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BEC – ‘Classic’ Parametrizations

R2 = ρ(p1,p2)
ρ0(p1,p2) = γ · [1 + λG] · (1 + εQ)

• Gaussian
G = exp

(
−(rQ)2

)
• Edgeworth expansion

G = exp
(
−(rQ)2

)
·
[
1 + κ

3! H3(rQ)
]

Gaussian if κ = 0 κ = 0.71± 0.06
• symmetric Lévy

G = exp (−|rQ|α) , 0 < α ≤ 2
α is index of stability
Gaussian if α = 2 α = 1.34± 0.04

Cannot accomodate the the dip of R2 in
the region 0.6 < Q < 1.5 GeV

L3, EPJC 71 (2011) 1648

Gauss Edgew Lévy
CL: 10−15 10−5 10−8
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The τ -model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.B663(2008)214
T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

• Assume avg. production point is related to momentum:
xµ(pµ) = a τpµ

where for 2-jet events, a = 1/mt

τ =

√
t2 − r 2

z is the “longitudinal” proper time
and mt =

√
E2 − p2

z is the “transverse” mass

• Let δ∆(xµ − xµ) be dist. of production points about their mean,
and H(τ) the dist. of τ . Then the emission function is

S(x ,p) =
∫∞

0 dτH(τ)δ∆(x − a τp)ρ1(p)

• In the plane-wave approx. F.B.Yano, S.E.Koonin, Phys.Lett.B78(1978)556.

ρ2(p1,p2) =
∫

d4x1d4x2S(x1,p1)S(x2,p2)
(
1 + cos

(
[p1 − p2] [x1 − x2]

) )
• Assume δ∆(xµ − xµ) is very narrow — a δ-function. Then

R2(p1,p2) = 1 + λReH̃
(

a1Q2

2

)
H̃
(

a2Q2

2

)
, H̃(ω) =

∫
dτH(τ) exp(iωτ)
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BEC in the τ -model

• Assume a Lévy distribution for H(τ)
Since no particle production before the interaction, H(τ) is one-sided.
Characteristic function is

H̃(ω) = exp
[
− 1

2

(
∆τ |ω|

)α (1− i sign(ω) tan
(
απ
2

) )
+ i ωτ0

]
, α 6= 1

where
• α is the index of stability, 0 < α ≤ 2;
• τ0 is the proper time of the onset of particle production;
• ∆τ is a measure of the width of the distribution.

• Then, R2 depends on Q,a1,a2

R2(Q, a1, a2) = γ

{
1 + λ cos

[
τ0Q2(a1 + a2)

2
+ tan

(απ
2

)(∆τQ2

2

)α
aα

1 + aα
2

2

]
· exp

[
−
(

∆τQ2

2

)α
aα

1 + aα
2

2

]}
· (1 + εQ)
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BEC in the τ -model

R2(Q, a1, a2) = γ
{

1 + λ cos
[
τ0Q2(a1+a2)

2 + tan
(
απ
2

) (
∆τQ2

2

)α aα1 +aα2
2

]
· exp

[
−
(

∆τQ2

2

)α aα1 +aα2
2

]}
· (1 + εQ)

Simplification:

• effective radius, R, defined by R2α =
(

∆τ
2

)α aα1 +aα2
2

• Particle production begins immediately, τ0 = 0
• Then

R2(Q) = γ
[
1 + λ cos

(
(RaQ)2α

)
exp

(
− (RQ)2α

)]
· (1 + εQ)

where R2α
a = tan

(
απ
2

)
R2α

Compare to sym. Lévy parametrization:
R2(Q) = γ

[
1 + λ exp

(
−|rQ| α

)]
(1 + εQ)

• R describes the BEC peak
• Ra describes the anticorrelation dip
• τ -model: both anticorrelation and BEC are related to ‘width’ ∆τ of H(τ)

ISMD XLV p. 5
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2-jet Results on Simplified τ -model from L3 Z decay
R2α

a = tan
(
απ
2

)
R2α

χ2/dof = 95/95
Ra free

χ2/dof = 91/94

R2α
a = tan

(
απ
2

)
R2α agrees well with data L3, EPJC 71 (2011) 1648
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3-jet Results on Simplified τ -model from L3 Z decay
R2α

a = tan
(
απ
2

)
R2α

χ2/dof = 113/95
CL = 10%

Ra free
χ2/dof = 84/94

R2α
a = tan

(
απ
2

)
R2α agrees less well with data L3, EPJC 71 (2011) 1648
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BEC in e+e− and pp
Use (mostly) simplified τ -model
with τ0 = 0
• L3: e+e− at

√
s = MZ

• 0.8 · 106 events
• Durham ycut = 0.006:

0.5 · 106 2-jet events
0.3 · 106 > 2 jets, “3-jet”

• mixed event ref. sample

• ATLAS: pp at
√

s = 7 TeV
Astaloš thesis http://hdl.handle.net/2066/143448

• 107 min. bias events
• |η| < 2.5
• opposite hemisphere

ref. sample

Results are preliminary (unpublished)
and not approved by the collaborations

BOSE-EINSTEIN CORRELATIONS

IN 7 TEV PROTON-PROTON COLLISIONS

IN THE ATLAS EXPERIMENT
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2-jet e+e− – All pp min. bias
L3 2-jet

R2α
a = tan

(
απ
2

)
R2α

χ2/dof = 95/95
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anticorrelation region also in pp – only τ -model with Ra free describes it
BEC peak best described by τ -model with Ra free and sym. Lévy
BEC peak next best described by a quantum optical exponential parametrization
and by τ -model χ2(Q ≤ 0.36) = 115, 116, 157, 186
Only τ -model with Ra free describes entire range of Q

ISMD XLV p. 9
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Multiplicity dependence
e+e− simplified τ -model pp, various parametrizations

sym. Lévy
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pp: shape of R vs. Nch nearly independent of
parametrization
pp: value of R is different – different meaning in
parametrizations
shape in e+e− similar to pp
different ref. samples give similar shapes
except ULS flattens at high Nch

exponential
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Dependence on kt = pt pair/2 = | ~pt1 + ~pt2|/2
pp – conventional parametrizations
Un-Like Sign ref. sample

exponential

 466 Page 10 of 25 Eur. Phys. J. C   (2015) 75:466 
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Fig. 5 The kT dependence of the fitted parameters: a λ and b

R obtained from the exponential fit to two-particle double-ratio at√
s =0.9, 7 and 7 TeV high-multiplicity events. The average transverse

momentum kT of the particle pairs is defined as kT = |pT,1 + pT,2|/2.

The solid, dashed and dash-dotted curves are results of the exponen-

tial fits for 0.9, 7 and 7 TeV high-multiplicity data, respectively. The

results are compared to the corresponding measurements by the E735

experiment at the Tevatron [80], and by the STAR experiment at RHIC

[81]. The error bars represent the quadratic sum of the statistical and

systematic uncertainties
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Fig. 6 The kT dependence of the fitted parameters: a λ and b R

obtained from the exponential fit to the two-particle double-ratio cor-

relation function R2(Q) at
√

s = 7 TeV for the different multiplic-

ity regions: 2 ≤ nch ≤ 9 (circles), 10 ≤ nch ≤ 24 (squares),

25 ≤ nch ≤ 80 (triangles) and 81 ≤ nch ≤ 125 (inverted triangles).

The average transverse momentum kT of the particle pairs is defined as

kT = |pT,1 + pT,2|/2. The error bars represent the quadratic sum of

the statistical and systematic uncertainties

estimates the production and decay of the ω-meson in the Q

region of 0.3–0.44 GeV. This region is thus excluded from

the fit range for kT > 500 MeV bin results.

In the region most important for the BEC parameters, the

quality of the exponential fit is found to deteriorate as kT

increases. This is due to the fact that at large kT values, the

characteristic BEC peak becomes steeper than the exponen-

tial function can accommodate. Despite the deteriorating fit

quality, the behaviour of the fitted parameters is presented

for comparison with previous experiments.

The fit values of the λ and R parameters are shown in Fig. 5

as a function of kT. The values of both λ and R decrease with

increasing kT.

The decrease of λ with kT is well described by an expo-

nential function, λ(kT) = µ e−νkT . The kT dependence of the

R parameter is also found to follow an exponential decrease,

R(kT) = ξ e−κkT . The shapes of the kT dependence are sim-

ilar for the 7 TeV and the 7 TeV high-multiplicity data. The

results of the fits are presented in Table 2.

In Fig. 5b, the kT dependence of the R parameter is

compared to the measurements performed by the E735 [80]

and the STAR [81] experiments with mixed-event reference

samples. These earlier results were obtained from Gaus-

sian fits to the single-ratio correlation functions and there-

fore the values of the measured radius parameters are mul-

tiplied by
√

π as discussed in Sect. 2.4. The values of the

123

ATLAS, Eur.Phys.J.C(2015)75:466

OHP ref. sample
sym. Lévy
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Astaloš thesis

• exponential parametrization:
ULS ref. sample: R decreases with kt (all Nch)
with other ref. samples, R is first constant, then
increasing with kt

• other ‘classic parametrizations’: R increases
with kt

exponential
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kt = | ~pt1 + ~pt2|/2 dependence

simplified τ -model

e+e−, w.r.t. thrust axis
Ra constrained e+e−, Ra free

pp, w.r.t. beam direction
Ra free
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in e+e− dependence of R on kt depends on ‘jettiness’
in e+e− 3-jet R decreases with kt.
in e+e− 2-jet and in pp R first increases slightly and then falls with kt.
kt dependence of R is dependent on parametrization and on ref. sample

ISMD XLV p. 12
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Dependence on the Rapidity of the pair

e+e−, + thrust axis = hemisphere of jet with highest E qq
g

• Rall y and Ry<−1
increase with y23

• but Ry>1 constant
with y23

• 2-jet: Ry>1 = Ry<−1

Conclusion: Increase in
R is mainly due to gluon
R−1<y<1 > Ry>|1| for 2-jet
gluon mini-jet in ‘2-jet sam-
ple’?

ISMD XLV p. 13
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Simplified τ -model in LCMS

In τ -model: R2Q2 =⇒ R2
LQ2

L + R2
sideQ

2
side + R2

outQ2
out

• RL constant with y23 Rside increases with y23

Conclusion: Increase in R is mainly due to increase in transverse plane
Agrees with conclusion that increase is mainly due to harder gluon:
Gluon makes event ‘fatter’

ISMD XLV p. 14
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Effect of fit range

Besides ref. sample, another large systematic effect is the choice of fit range
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Using the opposite hemisphere ref. sample,
and Exponential parametrization:
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2 - 2.02± 0.01 0.70± 0.01
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(c)

QU = 2, 3: baseline tries to describe
anticorrelation
QU larger, with excluded regions can
lead to stable results,
but this is simply bricolage
and it is a long extrapolation
Parametrization is just wrong
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Effect of fit range
Better to use a parametrization that fits (better): τ -model with Ra free
and QU sufficiently beyond the anticorrelation region
Using the opposite hemisphere ref. sample,
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QU 2 GeV 3 GeV 4 GeV 5 GeV
α 0.108± 0.001 0.186± 0.005 0.235± 0.003 0.261± 0.003

R (fm) 17.8± 0.7 6.7± 0.5 4.1± 0.2 3.3± 0.1
Ra (fm) 43.4± 1.2 3.0± 0.2 1.80± 0.04 1.52± 0.02
λ 3.08± 0.05 1.91± 0.10 1.36± 0.05 1.15± 0.03

• much less dependent on fit range than other parametrizations
• α quite different from e+e− 2-jet value of 0.41± 0.02+0.04

−0.06
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Anti-Correlation Region

In addition to L3 observation of anticorrelation in e+e− (Ecms = MZ),
CMS has observed it in pp min. bias at 7 TeV JHEP 05 (2011) 29

Now it is also seen in ATLAS data (Astaloš thesis)

In addition to / Instead of the space-momentum correlation of the τ -model,
anti-correlation can also be caused by the finite size of pions Białas, Zalewski

Detailed investigation of the anti-correlation may resolve this.

Use simplified τ -model, τ0 = 0 to investigate anticorrelation region
in e+e−: L3 data, 0.8 · 106 events,
in pp: ATLAS data (Astaloš thesis) 107 events, |η| < 2.5

We compare fit results with Ra free, since they provide the best description of
the anti-correlation dip.

ISMD XLV p. 17
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Anti-Correlation Region
e+e− jet dependence:

Going from narrow 2-jet to wide 3-jet,
anticorrelation region becomes deeper and moves slightly lower in Q

ISMD XLV p. 18
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Anti-Correlation Region – Multiplicity dependence
e+e−2-jet (y J

23 < 0.023) pp min. bias

anticorrelation region is deeper and at higher Q in e+e− than in pp
with increasing N minimum moves to lower Q (effect is larger in pp than in e+e−)

and becomes less deep (also seen by CMS)
ISMD XLV p. 19
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Anti-Correlation Region – kt dependence
e+e−2-jet (y J

23 < 0.023) pp min. bias

in e+e− anticorrelation region shows little or no dependence on kt
in pp the depth decreases with kt
but the position of the minimum is approx. constant

ISMD XLV p. 20
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Conclusions/Comments/Lessons
1. τ -model

• τ -model is closely related to a string picture
• strong x-p correlation
• fractal - Lévy distribution

• BEC in pp (CMS, Astaloš ATLAS thesis) are described by simplified τ -model formula
Of all parametrizations tried, only τ -model with Ra free describes the data.

• suggests that BEC in pp is (mostly) from string fragmentation
2. Ref. sample is important

• Comparison of results using different ref. samples is very problematic
• Agreement among LHC expts. would facilitate comparisons, e.g.,

• central rapidity vs. forward rapidity
• pp, pA, AA

3. Anticorrelation region is important
• To study it

• Look beyond Q = 2 GeV – at least to 3, preferably to 4 or 5 GeV
• Do not use Unlike-Sign ref. sample

• It depends on Nch, kt, jets. What else ?
• Is space-momentum correlation, as in the τ -model, the correct explanation?

4. R depends on
• in e+e−: Njets, Nch, kt, rapidity
• in pp: Nch, kt.

Also on (mini)jets, rapidity, color reconnection, Nstrings, color ropes?
ISMD XLV p. 21
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ADDITIONAL MATERIAL
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Quantum Optics parametrizations

In addition to ‘classic’ and τ -model parametrizations,
Róbert Astaloš’s thesis includes fits of parametrizations based on a quantum
optical approach Weiner, Phys. Rep. 327 (2000) 249

• Gaussian

R2(Q) ∝ 1 + 2p(1− p) exp(−R2Q2) + p2 exp(−2R2Q2)

• Lorentzian in R, exponential in Q

R2(Q) ∝ 1 + 2p(1− p) exp(−RQ) + p2 exp(−2RQ)

p is the degree of chaoticity of the pion emission
Note that for p = λ = 1 these reduce to the ‘classical’ Gaussian and exponential
parametrizations
Like the ‘classical’ parametriazations, these parametrizations cannot
accomodate anticorrelation

ISMD XLV p. 23
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Dependence on kt = pt pair/2 = | ~pt1 + ~pt2|/2
pp – conventional parametrizations
Un-Like Sign ref. sample

exponential

The ATLAS Collaboration: Two-particle Bose–Einstein correlations 11
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Fig. 5. The kT dependence of the fitted parameters (a) λ and (b) R obtained from the exponential fit to two-particle double-
ratio at

√
s =0.9 TeV, 7 TeV and 7 TeV high-multiplicity events. The average transverse momentum kT of the particle pairs is

defined as kT = |pT,1 +pT,2|/2. The solid, dashed and dash-dotted curves are results of the exponential fits at 0.9 TeV, 7 TeV
and 7 TeV HMT, respectively. The results are compared to the corresponding measurements by the E735 experiment at the
Tevatron [69], and by the STAR experiment at RHIC [70]. The error bars represent the quadratic sum of the statistical and
systematic uncertainties.
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Fig. 6. The kT dependence of the fitted parameters (a) λ and (b) R obtained from the exponential fit to the two-particle
double-ratio correlation function R2(Q) at

√
s = 7 TeV for the different multiplicity regions: 2 ≤ nch ≤ 9 (circles), 10 ≤ nch ≤ 24

(squares), 25 ≤ nch ≤ 80 (triangles) and 81 ≤ nch ≤ 125 (inverted triangles). The average transverse momentum kT of the
particle pairs is defined as kT = |pT,1 + pT,2|/2. The error bars represent the quadratic sum of the statistical and systematic
uncertainties.
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Figure 1: 1-D single ratios as a function of Qinv for data and Monte Carlo
(Pythia 6-Z2 tune) from to pp collisions at 2.76 TeV are shown (left), as well as
the corresponding double ratio superimposed by the exponential fit (right).
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Figure 3: Comparative plots with results in Ref. [4]. Left: Rinv versus < Nch >
(acceptance and efficiency corrected), for pp collisions at 2.76 and 7 TeV (fit

curves are proportional to N
1/3
ch ). The inner error bars represent statistical

uncertainties and the outer ones, statistical and systematic uncertainties added
in quadrature. Right: The anticorrelation’s depth, ∆, versus < Nch >.
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TauModel L3-Atlas anticor conclusion BACKUP

Jets and Rapidity
order jets by energy: E1 > E2 > E3
Note: thrust only defines axis |~nT|, not its direction.
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere
rapidity, yE, of particles from
jet 1, jet 2, jet 3: q

q

g
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• yE > 1 almost all jet 1 almost all quark
• yE < −1 mostly jet 2, some jet 3 mostly quark
• −1 < yE < 1 jet-3 enriched largely gluonISMD XLV p. 25



TauModel L3-Atlas anticor conclusion BACKUP

Simplified τ -model in LCMS

In τ -model: R2Q2 =⇒ R2
LQ2

L + R2
sideQ

2
side + R2

outQ2
out

• Durham, JADE agree
• RL constant with y23 Rside increases with y23

Conclusion: Increase in R is mainly due to increase in transverse plane
Agrees with conclusion that increase is mainly due to harder gluon:
Gluon makes event ‘fatter’
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TauModel L3-Atlas anticor conclusion BACKUP

Jets

Jets — JADE and Durham algorithms
• force event to have 3 jets:

• normally stop combining when all ‘distances’
between jets are > ycut

• instead, stop combining when there are only 3
jets left

• y23 is the smallest ‘distance’ between any 2 of
the 3 jets

• y23 is value of ycut where number of jets
changes from 2 to 3

log10(y23) Durham
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define regions of yD
23 (Durham):

yD
23 < 0.002 narrow two-jet or

0.002 < yD
23 < 0.006 less narrow two-jet yD

23 < 0.006 two-jet
0.006 < yD

23 < 0.018 narrow three-jet 0.006 < yD
23 three-jet

0.018 < yD
23 wide three-jet

and similarly for y J
23 (JADE): 0.009, 0.023, 0.056
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TauModel L3-Atlas anticor conclusion BACKUP

Results from R2,
√

s = MZ (Gaussian parametrization)

– correction for π purity increases λ
– mixed ref. gives smaller λ, r than + – ref. – Average means little

ISMD XLV p. 28
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