Quantum Field Theory 2: exercises for week 1

Exercise 1: generators for SU(N) and SO(N)

Consider the Lie group SU(N) with elements $g = e^{i\alpha^a T^a}$, where α^a are arbitrary real scalar parameters and T^a are the independent generators of the associated Lie algebra with fundamental commutation relations $[T^a, T^b] = if^{abc}T^c$. In the defining (fundamental) representation the group elements are given by $N \times N$ matrices U, with $UU^{\dagger} = 1$ and det U = 1.

- (a) Show that the $N \times N$ matrices T^a are hermitian and traceless. You might need that for a matrix M it holds that det $M = \exp(\operatorname{Tr}(\ln M))$ and don't forget that the scalar parameters α^a can take on any real value.
- (b) Count the independent degrees of freedom of the $N \times N$ matrices T^a to argue that SU(N) has N^2-1 independent generators, which implies that a runs from 1 to N^2-1 .
- (c) Prove that the structure constants f^{abc} are real.

Consider the subgroup $SO(N) \subset SU(N)$, with group elements that are given by $N \times N$ matrices O in the fundamental representation. These matrices additionally satisfy $OO^T = 1$.

(d) Deduce that T^a is purely imaginary and that SO(N) has $\frac{1}{2}N(N-1)$ independent generators.

Each generator is linked to a gauge field in the Lagrangian of a local gauge theory. Knowing the number of generators for a group therefore immediately tells you the number of gauge fields (and therefore the number of new particles!) that you get when implementing that group in a local gauge theory.

Exercise 2: some handy SU(2) properties

Consider $U(x) = \exp\left(\frac{i}{2}\vec{\sigma}\cdot\vec{e_n}\,\theta(x)\right) \in SU(2)$, with $\theta(x) \in \mathbb{R}$, $\vec{e_n}$ a unit vector in \mathbb{R}^3 , and

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

the usual 2×2 Pauli spin matrices.

(a) Use the anticommutation (normalization) identity $\{\sigma^j, \sigma^k\} = 2\delta^{jk}I_2$, with I_2 the 2 × 2 identity matrix, to show that $(\vec{\sigma} \cdot \vec{e_n})^2 = I_2$ and subsequently that

 $U(x) = I_2 \cos(\theta(x)/2) + i\vec{\sigma} \cdot \vec{e}_n \sin(\theta(x)/2).$

(b) Introduce a doublet field $\Phi(x)$ that transforms under SU(2) according to

$$\Phi(x) \to \Phi'(x) = U(x)\Phi(x).$$

Prove that the conjugate doublet $\tilde{\Phi}(x) \equiv i\sigma^2 \Phi^*(x)$, with * denoting complex conjugation and σ^2 the second Pauli spin matrix, has the same SU(2) transformation property as $\Phi(x)$.

Hint: first figure out what happens if you bring σ^2 to the other side of $(\sigma^j)^*$ for all three values of j.

We will make explicit use of this observation during the discussion of the Higgs mechanism in the Standard Model.