Quantum Field Theory 2: exercises for week 1

Exercise 1: generators for $S U(N)$ and $S O(N)$

Consider the Lie group $\operatorname{SU}(N)$ with elements $g=\mathrm{e}^{i \alpha^{a} T^{a}}$, where α^{a} are arbitrary real scalar parameters and T^{a} are the independent generators of the associated Lie algebra with fundamental commutation relations $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$. In the defining (fundamental) representation the group elements are given by $N \times N$ matrices U, with $U U^{\dagger}=1$ and $\operatorname{det} U=1$.
(a) Show that the $N \times N$ matrices T^{a} are hermitian and traceless. You might need that for a matrix M it holds that $\operatorname{det} M=\exp (\operatorname{Tr}(\ln M))$ and don't forget that the scalar parameters α^{a} can take on any real value.
(b) Count the independent degrees of freedom of the $N \times N$ matrices T^{a} to argue that $\mathrm{SU}(N)$ has $N^{2}-1$ independent generators, which implies that a runs from 1 to $N^{2}-1$.
(c) Prove that the structure constants $f^{a b c}$ are real.

Consider the subgroup $\mathrm{SO}(N) \subset \mathrm{SU}(N)$, with group elements that are given by $N \times N$ matrices O in the fundamental representation. These matrices additionally satisfy $O O^{T}=1$.
(d) Deduce that T^{a} is purely imaginary and that $\mathrm{SO}(N)$ has $\frac{1}{2} N(N-1)$ independent generators.

Each generator is linked to a gauge field in the Lagrangian of a local gauge theory. Knowing the number of generators for a group therefore immediately tells you the number of gauge fields (and therefore the number of new particles!) that you get when implementing that group in a local gauge theory.

Exercise 2: some handy $\boldsymbol{S U}(2)$ properties

Consider $U(x)=\exp \left(\frac{i}{2} \vec{\sigma} \cdot \vec{e}_{n} \theta(x)\right) \in S U(2)$, with $\theta(x) \in \mathbb{R}, \vec{e}_{n}$ a unit vector in \mathbb{R}^{3}, and

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \text { and } \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

the usual 2×2 Pauli spin matrices.
(a) Use the anticommutation (normalization) identity $\left\{\sigma^{j}, \sigma^{k}\right\}=2 \delta^{j k} I_{2}$, with I_{2} the 2×2 identity matrix, to show that $\left(\vec{\sigma} \cdot \vec{e}_{n}\right)^{2}=I_{2}$ and subsequently that

$$
U(x)=I_{2} \cos (\theta(x) / 2)+i \vec{\sigma} \cdot \vec{e}_{n} \sin (\theta(x) / 2)
$$

(b) Introduce a doublet field $\Phi(x)$ that transforms under $S U(2)$ according to

$$
\Phi(x) \rightarrow \Phi^{\prime}(x)=U(x) \Phi(x) .
$$

Prove that the conjugate doublet $\tilde{\Phi}(x) \equiv i \sigma^{2} \Phi^{*}(x)$, with * denoting complex conjugation and σ^{2} the second Pauli spin matrix, has the same $S U(2)$ transformation property as $\Phi(x)$.
Hint: first figure out what happens if you bring σ^{2} to the other side of $\left(\sigma^{j}\right)^{*}$ for all three values of j.

We will make explicit use of this observation during the discussion of the Higgs mechanism in the Standard Model.

