Parametrization of BEC in e⁺e⁻ **Annihilation and Reconstruction of the Source Function**

W. J. Metzger (L3 Collaboration) Radboud University

Nijmegen

XI International Workshop on Correlation and Fluctuation

in Multiparticle Production

Hángzhōu

22 November 2006

Introduction — BEC

q-particle density $\rho_q(p_1, ..., p_q) = \frac{1}{\sigma_{tot}} \frac{d^q \sigma_q(p_1, ..., p_q)}{dp_1 ... dp_q}$, where σ_q is inclusive cross section

2-particle correlation:

$$\frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)}$$

To study only BEC, not all correlations, let $\rho_0(p_1, p_2)$ be the 2-particle density if no BEC (= ρ_2 of the 'reference sample') and define

$$R_2(p_1, p_2) = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} \cdot \frac{\rho_1(p_1)\rho_1(p_2)}{\rho_0(p_1, p_2)} = \frac{\rho_2(p_1, p_2)}{\rho_0(p_1, p_2)}$$

Since 2- π BEC only at small Q $Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_{\pi}^2}$ integrate over other variables: $R_2(Q) = \frac{\rho(Q)}{\rho_0(Q)}$ Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + |\widetilde{S}(Q)|^2$$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ - Fourier transform of S(x)

Assuming S(x) is a Gaussian with radius $r \implies$ $R_2(Q) = 1 + e^{-Q^2 r^2}$ $R_2(Q) = oldsymbol{\gamma} \cdot (1 + oldsymbol{\lambda} G(Q)) \cdot B \ , \quad G(Q) = e^{-Q^2 oldsymbol{r}^2}$

• $\gamma = \text{normalization} \ (\approx 1)$

• B tries to account for long-range correlations inadequately removed by reference sample, e.g., $B = 1 + \delta Q$

Assumes

- incoherent average over source
 - λ tries to account for
 - partial coherence
 - multiple (distinguishable) sources, long-lived resonances
 - pion purity
- spherical (radius r) Gaussian density of particle emitters seems unlikely in e⁺e⁻ annihilation—jets
- static source, *i.e.*, no *t*-dependence certainly wrong

Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well But what do the values of λ and ractually mean?

When Gaussian parametrization does not fit well, can expand about the Gaussian (Edgeworth expansion). Keeping only the lowest-order non-Gaussian term, $\exp(-Q^2r^2)$ becomes $\exp(-Q^2r^2) \cdot \left[1 + \frac{\kappa}{3!}H_3(Qr)\right]$ (H_3 is third-order Hermite polynomial)

Experimental Problems I

I. Pion purity

- 1. mis-identified pions K, p
 - correct by MC. But is it correct?
- 2. resonances
 - long-lived affect λ BEC peak narrower than resolution
 - short-lived, e.g., ρ , affect r
 - correct by MC. But is it correct?
- 3. weak decays
 - $\sim 20\%$ of Z decays are $b\bar{b}$ like long-lived resonances, decrease λ

 per Ζ: 17.0 π[±], 2.3 K[±], 1.0 p (15% non-π)

Origin of π^+ in Z decay	(%)
	(JETSET 7.4)
direct (string fragmentation)	16
$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	62
decay (long-lived resonances) $\Gamma < 6.7 {\rm MeV}, \tau > 30 {\rm fm}$	22

Experimental Problems II

- 1. +- pairs But different resonances than ++ - correct by MC. - But is it correct?
- 2. Monte Carlo But is it correct?
- Mixed events pair particles from different events But destroys all correlations, not just BEC – correct by MC. – But is it correct?
- 4. Mixed hemispheres (for 2-jet events)

 pair particle with particle reflected
 from opposite hemisphere
 But destroys all correlations
 correct by MC. But is it correct?

To account for long-range correlations inadequately removed by reference sample $R_2(Q) \propto (1 + \lambda e^{-Q^2 r^2})(1 + \delta Q)$

- correction for π purity increases λ
- mixed ref. gives smaller λ , r than +- ref.

\sqrt{s} dependence of r

No evidence for \sqrt{s} dependence

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System

the **LCMS**

Advantages of LCMS:

$$\begin{aligned} Q^2 &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 - (\Delta E)^2 \\ &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 (1 - \beta^2) \qquad \text{where } \beta \equiv \frac{p_{\rm out \, 1} + p_{\rm out \, 2}}{E_1 + E_2} \end{aligned}$$

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, Q_{out} .

Thus, Q_{L} and Q_{side} reflect only spatial dimensions of the source Q_{out} reflects a mixture of spatial and temporal dimensions.

 $\begin{array}{ll} \mbox{Parametrization:} & R_2(Q_{\rm L},Q_{\rm out},Q_{\rm side}) = \gamma \cdot (1+\lambda G) \cdot B \\ \mbox{where } G = \mbox{azimuthally symmetric Gaussian:} \\ & G = \exp\left(-r_{\rm L}^2 Q_{\rm L}^2 - r_{\rm out}^2 Q_{\rm out}^2 - r_{\rm side}^2 Q_{\rm side}^2 + 2\rho_{\rm L,out} r_{\rm L} r_{\rm out} Q_{\rm L} Q_{\rm out}\right) \\ & B = (1+\delta Q_{\rm L} + \varepsilon Q_{\rm out} + \xi Q_{\rm side}) \end{array}$

Elongation Results in the LCMS (L3)

parameter	Gaussian	Edgeworth	
λ	$0.41\pm0.01^{+0.02}_{-0.19}$	$0.54 \pm 0.02^{+0.04}_{-0.26}$	
<u><i>r</i>∟</u> (fm)	$0.74\pm0.02^{+0.04}_{-0.03}$	$0.69\pm 0.02^{+0.04}_{-0.03}$	
$r_{\sf out}~({\sf fm})$	$0.53\pm0.02^{+0.05}_{-0.06}$	$0.44\pm0.02^{+0.05}_{-0.06}$	
$r_{\sf side}$ (fm)	$0.59\pm0.01^{+0.03}_{-0.13}$	$0.56\pm0.02^{+0.03}_{-0.12}$	
$r_{ m out}/r_{ m L}$	$0.71\pm0.02^{+0.05}_{-0.08}$	$0.65\pm0.03^{+0.06}_{-0.09}$	
$r_{\sf side}/r_{\sf L}$	$0.80\pm0.02^{+0.03}_{-0.18}$	$0.81\pm0.02^{+0.03}_{-0.19}$	
κ_{L}	_	$0.5\pm0.1^{+0.1}_{-0.2}$	
κ_{out}	_	$0.8\pm0.1\pm0.3$	
$\kappa_{\sf side}$	_	$0.1\pm0.1\pm0.3$	
δ	$0.025 \pm 0.005^{+0.014}_{-0.015}$	$0.036 \pm 0.007^{+0.012}_{-0.023}$	
ϵ	$0.005\pm0.005^{+0.034}_{-0.012}$	$0.011 \pm 0.005 ^{+0.037}_{-0.012}$	
ξ	$-0.035\pm0.005^{+0.031}_{-0.024}$	$-0.022\pm0.006^{+0.020}_{-0.025}$	
$\overline{\chi^2/{\sf Do}{\sf F}}$	2314/2189	2220/2186	
C.L. (%)	3.1	30	

•
$$\rho_{\rm L,out} = 0$$
 So fix to 0.

 Edgeworth fit significantly better than Gaussian

• $r_{\rm side}/r_{\rm L} < 1$ more than 5 std. dev. Elongation along thrust axis

• Models which assume a spherical source are too simple.

Elongation Results 3-D Gauss / 2-D Edgeworth $r_{\rm t}/r_{\rm L}$ $r_{\rm side}/r_{\rm L}$ 2-jet $0.62{\pm}0.02{\pm}0.05$ mixed Gauss DELPHI $0.61 \pm 0.01 \pm 0.??$ 2-jet mixed Gauss ALEPH 2-jet $0.91 \pm 0.02 \pm 0.??$ Gauss +,mixed 2-jet Edgeworth $0.68 \pm 0.01 \pm 0.??$ $0.84 \pm 0.02 \pm 0.??$ 2-jet Edgeworth +,-2-jet $0.82 \pm 0.02 \pm 0.01 \\ 0.05$ Gauss OPAL +,-.03.18mixed all Gauss 0.80 ± 0.02 L3 $.03 \\ 19$ 0.81 ± 0.02 mixed all Edgeworth

 $\sim 20\%$ elongation along thrust axis (ZEUS finds similar results in ep)

Transverse Mass dependence of r

r decreases with $m_{\rm t}$ for all directions

Smirnova&Lörstad,7thInt.Workshop on Correlations and Fluctuations (1996) Van Dalen,8thInt.Workshop on Correlations and Fluctuations (1998)

but more like $r = a + b/\sqrt{m_{\rm t}}$ ---than like $r = b/\sqrt{m_{\rm t}}$ —

Summary

- Comparison between experiments is difficult.
 - reference samples
 - MC corrections
- No evidence for \sqrt{s} dependence of r
- r(mesons) > r(baryons) no evidence for $r \sim 1/\sqrt{m}$
- some evidence for approximate $1/\sqrt{m_{\rm t}}$ dependence of r
- $\sim 20\%$ elongation along thrust axis consistent with string model

New L3 Results

- $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$
- about 10^6 events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{\rm cut} = 0.006$
- use mixed events for reference sample

Beyond the Symmetric Gaussian — Non-Symmetric?

Decompose Q in various ways in the LCMS:

$$R_2 = \boldsymbol{\gamma} \cdot (1 + \boldsymbol{\lambda} G) \cdot B$$

1.
$$G = \exp\left(-r_{\rm L}^2 Q_{\rm L}^2 - r_{\rm side}^2 Q_{\rm side}^2 - r_{\rm o}^2 (Q_{\rm out}^2 - (\Delta E)^2)\right)$$

 $G = \exp\left(-r_{\rm L}^2 Q_{\rm L}^2 - r_{\rm side}^2 Q_{\rm side}^2 - r_{\rm out}^2 Q_{\rm out}^2\right)$

- 2. $G = \exp\left(-r_{\ell}^2(Q_{\rm L}^2 (\Delta E)^2) r_{\rm T}^2(Q_{\rm side}^2 + Q_{\rm out}^2)\right)$
- 3. $G = \exp\left(-r_1^2(Q_L^2 + Q_{side}^2 + Q_{out}^2) r_0^2(-(\Delta E)^2)\right)$

		all events		
1	$r_{ m L}=0.74\pm0.02{ m fm}$	$r_{ m side}=0.59\pm0.01{ m fm}$	CL=3%	${\sim}20\%$ elongation
2	$r_{\ell}=0.54\pm0.01{ m fm}$	$r_{T} = 0.57 \pm 0.01$ fm	${\rm CL} < 10^{-5}$	\approx
3	$r_1=0.57\pm0.07{ m fm}$	$r_0=0.56\pm0.08\mathrm{fm}$	CL=0.2%	=
2-jet events (Durham $y_{cut} = 0.006$)				
1		OPAL		${\sim}20\%$ elongation
2	$r_{\ell}=0.51\pm0.02{ m fm}$	$r_{T} = 0.55 \pm 0.02fm$	$CL = 10^{-4}$	\approx
3	$r_1=0.55\pm0.08{ m fm}$	$r_0=0.53\pm0.09\mathrm{fm}$	$\mathbf{CL}=42\%$	=
CLs none too good, but $R_2 \approx R_2(Q)$ confirms TASSO, Z.Phys. C71 (1986)405				

W. J. Metzger — Beyond Gaussian — IWCF, Hángzhōu — 22 November 2006

Conclusion: $R_2 \approx R_2(Q)$

Only consider $R_2(Q)$ for rest of talk.

Beyond the Gaussian

Assume static distribution of pion emitters in configuration space, f(r) with characteristic function (Fourier transform), $\tilde{f}(Q)$ Then $R_2 = \gamma \cdot \left[1 + \lambda |\tilde{f}(Q)|^2\right] \cdot (1 + \delta Q)$

- f(r) is Gaussian with mean $\mu = 0$ and variance R^2 $\tilde{f}(Q) = \exp\left(\imath\mu Q - \frac{(RQ)^2}{2}\right)$ $R_2 = \gamma \cdot \left[1 + \lambda \exp\left(-(RQ)^2\right)\right] \cdot (1 + \delta Q)$
- approximately Gaussian Edgeworth expansion $R_2 = \gamma \cdot \left[1 + \frac{\kappa}{2} \exp\left(-(RQ)^2\right) \cdot \left[1 + \frac{\kappa}{3!}H_3(RQ)\right]\right] \cdot (1 + \delta Q)$
- f(r) is a symmetric Lévy stable distribution with location parameter $x_0 = 0$, 'width' parameter R, and 'index of stability', $0 < \alpha \leq 2$ $\tilde{f}(Q) = \exp\left(\imath x_0 Q - \frac{|RQ|^{\alpha}}{2}\right)$ $R_2 = \gamma \cdot [1 + \lambda \exp\left(-(RQ)^{\alpha}\right)] \cdot (1 + \delta Q)$ $\alpha = 2$ corresponds to Gaussian with $\mu = x_0$, variance R^2 $\alpha = 1$ corresponds to a Cauchy distribution for f(r)

Poor CLs. Edgeworth and Lévy better than Gaussian, but still poor Problem is the dip of R_2 in the region 0.6 < Q < 1.5GeV

Same conclusions for 3-jet events, all events.

Beyond the Gaussian

Summary:

- We have assumed a static source certainly wrong
- BEC depends (at least approximately) only on ${\boldsymbol{Q}}$
- r decreases with m_t , approximately as $1/\sqrt{m_t}$ may be due to correlation between momentum and production point Białas *et al.*

Let's turn to a model incorporating these points.

BEC in the τ -model

The τ -model assumes avg. production point proportional to momentum:

Csörgő and Zimányi, Nucl.Phys.A517(1990)588.

$$\overline{x}^{\mu}(k^{\mu}) = dk^{\mu}$$
 , where for 2-jet events, $d = \tau/m_{t}$ (1)

For 3-jet events, d is more complicated — so only consider 2-jet events from here on. Here, $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

With $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ the distribution of production points about their mean, and $H(\tau)$ the distribution of τ , Emission function is $S(x,k) = \int_0^\infty d\tau H(\tau) \delta_{\Delta}(x - dk) \rho_1(k)$ (2)

In the plane-wave approximation, the two-pion distribution is Yano and Koonin, PL B78(1978)556. $\rho_2(k_1, k_2) = \int d^4 x_1 d^4 x_2 S(x_1, k_1) S(x_2, k_2) \left(1 + \cos\left(\left[k_1 - k_2\right] [x_1 - x_2]\right)\right)$ (3)

Assume $\delta_{\Delta}(x - dk)$ is very narrow — a δ -function. Then (1),(2),(3) lead to $R_2(k_1, k_2) = 1 + \lambda \operatorname{Re} \widetilde{H}^2\left(\frac{Q^2}{2\overline{m}_t}\right)$ where $\widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

BEC in the $\tau\text{-model}$

Assume a Lévy distribution for $H(\tau)$

Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function of $H(\tau)$ is

$$\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha} \left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\,\omega\tau_0\right] \ , \quad \alpha \neq 1$$

where

- α is the index of stability
- au_0 is the proper time of the onset of particle production
- $\Delta \tau$ is a measure of the width of the dist.

Then,

$$R_2(Q,\overline{m}_{\rm t}) = \gamma \left[1 + \lambda \cos\left(\frac{\tau_0 Q^2}{\overline{m}_{\rm t}} + \tan\left(\frac{\alpha \pi}{2}\right) \left(\frac{\Delta \tau Q^2}{2\overline{m}_{\rm t}}\right)^{\alpha}\right) \exp\left(-\left(\frac{\Delta \tau Q^2}{2\overline{m}_{\rm t}}\right)^{\alpha}\right) \right] (1 + \delta Q)$$

BEC in the τ -model – 2-jet events $R_2(Q, \overline{m}_t) = \gamma \left[1 + \lambda \cos \left(\frac{\tau_0 Q^2}{\overline{m}_t} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2\overline{m}_t} \right)^{\alpha} \right) \exp \left(- \left(\frac{\Delta \tau Q^2}{2\overline{m}_t} \right)^{\alpha} \right) \right] (1 + \delta Q)$

Before fitting in two dimensions $(Q, \overline{m_t})$, assume an "average" $\overline{m_t}$ dependence by introducing effective radius, $R = \sqrt{\Delta \tau / (2\overline{m_t})}$. Also assume $\tau_0 = 0$. Then: $R_2(Q) = \gamma \left[1 + \lambda \cos\left[(R_a Q)^{2\alpha}\right] \exp\left(-(RQ)^{2\alpha}\right)\right] (1 + \delta Q)$, $R_a^{2\alpha} = \tan\left(\frac{\alpha \pi}{2}\right) R^{2\alpha}$

parameter	$R_{\sf a}$ free	$R_{a}^{2\alpha} = \tan\left(\frac{lpha\pi}{2}\right) R^{2lpha}$		L3 preliminary
α	0.42 ± 0.02	0.42 ± 0.01	²⁴ 1.8	2-jet
λ	0.67 ± 0.03	0.67 ± 0.03	1.6	χ^2 / NDF = 97 / 94
R (fm)	0.79 ± 0.04	0.79 ± 0.03	1.4	CL = 40 %
R_{a} (fm)	0.59 ± 0.03	—	-	
δ	0.003 ± 0.002	0.003 ± 0.001	1.2	
γ	0.979 ± 0.005	0.979 ± 0.005	1	
$\chi^2/{\sf DoF}$	97/94	97/95	0.8	-
CL	40%	42%		0.5 1 1.5 2 2.5 3 3.5 4
				Q (GeV)

 $R_{\rm a}$ free or not gives same results. – Good CL

BEC in the τ -model – 3-jet events

$R_2(Q,\overline{m}_{t}) =$	$\gamma \left[1 + \lambda \cos \left(\frac{\tau_0 Q}{\overline{m}_{t}} \right) \right]$	$\left(\frac{2}{2} + \tan\left(\frac{\alpha\pi}{2}\right) \left(\frac{\Delta\tau Q^2}{2\overline{m}_{t}}\right)^{\epsilon}\right)$	$\left(-\left(-\right) \right) \exp \left(-\left(-\right) \right) \right) $	$\left[\frac{\Delta \tau Q^2}{2\overline{m}_{\rm t}}\right]^{\alpha} \left(1 + \delta Q\right)$	
Although derived for 2-jet events, <i>i.e.</i> , using $d = \tau/m_t$, lets try it on 3-jet data					
Assuming an effective radius, $R=\sqrt{\Delta au/(2\overline{m}_{ extsf{t}})}$ and $ au_0=0$. Then:					
$R_2(Q) = \gamma \left[1 + \lambda \cos \left[(R_a Q)^{2\alpha} \right] \exp \left(- (RQ)^{2\alpha} \right) \right] (1 + \delta Q) , \qquad R_a^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$					
parameter	$R_{\sf a}$ free	$R_{a}^{2 lpha} = an\left(rac{lpha \pi}{2} ight) R^{2 lpha}$			
α	0.35 ± 0.01	0.44 ± 0.01			
λ	0.84 ± 0.04	0.77 ± 0.04			
$\frac{R}{R}$ (fm)	0.89 ± 0.03	0.84 ± 0.04			
R_{a} (fm)	0.88 ± 0.04	—			
δ	-0.003 ± 0.002	0.010 ± 0.001			
γ	1.001 ± 0.005	0.972 ± 0.001			
$\chi^2/{\sf DoF}$	102/94	174/95			
CL	27%	10^{-6}			

 R_{a} free fits well, but poor fit with R_{a} set to model relationship

BEC in the τ -model – 3-jet events

 R_{a} free fits well, but poor fit with R_{a} set to model relationship

W. J. Metzger — τ -model — IWCF, Hángzhōu — 22 November 2006

From α to $\alpha_{\rm s}$

- LLA parton shower leads to a fractal in momentum space fractal dimension is related to $\alpha_{\rm s}$
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion

```
Metzler and Klafter, Phys.Rep.339(2000)1.
```

- strong momentum-space/configuration space correlation of τ -model \implies fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

 $\alpha_{\rm s} = \frac{2\pi}{3}\alpha^2$

- Using our value of $\alpha = 0.42 \pm 0.02$ yields $\alpha_{\rm s} = 0.37 \pm 0.04$
- This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place cf., from τ decays $\alpha_s(m_\tau \approx 1.8 \text{ GeV}) = 0.35 \pm 0.03$

PDG

Csörgő et al.

Gustafson *et al.*

Emission function of 2-jet events

In the au-model, the emission function in configuration space is $_1$

$$S(x) = \frac{\mathsf{d}^4 n}{\mathsf{d}\tau \mathsf{d}^3 r} = \left(\frac{m_{\mathsf{t}}}{\tau}\right)^3 H(\tau)\rho_1\left(k = \frac{rm_{\mathsf{t}}}{\tau}\right)$$

For simplicity, assume $\begin{array}{ll} S(r,z,t)=G(\eta)I(r)H(\tau)\\ (\eta=\text{space-time rapidity})\\ \text{Strongly correlated } x,k\Longrightarrow\eta=y \text{ and } r=p_{\text{t}}\tau/m_{\text{t}} \end{array}$

Factorization y, p_t OK

Emission function of 2-jet events Integrating over z, Integrating over r, $\tau = 0.05$ (fm) $\tau = 0.1$ (fm) -0.4 -0.4 (0.03 S(x,y,τ) (fm⁻³) y (fm) 0 (fm⁻³) y (fm) 0 0.03 S(x,y,τ) (fm⁻³) -0.2 y (fm) 0 -20 0.2 -0.2 0.2 S(z,t) 0.2 x (fm) 0.2 x (fm) 10 0.40.4 0.40.4 (fm⁻²) τ = 0.2 (fm) $\tau = 0.15$ (fm) z (fm) 0 10 20 -0.4 -0.4 t (fm) 0.03 S(x,y,੮) (fm⁻³) y (fm) 0[\] 0.03 S(x,y,τ) (fm⁻³) -0.2 y (fm) 0 0.2 0.2 10 -0.2 0.2 t (fm) 0.2 x (fm) 0.2 x (fm) 0.40.4 0.40.4 $\tau = 0.25$ (fm) τ = 0.3 (fm) L3 preliminary S(z,t) (fm⁻²) L3 preliminary -0.4 -0.4 $\begin{pmatrix} 0.03 \\ S(x,y,\tau) \\ (fm^{-3}) & y (fm) \\ 0 \end{pmatrix}$ 0.03 S(x,y,τ) (fm⁻³) -0.2 -20 y (fm) 0 -10 0 0.2 0.2 -0.2 -0.2 10 0.2 0 (fm) 0.2 0 (fm) z (fm) 0.4 20 0.4 "Boomerang shape" Expanding ring Particle production is close to the light-cone

Summary

- Parametrizing R_2 as a function of Q only is a reasonably good approximation
- Symmetric Gaussian, Edgeworth, Lévy parametrizations of R_2 do not fit well
- The τ -model with a one-sided Lévy proper-time distribution leads to $R_2(Q, m_t)$, which successfully fits R_2 for 2-jet events
 - \star both Q- and $m_{\rm t}\text{-}{\rm dependence}$ described correctly
 - \star Note: we found $\Delta\tau$ to be independent of $m_{\rm t}$

 Δau enters R_2 as $\Delta au Q^2/m_{
m t}$

In Gaussian parametrization, R enters R_2 as R^2Q^2

Thus Δau independent of $m_{
m t}$ corresponds to $R \propto 1/\sqrt{m_{
m t}}$

- fractal dimension associated with Lévy α relates α to α_s $\alpha = 0.42 \pm 0.02$ corresponds to $\alpha_s = 0.37 \pm 0.04$, reasonable for a scale of 1–2 GeV
- Emission function shaped like a boomerang in z-t and an expanding ring in x-yParticle production is close to the light-cone

Acknowledgements: This is the Ph.D. thesis work of Tamás Novák Tamás Csörgő provided most of the theory.