
Quantum Field Theory 2: exercises for week 6

Exercise 8: Gauge-boson masses in the Standard Model

Consider the gauged kinetic Higgs Lagrangian term (DµΦ)
†(DµΦ), with

DµΦ =
(

∂µ +
i

2
g ~σ · ~Wµ +

i

2
g′Bµ

)

Φ , (1)

where g is the SU(2)L gauge coupling, g′ the U(1)Y gauge coupling, W 1,2,3
µ the SU(2)L

gauge bosons, σ1,2,3 the Pauli spin matrices and Bµ the U(1)Y gauge boson.

(a) Insert the vacuum expectation value 〈Φ〉0 =

(

0

v/
√
2

)

in this lagrangian and use that

(~σ · ~f )2 = ~f 2I2 for arbitrary functions f1, f2 and f3, with I2 being the 2× 2 identity
matrix. Derive in this way the following expression for the gauge-boson mass terms:

(2)
LGB
mass =

1

2

{

1

4
v2g2

(

W 1
µW

1,µ +W 2
µW

2,µ
)

+
1

4
v2
(

g2W 3
µW

3,µ + g′
2
BµB

µ − gg′
[

W 3
µB

µ +BµW
3,µ

]

)

}

(b) The diagonalized gauge-boson mass terms read + 1
2

∑4

a=1 M
2
a V

a
µ V a,µ. Find the four

eigenvalues M2
a and express the corresponding eigenvectors V a

µ in terms of the original
fields W 1,2,3

µ and Bµ.

Hint : use matrix notation for LGB
mass.

(c) What do the eigenvalues and eigenvectors you found in (b) represent?

(d) What would change if we would have used instead of Φ a scalar doublet Φ̃ with opposite

hypercharge, such that 〈Φ̃〉0 =

(

v/
√
2

0

)

and DµΦ̃ =
(

∂µ + i
2
g ~σ · ~Wµ − i

2
g′Bµ

)

Φ̃?

In (c) you found two mixed states of W 3
µ and Bµ. If you write these fields in a vector

(W 3
µ , Bµ), you can directly find the mixed states by applying a rotation matrix

[

cos θw sin θw
− sin θw cos θw

]

≡
[

cw sw
−sw cw

]

(3)

to this row vector. This leaves θw as a free parameter. It is called the electroweak mixing
angle or Weinberg angle.

(e) Give an expression for tan θw in terms of g and g′.

It is striking that the seemingly random sizes of the particle masses (0 GeV, 80.3 GeV and
91.2 GeV for the photon, W boson and Z boson respectively) have a common origin. The
theoretically beautiful notion of unification of forces has inspired many to look for a theory
that also includes the strong force, creating a so called unified gauge theory, or grand unified
theory (GUT). Although the combination of the EM and weak force in the exercise above is
a nice concept, it in itself is not a unified theory, because the coupling strengths g and g′ are
independent of each other. The theoretical power of the theory stops at exactly the point you
finished exercise (e): the rotation angle you found there is one of those parameters that you
have to measure to know. There is – as far as we know – no way to derive its value from
the Standard Model theory.
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Exercise 9: The electroweak gauge interactions for quarks

Start from the electroweak interactions in terms of gauge eigenstates:

Lelectroweak int.
quark =

∑

A

Q̄′
AL

iγµ
( i

2
g ~σ · ~Wµ +

i

2
g′ Y (QL)Bµ

)

Q′
AL

+
∑

A

ū′
AR

iγµ
( i

2
g′ Y (uR)Bµ

)

u′
AR

+
∑

A

d̄ ′
AR

iγµ
( i

2
g′ Y (dR)Bµ

)

d′AR
,

with Y (f) indicating the hypercharge of multiplet f and A labeling the various generations
of quarks. Subsequently you are requested to translate this in terms of mass eigenstates for
both quarks and gauge bosons.

(a) Write down the SU(2)L × U(1)Y gauge interaction term for neutral current (NC)
interactions (i.e. interactions that involve a neutral gauge boson: γ or Z) and derive
the following Feynman rules for the indicated vertices (with all particles defined to be
incoming):

�

q
γ

q̄

µ = − i |e|Qq γ
µ

�

q Z

q̄

µ = − ig

cw
γµ(Cq

V − Cq
Aγ

5)

where Cq
V = 1

2
I3(q) − s2wQq is the vector coupling of the Z boson, Cq

A = 1
2
I3(q) its

axial vector coupling and sw the sine of the Weinberg angle.

Hint: first figure out which components of the various generators contribute.

(b) Do the same for the charged current (CC) interactions (i.e. interactions that involve a
charged gauge boson W+ or W−), where q denotes an up-type quark mass eigenstate
and q′ a down-type quark mass eigenstate:

�q′
W+

q̄

µ = − ig√
2
(V

CKM
)qq′ γ

µPL

�

q W−

q̄′

µ = − ig√
2
(V

CKM
)∗qq′ γ

µPL

with V
CKM

the quark-mixing matrix and PL the left-handed projection operator.

You might have noticed that neutral current interactions leave the particle type/flavour in-
variant, while charged current interactions can change it. This is experimentally an impor-
tant notion: finding a flavour changing neutral current (FCNC) would be a huge sign of
physics beyond the Standard Model and is therefore actively sought for in particle physics
experiments.
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