Bose-Einstein Correlations, the τ-model, and jets in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

W.J. Metzger

Radboud University Nijmegen
XLI International Symposium on Multiparticle Dynamics Miyajima
26-30 September 2011
VII Workshop on Particle Correlations and Femtoscopy
Tokyo
20-24 September 2011

Outline

1. Old stuff - Eur. Phys. J. C (2011) $71: 1648$

 25 pages - quickly summarize
2. New stuff

BEC Introduction

$$
R_{2}=\frac{\rho_{2}\left(p_{1}, p_{2}\right)}{\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)}=\frac{\rho_{2}(Q)}{\rho_{0}(Q)}
$$

Assuming particles produced incoherently with spatial source density $S(x)$,

$$
R_{2}(Q)=1+\lambda|\widetilde{S}(Q)|^{2}
$$

where $\widetilde{S}(Q)=\int \mathrm{d} x e^{i Q x} S(x) \quad$ - Fourier transform of $S(x)$ $\lambda=1 \quad-\quad \lambda<1$ if production not completely incoherent

Assuming $S(x)$ is a Gaussian with radius $r \Longrightarrow$

$$
R_{2}(Q)=1+\lambda \mathrm{e}^{-Q^{2} r^{2}}
$$

The L3 Data

- $\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow$ hadrons at $\sqrt{s} \approx M_{\mathrm{Z}}$
- about $36 \cdot 10^{6}$ like-sign pairs of well measured charged tracks from about $0.8 \cdot 10^{6}$ events
- about $0.5 \cdot 10^{6} 2$-jet events — Durham $y_{\text {cut }}=0.006$
- about $0.3 \cdot 10^{6}>2$ jets, " 3 -jet events"
- use mixed events for reference sample, ρ_{0}

Results - 'Classic' Parametrizations

$R_{2}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon \boldsymbol{Q})$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion $G=\exp \left(-(r Q)^{2}\right)$
$\cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]$
Gaussian if $\kappa=0$

$$
\kappa=0.71 \pm 0.06
$$

- symmetric Lévy

$$
\begin{gathered}
G=\exp \left(-|r Q|^{\alpha}\right) \\
0<\alpha \leq 2 \\
\alpha=1.34 \pm 0.04
\end{gathered}
$$

Poor χ^{2}. Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$

The τ-model

- Assume avg. production point is related to momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$
$\tau=\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}}$ is the "longitudinal" proper time and $m_{t}=\sqrt{E^{2}-p_{z}^{2}}$ is the "transverse" mass

- Let $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ. Then the emission function is

$$
S(x, p)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-a \tau p) \rho_{1}(p)
$$

- In the plane-wave approx.
F.B.Yano, S.E.Koonin, Phys.Lett.B78(1978)556.
$\rho_{2}\left(p_{1}, p_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left(1+\cos \left(\left[p_{1}-p_{2}\right]\left[x_{1}-x_{2}\right]\right)\right)$
- Assume $\delta_{\Delta}(x-a \tau p)$ is very narrow - a δ-function. Then
$R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)$

BEC in the $\boldsymbol{\tau}$-model

- Assume a Lévy distribution for $H(\tau)$

Since no particle production before the interaction, $H(\tau)$ is one-sided.
Characteristic function is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$ where

- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}
$R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right.$

$$
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
$$

BEC in the τ-model

$$
\begin{aligned}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\{1+\lambda \cos [& \left.\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right] \\
& \left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{aligned}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then
$R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)$ where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

2-jet Results on Simplified τ-model from L3 Z decay

3-jet Results on Simplified τ-model from L3 Z decay

, R-summary

Full τ-model for 2-jet events - $a=1 / m_{\mathrm{t}}$

$R_{2}\left(Q, m_{11}, m_{12}\right)=\gamma\{1+\lambda \cos$	$\left.\frac{o^{\alpha}\left(m_{1}+m_{2}\right)}{2\left(m_{1} m_{2}\right)}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta T Q^{2}}{2}\right)^{\alpha} \frac{m_{+}^{\alpha}+m_{2}^{\alpha}}{2\left(m_{1} m_{2}\right)^{\alpha}}\right]$
	$\left.\exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{m_{i}^{\alpha}+m_{2}^{\alpha}}{2\left(m_{1} m_{2}\right)^{\alpha}}\right]\right\} \cdot(1+\epsilon Q)$

- Fit $R_{2}(Q)$ using avg $m_{\mathrm{t}_{1}}, m_{\mathrm{t} 2}$ in each Q bin, $m_{\mathrm{t} 1}>m_{\mathrm{t} 2}$
- $\tau_{0}=0.00 \pm 0.02$
so fix to 0
- $\chi^{2} / \mathrm{dof}=90 / 95$

Full τ-model for 2 -jet events

- τ-model predicts dependence on $m_{\mathrm{t}}, R_{2}\left(Q, m_{\mathrm{t} 1}, m_{\mathrm{t} 2}\right)$
- Parameters $\alpha, \Delta \tau, \tau_{0}$ are independent of m_{t}
- λ (strength of BEC) can depend on m_{t}

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $R_{\text {side }} / R_{\mathrm{L}} \approx 0.64$
- But we find that Gaussian and Edgeworth fit $R_{2}(Q)$ poorly
- τ-model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function?
or is the τ-model in need of modification?
- So, we modify ad hoc the τ-model description to allow elongation (more on this later)
- and find $R_{\text {side }} / R_{\mathrm{L}}=0.61 \pm 0.02$ - elongation is real
- Perhaps, a should be different for transverse/longitudinal

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}, \quad a=1 / m_{\mathrm{t}} \text { for 2-jet }
$$

Outline

New stuff - very preliminary

Are BEC sensitive to jet structure?

Jets

- Jets - Durham algorithm
- y_{23} is value of $y_{\text {cut }}$ where number of jets changes from 2 to 3
- force event to have 3 jets
- define regions of y_{23} :

$y_{23}<0.002$	narrow two-jet
$0.002<y_{23}<0.006$	less narrow two-jet
$0.006<y_{23}<0.018$	narrow three-jet
$0.018<y_{23}$	wide three-jet

or
$\begin{array}{ll}0.002<y_{23}<0.006 & \text { less narrow two-jet } \\ 0.006<y_{23}<0.018 & \text { narrow three-jet } \\ 0.018<y_{23} & \text { wide three-jet }\end{array}$
$y_{23}<0.006$ two-jet

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.443$

Jets

- R increases as number of jets increases
- or as jets become more separated

Jets - Elongation

Results in LCMS frame: Longitudinal = Thrust axis

$$
\begin{array}{cc}
& R_{\mathrm{L}} / R_{\text {side }} \\
\text { L3 } & 1.25 \pm 0.03_{-0.05}^{+0.36} \\
\text { OPAL } & 1.19 \pm 0.03_{-0.01}^{+0.08}
\end{array}
$$

(ZEUS finds similar results in ep) $\sim 25 \%$ elongation along thrust axis

OPAL:
Elongation larger for narrower jets

LCMS and the Simplified τ-model

Consider 2 frames:

1. LCMS:

$$
Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}
$$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{1 \text { out }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

2. LCMS-rest: $Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+q_{\text {out }}^{2}, \quad q_{\text {out }}^{2}=Q_{\text {out }}^{2}\left(1-\beta^{2}\right)$ $q_{\text {out }}$ is $Q_{\text {out }}$ boosted (β) along out direction to rest frame of pair
In simplified τ-model, replace $R^{2} Q^{2}$ by
3. $A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
4. $B^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+r_{\text {out }}^{2} q_{\text {out }}^{2}$

Then in τ-model, for case 1 :

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma & {\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right] } \\
& \cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
\end{aligned}
$$

and comparable expression for case $2, R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, q_{\text {out }}\right)$

L3 preliminary Jets - Elongation

Note:
$R_{\text {side }}<R_{\text {L }}$ $r_{\text {out }}>R_{\mathrm{L}}$ Not azimuthally symmetric not even for narrow 2-jet trigger bias??

With increasing $y_{23}, R_{\mathrm{L}}, \rho_{\text {out }} \approx$ constant, $\quad R_{\text {side }}, r_{\text {out }}$ increase narrow 2-jet limit: $\quad R_{\text {side }} \approx R_{\mathrm{L}} / 2 \quad r_{\text {out }} \approx 1.1 R_{\mathrm{L}}$ wide 3-jet limit: $\quad R_{\text {side }} \approx R_{\mathrm{L}} \quad r_{\text {out }} \approx 1.4 R_{\mathrm{L}}$

ϕ major-out

- event plane \equiv (thrust,major)
- out direction tends to be in the event plane
out \approx in
- side direction tends to be out of the plane side \approx out
- this tendency increases with y_{23}
- suggests that lack of azimuthal symmetry is due to difference in fragmentation in and out of the event plane

in/out of event plane

$$
\begin{array}{ll}
\text { use only tracks with } & \phi \text { (trk-major) }<45^{\circ} \quad \text { in plane } \\
& \phi \text { (trk-major) }>45^{\circ} \quad \text { out of plane }
\end{array}
$$

L3 preliminary
R larger in the event plane

New Stuff - Summary

$$
\begin{array}{ccc}
& \text { narrow 2-jet limit } & \text { wide 3-jet limit } \\
R \approx & 0.7 \mathrm{fm} & 0.9 \mathrm{fm} \\
R_{\mathrm{L}} \approx & 0.9 \mathrm{fm} \text { - constant } \\
\rho_{\text {out }} \approx & 0.66 \mathrm{fm} \text { - constant } \\
& R_{\text {side }} \approx R_{\mathrm{L}} / 2 & R_{\text {side }} \approx R_{\mathrm{L}} \\
& r_{\text {out }} \approx 1.1 R_{\mathrm{L}} & r_{\text {out }} \approx 1.4 R_{\mathrm{L}} \\
& \text { out direction } \approx \text { in event plane } \\
& \text { side direction } \approx \text { out of event plane } \\
& R \text { in } \approx R \text { out of plane } R \text { in }>R \text { out of plane }
\end{array}
$$

Acknowledgments

- Tamás Novák, Tamás Csörgő, Wolfram Kittel were instrumental for the 'Old Stuff'
- I take full responsibility for the 'New Stuff'

