Results-1d

Results-3d 0 00000 000 000 Conclusion 00 000

Bose-Einstein Correlations and Jet Structure in e^+e^- annihilation

W.J. Metzger

Radboud University Nijmegen

XLII International Symposium on Multiparticle Dynamics Kielce 16–21 September 2012

Results-1d

Results-3d 0 00000 000 000 Conclusion 00 000

Introduction - BEC

 $R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} \Longrightarrow \frac{\rho_2(Q)}{\rho_0(Q)}$

Assuming particles produced incoherently with spatial source density S(x),

 $R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ – Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a symmetric Lévy stable distribution with radius *r*, index of stability α ($\alpha = 2$ for a Gaussian) \Longrightarrow $R_2(Q) = 1 + \lambda e^{-(Qr)^{\alpha}}$

Results-1

Results-3d 0 00000 000

Conclusion 00 000

The L3 Data

- $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$
- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀

Results-1d

Results-3d 0 00000 000 000 Conclusion 00 000

The Simplified au-model

We use the parametrization of the Simplified τ -model.

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588 L3 Collab., Eur. Phys. J **C71** (2011) 1648

2 parameters:

- effective radius R
- index of stability α of the Lévy distribution

$$\begin{split} R_2(Q) &= \gamma \left[1 + \lambda \cos \left((\textbf{\textit{R}}_a Q)^{2\alpha} \right) \exp \left(- (\textbf{\textit{R}} Q)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q) \\ \text{where } \textbf{\textit{R}}_a^{2\alpha} &= \tan \left(\frac{\alpha \pi}{2} \right) \textbf{\textit{R}}^{2\alpha} \end{split}$$

Compare to sym. Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \right] \exp \left[-|rQ|^{\alpha} \right] \left[(1 + \epsilon Q) \right]$$

Results-1d	Results-3d
00	0 000000 000 000

Results on Simplified τ -model from L₃ Z decay

Introduction

Introduct 000

Jets

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are $> \gamma_{cut}$
 - instead, stop combining when there are only 3 jets left
 - V23 is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3

define regions of $y_{23}^{\rm D}$ (Durham):

 $0.006 < y_{23}^{D} < 0.018$ narrow three-jet $0.018 < y_{23}^{\rm D}$

 $y_{23}^{\rm D} < 0.002$ narrow two-jet $0.002 < y_{23}^{\rm D} < 0.006$ less narrow two-jet wide three-jet

or

 $y_{23}^{\rm D} < 0.006$ two-jet $0.006 < y_{23}^{\rm D}$ three-jet

and similarly for y_{23}^{J} (JADE): 0.009, 0.023, 0.056

ISMD p. 6

Introduction	Results-1d	Results-3d	Conclusion
00 00 0●0	00	0 00000 000 000	00

Jets

order jets by energy: $E_1 > E_2 > E_3$ Coordinate system: $Z \longrightarrow q\overline{q}(g)$

- estimate $q\overline{q}$ axis by thrust axis, *i*.e., axis \vec{n}_{T} for which $T = \frac{\sum |\vec{p}_{i} \cdot \vec{n}_{T}|}{\sum |\vec{p}_{i}|}$ is maximal
- 3-jet events are planar.
 Estimate event plane by thrust, major axes.
 Major is analogous to thrust, but in plane perpendicular to n
 T.
- Note: thrust only defines axis |n_T|, not its direction. Choose positive thrust direction such that jet 1 is in positive thrust hemisphere
- Similarly, choose positive major direction such that jet 3 is in positive major hemisphere

Introduction	Results-1d	Results-3d	Conclusion
00 00 000	•0	0 00000 000 000	000

Fits of simplified τ -model – L3 preliminary

To stabilize fits against large correlation of α , R, fix $\alpha = 0.44$ Select particle pairs by rapidity of pair With y_{23}^{D} ,

Increase in R with $y_{23}^{\bar{D}}$ is due to appearance of gluon jet

ntroduction	Results-1d	Results-3d C
00	0•	0
000		00000
		000

Fits of simplified τ -model – L3 preliminary

 ϕ track-event plane: < 27°, < 45°, all, > 27°, > 45°

Results-1d

Results-3d ● ○○○○○ ○○○ Conclusion

LCMS and the Simplified au-model

Consider 2 frames:

1. LCMS: $Q^2 = Q_L^2 + Q_{side}^2 + Q_{out}^2 - (\Delta E)^2$ = $Q_L^2 + Q_{side}^2 + Q_{out}^2 (1 - \beta^2)$, $\beta = \frac{p_{1out} + p_{2out}}{E_1 + E_2}$ 2. LCMS-rest: $Q^2 = Q_L^2 + Q_{side}^2 + q_{out}^2$, $q_{out}^2 = Q_{out}^2 (1 - \beta^2)$

 q_{out} is Q_{out} boosted (β) along out direction to rest frame of pair

In simplified τ -model, replace $R^2 Q^2$ by 1. $A^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + \rho_{out}^2 Q_{out}^2$ 2. $B^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + r_{out}^2 q_{out}^2$ Then in τ -model, for case 1: $R_2(Q_L, Q_{side}, Q_{out}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$ $\cdot (1 + \epsilon_L Q_L + \epsilon_{side} Q_{side} + \epsilon_{out} Q_{out})$

and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

Results-1d

Conclusion 00 000

3-d Fits R_L – L3 preliminary

- Durham, JADE agree
- systematic difference LCMS, LCMS-rest
- R_L constant with y₂₃

Results-1d

Results-3d

Conclusion

3-d Fits $R_{\rm side}$ – L3 preliminary

- LCMS, LCMS-rest agree
- Durham, JADE agree
- R_{side} increases with y₂₃, approx. 0.5–0.9 R_L

Results-1d

Results-3d

イロト イヨト イヨト イヨト

Conclusion 00 000

3-d Fits $\rho_{\rm out}$ – L3 preliminary

- Durham, JADE agree
- ρ_{out} constant with y₂₃

Results-10

Results-3d

Conclusion

3-d Fits *r*_{out} – L3 preliminary

- Durham, JADE roughly agree
- y^J₂₃: r_{out} approx. constant with y₂₃, approx. 1.27 R_L or y^D₂₃: slightly increasing with y₂₃, approx. 1.15–1.35 R_L

Results-1d

Results-3d ○ ○ ○ ○ ○ Conclusion 00 000

• Durham, JADE agree

*R*_{side} < *r*_{out} for all *y*₂₃
 *R*_{side}/*r*_{out} smallest for 2-jet
 Not azimuthally symmetric; not even for narrow 2-jet !!!

roduction	Results-1d	Results-3d	Conclu
C	00	0	00
C		00000	000
00		000	
		000	

3-d Fits, y_E dependence R_{side} – L3 preliminary

In each $y_{\rm E}$ interval, $R_{\rm L}$, $\rho_{\rm out} \approx {\rm constant} \ {\rm with} \ y_{23}$ (not shown)

 R_{side} increases, less for $y_{\text{E}} > 1$ than for other y_{E} regions

ion	Results-1d	Results-3d
	00	

3-d Fits, y_E dependence r_{out} – L3 preliminary

 r_{out} independent of y_E for $y_E > 1$ r_{out} perhaps increases slightly for $y_E < -1$ and $-1 < y_E < 1$

Depute 1d	Deputte Od	Canalysis
Results-10	Results-30	Conclusio
00	0	00
	00000	000
	000	
	000	

3-d Fits, y_E dependence R_{side}/r_{out} – L3 preliminary

- $R_{\rm side} < r_{\rm out} < 1$ for all y_{23}
- $R_{\rm side}/r_{\rm out}$ smaller for $y_{\rm E} > 1 {}^{\circ}{}^{\circ}{}^{
 m pure}$ q jet
- *R*_{side}/*r*_{out} smallest for 2-jet
- Not azimuthally symmetric; not even for narrow 2-jet !!!

Choice of Longitudinal direction – L3 preliminary

2-jet event: Long = thrust axis 3-jet event: Long = thrust axis, or $\vec{p}_{jet 1}$, $\vec{p}_{jet 2}$, $\vec{p}_{jet 2} - 0.5\vec{p}_{jet 3}$, $\vec{p}_{jet 3}$

No clear dependence of $R_{\rm L}$ or $r_{\rm out}$ on L (not shown)

ISMD p. 21

-0.8-0.6 -0.4 -0.2

0.2 $\langle \Box \rangle \langle d \rangle = \langle d \rangle$

	JICIUSION
	0
	00
000	

Summary

- 1-d
 - *R* increases with $y_{23} \sim 0.7-0.9$ fm
 - but not in 'pure quark' regions,
 (y_E > 1 or y_E < -2, all y₂₃) and (y_E < -1 for narrow 2-jet)
 - $R(-1 < y_E < 1) > R(all y_E) > y_E > 1)$
 - for 3-jet events *R* is larger in the event plane

• 3-d

- $R_{\rm L}, \, \rho_{\rm out} \sim {\rm constant} \, {\rm with} \, {\it y}_{\rm 23}$
 - $R_{
 m L} pprox$ 0.9 fm (LCMS) pprox 0.85 fm (LCMS-rest) $ho_{
 m out}/R_{
 m L} pprox$ 0.65
- R_{side} increases with y_{23} $R_{\text{side}}/R_{\text{L}} \approx 0.5-0.9$ increase is less for $y_{\text{E}} > 1$
- $r_{\rm out}$ perhaps increases slightly $r_{\rm out}/R_{\rm L} \approx 1.2-1.3$
- *R*_{side}/*r*_{out} < 1 for all *y*₂₃
 *R*_{side}/*r*_{out} smaller for *y*_E > 1 'pure q jet'
 *R*_{side}/*r*_{out} smallest for 2-jet
 Not azimuthally symmetric;
 least symmetric for narrow 2-jet events d!!

Results-10

Results-3d 0 00000 000 000

イロト イヨト イヨト イヨト 二日

Conclusion

Summary

- 3-d dependence on Longitudinal axis
 - 3-jet: R_{side} is perhaps smaller using L=j2 for $y_{\text{E}} < -1$ and L=j3 for $-1 < y_{\text{E}} < 1$ Then $R_{\text{side}}(-1 < y_{\text{E}} < 1) > R_{\text{side}}(y_{\text{E}} < -1) \approx R_{\text{side}}(y_{\text{E}} > 1)$
- 3-d: out direction is preferentially in the event plane slight preference for 2-jet and for 3-jet, *y*_E > 1 strong preference for −1 < *y*_E < 1 and *R*_{side}(*y*_E < −1)

Results-10

Results-3d 0 00000 000 000 Conclusion ••••

Qualitative Conclusions

- *R* larger in event plane for 3-jet events agrees with $r_{out} > R_{side}$ and preference of out to lie in event plane.
- For 3-jet,

 $R_{\rm L}$ and $r_{\rm out} \approx 1.25 R_{\rm L}$ are insensitive to choice of L. $R_{\rm side}$ does vary with L, increasing to 0.8–0.9 $R_{\rm L}$ for 3-jet This may explain why τ -model works for 3-jet.

• Behavior of *R* and R_{side} in different y_E regions suggests $R_{gluon} > R_{quark}$.

R and $R_{\rm side}$ are larger in gluon regions;

they increase as gluon energy (and hence number of particles from gluon) increases.

l	ntr	od	uc	ctio	on
1	00				
1	00	0			

Results-3d 0 00000 000 000 000 Conclusion ○○ ○●○

Qualitative Conclusions/Speculations

- Picture of 'region of homogeneity' seems to be:
 - squashed ellipsoid r_{out} slightly larger than R_L R_{side} considerably smaller
 - in 'pure' quark jets (2-jet or 3-jet with y_E > 1) ellipsoid oriented approx. isotropically about thrust axis
 - in other cases (3-jet with $y_{\rm E} < 1$ gluon contribution) $r_{\rm out}$ tends to be in event plane
- But why is R_{side} ≠ r_{out}, *i.e.*, No azimuthal symmetry; not even for narrow 2-jet events? local p_t compensation defining a plane?

There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.

Mark Twain

• • • • • • • • • • •

Results-1d

Results-3d 000000 000

Speculation

- CMS has observed the anti-correlation region as predicted in the *τ*-model and observed by L3. This suggests strings – like in e⁺e⁻.
- In pp, can the onset of hard jet production be seen in the BEC radii?
 like the third jet e⁺e⁻.
- Therefore, I suggest studying BEC as a function of pt of highest pt particle.