Quantum Field Theory 2: exercises for week 7

Exercise 10: Neutrino oscillations

With the discovery of neutrino oscillations, for which the nobel prize was awarded in 2015, it
was proven that at least two of the three known neutrinos should have a non-zero mass. In
this exercise we will investigate why this statement holds true by looking at a neutrino with
definite momentum p’ that is created a distance L away from the detector. At its creation
also a lepton £ is created. At detection the neutrino creates a lepton Elg. This indicates that
the flavour eigenstate at creation is « and at detection 8, using greek indices a, 8 = (e, p, 7)
to label the three flavour eigenstates through their direct link to the corresponding charged-
lepton mass eigenstate. We will use roman indices j = (1, 2, 3) to indicate the three neutrino
mass eigenstates (= energy eigenstates) with masses m;. In this exercise we will represent
the PMNS matrix simply by U to avoid unnecessary notational clutter. To make the results
more transparent and avoid errors, we will explicitly write all summations rather than rely
on the summation convention.

(a) During the lecture we defined the relation between the flavour-eigenstate quantum
fields and the mass-eigenstate quantum fields as
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Argue that this implies that the particle states are related through
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(b) At time ¢ = 0 the produced neutrino is in the flavour state
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and has fixed momentum p’. Show that the quantum mechanical probability amplitude
for oscillation to the flavour state |vg) at time ¢ > 0 is given by
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You may assume the mass eigenstates |v;) to be mutually orthogonal and normalized.

(c) Assume the neutrino to be ultrarelativistic, i.e. m; < Ej, to derive the following
oscillation probability at time ¢ > 0:
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where |p| can be approximated by a fixed (average) energy value E in the subsequent
expressions.

(d) The ultrarelativistic neutrino travels a distance L to the detector before being detected
in a particular flavour state |vg). Show that the corresponding oscillation probability
can be expressed as:

L

=)

B (6)
=)

P(va = v3) & Sap — 4 Re (UgU;UbUak) sin®(Am3,

>k
+2) " TIm (Us; Uz UppUak) sin(Am3,
>k
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(e) What happens to this expression if all neutrinos would have the same mass?

(f) Explain why such oscillation experiments can at best tell you that two of the three
known neutrinos should have a non-zero mass.

(g) Show that equation (6) is not sensitive to the interchange of j and k. What does this
imply?

It turns out that if you take the oscillation phase of this phenomenon (i.e., the argument of
the sin?-term) and rewrite it to SI units, you get
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(h) What will be the typical size of the squared-mass splittings one is sensitive to in an
experiment on the Earth’s surface looking at neutrinos of 1 GeV originating from
the atmosphere on the other side of the Earth? And what about 1 MeV neutrinos
produced in the Sun and detected at Earth?

The fact that equation (6) is invariant under the interchange of neutrino type is an important
notion. It leaves behind the question what the signs of the mass differences between the
different neutrinos actually are. This ordering is known as the neutrino mass hierarchy and
is one of the largest open questions in neutrino physics.




