The tau-mode

Elongation?

(日)

New Stuff

Bose-Einstein Correlations, the τ -model, and jets in e⁺e⁻ annihilation

W.J. Metzger

Radboud University Nijmegen

XLI International Symposium on Multiparticle Dynamics Miyajima 26–30 September 2011 VII Workshop on Particle Correlations and Femtoscopy Tokyo 20–24 September 2011

The tau-model

Elongation?

New Stuff

Outline

1. Old stuff — Eur. Phys. J. C (2011) 71:1648 25 pages — quickly summarize

2. New stuff

The tau-mode

Elongation?

New Stuff

BEC Introduction

$$R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} = \frac{\rho_2(Q)}{\rho_0(Q)}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ – Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a Gaussian with radius $r \implies R_2(Q) = 1 + \lambda e^{-Q^2 r^2}$

► intro

New Stuff

The L3 Data

- $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$
- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀

Results – 'Classic' Parametrizations $R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$

- Gaussian
 - $\boldsymbol{G} = \exp\left(-(\boldsymbol{r}\boldsymbol{Q})^2\right)$
- Edgeworth expansion $G = \exp(-(rQ)^2)$ $\cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ $\kappa = 0.71 \pm 0.06$
- symmetric Lévy $G = \exp(-|rQ|^{\alpha})$ $0 < \alpha \le 2$ $\alpha = 1.34 \pm 0.04$

Poor χ^2 . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

New Stuff

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$

where for 2-jet events, $a = 1/m_t$

 $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

 Let δ_Δ(x^μ - x̄^μ) be dist. of prod. points about their mean, and H(τ) the dist. of τ. Then the emission function is S(x, p) = ∫₀[∞] dτH(τ)δ_Δ(x - aτp)ρ₁(p)

• In the plane-wave approx. E.B.Yano, S.E.Koonin, Phys.Lett.**B78**(1978)556. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left([p_1 - p_2][x_1 - x_2]\right)\right)$ • Assume $\delta_{\Delta}(x - a \tau p)$ is very narrow — a δ -function. Then

 $R_2(p_1, p_2) = 1 + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1Q^2}{2}\right) \widetilde{H}\left(\frac{a_2Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

Elongation?

New Stuff

BEC in the au-model

• Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function is $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha}\left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\omega\tau_{0}\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R₂ depends on Q, a₁, a₂

$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(a_{1}+a_{2})}{2} + \tan \left(\frac{\alpha \tau}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \right. \\ \left. \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \right\} \cdot \left(1 + \epsilon Q \right)$$

The tau-model

Elongation?

New Stuff

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- Then

 $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$

Compare to sym. Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \right] \exp \left[-|rQ|^{\alpha} \right] (1 + \epsilon Q)$$

з

Q (GeV)

New Stuff

Full τ -model for 2-jet events — $a = 1/m_{t}$ $R_{2}(Q, m_{t1}, m_{t2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(m_{t1}+m_{t2})}{2(m_{t1}m_{t2})} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{m_{t1}^{\alpha} + m_{t2}^{\alpha}}{2(m_{t1}m_{t2})^{\alpha}} \right] \right\}$ $\cdot \exp\left[-\left(\frac{\Delta\tau Q^2}{2}\right)^{\alpha} \frac{m_{t1}^{\alpha} + m_{t2}^{\alpha}}{2(m_1 m_2)^{\alpha}}\right] \cdot (1 + \epsilon Q)$ 1.6 1.4 • Fit $R_2(Q)$ using \mathbb{R}_2 avg m_{t1} , m_{t2} in each Q 1.2 bin, $m_{t1} > m_{t2}$ • $\tau_0 = 0.00 \pm 0.02$ 1.0 so fix to 0

• $\chi^2/dof = 90/95$

→ fit

0.8 0.02 <1 0.00 -0.02 -0.04

New Stuff

Full τ -model for 2-jet events

- τ -model predicts dependence on m_t , $R_2(Q, m_{t1}, m_{t2})$
- Parameters α , $\Delta \tau$, τ_0 are independent of $m_{\rm t}$
- λ (strength of BEC) can depend on $m_{\rm t}$

The tau-model

New Stuff

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $R_{\rm side}/R_{\rm L}\approx 0.64$
- But we find that Gaussian and Edgeworth fit $R_2(Q)$ poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function?
 artic the - model in pand of modification?
 - or is the τ -model in need of modification?
- So, we modify *ad hoc* the *τ*-model description to allow elongation (more on this later)
- and find $R_{side}/R_{L}=0.61\pm0.02-elongation$ is real
- Perhaps, a should be different for transverse/longitudinal $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}, \qquad a = 1/m_{t}$ for 2-jet

The tau-model

Elongation?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New Stuff

Outline

New stuff — very preliminary

Are BEC sensitive to jet structure?

Elongation?

- Jets Durham algorithm
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3
- force event to have 3 jets
- define regions of y₂₃:

 $y_{23} < 0.002$ $0.002 < y_{23} < 0.006$ $0.006 < y_{23} < 0.018$ $0.018 < y_{23}$

narrow two-jet less narrow two-jet narrow three-jet wide three-jet

 $y_{23} < 0.006$ two-jet $0.006 < y_{23}$ three-jet

To stabilize fits against large correlation of α , R, fix $\alpha = 0.443$

- R increases as number of jets increases
- or as jets become more separated

The tau-mode

Elongation?

New Stuff

Jets - Elongation

Results in LCMS frame: Longitudinal = Thrust axis

$$\begin{array}{c} R_{\rm L}/R_{side} \\ {\tt L3} & 1.25\pm0.03^{+0.36}_{-0.05} \\ {\tt OPAL} & 1.19\pm0.03^{+0.08}_{-0.01} \end{array}$$

(ZEUS finds similar results in ep) ${\sim}25\%$ elongation along thrust axis

1

OPAL:

Elongation larger for narrower jets

LCMS and the Simplified au-model

Consider 2 frames:

1. LCMS: $Q^2 = Q_L^2 + Q_{side}^2 + Q_{out}^2 - (\Delta E)^2$ = $Q_L^2 + Q_{side}^2 + Q_{out}^2 (1 - \beta^2)$, $\beta = \frac{p_{1out} + p_{2out}}{E_1 + E_2}$ 2. LCMS-rest: $Q^2 = Q_L^2 + Q_{side}^2 + q_{out}^2$, $q_{out}^2 = Q_{out}^2 (1 - \beta^2)$

 q_{out} is Q_{out} boosted (β) along out direction to rest frame of pair

・ロン ・ロン・ロン・ロン・ロン

In simplified τ -model, replace $R^2 Q^2$ by 1. $A^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + \rho_{out}^2 Q_{out}^2$ 2. $B^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + r_{out}^2 q_{out}^2$ Then in τ -model, for case 1: $R_2(Q_L, Q_{side}, Q_{out}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$ $\cdot \left(1 + \epsilon_L Q_L + \epsilon_{side} Q_{side} + \epsilon_{out} Q_{out} \right)$

and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

The tau-model

Elongation?

The tau-mode

Elongation?

New Stuff

ϕ major-out

- event plane \equiv (thrust,major)
- out direction tends to be in the event plane $out \approx in$
- side direction tends to be out of the plane side \approx out
- this tendency increases with *y*₂₃
- suggests that lack of azimuthal symmetry is due to difference in fragmentation in and out of the event plane

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Elongation?

in/out of event plane

R larger in the event plane

New Stuff — Summary

The tau-mode

Elongation?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgments

- Tamás Novák, Tamás Csörgő, Wolfram Kittel were instrumental for the 'Old Stuff'
- I take full responsibility for the 'New Stuff'