The τ-model of Bose-Einsten Correlations Some Recent Results

W.J. Metzger

Radboud University Nijmegen
XLV Symposium on Multiparticle Dynamics
Wildbad Kreuth
4-9 October 2015

BEC - 'Classic' Parametrizations

$R_{2}=\frac{\rho\left(p_{1}, p_{2}\right)}{\rho_{0}\left(p_{1}, p_{2}\right)}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon Q)$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion

$$
G=\exp \left(-(r Q)^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]
$$

Gaussian if $\kappa=0 \quad \kappa=0.71 \pm 0.06$

- symmetric Lévy

$$
G=\exp \left(-|r Q|^{\alpha}\right), \quad 0<\alpha \leq 2
$$

α is index of stability
Gaussian if $\alpha=2 \alpha=1.34 \pm 0.04$
Cannot accomodate the the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$

	Gauss	Edgew
CL: Lévy		
10^{-15}	10^{-5}	10^{-8}

The τ-model

- Assume avg. production point is related to momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$

$$
\begin{aligned}
\tau & =\sqrt{\bar{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time } \\
\text { and } m_{\mathrm{t}} & =\sqrt{E^{2}-p_{z}^{2}} \text { is the "transverse" mass }
\end{aligned}
$$

- Let $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ be dist. of production points about their mean, and $H(\tau)$ the dist. of τ. Then the emission function is

$$
S(x, p)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-a \tau p) \rho_{1}(p)
$$

- In the plane-wave approx.
F.B. Yano, S.E.Koonin, Phys.Lett.B78(1978)556.

$$
\rho_{2}\left(p_{1}, p_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left(1+\cos \left(\left[p_{1}-p_{2}\right]\left[x_{1}-x_{2}\right]\right)\right)
$$

- Assume $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ is very narrow - a δ-function. Then

$$
R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

BEC in the $\boldsymbol{\tau}$-model

- Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$

where

- α is the index of stability, $0<\alpha \leq 2$;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}

$$
\begin{aligned}
R_{2}\left(Q, a_{1}, a_{2}\right)= & \gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
& \left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{aligned}
$$

BEC in the $\boldsymbol{\tau}$-model

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{\alpha}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left(-|r Q|^{\alpha}\right)\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

ISMD XLV p. 6

BEC in $\mathbf{e}^{+} \mathbf{e}^{-}$and $\mathbf{p p}$

Use (mostly) simplified τ-model with $\tau_{0}=0$

- L3: $\mathrm{e}^{+} \mathrm{e}^{-}$at $\sqrt{s}=M_{\mathrm{Z}}$
- $0.8 \cdot 10^{6}$ events
- Durham $y_{\text {cut }}=0.006$: $0.5 \cdot 10^{6}$ 2-jet events $0.3 \cdot 10^{6}>2$ jets, " 3 -jet"
- mixed event ref. sample
- ATLAS: pp at $\sqrt{s}=7 \mathrm{TeV}$ Astaloš thesis hitp:/hd.l.handle.netr2066/143448
- $10^{7} \mathrm{~min}$. bias events
- $|\eta|<2.5$
- opposite hemisphere ref. sample
Results are preliminary (unpublished) and not approved by the collaborations

Bose-Einstein correlations

IN 7 TEV PROTON-PROTON COLLISIONS
IN THE ATLAS EXPERIMENT

Doctoral thesis
to obtain the degree of doctor
from Radboud University Nijmegen on the authority of the Rector Magnificus prof. dr. Th.L.M. Engelen, according to the decision of the Council of Deans
and
from Comenius University Bratislava
on the authority of the Rector Magnificus prof. RNDr. Karol Mičieta, PhD.
to be defended in public on Wednesday, September 30, 2015
at 10:30 hrs
by

Róbert Astaloš

born on December 28, 1985
in Banská Bystrica, Slovakia

2-jet $\mathrm{e}^{+} \mathrm{e}^{-}$- All pp min. bias

anticorrelation region also in pp - only τ-model with $R_{\mathrm{a}}{ }^{\text {affeee }}{ }^{\circ} \mathrm{describes}$ it BEC peak best described by τ-model with R_{a} free and sym. Lévy BEC peak next best described by a quantum optical exponential parametrization and by τ-model $\quad \chi^{2}(Q \leq 0.36)=115,116,157,186$ Only τ-model with R_{a} free describes entire range of Q

Multiplicity dependence

$$
\mathrm{e}^{+} \mathrm{e}^{-} \text {simplified } \tau \text {-model }
$$

pp, various parametrizations
sym. Lévy

quantum optical exp

exponential

Dependence on $\boldsymbol{k}_{\mathrm{t}}=\boldsymbol{p}_{\mathrm{t} \text { pair }} / \mathbf{2}=\left|\overrightarrow{\boldsymbol{p}_{\mathrm{t} 1}}+\overrightarrow{\boldsymbol{p}_{\mathrm{t} 2}}\right| / \mathbf{2}$

pp - conventional parametrizations

Un-Like Sign ref. sample exponential

ATLAS, Eur.Phys.J.C(2015)75:466
sym. Lévy
 Astaloš thesis

- exponential parametrization: ULS ref. sample: R decreases with k_{t} (all $N_{\text {ch }}$) with other ref. samples, R is first constant, then increasing with k_{t}
- other 'classic parametrizations': R increases with k_{t}

$\boldsymbol{k}_{\mathrm{t}}=\left|\overrightarrow{\boldsymbol{p}_{\mathrm{t} 1}}+\overrightarrow{\boldsymbol{p}_{\mathbf{t} 2}}\right| / 2$ dependence

simplified τ-model
$\mathrm{e}^{+} \mathrm{e}^{-}$, w.r.t. thrust axis
$R_{\text {a }}$ constrained

$$
\mathrm{e}^{+} \mathrm{e}^{-}, R_{\mathrm{a}} \text { free }
$$

pp, w.r.t. beam direction

in $\mathrm{e}^{+} \mathrm{e}^{-}$dependence of R on k_{t} depends on 'jettiness' in $\mathrm{e}^{+} \mathrm{e}^{-} 3$-jet R decreases with k_{t}. in $\mathrm{e}^{+} \mathrm{e}^{-} 2-\mathrm{jet}$ and in pp R first increases slightly and then falls with k_{t}. k_{t} dependence of R is dependent on parametrization and on ref. sample

Dependence on the Rapidity of the pair

$\mathrm{e}^{+} \mathrm{e}^{-},+$thrust axis $=$hemisphere of jet with highest E

Simplified τ-model in LCMS

$$
\text { In } \tau \text {-model: } R^{2} Q^{2} \Longrightarrow R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+R_{\text {out }}^{2} Q_{\text {out }}^{2}
$$

- R_{L} constant with y_{23}

$R_{\text {side }}$ increases with y_{23}

Conclusion: Increase in R is mainly due to increase in transverse plane Agrees with conclusion that increase is mainly due to harder gluon:
Gluon makes event 'fatter'

Effect of fit range

Besides ref. sample, another large systematic effect is the choice of fit range

Using the opposite hemisphere ref. sample, and Exponential parametrization:

$Q_{\mathrm{U}}(\mathrm{GeV})$	Q excl.	$R(\mathrm{fm})$	λ
2	-	2.02 ± 0.01	0.70 ± 0.01
3	-	2.28 ± 0.01	0.78 ± 0.01
4	$0.5-3.0$	2.30 ± 0.02	0.77 ± 0.01
5	$0.5-4.0$	2.29 ± 0.02	0.76 ± 0.01

$Q_{\mathrm{U}}=2,3$: baseline tries to describe
anticorrelation
Q_{U} larger, with excluded regions can lead to stable results, but this is simply bricolage and it is a long extrapolation
${ }_{0} \mathrm{ICOONH}^{2}$
(c)

Parametrization is just wrong

Effect of fit range

Better to use a parametrization that fits (better): τ-model with R_{a} free and Q_{u} sufficiently beyond the anticorrelation region Using the opposite hemisphere ref. sample,

Q_{U}	2 GeV	3 GeV	4 GeV	5 GeV
α	0.108 ± 0.001	0.186 ± 0.005	0.235 ± 0.003	0.261 ± 0.003
$R(\mathrm{fm})$	17.8 ± 0.7	6.7 ± 0.5	4.1 ± 0.2	3.3 ± 0.1
$R_{\mathrm{a}}(\mathrm{fm})$	43.4 ± 1.2	3.0 ± 0.2	1.80 ± 0.04	1.52 ± 0.02
λ	3.08 ± 0.05	1.91 ± 0.10	1.36 ± 0.05	1.15 ± 0.03

- much less dependent on fit range than other parametrizations
- α quite different from $\mathrm{e}^{+} \mathrm{e}^{-2}$-jet value of $0.41 \pm 0.02_{-0.06}^{+0.04}$

Anti-Correlation Region

In addition to L 3 observation of anticorrelation in $\mathrm{e}^{+} \mathrm{e}^{-}\left(E_{\mathrm{cms}}=M_{\mathrm{Z}}\right)$, CMS has observed it in pp min. bias at 7 TeV JHEP o5 (2011) 29
Now it is also seen in ATLAS data
(Astaloš thesis)
In addition to / Instead of the space-momentum correlation of the τ-model, anti-correlation can also be caused by the finite size of pions

Detailed investigation of the anti-correlation may resolve this.

Use simplified τ-model, $\tau_{0}=0$ to investigate anticorrelation region in $\mathrm{e}^{+} \mathrm{e}^{-}$: L3 data, $0.8 \cdot 10^{6}$ events, in pp: ATLAS data (Astaloš thesis) 10^{7} events, $|\eta|<2.5$
We compare fit results with R_{a} free, since they provide the best description of the anti-correlation dip.

Anti-Correlation Region

$\mathrm{e}^{+} \mathrm{e}^{-}$jet dependence:

Going from narrow 2-jet to wide 3-jet, anticorrelation region becomes deeper and moves slightly lower in Q

Anti-Correlation Region - Multiplicity dependence
$\mathrm{e}^{+} \mathrm{e}^{-2-j e t}\left(y_{23}^{\mathrm{J}}<0.023\right)$

anticorrelation region is deeper and at higher Q in $\mathrm{e}^{+} \mathrm{e}^{-}$than in pp
with increasing N minimum moves to lower Q (effect is larger in pp than in $\mathrm{e}^{+} \mathrm{e}^{-}$) and becomes less deep (also seen by CMS)

in $\mathrm{e}^{+} \mathrm{e}^{-}$anticorrelation region shows little or no dependence on k_{t} in pp the depth decreases with k_{t} but the position of the minimum is approx. constant

Conclusions/Comments/Lessons

1. τ-model

- τ-model is closely related to a string picture
- strong $x-p$ correlation
- fractal - Lévy distribution
- BEC in pp (смs, Astaloš ATLAS thesis) are described by simplified τ-model formula Of all parametrizations tried, only τ-model with R_{a} free describes the data.
- suggests that BEC in pp is (mostly) from string fragmentation

2. Ref. sample is important

- Comparison of results using different ref. samples is very problematic
- Agreement among LHC expts. would facilitate comparisons, e.g.,
- central rapidity vs. forward rapidity
- pp, pA, AA

3. Anticorrelation region is important

- To study it
- Look beyond $Q=2 \mathrm{GeV}$ - at least to 3 , preferably to 4 or 5 GeV
- Do not use Unlike-Sign ref. sample
- It depends on $N_{\text {ch }}, k_{\mathrm{t}}$, jets. What else ?
- Is space-momentum correlation, as in the τ-model, the correct explanation?

4. R depends on

- in $\mathrm{e}^{+} \mathrm{e}^{-}: N_{\text {jets }}, N_{\text {ch }}, k_{\mathrm{t}}$, rapidity
- in pp: $N_{\mathrm{ch}}, k_{\mathrm{t}}$.

Also on (mini)jets, rapidity, color reconnection, $N_{\text {strings }}$, color ropes?

ADDITIONAL MATERIAL

Quantum Optics parametrizations

In addition to 'classic' and τ-model parametrizations,
Róbert Astaloš's thesis includes fits of parametrizations based on a quantum optical approach

- Gaussian

$$
R_{2}(Q) \propto 1+2 p(1-p) \exp \left(-R^{2} Q^{2}\right)+p^{2} \exp \left(-2 R^{2} Q^{2}\right)
$$

- Lorentzian in R, exponential in Q

$$
R_{2}(Q) \propto 1+2 p(1-p) \exp (-R Q)+p^{2} \exp (-2 R Q)
$$

p is the degree of chaoticity of the pion emission
Note that for $p=\lambda=1$ these reduce to the 'classical' Gaussian and exponential parametrizations
Like the 'classical' parametriazations, these parametrizations cannot accomodate anticorrelation

Dependence on $\boldsymbol{k}_{\mathrm{t}}=\boldsymbol{p}_{\mathrm{t} \text { pair }} / \mathbf{2}=\left|\overrightarrow{\boldsymbol{p}_{\mathrm{t} 1}}+\overrightarrow{\boldsymbol{p}_{\mathrm{t} 2}}\right| / \mathbf{2}$

pp - conventional parametrizations

 Un-Like Sign ref. sample exponential

ATLAS, Arxiv.1502.07947v1
MiX S. Padula, WPCF2014, ArXiv:1502.05757
sym. Lévy

Astaloš thesis
with ULS ref. sample, R decreases with k_{t} (all $N_{\text {ch }}$) with other ref. samples, R increases with k_{t}

OHP ref. sample
optical exponential

exponential

Jets and Rapidity

order jets by energy: $E_{1}>E_{2}>E_{3}$
Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction.
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere rapidity, y_{E}, of particles from jet 1, jet 2, jet 3:

- $y_{E}>1$ almost all jet 1
- $y_{E}<-1$ mostly jet 2 , some jet 3 ISMD XVVPD.251 $<v_{<}<1$ iet-3 enriched

almost all quark mostly quark Iaraelv aluon

Simplified τ-model in LCMS

In τ-model: $R^{2} Q^{2} \Longrightarrow R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+R_{\text {out }}^{2} Q_{\text {out }}^{2}$

- Durham, JADE agree
- R_{L} constant with y_{23}

$R_{\text {side }}$ increases with y_{23}

Conclusion: Increase in R is mainly due to increase in transverse plane Agrees with conclusion that increase is mainly due to harder gluon: Gluon makes event 'fatter'

Jets

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are only 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of $y_{\text {cut }}$ where number of jets changes from 2 to 3

define regions of y_{23}^{D} (Durham):

$$
\begin{array}{rllll}
& y_{23}^{\mathrm{D}}<0.002 & \text { narrow two-jet } & \text { or } & \\
0.002<y_{23}^{\mathrm{D}}<0.006 & \text { less narrow two-jet } & y_{23}^{\mathrm{D}}<0.006 & \text { two-jet } \\
0.006<y_{23}^{\mathrm{D}}<0.018 & \text { narrow three-jet } & 0.006<y_{23}^{\mathrm{D}} & \text { three-jet } \\
0.018<y_{23}^{\mathrm{D}} & \text { wide three-jet } & & \\
\text { and similarly for } y_{23}^{\mathrm{J}} & \text { (JADE): } 0.009,0.023,0.056 & &
\end{array}
$$

Results from $R_{2}, \sqrt{\boldsymbol{s}}=M_{Z}$

(Gaussian parametrization)

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than +- ref. - Average means little

