Bose-Einstein Correlations and Jet Structure in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

W.J. Metzger

Radboud University Nijmegen

XLII International Symposium on Multiparticle Dynamics Kielce
 16-21 September 2012

Introduction - BEC

$$
R_{2}=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)} \Longrightarrow \frac{\rho_{2}(Q)}{\rho_{0}(Q)}
$$

Assuming particles produced incoherently with spatial source density $S(x)$,

$$
R_{2}(Q)=1+\lambda|\widetilde{S}(Q)|^{2}
$$

where $\widetilde{S}(Q)=\int \mathrm{d} x e^{i Q x} S(x)$

- Fourier transform of $S(x)$
$\lambda=1 \quad-\quad \lambda<1$ if production not completely incoherent
Assuming $S(x)$ is a symmetric Lévy stable distribution with radius r, index of stability α ($\alpha=2$ for a Gaussian) \Longrightarrow $R_{2}(Q)=1+\lambda \mathrm{e}^{-(Q r)^{\alpha}}$

The L3 Data

- $\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow$ hadrons at $\sqrt{s} \approx M_{\mathrm{Z}}$
- about $36 \cdot 10^{6}$ like-sign pairs of well measured charged tracks from about $0.8 \cdot 10^{6}$ events
- about $0.5 \cdot 10^{6} 2$-jet events - Durham $y_{\text {cut }}=0.006$
- about $0.3 \cdot 10^{6}>2$ jets, " 3 -jet events"
- use mixed events for reference sample, ρ_{0}

The Simplified τ-model

We use the parametrization of the Simplified τ-model.
T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.B663(2008)214
T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

L3 Collab., Eur. Phys. J C71 (2011) 1648
2 parameters:

- effective radius R
- index of stability α of the Lévy distribution
$R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)$
where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

Results on Simplified τ-model from $\mathrm{L3}$ Z decay

Simplified τ-model works well - also for 3-jet ${ }^{\text {L3, Eur. Phys. J J }}$ C77 (2011) 1648 sym. dists. do not because of anti-correlation region

Jets

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are only 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of $y_{\text {cut }}$ where number of
 jets changes from 2 to 3 define regions of y_{23}^{D} (Durham):

$$
\begin{aligned}
y_{23}^{\mathrm{D}}<0.002 & \text { narrow two-jet } \\
0.002<y_{23}^{\mathrm{D}}<0.006 & \text { less narrow two-jet } \\
0.006<y_{23}^{\mathrm{D}}<0.018 & \text { narrow three-jet } \\
0.018<y_{23}^{\mathrm{D}} & \text { wide three-jet }
\end{aligned}
$$

and similarly for y_{23}^{J} (JADE): 0.009, 0.023, 0.056

Jets

order jets by energy: $E_{1}>E_{2}>E_{3}$
Coordinate system: $\quad \mathrm{Z} \longrightarrow \mathrm{q} \overline{\mathrm{q}}(\mathrm{g})$

- estimate $q \bar{q}$ axis by thrust axis, i.e., axis \vec{n}_{T} for which $T=\frac{\sum\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum\left|\vec{p}_{i}\right|}$ is maximal
- 3-jet events are planar. Estimate event plane by thrust, major axes. Major is analogous to thrust, but in plane perpendicular to \vec{n}_{T}.
- Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction. Choose positive thrust direction such that jet 1 is in positive thrust hemisphere
- Similarly, choose positive major direction such that jet 3 is in positive major hemisphere

Jets

rapidity, y_{E}, of particles from jet 1, jet 2, jet 3:

- $y_{\mathrm{E}}>1$ almost all jet 1
- $y_{\mathrm{E}}<-1$ mostly jet 2, some jet 3
- $-1<y_{\mathrm{E}}<1$ jet-3 enriched
almost all quark mostly quark

Fits of simplified $\boldsymbol{\tau}$-model - $\llcorner 3$ preliminary

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.44$ Select particle pairs by rapidity of pair

Conclusion (JADE agrees): Increase in R with y_{23}^{D} is due to appearance of gluon jet

Fits of simplified $\boldsymbol{\tau}$-model - $\llcorner 3$ preliminary

ϕ track-event plane: $<27^{\circ},<45^{\circ}$, all, $>27^{\circ},>45^{\circ}$

2-jet, all y_{E} selections and 3 -jet, $y_{\mathrm{E}}>1$:
no significant differences between $R_{\text {in plane }}, R_{\text {out of plane }}$
3 -jet, $-1<y_{\mathrm{E}}<1$ or $y_{\mathrm{E}}<-1$: $R_{\text {in plane }}>R_{\text {out of plane }}$

LCMS and the Simplified τ-model

Consider 2 frames:

1. LCMS: $\quad Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{1 \text { out }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

2. LCMS-rest: $Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+q_{\text {out }}^{2}, \quad q_{\text {out }}^{2}=Q_{\text {out }}^{2}\left(1-\beta^{2}\right)$ $q_{\text {out }}$ is $Q_{\text {out }}$ boosted (β) along out direction to rest frame of pair
In simplified τ-model, replace $R^{2} Q^{2}$ by
3. $A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
4. $B^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+r_{\text {out }}^{2} q_{\text {out }}^{2}$

Then in τ-model, for case 1 :
$R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right]$

$$
\cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
$$

and comparable expression for case $2, R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, q_{\text {out }}\right)$

3-d Fits R_{L} - $\mathrm{L3}$ preliminary

- Durham, JADE agree
- systematic difference LCMS, LCMS-rest
- R_{L} constant with y_{23}

3-d Fits $R_{\text {side }}-$ L3 preliminary

- LCMS, LCMS-rest agree
- Durham, JADE agree
- $R_{\text {side }}$ increases with y_{23}, approx. 0.5-0.9 R_{L}

3-d Fits $\rho_{\text {out }}-$ L3 preliminary

- Durham, JADE agree
- $\rho_{\text {out }}$ constant with y_{23}

3-d Fits $r_{\text {out }}-\llcorner 3$ preliminary

- Durham, JADE roughly agree
- $y_{23}^{\mathrm{J}}: r_{\text {out }}$ approx. constant with y_{23}, approx. $1.27 R_{\mathrm{L}}$ or y_{23}^{D} : slightly increasing with y_{23}, approx. $1.15-1.35 R_{\mathrm{L}}$

3-d Fits $R_{\text {side }} / r_{\text {out }}$ - L3 preliminary

- Durham, JADE agree
- $R_{\text {side }}<r_{\text {out }}$ for all y_{23}
$R_{\text {side }} / r_{\text {out }}$ smallest for 2-jet
Not azimuthally symmetric; not even for narrow 2-jet !!!

3-d Fits, y_{E} dependence $R_{\text {side }}$ - $\mathrm{L3}$ preliminary

In each y_{E} interval, $R_{\mathrm{L}}, \rho_{\text {out }} \approx$ constant with $y_{23 \text { (not shown) }}$

$R_{\text {side }}$ increases, less for $y_{E}>1$ than for other y_{E} regions

3-d Fits, y_{E} dependence $r_{\text {out }}-\llcorner 3$ preliminary

$r_{\text {out }}$ independent of y_{E} for $y_{\mathrm{E}}>1$
$r_{\text {out }}$ perhaps increases slightly for $y_{\mathrm{E}}<-1$ and $-1<y_{\mathrm{E}}<1$

3-d Fits, y_{E} dependence $R_{\text {side }} / r_{\text {out }}$ - L3 preliminary

- $R_{\text {side }}<r_{\text {out }}<1$ for all y_{23}
- $R_{\text {side }} / r_{\text {out }}$ smaller for $y_{\mathrm{E}}>1$ - 'pure q jet'
- $R_{\text {side }} / r_{\text {out }}$ smallest for 2-jet
- Not azimuthally symmetric; not even for narrow 2-jet !!!

Choice of Longitudinal direction - $\llcorner 3$ preliminary

2-jet event: Long = thrust axis 3 -jet event: Long = thrust axis, or $\vec{p}_{\text {jet } 1}, \vec{p}_{\text {jet } 2}, \vec{p}_{\text {jet } 2}-0.5 \vec{p}_{\text {jet }}, \vec{p}_{\text {jet }} 3$

No clear dependence of R_{L} or $r_{\text {out }}$ on L (not shown)

Choice of Longitudinal direction $R_{\text {side }}-\llcorner 3$ preliminary 2-jet event: Long = thrust axis

JADE:
No clear dependence of $R_{\text {side }}$ on L except perhaps 3 -jet, $y_{\mathrm{E}}<-1$:
$R_{\text {side }}$ smaller for $\mathrm{L}=\mathrm{j} 2$ $R_{\text {side }}\left(y_{\mathrm{E}}<-1\right)$ $\approx R_{\text {side }}\left(y_{\mathrm{E}}>1\right)$ 3-jet, $-1<y_{\mathrm{E}}<1$:
$R_{\text {side }}$ smaller for $\mathrm{L}=\mathrm{j} 3$ 3-jet:
$R_{\text {side }}\left(-1<y_{\mathrm{E}}<1\right)$
$>R_{\text {side }}\left(y_{\mathrm{E}}<-1\right)$
$\approx R_{\text {side }}\left(y_{\mathrm{E}}>1\right)$

out-event plane

- 2-jet: for all y_{E}, small preference for out direction to be in event plane
- 3-jet: for $y_{E}>1$, like 2-jet
- 3-jet: for $y_{\mathrm{E}}<-1$ and $-1<y_{\mathrm{E}}<1$,
large preference for out direction to be in event plane

Summary

- 1-d
- R increases with $y_{23} \sim 0.7-0.9 \mathrm{fm}$
- but not in 'pure quark' regions, ($y_{\mathrm{E}}>1$ or $y_{\mathrm{E}}<-2$, all y_{23}) and ($y_{\mathrm{E}}<-1$ for narrow 2-jet)
- $R\left(-1<y_{\mathrm{E}}<1\right)>R\left(\right.$ all $\left.\left.y_{\mathrm{E}}\right)>y_{\mathrm{E}}>1\right)$
- for 3-jet events R is larger in the event plane
- 3-d
- $R_{\mathrm{L}}, \rho_{\text {out }} \sim$ constant with y_{23}

$$
\begin{aligned}
& R_{\mathrm{L}} \approx 0.9 \mathrm{fm}(\mathrm{LCMS}) \approx 0.85 \mathrm{fm} \text { (LCMS-rest) } \\
& \rho_{\text {out }} / R_{\mathrm{L}} \approx 0.65
\end{aligned}
$$

- $R_{\text {side }}$ increases with $y_{23} \quad R_{\text {side }} / R_{\mathrm{L}} \approx 0.5-0.9$ increase is less for $y_{E}>1$
- $r_{\text {out }}$ perhaps increases slightly $r_{\text {out }} / R_{\mathrm{L}} \approx 1.2-1.3$
- $R_{\text {side }} / r_{\text {out }}<1$ for all y_{23}
$R_{\text {side }} / r_{\text {out }}$ smaller for $y_{E}>1$ - 'pure q jet'
$R_{\text {side }} / r_{\text {out }}$ smallest for 2-jet
Not azimuthally symmetric; least symmetric for narrow 2-jet events $4!!$

Summary

- 3-d dependence on Longitudinal axis
- 3-jet: $R_{\text {side }}$ is perhaps smaller using $\mathrm{L}=\mathrm{j} 2$ for $y_{\mathrm{E}}<-1$ and $\mathrm{L}=\mathrm{j} 3$ for $-1<y_{\mathrm{E}}<1$
Then $R_{\text {side }}\left(-1<y_{\mathrm{E}}<1\right)>R_{\text {side }}\left(y_{\mathrm{E}}<-1\right) \approx R_{\text {side }}\left(y_{\mathrm{E}}>1\right)$
- 3-d: out direction is preferentially in the event plane slight preference for 2-jet and for 3-jet, $y_{\mathrm{E}}>1$ strong preference for $-1<y_{\mathrm{E}}<1$ and $R_{\text {side }}\left(y_{\mathrm{E}}<-1\right)$

Qualitative Conclusions

- R larger in event plane for 3-jet events agrees with $r_{\text {out }}>R_{\text {side }}$ and preference of out to lie in event plane.
- For 3-jet, R_{L} and $r_{\text {out }} \approx 1.25 R_{\mathrm{L}}$ are insensitive to choice of L . $R_{\text {side }}$ does vary with L, increasing to $0.8-0.9 R_{\mathrm{L}}$ for 3 -jet This may explain why τ-model works for 3 -jet.
- Behavior of R and $R_{\text {side }}$ in different y_{E} regions suggests $R_{\text {gluon }}>R_{\text {quark }}$.
R and $R_{\text {side }}$ are larger in gluon regions; they increase as gluon energy (and hence number of particles from gluon) increases.

Qualitative Conclusions/Speculations

- Picture of 'region of homogeneity' seems to be:
- squashed ellipsoid
$r_{\text {out }}$ slightly larger than R_{L}
$R_{\text {side }}$ considerably smaller
- in 'pure' quark jets (2-jet or 3-jet with $y_{\mathrm{E}}>1$)
ellipsoid oriented approx. isotropically about thrust axis
- in other cases (3-jet with $y_{\mathrm{E}}<1$ - gluon contribution) $r_{\text {out }}$ tends to be in event plane
- But why is $R_{\text {side }} \neq r_{\text {out }}$, i.e., No azimuthal symmetry; not even for narrow 2-jet events? local p_{t} compensation defining a plane?

There is something fascinating about science.
One gets such wholesale returns of conjecture out of such a trifling investment of fact.

- Mark Twain

Speculation

- CMS has observed the anti-correlation region as predicted in the τ-model and observed by L3. This suggests strings - like in $\mathrm{e}^{+} \mathrm{e}^{-}$.
- In pp, can the onset of hard jet production be seen in the BEC radii? like the third jet $\mathrm{e}^{+} \mathrm{e}^{-}$.
- Therefore, I suggest studying BEC as a function of p_{t} of highest p_{t} particle.

