eta=\text { space-time rapidity })
$$

Strongly correlated $x, k \Longrightarrow \eta=y$ and $r=p_{\mathrm{t}} \tau / m_{\mathrm{t}}$

$$
\begin{aligned}
G(\eta)= & N_{y}(\eta) \quad I(r)=\left(\frac{m_{\mathrm{t}}}{\tau}\right)^{3} N_{p_{\mathrm{t}}}\left(r m_{\mathrm{t}} / \tau\right) \\
& \left(N_{y}, N_{p_{\mathrm{t}}}\right. \text { are inclusive single-particle distributions) }
\end{aligned}
$$

So, using experimental $N_{y}, N_{p_{\mathrm{t}}}$ distributions and $H(\tau)$ from BEC fits, we can reconstruct the full emission function, S.

Factorization y, p_{t} OK

Emission function of 2-jet events

Integrating over r,

"Boomerang shape"

Integrating over z,

Particle production is close to the light-cone

Summary

- Parametrizing R_{2} as a function of Q only is a reasonably good approximation
- Symmetric Gaussian, Edgeworth, Lévy parametrizations of R_{2} do not fit well
- The τ-model with a one-sided Lévy proper-time distribution leads to $R_{2}\left(Q, m_{\mathrm{t}}\right)$, which successfully fits R_{2} for 2 -jet events
\star both Q - and m_{t}-dependence described correctly
\star Note: we found $\Delta \tau$ to be independent of m_{t} $\Delta \tau$ enters R_{2} as $\Delta \tau Q^{2} / m_{\mathrm{t}}$
In Gaussian parametrization, R enters R_{2} as $R^{2} Q^{2}$
Thus $\Delta \tau$ independent of m_{t} corresponds to $R \propto 1 / \sqrt{m_{\mathrm{t}}}$
- fractal dimension associated with Lévy α relates α to α_{s} $\alpha=0.42 \pm 0.02$ corresponds to $\alpha_{\mathrm{s}}=0.37 \pm 0.04$, reasonable for a scale of $1-2 \mathrm{GeV}$
- Emission function shaped like a boomerang in $z-t$ and an expanding ring in $x-y$ Particle production is close to the light-cone

Acknowledgements: This is the Ph.D. thesis work of Tamás Novák
Tamás Csörgő provided most of the theory.

