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1 The Klein-Gordon �eld

The �rst four letures over Chapter 2 of the textbook by Peskin & Shroeder. The relevant

onventions are listed on pages xix{xxi in the book, involving the use of so-alled natural

units (~ =  = �

0

= �

0

= 1) by absorbing these onstants in the relevant �elds and

quantities. As a result, a single sale remains: mass. Please familiarize yourself with these

onventions and treat Chapter 1 as reading material, as reommended by the authors.

Throughout this reader you will enounter irled numbers. These numbers math the

markers listed in the ourse's storyline ( http://www.hef.ru.nl/~wimb/QFT_story.pdf ).

1.1 Arguments in favour of Quantum Field Theory

From partile{wave duality we know that the properties of e.g. eletrons and photons are

similar: both objets give rise to di�ration phenomena and arry a partile-like punh.

Historially eletromagnetism was �rst pereived as a �eld theory and its partile inter-

pretation (photons) was observed later through the photo-eletri e�et. The other way

around, eletrons were �rst pereived as elementary partiles and the �eld aspets emerged

only one relativisti energies were onsidered.

1 Question: what is more fundamental, the �elds (with partiles being derived

quantities resulting from quantization) or the partiles (with the �elds being

derived quantities resulting from olletive many-partile behaviour)?

There are four observations that support the former point of view.

1. Classial physis : as supported by experiment there should be no \ation at a dis-

tane", i.e. there should be no fores that are felt everywhere instantaneously. As

a result, the instantaneous laws of Newton and Coulomb had to be replaed by the

loal laws of nature of Einstein and Maxwell, based on �eld theories! . . . However,

stritly speaking a loally de�ned partile approah is still possible.

2. Relativisti quantum mehanis: as supported by any high-energy ollision exper-

iment a relativisti one-partile quantum theory is not feasible. The number of

partiles is not onserved, i.e. partiles are not indestrutible. This di�ers strongly

from non-relativisti quantum mehanis as formulated by Shr�odinger, where mas-

sive partiles are around forever and an thus be pereived as fundamental. Photons

are massless and are therefore always to be treated relativistially, so we have no

photon onservation.

Let's reall what happened when we were trying to onstrut a relativisti quantum me-

hanial theory for a free partile in at (Minkowskian) spaetime. The ingredients for the

onstrution were:
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� A wave equation that keeps its form under Lorentz-transformations, as required by

the relativity priniple.

� A orret quantum mehanial probability interpretation.

� The relativisti relation E =

p

~p

2

+m

2

should be built in, in order to ensure that

partile{wave duality is properly inorporated.

The following problems were enountered:

� Negative-energy solutions, leading to an energy spetrum that is unbounded from

below. Dira solved this for fermioni theories by demanding that the sea of negative-

energy states (Dira sea) is oupied. Unwanted transitions are then forbidden pro-

vided that the exlusion priniple applies, whih is the ase for fermions. However,

that means that the resulting one-partile theory has in fat an in�nite number of

partiles.

� At energies of the order of the partile mass, extra partiles an be liberated from the

Dira sea. In Dira's theory this is alled partile{hole reation, whih orresponds

to partile{antipartile pair reation in quantum �eld theory.

In order to see at what length sales the breakdown of one-partile quantum mehanis

ours we use the old units for a moment and onsider a partile with mass m in a box with

size L. Aording to Heisenberg's unertainty relation the momentum of the partile then

has an unertainty �p = O(~=L). This in turn leads to an unertainty in the relativisti

energy E =

p

p

2



2

+m

2



4

� p of roughly �p = O(~=L). If this energy unertainty

exeeds the energy threshold 2m

2

then pair reation may our. This happens at length

sales L � O(�



), with �



= ~=(m) the Compton wavelength. At these length sales

we annot say anymore that we are dealing with a single partile, sine it is aompanied

by a swarm of partile{antipartile pairs, and a desription with an unspei�ed number

of partiles is required! Note that the Compton wavelength is smaller than the de Broglie

wavelength �

b

= h=p, whih is the length sale where the wave-like nature of partiles

beomes apparent.

1 The Compton wavelength is the length sale where even the onept of a

single point-like partile breaks down.

So, if we were to use a partile approah that is de�ned loally, it annot be a single-partile

approah sine multi-partile objets will unavoidably feature.

3. Many-partile quantum mehanis: the partile interpretation of a quantum mehan-

ial theory an hange radially in a di�erent physial environment (f. partiles be-

oming waves in low-temperature superuid

4

He, oherent states in a driven osillator

system, . . . ). That means that the nature of partiles an hange!
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4. The observation that all partiles of the same type and in the same physial setting

are always the same everywhere . This hints at a desription of physis that spans

all of spae and time.

1.2 Lagrangian and Hamiltonian formalism (§ 2.2 in the book)

2a In order to set up quantum �eld theory we �rst onsider lassial �eld

theory in the Lagrangian and Hamiltonian formalism. The philosophy behind

this is that wave equations an be viewed as equations of motion for the wave

funtions, i.e. the �elds. This is best formulated in terms of Lagrangians for

ontinuous systems. Suh Lagrangians are partiularly suitable for disussing

symmetries, the ornerstones of relativisti quantum �eld theory.

Classial Lagrangian formalism: for a �nite number of degrees of freedom the La-

grangian is given by

L

�

fq

j

(t)g; f _q

j

(t) = dq

j

(t)=dtg; t

�

= T � V ;

where q

j

are generalized oordinates, T is the kineti energy and V the potential energy.

Hamilton's variation priniple: lassial solutions to the equations of motion (lassial

paths) are obtained by �nding the extrema of the ation S =

R

t

2

t

1

dt L under synhronous

variations of the paths while keeping the endpoints �xed.

Variation around the lassial path

for a free partile

t

q

t

1

q(t

1

)

t

2

q(t

2

)

q(t)

q

l

(t)

The ondition for a stationary ation reads

ÆS = Æ

�

Z

t

2

t

1

dt L

�

= 0 for q

j

(t)! q

j

(t) + Æq

j

(t) suh that Æq

j

(t

1

) = Æq

j

(t

2

) = 0 :

From this it follows that

X

j

Z

t

2

t

1

dt

�

�L

�q

j

Æq

j

+

�L

� _q

j

Æ _q

j

�

=

X

j

�

�L

� _q

j

Æq

j

�

t= t

2

t= t

1

+

X

j

Z

t

2

t

1

dt

�

�L

�q

j

�

d

dt

�L

� _q

j

�

Æq

j

= 0 :
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This has to be true for all Æq

j

, so from this the Lagrange equations follow:

8

j

d

dt

�

�L

� _q

j

�

=

�L

�q

j

:

These are the equations of motion for a system without boundary onditions.

y

x

(x

j

; y

j

)

�!

y

x

y(x)

Figure 1: A lassial, non-relativisti example of a ontinuous system.

Now we swith from a disrete set of partiles to a �eld. A �eld is a dynamial system with

a ontinuous, in�nite number of degrees of freedom, i.e. at least one degree of freedom for

eah point in spae. An example is given by the string in �gure 1, in whih ase gradients

in x will enter V as elasti energy (see also Ex. 1). In the �eld-theory ase the disrete

set of generalized oordinates fq

j

(t)g is replaed by a ontinuous generalized oordinate

�(x), where x is a spaetime four-vetor. In this way we treat ~x and t on equal footing,

as required for a relativisti approah. The Lagrangian L

�

fq

j

g; f _q

j

g; t

�

is replaed by a

Lagrangian density L(�(x); �

�

�), whih depends on the generalized ooordinate �(x) and

the orresponding four-veloity �

�

�(x). The fat that the derivates with respet to time

and spae should be ombined into a four-veloity �

�

�(x) is needed for a proper relativis-

ti treatment, as we will see later on. In pratie we only work with Lagrangian densities,

so we usually refer to L in a sloppy way as `the Lagrangian'.

Now that we have a Lagrangian, we need to formulate Hamilton's variation priniple for

ontinuous systems:

ÆS = Æ

�

Z

t

2

t

1

dt

Z

d~x L(�; �

�

�)

�

� Æ

�

Z

x

2

x

1

d

4

x L(�; �

�

�)

�

= 0

for �(x)! �(x) + Æ�(x) suh that Æ�(x)

j~x j!1

����! 0 and 8

~x

Æ�(t

1

; ~x ) = Æ�(t

2

; ~x ) = 0 :

This means that the system evolves between two �eld on�gurations that are kept �xed at

the temporal and spatial boundaries of the four-dimensional integration region. The latter

requirement follows from the fat that we will onsider systems with �nite properties only.
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From this variation priniple it follows that

ÆS =

Z

x

2

x

1

d

4

x

�

�L

��

Æ� +

�L

�(�

�

�)

Æ(�

�

�)

�

=

Z

x

2

x

1

d

4

x �

�

�

�L

�(�

�

�)

Æ�

�

+

Z

x

2

x

1

d

4

x

�

�L

��

� �

�

�

�L

�(�

�

�)

��

Æ� = 0

for all allowed variations Æ�. Aording to Gauss' divergene theorem, the �rst integral in

the �nal expression vanishes sine it gives rise to an integral over the boundary of the four-

dimensional integration region. The �nal result is the so-alled Euler{Lagrange equation

for a stationary ation:

�

�

�

�L

�(�

�

�)

�

=

�L

��

:

We get the same equation for eah extra �eld ouring in L.

An immediate onsequene of the variation priniple is that the equation of motion (Euler{

Lagrange equation) does not hange if we add a �-dependent four-divergene to the La-

grangian: L ! L + �

�

G

�

. The reason is that this extra term adds a boundary ontri-

bution to S. Suh a boundary ontribution remains una�eted by a �eld variation with

�xed boundaries. Note that we have not onsidered the possibility of having terms in the

Lagrangian that ouple �(t; ~x ) to �(t; ~y ). This follows from the loality requirement that

we have to impose on viable quantum �eld theories. As a result, only �(x) and �

�

�(x)

our.

Just like the Lagrangian, the Hamiltonian H in the disrete ase beomes an integral of

the Hamiltonian density H in the ontinuous ase:

H

�

fq

j

g; fp

j

g

�

�

X

j

p

j

_q

j

� L �!

Z

d~x H(�;

~

r�; �) �

Z

d~x

�

�

��

�t

� L

�

;

with the onjugate momenta for both ases de�ned as

p

j

�

�L

� _q

j

�! � �

�L

�(��=�t)

:

Note the preferred treatment of t with respet to ~x in the de�nition of H : ��=�t ours

in the de�nition of � . That means that t and ~x are not treated on equal footing in the

Hamiltonian formalism, making the Hamiltonian formalism less suitable for dealing with

relativisti �eld theories than the Lagrangian formalism. We will need to knowH, though,

for performing the quantization of the lassial theory.

Example: onsider the following Lagrangian ontaining a set of �elds labeled by a 2 N

L

�

f�

a

g; f�

�

�

a

g

�

=

1

2

_

�

2

a

�

1

2

(

~

r�

a

)

2

�

1

2

m

2

�

2

a

=

1

2

(�

�

�

a

)(�

�

�

a

)�

1

2

m

2

�

2

a

:
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A summation onvention is implied here, so �

2

a

=

P

a

�

2

a

. Note that aording to the

standard onvention in the book �

�

�

a

= (�

0

�

a

;

~

r�

a

) and �

�

�

a

= (�

0

�

a

;�

~

r�

a

). Using

Einstein's standard summation onvention for repeated Minkowski indies, the Euler{

Lagrange equations then read

�

�

(�

�

�

a

) +m

2

�

a

= (�

2

0

�

~

r

2

+m

2

)�

a

� (� +m

2

)�

a

= 0 ;

i.e. all �elds �

a

satisfy the familiar Klein-Gordon equation. The onjugate momenta and

the Hamiltonian density are given by

�

a

=

�L

�

_

�

a

=

_

�

a

and H =

_

�

a

�

a

� L =

1

2

�

2

a

+

1

2

(

~

r�

a

)

2

+

1

2

m

2

�

2

a

:

The �rst (kineti) term in the Hamiltonian density orresponds to the energy ost of \mov-

ing" in time, the seond (elasti) term to the energy ost of \shearing" in spae, and the

third (mass) term is the energy ost of having the �eld around at all. Note that in deriving

this Hamiltonian we sum over all �elds in the term

_

�

a

�

a

. This makes sense, sine all �elds

�

a

are independent.

2b Question: apart from being loal, what requirements do we have to impose

on the Lagrangian density of a relativisti quantum �eld theory?

Relativity priniple: the guiding priniple will be the relativity priniple, whih states

that in eah inertial frame the physis should be the same. One option is to use a pas-

sive transformation to go from one inertial frame to the other. In that ase we have

to �nd a relativisti wave equation that keeps its form under Lorentz transformations:

Df(x) = 0 ) D

0

f

0

(x

0

) = 0, where D is a di�erential operator and f a �eld. The

prime indiates Lorentz-transformed objets. Alternatively, we an physially transform

all �elds and demand the relativisti wave equation to be invariant. This is alled an ative

transformation. To phrase it di�erently, if a �eld satis�es the equation of motion, then the

same should hold for the Lorentz-transformed �eld:

Df(x) = 0 ) Df

0

(x) = 0 :

This is automatially guaranteed if the assoiated Lagrangian density L is a Lorentz salar

�eld, sine the ation S will in that ase be Lorentz invariant and therefore an extremum

of the ation will indeed yield another extremum upon Lorentz transformation. Similar

arguments hold for onstant translations x

0

= x + x

0

, where x

0

is a onstant four-vetor.

Proof: in order to prove that the ation is Lorentz invariant if L is a Lorentz salar

�eld, we �rst give the oÆial de�nition of a Lorentz salar �eld. Consider to this end the

Lorentz transformation x

�

! x

0�

= �

�

�

x

�

, with � a ontinuous Lorentz transformation

tensor (desribing rotations and boosts). Then �(x) 2 R is alled a Lorentz salar �eld

6



if it transforms as �(x) ! �

0

(x) = �(�

�1

x) under the Lorentz transformation, i.e. the

transformed �eld evaluated at the transformed spaetime point gives the same value as

the original �eld in the spaetime point prior to the Lorentz transformation. The Jaobian

of this transformation is 1, sine det � = 1 for a ontinuous Lorentz transformation.

Therefore, for a Lorentz salar Lagrangian density L

L(x)

salar

����! L

0

(x) = L(�

�1

x) � L(y) )

S =

Z

d

4

x L(x) ! S

0

=

Z

d

4

x L

0

(x) =

Z

d

4

x L(y)

x=�y ;Jaobian=1

==============

Z

d

4

y L(y) = S :

Note, though, that the endpoints t

1

and t

2

of the temporal integration interval will hange

under boosts.

1.2.1 Noether's theorem for ontinuous symmetries

3 As a next ingredient for setting up quantum �eld theory we will try to iden-

tify onserved urrents and \harges" that are present in the theory. These

onserved harges are instrumental in quantizing the theory and �nding its par-

tile interpretation.

Consider a �eld �(x) that satis�es the Euler{Lagrange equation of L(�; �

�

�) and apply

the in�nitesimal ontinuous transformation

�(x)! �

0

(x) = �(x) + ���(x) ; with � independent of x and in�nitesimal :

We speak of a symmetry under this transformation if L(x) hanges by a four-divergene:

L(x)! L(x) + ��

�

G

�

(x), sine that implies that the equation of motion is left invariant

(f. the remark on page 5). In that ase

��

�

G

�

= ��L = �

�

�L

��

�� +

�L

�(�

�

�)

�(�

�

�)

�

= � �

�

�

�L

�(�

�

�)

��

�

+ �

�

�L

��

� �

�

�

�L

�(�

�

�)

�

�

�� :

The seond term is zero if �(x) is a solution to the Euler{Lagrange equation. In that ase

we are left with

�

�

�

�L

�(�

�

�)

���G

�

�

� �

�

j

�

= 0 ;

i.e. j

�

is a onserved urrent when expressed in terms of solutions to the Euler{Lagrange

equations. This is trivially extended to ases with more �elds and automatially leads to

Noether's theorem : for eah ontinuous symmetry there is a onserved urrent.
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This theorem has two important onsequenes:

� The \harge" Q(t) =

R

d~x j

0

(x) is onserved globally if

~

j(x) vanishes suÆiently

fast for j~xj ! 1. Proof: if

~

j(x) vanishes suÆiently fast for j~xj ! 1 we have

dQ(t)

dt

=

Z

d~x

�j

0

�t

�

�

j

�

=0

====== �

Z

d~x

~

r �

~

j

Gauss

====== �

Z

d~s �

~

j = 0 :

� More importantly this harge onservation also holds loally!

Proof: following the previous ase

d

dt

Q

V

(t) �

d

dt

Z

V

d~x j

0

(x) = �

Z

V

d~x

~

r �

~

j

Gauss

===== �

Z

S(V )

d~s �

~

j :

In other words: any harge leaving the losed volume V must be aounted for by

an expliit ow of the urrent

~

j through the surfae S(V ) of V .

Translation symmetry: from imposing the relativity priniple we know that L(x) should

be a Lorentz salar, so under an in�nitesimal translation

x

�

! x

0�

= x

�

� �

�

where �

�

is a onstant in�nitesimal four-vetor

we have

L(x) ! L

0

(x) = L(

inverse

z }| {

x+ � ) � L(x) + �

�

�

�

L(x) = L(x) + �

�

�

�

�

g

��

L(x)

�

:

The last term is a total four-divergene, so relativisti �eld theories have translation sym-

metry with

�

G

�

(x)

�

�

= g

��

L(x) for all four independent translations labeled by �. Now

suppose that L depends on an arbitrary olletion of �elds f

a

(x) that transform as

f

a

(x) ! f

a

(x+ �) � f

a

(x) + �

�

�

�

f

a

(x) � f

a

(x) + �

�

�

�f

a

(x)

�

�

;

whih is valid for all omponents of viable quantum �elds. For f

a

(x) satisfying the Euler{

Lagrange equations, this results in four onserved urrents:

T

��

�

�

�L

�(�

�

f

a

)

�

�

�

f

a

� g

��

L (� = 0; � � � ; 3) ;

and hene four onserved harges:

Z

d~x T

00

=

Z

d~x

�

�L

�

_

f

a

_

f

a

� L

�

=

Z

d~x

h

�

a

_

f

a

� L

i

=

Z

d~x H = H ;

Z

d~x T

0j

= �

Z

d~x

�

�L

�

_

f

a

r

j

f

a

� 0

�

= �

Z

d~x �

a

r

j

f

a

� P

j

:

Summation over a is again implied. The quantity T

��

is alled the stress-energy tensor or

energy-momentum tensor, H is the physial energy arried by the �elds f

a

, and P

j

is the

j

th

omponent of the physial momentum arried by the �elds f

a

. We will see later that

what we just did does not just hold for salar �elds, but also for any omponent of a vetor,

spinor, ... �eld.
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3a The �eld energy H will play a ruial role in the quantization of free �eld

theories, sine it will feature in the quantum mehanial requirement of having

an energy spetrum that is bounded from below. On top of that it determines

the quantum mehanial time evolution. The �eld momentum will help us in

determining the partile interpretation of free quantum �eld theories.

Intermezzo 1: the energy-momentum tensor in osmology

In general relativity a urved-spaetime version of the energy-momentum tensor �

��

fea-

tures, whih is symmetri under the interhange of � and � . In the modi�ed Einstein

equation inluding osmologial onstant:

R

��

�

1

2

g

��

R + �g

��

= � 8�G�

��

(G = Newton's onstant) ;

this symmetrized energy-momentum tensor desribes matter and energy in the universe,

whereas the Rii tensor R

��

, salar urvature R = g

��

R

��

and osmologial onstant �

desribe the \struture" of spaetime for an empty spae (i.e. for the vauum).

The at-spaetime version of the energy-momentum tensor T

��

that we have just derived

is in general not guaranteed to be symmetri under the interhange of � and � . However,

this an be arranged by adding an appropriate extra term �

�

K

���

with K

���

= �K

���

suh that �

��

= T

��

+ �

�

K

���

= �

��

and �

�

�

��

= �

�

T

��

+ �

�

�

�

K

���

= �

�

�

�

K

���

= 0.

For an expliit example, see Ex. 2.1 in the textbook by Peskin & Shroeder.

By bringing the osmologial-onstant term to the right-hand side of the modi�ed Einstein

equation, it an be viewed as representing the energy-momentum tensor of empty spae

itself (taking into aount suh e�ets as vauum energy and vauum pressure). Suh a

osmologial-onstant term therefore onstitutes the vauum ontribution to the urvature.

In view of its proportionality to the metri tensor, the osmologial-onstant term is the

same for all inertial observers in the at-spaetime ase, whih is ompatible with the

notion that in that ase the vauum should not have a preferred frame. So, the presene

of a osmologial-onstant term does not onit with any �rst-priniple requirements!

For a positive osmologial onstant (�> 0) the energy density of the vauum

is positive and the assoiated pressure is negative, resulting in an aelerated

expansion of empty spae as seems to be supported by experiment (see next

page). Suh a vauum energy is usually referred to as dark energy. We will

see shortly that �eld quantization an atually provide a soure of dark energy.

The reason why the pressure is negative follows from the simple fat that energy is released

if the volume of spae expands, whereas a positive \pressure on spae" would require work

to be exerted during the expansion. For a positive osmologial onstant the vauum

represents an unlimited energy reservoir, whih is tapped when the universe inates.
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Aelerated expansion of the universe

If all of the energy in the universe would be in the form of matter, radiation and grav-

itational waves, the rate of expansion of the universe would derease ontinuously after

the Big Bang due to gravity. However, if empty spae itself would also arry a positive

energy density, whih ould be viewed as \the energy ost of having spae", then this is

not neessarily true anymore. Suh a dark-energy density would have a repelling e�et.

Moreover, if this density would be onstant it would not be a�eted by the expansion of

the universe, whereas the density of matter dereases as the universe expands. This would

imply that the universe ould undergo a transition from being matter/radiation dominated

at early stages to being dark-energy dominated at later stages, resulting in a reaeleration

of the universe from a ertain moment onwards. Preisely this senario seems to be borne

out by experiment (see the �gure below and the leture ourse \Gravity and the Cosmos").

Saul Perlmutter, Brian Shmidt, Adam Riess (2011 Nobel Prize in Physis)

The expansion rate of the universe at di�erent times an be inferred from the redshift of

far away objets, provided that we an determine in a reliable way how muh distane

the light has travelled before reahing us. To this end supernova 1a explosions are used

as standard andles. Sine these explosions produe as muh light as an entire galaxy

at peak luminosity, they an be used as beaons to look into the distant past. Another

ruial feature of supernova 1a explosions is that they have a well-de�ned mehanism:

a white dwarf aretes matter from a ompanion star until it reahes a ritial mass at

whih a runaway arbon fusion is triggered that sets o� the explosion. These supernova 1a

explosions produe a distintive luminosity spetrum, whih makes them identi�able. The

distane travelled by the light then follows from the observed peak luminosity, by omparing

it to the known peak luminosity at the time of emission.
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Symmetry under rotations and boosts (ontinuous Lorentz transformations):

under an in�nitesimal ontinuous Lorentz transformation

x

�

! x

0�

= �

�

�

x

�

� x

�

+ !

�

�

x

�

;

where !

��

= �!

��

2 R is an in�nitesimal tensor with six independent omponents. The

Lagrangian is a Lorentz salar, so

L(x) ! L(�

�1

x) � L(x� !x) � L(x)� !

�

�

x

�

�

�

L(x)

!

�

�

=0

===== L(x)� !

�

�

�

�

x

�

L(x) = L(x)� !

��

�

�

�

g

��

x

�

L(x)

�

!

��

=�!

��

======== L(x)�

1

2

!

��

�

�

�

[g

��

x

�

�g

��

x

�

℄L(x)

�

:

Sine L(x) hanges by a total four-divergene, relativisti �eld theories have a symmetry

under ontinuous Lorentz transformations with

�

G

�

(x)

�

��

= � [g

��

x

�

�g

��

x

�

℄L(x) for all

six independent omponents of !

��

.

Now onsider a Lagrangian for a salar �eld �(x). Suh a �eld transforms as

�(x) ! �

0

(x) = �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) � �(x) +

1

2

!

��

�

��(x)

�

��

:

This results in six onserved urrents, one for eah independent omponent of !

��

:

J

���

(x) =

�

�L

�(�

�

�)

�

[x

�

�

�

�x

�

�

�

℄�(x) + [g

��

x

�

�g

��

x

�

℄L(x) = T

��

(x)x

�

� T

��

(x)x

�

;

and hene six onserved \harges":

� Rotations (�; � = i; j ): J

k

�

1

2

�

ijk

R

d~x

�

T

0j

(x)x

i

�T

0i

(x)x

j

�

, with summation over

the spatial indies i and j implied. This is the k

th

omponent of the physial angular

momentum arried by the �eld �(x).

� Boosts (�; � = 0; i): K

i

�

R

d~x

�

T

0i

(x)x

0

� T

00

(x)x

i

�

= x

0

P

i

�

R

d~x x

i

T

00

(x).

Conservation of these three \harges" implies that

d

dt

�

x

0

P

i

�

R

d~x x

i

T

00

(x)

�

=

P

i

�

d

dt

R

d~x x

i

T

00

(x) = 0. Sine

R

d~x T

00

(x) = H, this equation an be interpreted

as saying that the \entre-of-energy" of the �eld travels at onstant veloity, in

analogy with the movement of the entre-of-mass of a free lassial system.

3a The angular momentum of a �eld depends on the type of �eld and will thus

be useful after quantization. It will help us to determine the intrinsi spin of

the partiles desribed by the free quantum �eld theory that orresponds to a

given wave equation. As a result of the relativity priniple, eah type of wave

equation will give rise to a spei� partile spin.
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Abelian internal symmetry (\global U(1) gauge symmetry"): an internal sym-

metry involves a transformation of the �elds that ats in the same way at every spaetime

point, whereas abelian implies multiplying all �elds by a onstant phase fator. Consider

a omplex salar �eld �(x) that satis�es the Euler{Lagrange equations of the Lagrangian

L(�; �

�

; �

�

�; �

�

�

�

) = (�

�

�)(�

�

�

�

)�m

2

��

�

:

This Lagrangian is invariant under the ontinuous transformation �! e

i�

� ; �

�

! e

�i�

�

�

,

where � 2 R is a onstant. This implies that under the in�nitesimal version of this

transformation, i.e.

� ! �+ �(i�) � �+ ��� and �

�

! �

�

+ �(�i�

�

) � �

�

+ ���

�

;

we get �L = 0 ) G

�

= 0. As a result the urrent

j

�

= i��

�

�

�

� i�

�

�

�

� = i

�

(�

�

�

�

)�� �

�

�

�

�

�

is onserved. For an extended example of a gauge symmetry see Ex. 3.

3b We will see later that the onserved harge arising from urrents of this type

have the interpretation of eletri harge or partile number. The assoiated

U(1) gauge symmetry will feature prominently in a symmetry-based desription

of eletromagneti interations.

Symmetries versus unobservable quantities: the above-given symmetries are in fat

all related to quantities that are fundamentally unobservable.

3 The abelian internal symmetry is linked to the unobservability of the absolute

phase of a QM wave funtion. Translation and rotation symmetry are the

result of the unobservability of the absolute position and diretion in spaetime.

Symmetry under boosts is related to the unobservability of the absolute veloity

of a hosen referene frame.

1.3 The free Klein-Gordon theory (real ase, § 2.3 in the book)

We start our tour of the relativisti quantum-�eld-theory world with the simplest example:

the quantum �eld theory for real salar �elds that satisfy the free Klein-Gordon (KG)

equation. The lassial Lagrangian for a real salar �eld �(x) that satis�es the free KG

equation is given by

L =

1

2

(�

�

�)(�

�

�)�

1

2

m

2

�

2

Euler-Lagrange

=========) (� +m

2

)�(x) = 0 ; � =

�L

�

_

�

=

_

� :

The orresponding time-independent Hamiltonian reads (f. page 6)

H =

Z

d~x

h

1

2

�

2

+

1

2

(

~

r�)

2

+

1

2

m

2

�

2

i

:
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4a Question: how should we quantize suh a lassial �eld theory?

1) Canonial quantization: in priniple we ould approah this in the same way as in the

ase of the quantization of Newtonian mehanis: the dynamial oordinates and assoiated

onjugate momenta beome operators that satisfy anonial ommutation relations. In the

Shr�odinger piture this reads

� Disrete quantum mehanis:

�

q̂

j

; p̂

k

�

= iÆ

jk

^

1 ;

�

q̂

j

; q̂

k

�

=

�

p̂

j

; p̂

k

�

= 0 .

� Continuous quantum �eld theories:

�

^

�

j

(~x ); �̂

k

(~y )

�

= iÆ

jk

Æ(~x� ~y )

^

1 ,

�

^

�

j

(~x );

^

�

k

(~y )

�

=

�

�̂

j

(~x ); �̂

k

(~y )

�

= 0 .

Subsequently, the fully ovariant (time-dependent) versions of these ommutation relations

an be obtained by swithing to the Heisenberg piture. This type of quantization proe-

dure is alled anonial quantization.

2) Quantizing an in�nite number of linear harmoni osillators: in a general quan-

tum �eld theory the spetrum of

^

H is hard to �nd, sine it involves an in�nite number of

degrees of freedom that in general do not evolve independently. However, in the ase of free

theories eah degree of freedom does evolve independently. The reason behind this is that

the orresponding equations of motion are linear wave equations, with all quantum �elds

as well as their individual omponents satisfying the KG equation. This latter requirement

is needed in order to implement partile-wave duality in the right way by giving rise to

the orret relation between energy and momentum for the free partiles desribed by the

theory. Consider now suh a �eld omponent f(~x; t) 2 R with (� +m

2

)f(~x; t) = 0. In

order to deouple the degrees of freedom we use the momentum representation (Fourier

deomposition)

f(~x; t) �

Z

d~p

(2�)

3

e

i~p�~x

g(~p; t) ;

so that the KG equation hanges into

�

�

2

�t

2

+ (~p

2

+m

2

)

�

g(~p; t) = 0

for eah Fourier-mode ~p. This means that g(~p; t) solves the equation of motion of a har-

moni osillator vibrating at a frequeny !

~p

�

p

~p

2

+m

2

. The most general solution to

the KG equation will therefore be a linear superposition of simple harmoni osillators, eah

with a di�erent amplitude and frequeny. So, in order to quantize f(~x; t), one simply has to

quantize the in�nite number of osillators in terms of raising (reation) and lowering (anni-

hilation) operators. The assoiated harmoni energy quanta are interpreted as partiles.
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Next it will be proven that both proedures are atually equivalent.

Comparing both proedures: let's �rst reall how the quantization of a linear harmoni

osillator goes. Consider to this end the orresponding Hamilton operator

^

H =

p̂

2

2m

+

1

2

m!

2

x̂

2

�

1

2

^

P

2

+

1

2

!

2

^

Q

2

with

�

^

Q;

^

P

�

= i

^

1 ;

using

^

P = p̂=

p

m and

^

Q = x̂

p

m . Next we introdue a lowering operator â and raising

operator â

y

aording to

^

Q �

â+ â

y

p

2!

;

^

P � � i!

â� â

y

p

2!

:

From this the fundamental bosoni ommutation relation

�

â; â

y

�

=

^

1 follows and

^

H =

1

2

! (â

y

â+ ââ

y

) = ! (â

y

â+

1

2

^

1) � ! (n̂+

1

2

^

1) ;

where n̂ = â

y

â an be interpreted as a ounting operator. Using

�

^

H; â

y

�

= !â

y

, the energy

eigenvalues E

n

and eigenfuntions jni of this Hamilton operator an be obtained:

E

n

= (n+

1

2

)! ; jni �

(â

y

)

n

p

n!

j0i (n = 0; 1; � � �) :

Based on this we use the following ansatz for the quantized KG �eld and its onjugate

momentum in terms of a ontinuous set of osillator modes labeled by ~p :

^

�(~x ) =

Z

d~p

(2�)

3

â

~p

+ â

y

�~p

p

2!

~p

e

i~p�~x

=

Z

d~p

(2�)

3

1

p

2!

~p

�

â

~p

e

i~p�~x

+ â

y

~p

e

�i~p�~x

�

=

^

�

y

(~x ) ;

�̂(~x ) = � i

Z

d~p

(2�)

3

!

~p

â

~p

� â

y

�~p

p

2!

~p

e

i~p�~x

= � i

Z

d~p

(2�)

3

r

!

~p

2

�

â

~p

e

i~p�~x

� â

y

~p

e

�i~p�~x

�

= �̂

y

(~x ) ;

with

�

â

~p

; â

y

~p

0

�

= (2�)

3

Æ(~p� ~p

0

)

^

1 and all other ommutators 0.

Let's now see whether we have sueeded in properly quantizing and deoupling the free

real KG theory. From the fundamental bosoni ommutation relations for reation and

annihilation operators it follows that

�

^

�(~x ); �̂(~y )

�

= �

i

2

Z

d~p d~p

0

(2�)

6

r

!

~p

0

!

~p

e

i(~p�~x+~p

0

�~y )

�

â

~p

+ â

y

�~p

; â

~p

0

� â

y

�~p

0

�

=

i

(2�)

3

^

1

Z

d~p e

i~p�(~x�~y )

= iÆ(~x� ~y )

^

1 ;

in agreement with anonial quantization.
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Energy spetrum and zero-point energy: the Hamilton operator of the free real KG

theory now reads

^

H =

Z

d~x

�

1

2

�̂

2

+

1

2

(

~

r

^

�)

2

+

1

2

m

2

^

�

2

�

=

Z

d~x

Z

d~pd~p

0

(2�)

6

e

i~x�(~p+~p

0

)

4

p

!

~p

!

~p

0

h

� !

~p

!

~p

0

(â

~p

� â

y

�~p

)(â

~p

0

� â

y

�~p

0

)

+ (m

2

� ~p � ~p

0

)(â

~p

+ â

y

�~p

)(â

~p

0

+ â

y

�~p

0

)

i

~x integral

=======

Z

d~p

(2�)

3

1

2

!

~p

(â

~p

â

y

~p

+ â

y

�~p

â

�~p

)

~p!� ~p in 2nd term

=============

Z

d~p

(2�)

3

!

~p

â

y

~p

â

~p

+

Z

d~p

(2�)

3

1

2

!

~p

(2�)

3

Æ(

~

0 )

^

1 ;

whih is indeed niely deoupled and properly time-independent. The last term in the �nal

expression is alled the zero-point energy. It is a onsequene of the unertainty priniple

and represents the ground-state energy in the absene of any osillator quanta.

4b
Question: have we obtained an energy spetrum that is bounded from below?

From the deoupled form of the Hamilton operator of the free real KG theory we an read

o� that

� the energy spetrum is indeed bounded from below by the zero-point energy;

� only positive-energy quanta feature in the Hamilton operator;

� the zero-point energy is in�nite:

{ We have (2�)

3

Æ(

~

0 ) =

R

d~x e

i~x�~p

�

�

�

~p=

~

0

= lim

L!1

L

R

�L

d~x e

i~x�~p

�

�

�

~p=

~

0

= lim

L!1

L

R

�L

d~x = V.

This is an in�nity originating from the fat that spae is in�nite. Suh a long-

distane in�nity is often referred to as an infra-red (IR) divergene, sine it is

related to ~p =

~

0 .

{ The zero-point energy density

Z

d~p

(2�)

3

1

2

!

~p

is still in�nite, originating from the

j~p j ! 1 limit of the integrand. This type of in�nity is alled ultra-violet (UV)

divergene, being related to short distanes/high frequenies. It is the onse-

quene of our unrealisti assumption that the theory is valid up to arbitrarily

high energies. As we will see later, the ~p-integral should be ut o� at a value

where the theory breaks down or a more fany tehnique should be used to

quantify the UV in�nity if we do not want to introdue a new energy sale.
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4d The zero-point energy is inessential for the partile interpretation, but it

is measurable in bounded sytems through the Casimir e�et (as is explained in

the bahelor ourse \Kwantummehania 3") and it has expliit osmologial

impliations in view of the fat that it ontributes to the osmologial onstant.

About 68% of the energy density in the universe bears the harateristis of a osmologial

onstant with energy sale 10

�3

eV, whih is surprisingly small. With the Plank mass

M

pl

= O(10

28

eV) being the natural sale of gravity, where ordinary quantum �eld theory

most likely breaks down, we would expet the energy sale belonging to the osmologial

onstant to be O(M

pl

) if it has a gravitational origin. One of the big questions in present-

day high-energy physis therefore reads \Why is the osmologial onstant so small?".

The art of overing up: normal ordering.

In most textbooks all issues related to properties of the vauum of the theory are simply

irumvented by removing vauum energies, harges, et. .

1

This is done by applying

normal ordering, i.e. bringing all reation operators to the front:

â

y

â ! N(â

y

â) = â

y

â ; ââ

y

! N(ââ

y

) = â

y

â ) N(

^

H) =

Z

d~p

(2�)

3

!

~p

â

y

~p

â

~p

:

After quantization the momentum arried by the KG �eld (f. page 8) beomes

^

~

P = �

Z

d~x �̂(~x )

~

r

^

�(~x ) =

Z

d~p

(2�)

3

i

2

(�i~p )(â

~p

� â

y

�~p

)(â

�~p

+ â

y

~p

)

= �

1

2

Z

d~p

(2�)

3

~p (â

y

�~p

â

�~p

� â

~p

â

y

~p

+ â

y

�~p

â

y

~p

� â

~p

â

�~p

) =

Z

d~p

(2�)

3

~p â

y

~p

â

~p

;

where in the last step we have taken ~p ! �~p in the �rst term and we have used that

~p â

~p

â

�~p

; ~p â

y

�~p

â

y

~p

and ~p (2�)

3

Æ(

~

0 ) are all odd under ~p ! �~p whereas the integration

is even. This time there is no zero-point ontribution and as suh there is no need for

normal ordering, whih is onsistent with the fat that quantum utuations should have

no preferred diretion.

Partile interpretation of the free real KG theory:

4d In the next step we determine the partile interpretation of the theory,

mostly by simply reading it o� from N(

^

H) and

^

~

P .

� Vauum (ground state): j0i suh that h0j0i = 1 and â

~p

j0i = 0 for all ~p. Then

N(

^

H)j0i = 0 and

^

~

P j0i =

~

0, i.e. the vauum \has" energy E = 0 and momentum

~

P =

~

0.

1

The tait assumption here is that some underlying (high-sale) physis takes are of this
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� Exited states: obtained as (onstant) � â

y

~p

â

y

~q

� � � j0i. Then E = !

~p

+ !

~q

+ � � � and

~

P = ~p+ ~q + � � � , whih follows from

�

^

H; â

y

~p

�

= !

~p

â

y

~p

and

�

^

~

P; â

y

~p

�

= ~p â

y

~p

.

{ For higher exitations â

y

~p

is replaed by (â

y

~p

)

n

=

p

n! .

{ The exitations are interpreted as partiles.

{ In view of the bosoni ommutation relations for the assoiated reation and

annihilation operators these partiles are bosons.

{ In fat the partiles are spin-0 bosons. This follows from

�

^

J

k

; â

y

~

0

�

= 0 for

k = 1; 2; 3. Bearing in mind that a zero-momentum partile does not give rise

to an orbital angular momentum, this indeed implies that the partiles in the

real KG theory also arry no intrinsi angular momentum.

Proof: the quantized version of the angular momentum derived on page 11 yields

�

^

J

k

; â

y

~

0

�

=

�

�

ijk

Z

d~x �̂(~x )r

i

^

�(~x )x

j

; â

y

~

0

�

=

1

2

�

ijk

Z

d~x x

j

Z

d~pd~p

0

(2�)

6

p

i

r

!

~p

0

!

~p

e

i~x�(~p+~p

0

)

�

(â

~p

0

� â

y

�~p

0

)(â

~p

+ â

y

�~p

); â

y

~

0

�

=

1

2

�

ijk

Z

d~x x

j

Z

d~pd~p

0

(2�)

3

p

i

r

!

~p

0

!

~p

e

i~x�(~p+~p

0

)

�

Æ(~p

0

)[â

~p

+ â

y

�~p

℄ + Æ(~p )[â

~p

0

� â

y

�~p

0

℄

�

:

The seond term in the last expression vanishes trivially. The �rst term vanishes

as well sine i 6= j and onsequently the x

i

integral will be proportional to Æ(p

i

).

{ An example of suh a partile is the �

0

pion.

Normalization of states and ompleteness relation: note that we did not speify

yet what normalization fator to use in the de�nition of the 1-partile states. Unlike what

is done in non-relativisti quantum mehanis, where the normalization fator is usually

taken to be 1, we will use a relativistially motivated normalization of the 1-partile states:

j~p i �

p

2!

~p

â

y

~p

j0i ) h~p j~q i = 2

p

!

~p

!

~q

h0jâ

~p

â

y

~q

j0i = 2

p

!

~p

!

~q

h0j

�

â

~p

; â

y

~q

�

j0i

= 2!

~p

(2�)

3

Æ(~p� ~q ) :

The latter expression is invariant under ontinuous Lorentz transformations.

Proof: in order to prove this statement we �rst derive the important integration identity

Z

d~p

(2�)

3

1

2!

~p

=

Z

d

4

p

(2�)

3

Æ(p

2

�m

2

)�(p

0

) (Lorentz invariant integration measure ) ; (1)

with � the Heaviside step funtion. We get this identity by using that

Æ

�

h(x)

�

=

X

j

Æ(x� x

j

)

jh

0

(x

j

)j

for h(x

j

) = 0 and h

0

(x

j

) 6= 0 ;
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whih leads to

Æ(p

2

�m

2

) = Æ

�

p

2

0

� [~p

2

+m

2

℄

�

= Æ(p

2

0

� !

2

~p

) =

Æ(p

0

� !

~p

)

2!

~p

+

Æ(p

0

+ !

~p

)

2!

~p

:

Sine p

0

annot hange sign for p

2

> 0, the right-hand-side of equation (1) only ontains

Lorentz invariant objets. As a result, the expression on the left-hand-side is Lorentz

invariant as well and the same goes for h~p j~q i, sine

Z

d~p

(2�)

3

h~p j~q i

2!

~p

=

Z

d~p Æ(~p� ~q ) = 1:

The 1-partile ompleteness relation is then given by

Z

d~p

(2�)

3

1

2!

~p

j~p ih~p j =

^

1

�

�

�

1-partile subspae

sine

8

~q

Z

d~p

(2�)

3

1

2!

~p

j~p ih~p j~q i =

Z

d~p

(2�)

3

2!

~p

(2�)

3

Æ(~p� ~q )

2!

~p

j~p i = j~q i :

Finally we may ask the question what state is atually reated by

^

�(~x ) =

^

�

y

(~x ). Letting

this operator at on the vauum one obtains

^

�(~x )j0i =

Z

d~p

(2�)

3

e

i~p�~x

p

2!

~p

(â

~p

+ â

y

�~p

)j0i

~p! �~p

======

Z

d~p

(2�)

3

e

�i~p�~x

2!

~p

j~p i :

From this it an be onluded that a partile is reated \at position ~x ", sine

h~q j

^

�(~x )j0i =

Z

d~p

(2�)

3

e

�i~p�~x

2!

~p

h~q j~p i = e

�i~q�~x

is indeed idential to h~q j~x i in non-relativisti quantum mehanis.

Point to ponder: you might wonder now whether this ontradits the earlier statement

that there is no loal single-partile onept in Quantum Field Theory. To hek this we

onsider the overlap between two suh position states:

h0j

^

�(~x )

^

�(~y )j0i / e

�mj~x�~y j

for large enough j~x�~y j ;

as determined on page 27 of the textbook by Peskin & Shroeder. In the non-relativisti

limit, whih e�etively orresponds to the limit m ! 1, the overlap vanishes for ~x 6= ~y

and

^

�(~x )j0i makes sense as a loal partile state at position ~x . For �nite masses, though,

^

�(~x )j0i is always an extended objet with the Compton wavelength �



= 1=m governing

its e�etive range. This length sale represents the inherent minimum unertainty on the

partile's position, just as we predited earlier. This also tells us that in Quantum Field

Theory a truly loal measurement of a single partile at position ~x atually does not exist!
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1.4 Swithing on the time dependene (§ 2.4 in the book)

4 Next we add the time dependene by swithing to the Heisenberg piture,

whih makes all operators time dependent aording to

^

O !

^

O(t) � e

i

^

Ht

^

Oe

�i

^

Ht

as expeted from the fat that

^

H is the generator of time translations. This

implies that the anonial (equal-time) ommutation relations have the same

form as in the Shr�odinger piture:

�

^

�(~x; t); �̂(~y; t)

�

= iÆ(~x � ~y )

^

1 , with all

other ommutators being 0.

Short derivation of

^

�(x) =

^

�(~x; t): we have

�

^

H; â

~p

�

= �!

~p

â

~p

)

^

Hâ

~p

= â

~p

(

^

H�!

~p

)

and

^

H

n

â

~p

= â

~p

(

^

H�!

~p

)

n

. That means that e

i

^

Ht

â

~p

e

�i

^

Ht

= â

~p

e

i(

^

H�!

~p

)t

e

�i

^

Ht

= â

~p

e

�i!

~p

t

and e

i

^

Ht

â

y

~p

e

�i

^

Ht

= â

y

~p

e

i!

~p

t

. Applied to

^

�(x) this yields:

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+ â

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

and �̂(x) =

�

�t

^

�(x) ;

where the �rst term orresponds to the positive frequeny modes and the seond term

to the negative frequeny modes. This reets partile-wave duality, with eah frequeny

mode orresponding to the reation/annihilation of fundamental quanta of the theory.

Analogously:

�

^

~

P; â

~p

�

= � ~p â

~p

) e

�i

^

~

P �~x

â

~p

e

i

^

~

P �~x

= â

~p

e

i~p�~x

:

Combining both identities yields

^

�(x)

[

^

H;

^

~

P ℄ = 0

======= e

i(

^

Ht�

^

~

P �~x )

^

�(0)e

�i(

^

Ht�

^

~

P �~x )

= e

i

^

P �x

^

�(0)e

�i

^

P �x

:

This reets the fat that the quantized onserved Noether harges are the generators of

the orresponding ontinuous transformations, whih in this ase implies that

^

P

�

is the

generator of spaetime translations.

Next we invoke the following relativisti requirement.

4 Causality: a measurement performed at one spaetime point y an only

a�et a measurement at another spaetime point x whose separation from the

�rst point is timelike or lightlike, i.e. (x� y)

2

� 0.

This latter requirement means that in suh ases a partile an physially travel the or-

responding spatial distane within the orresponding time period, sine (x � y)

2

� 0

orresponds to a spaetime separation inside or on the lightone j~x� ~y j = jx

0

� y

0

j. In

the oordinate representation any observable involving salar partiles an be written in

terms of KG �elds. So, if

�

^

�(x);

^

�(y)

�

= 0 for (x � y)

2

< 0, then the measurements do

not inuene eah other for spaelike separations (i.e. outside the lightone) and ausality

is preserved.
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For the real KG �eld we �nd

�

^

�(x);

^

�(y)

�

=

Z

d~p d~q

(2�)

6

1

2

p

!

~p

!

~q

�

â

~p

e

�ip�x

+ â

y

~p

e

ip�x

; â

~q

e

�iq�y

+ â

y

~q

e

iq�y

�

�

�

�

p

0

=!

~p

; q

0

=!

~q

=

Z

d~p

(2�)

3

1

2!

~p

�

e

�ip�(x�y)

� e

ip�(x�y)

�

^

1

�

�

�

p

0

=!

~p

� D(x� y)

^

1�D(y � x)

^

1 :

The funtion D(x) has the following properties:

1. In the previous expression eah of the terms on the left-hand-side of the seond line

is Lorentz invariant aording to equation (1). As a result, the funtion D(x) is

Lorentz invariant as well and hene D(x) = D(�x) � D(x

0

).

2. D(x) = D(�x) if x

0

= 0. This follows diretly by taking ~p! � ~p in the integration.

Bearing in mind that for (x � y)

2

< 0 there exists a Lorentz transformation � suh that

x

0

0

� y

0

0

= 0, we an derive from these two properties that

0

property 2

======= D(x

0

� y

0

)�D(y

0

� x

0

) = D

�

�(x� y)

�

�D

�

�(y � x)

�

property 1

======= D(x� y)�D(y � x) if (x� y)

2

< 0 :

This automatially implies that ausality is preserved in the real KG theory beause prop-

agation from y to x, given by h0j

^

�(x)

^

�(y)j0i = D(x� y), is indistinguishable from propa-

gation from x to y , given by h0j

^

�(y)

^

�(x)j0i = D(y�x), if (x�y)

2

< 0. This sounds weird,

but in the spaelike regime we annot think of propagation as partile movement. There

is no Lorentz invariant way to order events, sine if we have in one frame that x

0

� y

0

> 0

a Lorentz transformation an yield another frame where x

0

� y

0

< 0.

4 In fat, quantizing using anonial quantization onditions was already suf-

�ient for properly implementing ausality. In spite of its non-ovariant form,

there is no preferred treatment of time by quantizing in the anonial way!

Proof: the proof of this statement exploits the fat that

�

^

�(x);

^

�(y)

�

is Lorentz invariant,

as well as the fat that for (x� y)

2

< 0 there exists a Lorentz transformation � suh that

x

0

0

� y

0

0

= 0. Then we an readily obtain the ausality requirement

�

^

�(x);

^

�(y)

�

Lor. inv.

=======

�

^

�(~x

0

; t

0

);

^

�(~y

0

; t

0

)

�

= e

i

^

Ht

0

�

^

�(~x

0

);

^

�(~y

0

)

�

e

�i

^

Ht

0

= 0

for (x� y)

2

< 0 as a diret onsequene of anonial quantization.
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1.5 Quantization of the free omplex Klein-Gordon theory

The Lagrangian for a omplex salar �eld �(x) satisfying the free KG equation is given by

L = (�

�

�)(�

�

�

�

)�m

2

��

�

;

whih ontains twie as many degrees of freedom as the Lagrangian of the real KG theory.

This an be seen expliitly by writing � = (�

1

+ i�

2

)=

p

2 with �

1;2

2 R (see Ex. 4). Then

the Lagrangian beomes

L =

1

2

(�

�

�

1

)(�

�

�

1

) �

1

2

m

2

�

2

1

+

1

2

(�

�

�

2

)(�

�

�

2

) �

1

2

m

2

�

2

2

:

Now we an either treat �

1;2

or �; �

�

as independent degrees of freedom. The quantization

goes exatly as before, with

1

p

2

(â

1; ~p

+ iâ

2; ~p

) � â

~p

and

1

p

2

(â

y

1; ~p

+ iâ

y

2; ~p

) �

^

b

y

~p

6= â

y

~p

. Hene:

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+

^

b

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

;

where the �rst term orresponds to partiles and the seond to so-alled antipartiles. The

assoiated ommutators are given by:

�

â

~p

; â

y

~q

�

=

�

^

b

~p

;

^

b

y

~q

�

= (2�)

3

Æ(~p� ~q )

^

1; with all other ommutators being 0 :

From these ommutation relations we an derive that ausality is onserved in the omplex

Klein-Gordon theory as well:

�

^

�(x);

^

�(y)

�

=

�

^

�

y

(x);

^

�

y

(y)

�

= 0 ;

�

^

�(x);

^

�

y

(y)

�

= D(x� y)

^

1�D(y � x)

^

1

see before

======= 0 if (x� y)

2

< 0 :

Note that D(x�y) originates from partile propagation, whereas D(y�x) originates from

antipartile propagation. This brings us to the following important onlusion:

4 the orret ausal struture of the omplex Klein-Gordon theory hinges on

the ombined treatment of partiles and antipartiles, sine partile propagation

from y to x, h0j

^

�(x)

^

�

y

(y)j0i = D(x� y), is indistinguishable from antipartile

propagation from x to y, h0j

^

�

y

(y)

^

�(x)j0i = D(y � x), if (x� y)

2

< 0.

Partile interpretation: as before we an derive the partile interpretation by looking

at the energy, momentum and \harge" operators (see Ex. 4 for a ritial disussion). After

quantization these operators read:

^

H =

Z

d~p

(2�)

3

!

~p

(â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) + zero-point energy ;

^

~

P =

Z

d~p

(2�)

3

~p (â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) ;

^

Q =

Z

d~p

(2�)

3

(� â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) = �

^

N

partiles

+

^

N

antipartiles

:
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The zero-point term for the harge operator has to vanish to guarantee Lorentz-invariant

vauum properties (see Ex. 4), so normal ordering is a physial requirement in that ase!

This harge operator is the generator of U(1) phase transformations:

�

^

Q;

^

�(x)

�

=

^

�(x) ) e

i�

^

Q

^

�(x) e

�i�

^

Q

= e

i�

^

�(x) for � 2

IR

onstant :

Sine the aforementioned onserved quantities only ontain number operators after quan-

tization, we have

�

^

H;

^

~

P

�

=

�

^

H;

^

Q

�

=

�

^

H;

^

N

partiles

�

=

�

^

H;

^

N

antipartiles

�

= 0 :

4d In free KG theories (in fat in all free theories) energy, momentum, number

of partiles and number of antipartiles are all onserved. In interating theories

the number of partiles and the number of antipartiles are no longer separately

onserved, but their di�erene quite often is.

Now we an read o� the partile interpretation of the omplex KG theory: it resembles

the one for the real KG theory, with the di�erene being that for every partile state there

should now also be an antipartile state with opposite \harge" quantum numbers and the

same 4-momentum quantum numbers. An example of suh a salar partile{antipartile

ombination is given by the �

�

pions. The ase

^

� =

^

�

y

is speial in the sense that partile

and antipartile states oinide, so all \harges" should be 0.

Lorentz transformations and

^

�(x): as before

^

�(x) = e

i

^

P �x

^

�(0)e

�i

^

P �x

, but what about

Lorentz transformations? We know that j~p i =

p

2!

~p

â

y

~p

j0i and that a similar expres-

sion holds for antipartile states, so we an use this to de�ne the unitary operator that

implements (ative) Lorentz transformations in the Hilbert spae of quantum states:

j

�!

�pi �

^

U(�)j~p i )

q

2!

�!

�p

â

y

�!

�p

j0i =

p

2!

~p

^

U(�) â

y

~p

j0i

^

U(�)j0i�j0i

========

p

2!

~p

^

U(�) â

y

~p

^

U

�1

(�)j0i

) de�ne:

^

U(�) â

y

~p

^

U

�1

(�) =

s

!

�!

�p

!

~p

â

y

�!

�p

;

with a similar expression for

^

b

y

~p

. As a result:

^

U(�)

^

�(x)

^

U

�1

(�) =

Z

d~p

(2�)

3

1

2!

~p

q

2!

�!

�p

(â

�!

�p

e

�ip�x

+

^

b

y

�!

�p

e

ip�x

)

p

0

=�p

====

Z

d~p

0

(2�)

3

1

2!

~p

0

p

2!

~p

0

(â

~p

0

e

�ip

0

��x

+

^

b

y

~p

0

e

ip

0

��x

) =

^

�(�x) ;

where the seond line is obtained by using that

R

d~p=(2!

~p

) and e

�ip�x

are all Lorentz

invariant. This implies that the transformed �eld reates/destroys antipartiles/partiles

at the spaetime point �x.
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1.6 Inversion of the Klein-Gordon equation (§ 2.4 in the book)

4e For ertain physial appliations it is important to know the inverse of

the KG equation, for instane for deriving sattering amplitudes or for solving

systems that involve a KG �eld being oupled to a lassial soure.

Sine a solution to (� + m

2

)�

0

(x) = 0 exists, the inversion of the di�erential operator

(�+m

2

) does not exist formally, so it has to be de�ned. One we have de�ned this inverse

(� +m

2

)

�1

properly an appropriate solution to the equation (� +m

2

)� = j is given by

� = (� +m

2

)

�1

j + �

0

, given that � = �

0

in the absene of the soure j.

Green's funtion: let's try to �nd the so-alled Green's funtion G(x� y), whih is the

inverse KG operator (�+m

2

)

�1

written in oordinate spae. By onvention this Green's

funtion is required to satisfy (�

x

+m

2

)G(x�y) � �iÆ

(4)

(x�y) = �iÆ(x

0

�y

0

)Æ(~x�~y ),

where the right-hand-side represents (up to the onventional fator �i) the unit operator

in oordinate spae. In momentum spae this beomes

G(x� y) �

Z

d

4

p

(2�)

4

~

G(p) e

�ip�(x�y)

and Æ

4

(x� y) =

Z

d

4

p

(2�)

4

e

�ip�(x�y)

;

so that

(�p

2

+m

2

)

~

G(p) = �i )

~

G(p) =

i

p

2

�m

2

:

The problem with de�ning the inverse of the KG operator is apparent now: it resides in

the fat that p

2

�m

2

= p

2

0

� (~p

2

+m

2

) = p

2

0

�!

2

~p

= 0 for the physial (anti)partiles of the

KG theory. In these so-alled on-mass-shell (or short: on-shell) situations with p

2

= m

2

the Fourier oeÆient of the Green's funtion blows up, thereby leading to an ill-de�ned

Fourier integral. That brings us to the key question that we have to address if we want to

de�ne a proper Green's funtion:

how should we go around the poles of (p

2

� m

2

)

�1

= (p

0

� !

~p

)

�1

(p

0

+ !

~p

)

�1

while performing the Fourier integral?

There are several options for this, reeting the fat that the Green's funtion annot be

de�ned uniquely. We mention here two useful possible de�nitions.

1) The retarded Green's funtion: for taking into aount inuenes that lie in the

past it is useful to shift the poles into the lower-half of the omplex plane by an in�nitesimal

amount �i� (see �gure 2), where the in�nitesimal onstant � 2 R

+

should be taken to 0

at the end of the alulation.
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Figure 2: Complex poles and losed integration ontours for the retarded Green's funtion.

Using the omplex integration ontours as indiated in �gure 2, the Fourier integration

yields

D

R

(x� y) = �(x

0

� y

0

)(�2�i)

Z

d~p

(2�)

4

(

ie

�ip�(x�y)

2!

~p

�

�

�

�

p

0

=!

~p

+

ie

�ip�(x�y)

�2!

~p

�

�

�

�

p

0

=�!

~p

)

~p! � ~p in 2nd term

================ �(x

0

� y

0

)

Z

d~p

(2�)

3

1

2!

~p

�

e

�ip�(x�y)

� e

ip�(x�y)

�

�

�

p

0

=!

~p

;

whih means that

D

R

(x� y) = �(x

0

� y

0

)

�

D(x� y)�D(y � x)

�

= �(x

0

� y

0

)h0j

�

^

�(x);

^

�

y

(y)

�

j0i :

Appliation: onsider a real KG �eld oupled to an external lassial soure j(x) that is

swithed on during a �nite time interval. Then

(� +m

2

)

^

�(x) = j(x) 2 R ;

whih would orrespond to an extra term + j(x)�(x) in the Lagrangian (resembling a

fored osillator). Before j(x) is turned on we have

^

�(x) =

^

�

0

(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+ â

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

;

with �

0

(x) a solution to the free KG equation (� +m

2

)�

0

(x) = 0. After j(x) is turned
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on we have

^

�(x) =

^

�

0

(x) + i

Z

d

4

y D

R

(x� y)j(y)

=

^

�

0

(x) + i

Z

d

4

y

Z

d~p

(2�)

3

j(y)

2!

~p

�(x

0

� y

0

)

�

e

�ip�(x�y)

� e

ip�(x�y)

�

�

�

�

p

0

=!

~p

:

If x

0

is smaller than the swith-on time of j then �(x

0

� y

0

)j(y) = 0 and only

^

�

0

(x)

remains, in agreement with the initial ondition we started out with. If x

0

is larger than

the swith-o� time of j, then �(x

0

� y

0

)j(y) = j(y). Using that

R

d

4

y e

ip�y

j(y) �

~

j(p)

and

R

d

4

y e

�ip�y

j(y)

j2R

====

~

j

�

(p) we �nd in that ase that

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(

�

â

~p

+ i

~

j(p)

p

2!

~p

�

e

�ip�x

+

�

â

y

~p

� i

~

j

�

(p)

p

2!

~p

�

e

ip�x

)

�

�

�

�

�

p

0

=!

~p

�

Z

d~p

(2�)

3

1

p

2!

~p

(�̂

~p

e

�ip�x

+ �̂

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

and

N(

^

H) =

Z

d~p

(2�)

3

!

~p

�̂

y

~p

�̂

~p

;

with N denoting normal ordering. The operator �̂

~p

is a quasi-partile annihilation oper-

ator, satisfying

�̂

~p

j0i = i

~

j(p)

p

2!

~p

j0i � �

~p

j0i :

So, the free-partile vauum state j0i is now a quasi-partile oherent state. Its energy has

hanged by an amount

�E

0

= h0jN(

^

H)j0i =

Z

d~p

(2�)

3

1

2

j

~

j(p)j

2

;

orresponding to h0j

R

d~p

(2�)

3

�̂

y

~p

�̂

~p

j0i =

R

d~p

(2�)

3

j�

~p

j

2

=

R

d~p

(2�)

3

j

~

j(p)j

2

=2

!

~p

quasi-partiles.

The partile interpretation has hanged as a result of the inuene of the ex-

ternal soure! This example shows that partiles and quasi-partiles are derived

quantities and that the retarded Green's funtions are handy tools for dealing

with external inuenes that are swithed on during a �nite amount of time.

2) Feynman propagator: an alternative way of shifting the poles is given in �gure 3. As

will be worked out in Ex. 5, this pole on�guration is equivalent with replaing (p

2

�m

2

)

�1

by (p

2

�m

2

+ i�)

�1

, where again the in�nitesimal onstant � 2 R

+

should be taken to 0

at the end of the alulation.
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Figure 3: Complex poles and losed integration ontours for the Feynman propagator.

Using the omplex integration ontours as indiated in �gure 3, the Fourier integration

yields

D

F

(x� y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

� 2�i

Z

d~p

(2�)

4

ie

�ip�(x�y)

2!

~p

�

�

�

�

p

0

=!

~p

if x

0

> y

0

+2�i

Z

d~p

(2�)

4

ie

�ip�(x�y)

�2!

~p

�

�

�

�

p

0

=�!

~p

if x

0

< y

0

;

whih means that

D

F

(x� y) = �(x

0

� y

0

)D(x� y) + �(y

0

� x

0

)D(y � x)

= �(x

0

� y

0

)h0j

^

�(x)

^

�

y

(y)j0i + �(y

0

� x

0

)h0j

^

�

y

(y)

^

�(x)j0i

� h0jT (

^

�(x)

^

�

y

(y))j0i :

This is the de�nition of time ordering: the operator at the latest time is put in front. The

Feynman propagator D

F

(x� y) is the time-ordered propagation amplitude.

4e The Feynman propagator will feature prominently in the derivation of sat-

tering amplitudes in perturbation theory!
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2 Interating salar �elds and Feynman diagrams

The next eight letures over large parts of Chapters 4 and 7 as well as a few aspets of

Chapter 10 of Peskin & Shroeder.

5 The task that we set ourselves is to investigate the onsequenes of adding

interations that ouple di�erent Fourier modes and, as suh, the assoiated

partiles. This will be quite a bit more ompliated than the free theories that

we have enountered in the previous hapter, where the relevant quantities were

diagonal (i.e. deoupled) in the momentum representation and partile num-

bers were onserved expliitly. Even worse, up to now nobody has been able to

solve general interating �eld theories. Therefore we will fous on weakly ou-

pled �eld theories, whih an be investigated by means of perturbation theory.

Causality ditates us to add loal terms only, i.e.

^

L

int

(x) and not

^

L

int

(x; y). In order

to investigate what is meant by \weak interations", the following interating real salar

theory is onsidered:

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

+ L

int

with L

int

= �

X

n�3

�

n

n!

�

n

(� 2 R) ;

where �

n

2 R is alled a oupling onstant. Note that L

int

= �H

int

, sine it ontains

no derivatives. The orresponding Euler-Lagrange equation is not a simple linear (wave)

equation anymore:

�

�

(�

�

�) + m

2

� +

X

n�3

�

n

(n�1)!

�

n�1

= 0 ) (� +m

2

)� = �

X

n�3

�

n

(n�1)!

�

n�1

:

Sine �

�

= �

0

� is una�eted by the interation, the quantum mehanial basis

�

^

�(~x ); �̂

�

(~y )

�

= iÆ(~x� ~y )

^

1 and all other ommutators being 0

is the same as in the free KG ase. Hene,

^

�(~x ) and �̂

�

(~x ) an be given the same Fourier-

deomposed form as before (f. page 14). However, sine the non-linear

^

�

n�1

term ontains

for example (â

y

)

n�1

, the number of partiles is not onserved anymore as a result of the

interation. Consequently, also the partile interpretation, whih an be obtained from the

Hamilton operator, will be di�erent.

2.1 When are interation terms small? (§ 4.1 in the book)

5a To answer this question we have to perform a dimensional analysis: the

ation S =

R

d

4

xL is dimensionless, so L must have dimension (mass)

4

, or

short \dimension 4". The shorthand notation for this is [L℄ = 4.
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Kineti term: the kineti term has the form (�

�

�)(�

�

�). Sine [�

�

℄ = 1, that means

that [�℄ = 1, whih is onsistent with the dimension of the mass term / m

2

�

2

.

Interation terms: sine [�

n

℄ = n, the oupling onstants have a dimension [�

n

℄ = 4�n.

So, �

n

is not dimensionless, exept when n = 4. Three ases an be distinguished:

1. Coupling onstants with positive mass dimension. Take �

3

as an example. Using

the dimension of the �eld, we an see that [�

3

℄ = +1. In a proess at energy sale E

the oupling onstant �

3

will enter in the dimensionless ombination �

3

=E. The �

3

interation an therefore be onsidered weak at high energies (E��

3

) and strong at

small energies (E��

3

). For the latter reason suh interations are alled relevant.

2. Dimensionless oupling onstants. For our real salar theory, the only dimensionless

oupling onstant is �

4

sine [�

4

℄ = 0. The �

4

interation an be onsidered weak if

the oupling onstant is small (�

4

�1). Suh interations are alled marginal, sine

they are equally important at all energy sales.

3. Coupling onstants with negative mass dimension. For the oupling onstants with

n � 5 we have [�

n�5

℄ = 4 � n < 0. In a proess at energy sale E the oupling

onstants �

n�5

will enter in the dimensionless ombinations �

n

E

n�4

. The �

n�5

inter-

ations an therefore be onsidered weak at low energies and strong at high energies.

Beause of this suppressed inuene on low-energy physis, suh interations are

alled irrelevant. Suh interations have their origin in underlying physis that takes

plae at higher energy sales.

5a Compliation: it is impossible to avoid high energies in quantum �eld

theory, beause of the ourrene of integrals over all momenta at higher orders

in perturbation theory. We have in fat already enountered an example of this

in § 1.3 while disussing the zero-point energy and its in�nities.

2.2 Renormalizable versus non-renormalizable theories

Renormalizable theories: a renormalizable theory has the marked property that it is

not sensitive to our lak of knowledge about high-sale physis. It therefore

� keeps its preditive power at all energy sales in spite of the ourrene of high-

energy e�ets in the quantum orretions;

� an be used to make preise theoretial preditions that an be onfronted with

experiment;

� does not involve oupling onstants with negative mass dimension.
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Guided by our quest for the ultimate \theory of everything", the prevalent view in high-

energy physis used to be that any sensible theory that desribes nature should be renormal-

izable. However, this requirement is based on the unrealisti assumption that any theory

that attempts to desribe aspets of nature has to be valid up to arbitrarily large energies. It

is muh more likely that at some energy sale new physis will kik in, ausing the original

theory to be inomplete.

Non-renormalizable theories

5b In situations where our present theoretial knowledge proves insuÆient or

where we prefer to desribe the physis up to a minimum length sale, another

lass of theories is partiularly useful. These mostly non-renormalizable theories

are obtained by parametrizing our ignorane (senario 1 disussed below) or by

\integrating out" known/antiipated physis at small length sales (senario 2

disussed below).

Non-renormalizable theories, senario 1: unknown new physis.

Suppose that we are starting to observe experimental deviations from our favourite model of

the world, aused by some unknown high-sale physis. If we only have aess to this high-

sale physis through low-energy data (see the Fermi-model example below), we sometimes

have to ontent ourselves with an inomplete model that desribes the physis as seen

through blurry glasses. In that ase we only know the physis up to a ertain energy sale �

(i.e. down to a length sale 1=�) with higher energy sales (i.e. smaller length sales) being

integrated out. This will in general result in a non-renormalizable e�etive theory that

desribes nature up to the energy sale � and a Lagrangian that will parametrize our lak

of knowledge about the physis that takes plae at higher energy sales. Suh e�etive

theories

� have limited preditive power, sine the physis at high energy sales E�� is not

desribed properly;

� an ontain interations with oupling onstants of negative mass dimension, whih

would formally lead to unontrolled UV in�nities at higher orders in perturbation

theory as a result of integrals over all momenta (if we would assume the theory to

be orret at all energy sales, . . . whih would be inorret);

� an nevertheless be used to make reliable preditions at O(�) energies provided that

the unknown high-sale physis resides at an energy sale �

NP

� �;

� may reveal at whih energy sale the unknown high-sale physis must emerge.
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Non-renormalizable theories, senario 2: known/antiipated new physis.

The moment we (think to) know the underlying physis model that is responsible for the

observed low-energy phenomena, we an expliitly integrate out the high-energy degrees

of freedom from the model. This results in the same type of e�etive Lagrangian, but this

time the underlying physis model has left its �ngerprints on the oupling onstants. For

instane, if the energy/mass sale of the underlying physis resides at �

NP

, then this sale

will at as a natural saling fator in the ouplings. This proedure of expliitly linking

the oupling onstants of the e�etive theory to the parameters of the underlying physis

model is alled mathing.

6

�

�=M

high-energy theory

L(�) + L

0

(� ;�)

��M

low-energy e�etive theory

L(�) + L

int

(�)

�elds � ;�

mass m;M

�eld �

mass m�M

mathing

Figure 4: Shemati display of a low-energy e�etive theory ontaining a light �eld � with

mass m, originating from a high-energy theory that also inludes a heavy �eld � with

mass M .

Example: the Fermi-model of weak interations. This probably sounds rather ab-

strat, so let's have a loser look at the above-given statements by onsidering an expliit

example. The so-alled Fermi-model of weak interations has in fat started out along the

lines just desribed. In this example the role of �

NP

is played by the mass M

W

of the W

boson. As will be explained in ourses overing the Standard Model, deay proesses like

�

�

! �

�

e

�

��

e

(muon deay) proeed through the exhange of a W boson with a mass of

about 80 GeV between the partiles. The assoiated deay amplitude ontains a fator

1=(p

2

� M

2

W

), originating from the propagator of the W -boson (f. page 25), and two

fators of g , orresponding to the oupling onstant of the weak interations. However, at

the typial energy sale of the deay proess, i.e. E = O(m

�

= 0:1GeV), the momentum

arried by the W boson is muh smaller than its mass M

W

. In that ase, the propagator

fator is pereived as having a onstant value:

g

2

p

2

�M

2

W

p

2

� M

2

W

����������! �

g

2

M

2

W

+ O(p

2

=M

4

W

) :
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In terms of a diagrammati representation of the physis that goes on in the deay proess

(see later) this orresponds to

g

g

�

�

�

�

e

�

��

e

p

W

�

p

2

� M

2

W

����������!

G

F

�

�

�

�

e

�

��

e

On the basis of suh \low-energy" deay proesses the existene of (e�etive) 4-partile

interations was postulated (Fermi, 1932), with the orresponding dimensionful e�etive

oupling onstant (Fermi-oupling) being small in view of the absorbed 1=M

2

W

suppres-

sion fator. This explains the name \weak interations", whih simply refers to the fat

that these interations were pereived as weak at low energies. At p

2

=O(M

2

W

) the weak-

interation physis underlying the W -boson exhange will reveal itself and the weak inter-

ations will no longer be weak.

5b This is of ourse all hindsight, sine in 1932 the orret model for the weak

interations did not exist yet. In fat, the above argument an be reversed. The

low-energy Fermi-oupling was measured to be of O(10

�5

GeV

�2

) � O(�

�2

NP

),

whih orretly signals that the physis underlying the weak interations must

reveal itself at an energy sale of O(100GeV).

Plank sale: applying the same reasoning to the even smaller gravitational onstant,

i.e. G = O(10

�38

GeV

�2

), we would predit that gravity beomes strong at an energy sale

of O(10

19

GeV), whih is ommonly referred to as the Plank sale �

P

.

Generi properties of e�etive �eld theories: the philosophy behind e�etive �eld

theories is mostly a pragmati one. If you want to desribe ertain physial phenomena

quantitatively, it is an overkill to use a physis model that also gives details about experi-

mentally inaessible phenomena (like strong gravitational e�ets). In that ase it is more

pratial to make use of a simpler, e�etive desription that aptures the most important

physis of the system without giving unneessary detail. Additional (small) e�ets result-

ing from the more fundamental theory an be taken into aount by adding them as small

perturbations (like relativisti orretions in non-relativisti quantum mehanis).

Consider for instane a fundamental theory with dimensionless oupling onstants that

desribes the world at O(�

NP

) energies. Assume, for argument's sake, that this theory

ontains a real salar �eld � that desribes light partiles with mass m � �

NP

and an-

other real salar �eld � that desribes muh heavier partiles with mass M = O(�

NP

).
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The laws of physis at E � �

NP

are best formulated in terms of the light salar �eld with

interations that are produed by the fundamental high-energy theory. After all, the heavy

partiles annot be produed diretly at these energies and therefore it is more pratial

to remove them from the desription (i.e. integrate them out). This results in an e�etive

Lagrangian as given before with e�etive ouplings �

n

= g

n

=�

n�4

NP

, where g

n

is a dimen-

sionless oupling onstant governed by the high-energy theory. So, the impat of the �

n�5

terms on physis at E � �

NP

is suppressed by fators (E=�

NP

)

n�4

.

� The interations that are most likely to a�et low-energy experiments are the renor-

malizable �

3

and �

4

terms. That is why at suÆiently low energies e�etive theories

only ontain renormalizable interations.

� The other interations are suppressed at low energies and an therefore either be

ignored or inorporated as small perturbations. This aspet makes it possible to

inlude formally non-renormalizable interations in the theory without spoiling its

preditive power at low energies. At high energies this is not true anymore, but there

the full glory of the underlying high-energy theory should be taken into aount.

� Sine the impat of the �

n

terms is extremely small for larger n, it is in general very

tough to �gure out the entire high-energy theory from low-energy data alone!

Remark: the physis at di�erent length/energy sales an be related through the so-alled

renormalization group (see later). In partiular in ondensed-matter physis this renor-

malization group is a powerful analyzing tool, sine di�erent ondensed-matter phenomena

are quite often governed by di�erent harateristi length sales. As we will see later, also

in high-energy physis the renormalization group will prove very handy. The main dif-

ferene between the �eld-theoretial treatments of both branhes of physis resides in the

absene of a smallest length sale in high-energy physis, whereas the atomi sale provides

a natural uto� in ondensed-matter physis.

2.3 Perturbation theory (§ 4.2 in the book)

5 Our ultimate aim is to alulate sattering ross setions and deay rates,

from whih information an be obtained on the fundamental partiles that exist

in nature and their mutual interations. The following two models will be used

in the remainder of this hapter:

1. �

4

-theory: L =

1

2

(�

�

�)(�

�

�)�

1

2

m

2

�

2

�

�

4!

�

4

with � 2 R. This model ontains the

type of quarti interation with dimensionless oupling onstant that also features in

the Higgs model.
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2. Salar Yukawa theory: L = (�

�

 

�

)(�

�

 )+

1

2

(�

�

�)(�

�

�)�M

2

 

�

 �

1

2

m

2

�

2

� g 

�

 �

with � 2 R and  2 C . This is a toy model that resembles the Yukawa theory for

the interation between fermions and salars, whih will be disussed at a later stage.

Apart from spin aspets these two theories di�er in the dimension of the oupling

onstant, being +1 for the salar Yukawa theory and 0 for the true Yukawa theory.

Non-relativisti quantum mehanis: in non-relativisti quantum mehanis sattering re-

ations are haraterized by

� asymptoti free (non-interating) situations at t! �1, involving free partiles in

beam, target and detetor (due to negligible wave-funtion overlap);

� a ollision stage around t = 0 when the olliding partiles interat/vanish and new

partiles may be produed.

Quantum �eld theory: we would like to use the same reasoning in quantum �eld theory,

assuming the initial and �nal states of the reation to be free-partile states. In that ase

the initial and �nal states of the reation would be eigenstates of the Hamilton operator

of the free Klein-Gordon theory, whih are therefore also eigenstates of the partile and

antipartile number operator. In the end we will have to orret for two aspets that are

not taken into aount properly in this way (see later):

� bound states may form;

� more importantly, a partile well-separated from the other partiles in the reation is

nevertheless not alone in quantum �eld theory, being surrounded by a loud of virtual

partiles. It is not possible to swith o� interations in quantum �eld theory, so we

have to orret for this later.

The Heisenberg piture: let's ignore these issues for the moment and try to develop a

alulational toolbox based on the asymptoti free situations at t! �1. As mentioned

on page 27, we start out with the same quantum mehanial basis as in the free theory,

so the Shr�odinger piture �eld

^

�(~x ) an be given the same Fourier-deomposed form as

before. The fat that we are dealing with an interating theory manifests itself through the

time-independent Hamilton operator, whih is used in the Heisenberg piture and whih

is needed for determining the partile interpretation:

^

H =

^

H

0

+

^

H

int

=

^

H

0

+

Z

d~x

^

H

int

(~x ) =

^

H

0

�

Z

d~x

^

L

int

(~x ) :

The interation Hamiltonian H

int

is assumed to be weak ompared to the Hamiltonian

H

0

of the free theory. In the last step we have used that there are no derivatives in the

interation, so H

int

= �L

int

. This leads to Heisenberg �elds

^

�(x) �

^

�(t; ~x ) = e

i

^

Ht

^

�(~x )e

�i

^

Ht

;
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where e

� i

^

Ht

introdues extra reation/annihilation operators as a result of the presene

of

^

H

int

and therefore hanges the partile ontent and interpretation of the reation and

annihilation operators. The ground state of the interating theory will be denoted by j
i,

whih in general does not oinide with the vauum state of the free theory (see the exam-

ple on page 25). For this state we have

^

Hj
i = E

0

j
i, with E

0

the lowest energy level.

The interation piture: the asymptoti free situation an be desribed by the free-

partile Hamilton operator

^

H

0

, so the orresponding time-dependent �elds are given by

^

�

I

(x) = e

i

^

H

0

t

^

�(~x )e

�i

^

H

0

t

and are alled interation-piture �elds. This is atually the situation we have enountered

in the previous hapter, i.e.

^

�

I

(x) =

^

�

free

(x). The reation and annihilation operators

have the same meaning as in the free theory, so the ground state is in this ase the stable

vauum j0i of the free theory, with N(

^

H

0

)j0i = 0 after normal ordering.

Swithing between pitures: there is an operator that allows you to swith between

interation piture and Heisenberg piture:

^

�(x) = e

i

^

Ht

^

�(~x )e

�i

^

Ht

= e

i

^

Ht

e

�i

^

H

0

t

^

�

I

(x)e

i

^

H

0

t

e

�i

^

Ht

�

^

U

�1

(t; 0)

^

�

I

(x)

^

U (t; 0) :

The operator

^

U(t; 0) satis�es the di�erential equation

i

�

�t

^

U(t; 0) = e

i

^

H

0

t

(

^

H�

^

H

0

)e

�i

^

Ht

= e

i

^

H

0

t

^

H

int

e

�i

^

H

0

t

e

i

^

H

0

t

e

�i

^

Ht

P:&S:

���

^

H

I

(t)

^

U(t; 0) ;

with boundary ondition

^

U(0; 0) =

^

1 and with

^

H

I

(t) only referring to the interation

term (aording to the de�nition in the textbook of Peskin & Shroeder).

6 This onstitutes a natural starting point for a perturbative expansion:

^

U(t � 0; 0) =

^

1 + (�i)

Z

t

0

dt

1

^

H

I

(t

1

)

^

U(t

1

; 0)

=

^

1 + (�i)

Z

t

0

dt

1

^

H

I

(t

1

) + (�i)

2

Z

t

0

dt

1

Z

t

1

0

dt

2

^

H

I

(t

1

)

^

H

I

(t

2

) + � � � ;

where the produt

^

H

I

(t

1

)

^

H

I

(t

2

) in the last term is ordered in time. In Ex. 6 it will be

derived that

^

U(t; 0) = T

�

e

� i

R

t

0

dt

0

^

H

I

(t

0

)

�

�

1

X

n=0

(�i)

n

n!

Z

t

0

dt

1

� � �

Z

t

0

dt

n

T

�

^

H

I

(t

1

) � � �

^

H

I

(t

n

)

�

;

whih an be trunated at the required perturbative order. Suh an objet is alled a

time-ordered exponential. For now we will de�ne time ordering aording to

T

�

^

O

1

(t

1

)

^

O

2

(t

2

)

�

=

8

<

:

^

O

1

(t

1

)

^

O

2

(t

2

) t

1

> t

2

^

O

2

(t

2

)

^

O

1

(t

1

) t

2

> t

1

:
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Later on we will have to extend the de�nition of time ordering to fermioni operator �elds.

Sine

^

H

I

(t

0

) onsists of interation-piture �elds only, we have sueeded in rewriting

^

�(x)

in terms of free �elds through

^

�(x) =

^

U

�1

(t; 0)

^

�

I

(x)

^

U(t; 0).

The de�nition of

^

U an be extended to arbitrary referene points:

^

U(t; t

1

) � e

i

^

H

0

t

e

�i

^

H(t�t

1

)

e

�i

^

H

0

t

1

=

^

U(t; 0)

^

U

�1

(t

1

; 0) :

This operator still satis�es the di�erential equation i

�

�t

^

U(t; t

1

) =

^

H

I

(t)

^

U(t; t

1

), but with

boundary ondition

^

U(t

1

; t

1

) =

^

1. The same proedure as before yields:

^

U(t; t

1

) = T

�

e

� i

R

t

t

1

dt

0

^

H

I

(t

0

)

�

(t � t

1

) :

This operator has the following properties that follow trivially from the above-given de�-

nition of

^

U(t; t

1

):

^

U(t

1

; t

2

)

^

U(t

2

; t

3

) =

^

U(t

1

; t

3

) and

^

U(t

1

; t

3

)

^

U

�1

(t

2

; t

3

) =

^

U(t

1

; t

2

) :

Note that we have not used that

^

H

0

and

^

H are hermitian, by stiking to

^

U

�1

instead of writing

^

U

y

. So,

^

U(t; t

1

) an be generalized to non-hermitian

^

H

I

(t) or

omplex-valued time trajetories, as is used in some of the textbooks on quantum

�eld theory.

2.4 Wik's theorem (§ 4.3 in the book)

The sattering amplitude for going from a free-partile initial state jii to a free-partile

�nal state jfi now takes the form

lim

t

�

!�1

hf j

^

U(t

+

; t

�

)jii � hf j

^

S jii � hf j(

^

1 + i

^

T )jii :

In this expression the matrix hf j

^

S jii is alled the S-matrix (sattering matrix), the unit

operator ourring on the right-hand-side orresponds to the ase where no sattering takes

plae, and

^

T is the transition operator that desribes atual sattering.

6a Question: what should be done to alulate suh an S-matrix element at

lowest order in perturbation theory?

The lumsy way of alulating S-matrix elements: let's onsider the salar Yukawa

theory, where

^

H

int

= g

R

d~x

^

 

y

(~x )

^

 (~x )

^

�(~x ). Remember that  is a omplex Klein-

Gordon �eld, i.e.

^

 

y

6=

^

 , whereas � is a real Klein-Gordon �eld, i.e.

^

�

y

=

^

�. Then we have:

lim

t

�

!�1

^

U(t

+

; t

�

) = T

�

e

� i

R

1

�1

dt

0

^

H

I

(t

0

)

�

=

^

1 � ig

Z

d

4

x

^

 

y

I

(x)

^

 

I

(x)

^

�

I

(x) + O(g

2

) :
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Consider the following deay proess within the salar Yukawa theory:

�(~p ) !  (~q

1

) +

�

 (~q

2

) ;

where �(~p ) denotes a �-partile with mass m and momentum ~p, whereas  (~q

1

) and

�

 (~q

2

) denote a  -partile and a  -antipartile with mass M and momenta ~q

1

and ~q

2

respetively. The ingredients for the alulation are:

jii =

p

2!

~p

â

y

~p

j0i ;

hf j =

p

2!

~q

1

2!

~q

2

h0j ̂

~q

2

^

b

~q

1

;

^

�

I

(x) =

Z

d

~

k

(2�)

3

1

p

2!

~

k

�

â

~

k

e

�ik�x

+ â

y

~

k

e

ik�x

�

�

�

�

�

k

0

=!

~

k

=

p

~

k

2

+m

2

;

^

 

I

(x) =

Z

d

~

k

1

(2�)

3

1

p

2!

~

k

1

�

^

b

~

k

1

e

�ik

1

�x

+ ̂

y

~

k

1

e

ik

1

�x

�

�

�

�

�

k

1

0

=!

~

k

1

=

p

~

k

2

1

+M

2

;

^

 

y

I

(x) =

Z

d

~

k

2

(2�)

3

1

p

2!

~

k

2

�

̂

~

k

2

e

�ik

2

�x

+

^

b

y

~

k

2

e

ik

2

�x

�

�

�

�

�

k

2

0

=!

~

k

2

=

p

~

k

2

2

+M

2

:

Using that hf jii = 0 we get

hf j

^

S jii =

p

8!

~p

!

~q

1

!

~q

2

h0ĵ

~q

2

^

b

~q

1

�

�ig

Z

d

4

x

^

 

y

I

(x)

^

 

I

(x)

^

�

I

(x)

�

â

y

~p

j0i :

Sine the â-,

^

b- and ̂-operators mutually ommute, the â

y

~

k

term in

^

�

I

an be ommuted

to the left and will annihilate the vauum. Similarly

^

b

~

k

1

in

^

 

I

and ̂

~

k

2

in

^

 

y

I

an be

ommuted to the right and will annihilate the vauum there, bearing in mind that the

vauum expetation value of an operator that involves an odd number of ̂-operators

vanishes trivially. In other words, only the â

~

k

term in

^

�

I

, the ̂

y

~

k

1

term in

^

 

I

and the

^

b

y

~

k

2

term in

^

 

y

I

will ontribute:

hf j

^

S jii = �ig

Z

d

4

x

ZZZ

d

~

kd

~

k

1

d

~

k

2

(2�)

9

�

!

~p

!

~q

1

!

~q

2

!

~

k

!

~

k

1

!

~

k

2

�

1

2

e

i(k

1

+k

2

�k)�x

h0ĵ

~q

2

^

b

~q

1

�

^

b

y

~

k

2

̂

y

~

k

1

â

~

k

�

â

y

~p

j0i :

We know that

â

~

k

â

y

~p

j0i =

�

â

~

k

; â

y

~p

�

j0i = (2�)

3

Æ(

~

k � ~p )j0i ;

and similarly that

h0j

^

b

~q

1

^

b

y

~

k

2

= h0j(2�)

3

Æ(

~

k

2

� ~q

1

) and h0j ̂

~q

2

̂

y

~

k

1

= h0j(2�)

3

Æ(

~

k

1

� ~q

2

) :

This leads to the following result for the lowest-order deay amplitude:

hf j

^

S jii = � ig

Z

d

4

x e

i(q

2

+q

1

�p)�x

h0j0i = � ig (2�)

4

Æ

(4)

(q

1

+ q

2

� p) ;
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with g the strength of the interation that is responsible for the deay. The Æ-funtion

ensures that energy and momentum are onserved in the deay. In the referene frame

of the deaying partile we have: p = (m;

~

0) ) ~q

1

+ ~q

2

=

~

0 ; !

~q

1

+ !

~q

2

= m with

!

~q

j

=

p

~q

j

2

+M

2

�M for j = 1; 2. So, the deay is only possible if m � 2M .

The smart way of alulating S-matrix elements:

6b the trik will be to bring all reation operators to the left and all annihilation

operators to the right, with the vauum state doing the rest. In other words,

in order to alulate S-matrix elements we need a way to rewrite time-ordered

�elds in normal-ordered form . . . as will be provided by Wik's theorem!

Step 1: onsider a real Klein-Gordon �eld

^

�

I

(x) =

Z

d~p

(2�)

3

e

�ip�x

p

2!

~p

â

~p

+

Z

d~p

(2�)

3

e

ip�x

p

2!

~p

â

y

~p

�

^

�

+

I

(x) +

^

�

�

I

(x) ;

where the �rst term orresponds to the positive-frequeny part and the seond term to the

negative-frequeny part. The

^

�

+

I

and

^

�

�

I

�elds have the following useful property:

^

�

+

I

(x)j0i = 0 and h0j

^

�

�

I

(x) = 0 :

Sine

^

�

+

I

only ontains annihilation operators, the �elds

^

�

+

I

(x) and

^

�

+

I

(y) ommute.

Similarly,

^

�

�

I

only ontains reation operators, so the �elds

^

�

�

I

(x) and

^

�

�

I

(y) ommute

as well. As a result

x

0

> y

0

: T

�

^

�

I

(x)

^

�

I

(y)

�

=

�

^

�

+

I

(x) +

^

�

�

I

(x)

��

^

�

+

I

(y) +

^

�

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+

�

^

�

+

I

(x);

^

�

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+ D(x� y)

^

1 ;

x

0

< y

0

: T

�

^

�

I

(x)

^

�

I

(y)

�

=

�

^

�

+

I

(y) +

^

�

�

I

(y)

��

^

�

+

I

(x) +

^

�

�

I

(x)

�

= N

�

^

�

I

(y)

^

�

I

(x)

�

+

�

^

�

+

I

(y);

^

�

�

I

(x)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+ D(y � x)

^

1 :

Now we de�ne a so-alled ontration:

^

�

I

(x)

^

�

I

(y) =

^

�

I

(x)

^

�

I

(y) �

8

>

<

>

:

�

^

�

+

I

(x);

^

�

�

I

(y)

�

= D(x� y)

^

1 if x

0

>y

0

�

^

�

+

I

(y);

^

�

�

I

(x)

�

= D(y � x)

^

1 if x

0

< y

0

= D

F

(x�y)

^

1 ;

with D

F

(x � y) the Feynman propagator of the free Klein-Gordon theory. With this

de�nition, the time-ordered expression an be rewritten as

T

�

^

�

I

(x)

^

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+

^

�

I

(x)

^

�

I

(y) :

As a onsequene of normal ordering we get, as expeted, that

h0jT

�

^

�

I

(x)

^

�

I

(y)

�

j0i = 0 + D

F

(x� y) :
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Step 2, Wik's theorem: let's for the moment skip the annoying subsript I and use

the shorthand notation

^

�

j

�

^

�

I

(x

j

) for j = 1; � � � ; n. Wik's theorem then states:

T (

^

�

1

� � �

^

�

n

) = N(

^

�

1

� � �

^

�

n

+ all possible ontrations) :

For example:

T (

^

�

1

^

�

2

^

�

3

^

�

4

) =N

�

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

�

;

with N(

^

�

1

^

�

2

^

�

3

^

�

4

) � D

F

(x

1

� x

3

)N(

^

�

2

^

�

4

).

The deomposition stated in Wik's theorem has the following important onsequene:

leftover (unontrated) normal-ordered terms vanish upon taking the vauum

expetation value!

For example:

h0jT (

^

�

1

^

�

2

^

�

3

^

�

4

)j0i = D

F

(x

1

� x

2

)D

F

(x

3

� x

4

) + D

F

(x

1

� x

3

)D

F

(x

2

� x

4

)

+ D

F

(x

1

� x

4

)D

F

(x

2

� x

3

) :

6b Feynman propagators thus play a entral role in the resulting expressions.

Proof of Wik's theorem: assume that the theorem is orret for all n � m�1, knowing

that it is okay for n = 1; 2. For onveniene we take x

0

1

� x

0

2

� � � � � x

0

m

, bearing in mind

that the order of the salar �elds is irrelevant for time ordering and normal ordering. Then

T (

^

�

1

� � �

^

�

m

) =

^

�

1

^

�

2

� � �

^

�

m

=

^

�

1

T (

^

�

2

� � �

^

�

m

)

by assumption

===========

^

�

1

N(

^

�

2

� � �

^

�

m

+ all possible ontrations of

^

�

2

� � �

^

�

m

)

= (

^

�

+

1

+

^

�

�

1

)N(� � � ) =

^

�

+

1

N(� � � ) + N(

^

�

�

1

� � � ) ;

where in the last step we have used that

^

�

�

1

ontains reation operators only and therefore

already is in the right position. In ontrast,

^

�

+

1

ontains annihilation operators only and

should be plaed after all other �elds. To get it in normal-ordered form, we need to

ommute it past all other �elds:

^

�

+

1

N(� � � ) = N(� � � )

^

�

+

1

+ orretions for all unontrated

^

�

�

j>1

:
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For instane:

^

�

+

1

N(

^

�

2

� � �

^

�

m

) = N

�

[

^

�

+

1

;

^

�

�

2

℄

^

�

3

� � �

^

�

m

+

^

�

2

[

^

�

+

1

;

^

�

�

3

℄

^

�

4

� � �

^

�

m

+ � � �

+

^

�

2

� � �

^

�

m�1

[

^

�

+

1

;

^

�

�

m

℄

�

+ N(

^

�

2

� � �

^

�

m

)

^

�

+

1

x

0

1

�x

0

j>1

======= N(

^

�

+

1

^

�

2

� � �

^

�

m

+

^

�

1

^

�

2

^

�

3

� � �

^

�

m

+

^

�

1

^

�

2

^

�

3

^

�

4

� � �

^

�

m

+ � � � ) ;

where we have used that N(

^

�

2

� � �

^

�

m

)

^

�

+

1

= N(

^

�

+

1

^

�

2

� � �

^

�

m

). Consequently

^

�

1

N(

^

�

2

� � �

^

�

m

) = N(

^

�

1

^

�

2

� � �

^

�

m

+ all single ontrations of

^

�

1

with another

^

�

j

) :

The other (ontrated) terms an be worked out in an analogous way, ompleting the

indutive proof of Wik's theorem.

2.5 Diagrammati notation: Feynman diagrams (§ 4.4 in the book)

In order to study the impliations of Wik's theorem we will fous here on the interating

salar �

4

-theory, with the salar Yukawa theory being worked out in the exerises.

6 For alulating amplitudes it will prove handy to introdue a diagrammati

notation, alled Feynman diagrams, for time-ordered vauum expetation val-

ues of interation-piture �elds.

Propagator : we start with a diagrammati notation for ontrations

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

�

j0i =

^

�

I

(x

1

)

^

�

I

(x

2

) = D

F

(x

1

� x

2

) �

x

1

x

2

;

where the solid line represents the ontration (propagator) and the dots at the end of

the line represent the so-alled external points in position spae. From this it follows, for

example, that

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

4

)

�

j0i =

x

1

x

2

x

3

x

4

+

x

1

x

2

x

3

x

4

+

x

1

x

2

x

4

x

3

:

Later on we will need more ompliated vauum expetation values of the form

lim

t

�

!�1

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

) e

� i

R

t

+

t

�

dt

^

H

I

(t)

�

j0i ;

so let's further develop the diagrammati notation. We again start with the ase n = 2:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i

Taylor

===== h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

h

^

1� i

Z

d

4

x

^

H

I

(x) + � � �

i

�

j0i:

We an now alulate this quantity up to the required perturbative order.

39



Lowest order:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

�

j0i = D

F

(x

1

� x

2

) =

x

1

x

2

:

First order in �:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

h

� i

Z

d

4

x

�

4!

^

�

4

I

(x)

i

�

j0i

Wik

===== 3

�

� i�

4!

�

Z

d

4

x h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j0i

+ 12

�

� i�

4!

�

Z

d

4

x h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j0i

= �

i�

8

D

F

(x

1

� x

2

)

Z

d

4

x D

2

F

(x� x) �

i�

2

Z

d

4

x D

F

(x

1

� x)D

F

(x

2

� x)D

F

(x� x)

=

x

1

x

2

x

+

x

1

x

2

x

:

Vertex : the spaetime point x that is integrated over is alled an internal point or vertex.

To suh a vertex we assign the analyti expression �i�

R

d

4

x, whih is the amplitude for

emission and/or absorption of partiles at the spaetime point x, summed over all points

where this an our. Also notie that we enounter for the �rst time piees of diagram

that involve losed loops.

An example of a higher-order term involving three powers in �:

P

1

3!

�

� i�

4!

�

3

h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

Z

d

4

x

^

�

I

^

�

I

^

�

I

^

�

I

Z

d

4

y

^

�

I

^

�

I

^

�

I

^

�

I

Z

d

4

z

^

�

I

^

�

I

^

�

I

^

�

I

j0i

=

i�

3

8

Z

d

4

x

Z

d

4

y

Z

d

4

z D

F

(x

1

�x)D

F

(x�x)D

F

(x�y)D

F

(x

2

�y)D

2

F

(y�z)D

F

(z�z)

=

x

1

x

2

x y

z

:

Here

R

d

4

x

^

�

I

^

�

I

^

�

I

^

�

I

is a shorthand notation for

R

d

4

x

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x). The fa-

tor

1

3!

�

�i�

4!

�

3

follows diretly from the expansion of e

� i

R

d

4

x

^

H

I

(x)

, whereas the fator P

represents the number of times the ontrations an be permuted without hanging the

ontribution. This permutation fator is a produt of the following terms:
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� 3! from permuting x; y and z ;

� 4� 3 from the x ontrations;

� 4� 3 from the y ontrations;

� 4� 3 from the z ontrations;

From the O(�) and O(�

3

) examples we see that the fator 1=n! is anelled by the n!

permutation fator from interhanging verties, and that the fators 1=4! are largely om-

pensated by the number of ways the ontrations an be plaed into

^

�

I

^

�

I

^

�

I

^

�

I

.

Symmetry fator : we end up with a leftover fator 1=S , with S the symmetry fator that

represents the number of ways in whih diagram omponents an be interhanged suh that

exatly the same diagram is obtained.

Examples:

x

1

x

2

S = 2

S = 2

3

= 8

x

1

x

2

S = 3! = 6

x

1

x

2

S = 2� 3! = 12

.

6 The expression h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i an now be represented

by the sum of all possible Feynman diagrams with two external points, where a

Feynman diagram is a olletion (drawing) of propagators, verties and external

points. The rules for assoiating analyti expressions with spei� piees of

diagrams are alled the Feynman rules of the theory.

Feynman rules for the salar �

4

-theory in position spae:

1. For eah propagator

x

1

x

2

insert D

F

(x

1

� x

2

).

2. For eah vertex

x

insert (�i�)

R

d

4

x.

3. For eah external point

x

insert 1.

4. Divide by the symmetry fator.

6 Given a spei� diagram, the omplete analyti expression is obtained by

multiplying the above-given analyti expressions for the spei� piees of the

diagram.

Swithing to momentum spae: usually it is more onvenient to work in momentum

spae, rather than position spae. First we onsider the Feynman propagator:

D

F

(x

1

� x

2

) =

Z

d

4

p

(2�)

4

i

p

2

�m

2

+ i�

e

�ip�(x

1

�x

2

)

=

x

1

x

2

p

;
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where the sign (diretion) of p is arbitrary sine D

F

(x

1

� x

2

) = D

F

(x

2

� x

1

) for a salar

�eld. In other words, we an assign a four-momentum p and omplex fator i=(p

2

�m

2

+i�)

to eah propagator, indiating the diretion of the momentum ow by an arrow. This arrow

has no deeper meaning than that in �

4

-theory, but in the salar Yukawa theory it will be

needed to distinguish partiles from antipartiles. Using this momentum-ow onvention

a vertex orresponds to the following Fourier integral:

p

1

p

2

p

3

p

4

!

Z

d

4

z e

�i(p

1

+p

2

+p

3

�p

4

)�z

= (2�)

4

Æ

(4)

(p

1

+ p

2

+ p

3

� p

4

) :

On the left-hand-side of this equation the integral follows from the Feynman rule for the

vertex and the exponential fator is aused by the momentum-spae expressions for the

Feynman propagators.

6 In momentum spae we hene obtain four-dimensional Æ-funtions that rep-

resent energy-momentum onservation at eah vertex. These Æ-funtions an

be used to perform some of the integrals that originate from the Feynman

propagators.

Feynman rules for the salar �

4

-theory in momentum spae:

1. For eah propagator

p

insert i=(p

2

�m

2

+ i�).

2. For eah vertex insert �i�.

3. For eah external point

p

x

insert e

�ip�x

.

4. Impose momentum onservation at eah vertex.

5. Integrate over eah undetermined momentum p

j

:

R

d

4

p

j

(2�)

4

.

6. Divide by the symmetry fator.

Vauum bubbles: the piees of diagram that are disonneted from the external points

are alled vauum bubbles. For example:

Z

d

4

x

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

Z

d

4

y

^

�

I

(y)

^

�

I

(y)

^

�

I

(y)

^

�

I

(y) =

p

3

p

1

p

2

p

4

:

The orresponding diagram will give rise to two energy-momentum Æ-funtions

(2�)

4

Æ

(4)

(p

1

+ p

2

)(2�)

4

Æ

(4)

(p

1

+ p

2

) :
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Upon inserting the �rst Æ-funtion, the last Æ-funtion will yield Æ

(4)

(0). This represents

the in�nite spaetime volume fator that originates from the fat that this vauum bubble

an our at any spaetime point! We have in fat already enountered an example of suh

an IR divergene in § 1.3 while disussing the in�nities of the zero-point energy. Let's now

label the possible vauum bubbles by

V

j

2

(

V

1

;

V

2

;

V

3

;

V

4

; � � �

)

;

then the following identity holds:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i = e

P

j

V

j

 

x

1

x

2

+

x

1

x

2

x

+

x

1

x

2

x y

+ � � �

!

: (2)

The part between parantheses on the right-hand-side is the sum of all onneted diagrams,

i.e. ontinuous drawings that onnet external points, whereas the exponential fator in

front is the vauum-bubble ontribution. This vauum-bubble ontribution involves no

external points and is therefore given by

e

P

j

V

j

= h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i :

Note: in the �

4

-theory eah vertex has an even number of lines oming together. So,

x

1

and x

2

must be onneted to eah other. The reason for this is that internal lines of

a diagram onnet two verties and therefore ount as two lines that are attahed to a

vertex. As suh, a onneted piee of diagram involves an even number of external lines

and points.

Proof of identity (2): onsider a diagram with n

j

vauum bubbles of type V

j

and one

onneted piee without vauum bubbles, like

x

1

x

2

onneted piee

n

1

= 1

n

3

= 2

:

From the Feynman rules it follows that

analyti expression diagram = (analyti expression onneted piee)�

�

Y

j

1

n

j

!

(V

j

)

n

j

�

;
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where the symmetry fator omes from interhanging the n

j

opies of V

j

. Hene we �nd

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i = sum of all diagrams

=

X

all possible

onneted piees

X

all fn

j

g

(analyti expression onneted piee) �

�

Y

j

1

n

j

!

(V

j

)

n

j

�

= (sum of all onneted diagrams) �

X

all fn

j

g

�

Y

j

1

n

j

!

(V

j

)

n

j

�

= (sum of all onneted diagrams) � h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i :

The only thing left to prove is that the last fator is indeed equal to e

P

j

V

j

:

e

P

j

V

j

=

Y

j

e

V

j

=

Y

j

�

X

n

j

1

n

j

!

(V

j

)

n

j

�

=

�

X

n

1

1

n

1

!

(V

1

)

n

1

��

X

n

2

1

n

2

!

(V

2

)

n

2

�

� � �

=

X

all fn

j

g

�

Y

j

1

n

j

!

(V

j

)

n

j

�

:

We an generalize the above-given separation between onneted diagrams and vauum

bubbles to

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i

= h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i � (sum of all onneted diagrams with n external points) :

For 4; 6; � � � external points this generalized sum will ontain diagrams like

x

3

x

1

x

4

x

2

that do not have all external points onneted to eah other.

Remark: we will see later that the sum

P

j

V

j

= log

�

h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i

�

of all vauum

bubbles is atually related to the di�erene in the ground-state zero-point energies of the

interating theory and the free theory.

2.6 Sattering amplitudes (§ 4.6 in the book)

7 At this point you might wonder what suh time-ordered vauum expeta-

tion values of interation-piture �elds have to do with amplitudes for deay

proesses or sattering reations.

In order to alulate sattering ross setions and deay rates we will have to work out

plane-wave amplitudes of the form

out

h~p

1

~p

2

� � � j

~

k

A

~

k

B

i

in

. Here j

~

k

A

~

k

B

i

in

is the so-alled

44



\in-state". In the ase of sattering this is a 2-partile momentum state that is onstruted

in the far past, also referred to as \the initial state". Similarly

out

h~p

1

~p

2

� � � j is the so-alled

\out-state", whih represents the �nal state partiles in the far future, i.e. the partiles

that will end up in the detetors of the experiment.

7 Sine the detetors are in general not able to resolve positions at the level of

the de Broglie wavelengths of the partiles, it is orret to work with plane-wave

states rather than wave pakets in order to desribe the ollision.

The states

out

h~p

1

~p

2

� � � j and j

~

k

A

~

k

B

i

in

are plane-wave states in the Heisenberg piture.

Normally states are time-independent in the Heisenberg piture. However, the in and out

states that we use here are de�ned as eigenstates of momentum operators that do depend

on time. As suh, the in-state ontains the time stamp t = t

�

! �1 and the out-state

t = t

+

! +1. By evolving these states to the eigenstates at t = 0, one unique set of

Heisenberg-piture plane-wave states is obtained:

out

h~p

1

~p

2

� � � j

~

k

A

~

k

B

i

in

� h~p

1

~p

2

� � � j

^

S j

~

k

A

~

k

B

i � h~p

1

~p

2

� � � j

�

^

1 + i

^

T

�

j

~

k

A

~

k

B

i :

Beause of the in�nite time interval and the way we normalize the states h~p

1

~p

2

� � � j and

j

~

k

A

~

k

B

i, these matrix elements are Lorentz invariant. As was mentioned earlier, the matrix

element h~p

1

~p

2

� � � j

^

S j

~

k

A

~

k

B

i is alled the S-matrix element and is naturally split into two

parts: a part ontaining

^

1, whih orresponds to the ase where no sattering takes plae,

and a part ontaining the transition operator

^

T , whih desribes atual sattering. So, the

latter part ontains all the interesting physis.

The matrix element: the next step is to pull out the antiipated energy-momentum

onservation fator aording to

h~p

1

~p

2

� � � ji

^

T j

~

k

A

~

k

B

i � (2�)

4

Æ

(4)

�

k

A

+ k

B

� [p

1

+ p

2

+ � � � ℄

�

iM(k

A

; k

B

! p

1

; p

2

; � � � )

� (2�)

4

Æ

(4)

�

P

i

k

i

�

P

f

p

f

�

iM(fk

i

g ! fp

f

g) ;

where M is alled the invariant matrix element (or short: matrix element).

2

All four-

momenta ourring in this expression are on-shell, i.e. p

2

=m

2

with m the physial mass

of the partile. Therefore it suÆes to know the three-momenta of the partiles and the

reation state they belong to (i.e. initial or �nal state) in order to obtain the omplete

four-momenta. By means of this split-up the interation details (\dynamis") are sepa-

rated from the momentum details (\kinematis").

2

Warning: in some textbooks the fator of i is absorbed into the de�nition of M
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Rewriting things in free-partile language (without proof, for now): as will be

shown later, the plane-wave states in the interating theory an be expressed in terms of

free-partile plane-wave states

0

h~p

1

~p

2

� � � j and j

~

k

A

~

k

B

i

0

, resulting in

h~p

1

~p

2

� � � ji

^

T j

~

k

A

~

k

B

i = lim

t

�

!�1

�

0

h~p

1

~p

2

� � � jT

�

e

� i

R

t

+

t

�

dt

^

H

I

(t)

�

j

~

k

A

~

k

B

i

0

�

fully onneted

and amputated

� fator

=

�

0

h~p

1

~p

2

� � � jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j

~

k

A

~

k

B

i

0

�

fully onneted

and amputated

� fator ;

where the (not yet spei�ed) fator omes in at loop level. In this way everything has been

translated into free-partile language, but some of the ingredients still need to be spei�ed.

7 The atual proof of the above statement will be postponed until § 2.9, sine

we will need to know a bit more about the properties of loop orretions for that

purpose. This proof will be based on the type of time-ordered vauum expetation

values of interation-piture �elds that we have enountered previously.

In order to get a feeling for the essential ingredients of that proof we will onsider an expliit

example. Let's have a look at the meaning of \fully onneted" and \amputated" by on-

sidering the S-matrix element belonging to the 2 ! 2 proess �(k

A

)�(k

B

) ! �(p

1

)�(p

2

)

in the salar �

4

-theory.

The O(�

0

) term:

0

h~p

1

~p

2

j

~

k

A

~

k

B

i

0

= 4

p

!

~p

1

!

~p

2

!

~

k

A

!

~

k

B

h0jâ

~p

1

â

~p

2

â

y

~

k

A

â

y

~

k

B

j0i

= 4!

~

k

A

!

~

k

B

(2�)

6

h

Æ(~p

1

�

~

k

A

)Æ(~p

2

�

~

k

B

) + A$ B

i

diagrammatially

=============

1 2

A B

+

1 2

B A

:

This O(�

0

) term is part of the

^

1 term in

^

S =

^

1 + i

^

T , so it does not ontribute to the

matrix element M.

Arrow of time, Peskin & Shroeder style : the external lines without external points in-

diate the inoming partiles, whih are plaed at the bottom of the diagram in the notation

of Peskin & Shroeder, and outgoing partiles, whih are plaed at the top of the diagram.

In many textbooks these diagrams will be turned by 90

Æ

with inoming partiles on the

left and outgoing ones on the right, i.e. in that ase the time-axis points from left to right

rather than from bottom to top.
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The O(�) term:

0

h~p

1

~p

2

jT

�

� i

Z

d

4

x

�

4!

^

�

4

I

(x)

�

j

~

k

A

~

k

B

i

0

Wik

=====

�

� i�

4!

�

0

h~p

1

~p

2

j

Z

d

4

x N

�

^

�

4

I

(x)

�

j

~

k

A

~

k

B

i

0

+

�

� i�

4!

�

0

h~p

1

~p

2

j

Z

d

4

x N

�

6

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x) + 3

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

�

j

~

k

A

~

k

B

i

0

:

This time terms that are not fully ontrated do not vanish automatially:

^

�

+

I

(x)j

~

ki

0

=

Z

d~p

(2�)

3

1

p

2!

~p

â

~p

e

�ip�x

p

2!

~

k

â

y

~

k

j0i = e

�ik�x

j0i :

It is now useful to extend the ontration de�nition with

^

�

I

(x)j

~

ki

0

�

^

�

+

I

(x)j

~

k i

0

= e

�ik�x

j0i and

0

h~pj

^

�

I

(x) �

0

h~pj

^

�

�

I

(x) = h0je

ip�x

:

This means that we need additional Feynman rules for ontrations of �eld operators with

external states:

q

x

= e

�iq�x

and

q

x

= e

iq�x

;

where e

�iq�x

is the amplitude for �nding a partile with four-momentum q at the vertex

position x. Diagrammatially the O(�) terms then onsist of the following ontributions:

� A term with all

^

�

I

's ontrated with eah other:

�

i�

8

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

=

x

1 2

A B

+

x

1 2

B A

This is a part of the

^

1 term in

^

S =

^

1 + i

^

T , so it does not ontribute to the matrix

element M.

� Terms where some

^

�

I

's are ontrated with eah other and some with the external

states:

�

i�

2

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

+ three similar terms

=

x

A

1

B

2

+

x

A

2

B

1

+

x

B

1

A

2

+

x

B

2

A

1

:

These terms ontribute only if there are as many â as â

y

operators left, so one �eld

should be ontrated with an inoming partile state and one with an outgoing parti-

le state. Again this is part of the

^

1 term in

^

S =

^

1+ i

^

T , sine the integration

R

d

4

x

yields a momentum-onserving Æ-funtion at eah vertex. Again no ontribution to

the matrix element M is obtained.

47



� A term where all

^

�

I

's are ontrated with the external states:

� i�

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

=

x

1

A

2

B

= � i�

Z

d

4

x e

�i(k

A

+k

B

�p

1

�p

2

)�x

= � i�(2�)

4

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

) :

This term gives rise to a �� ontribution to the matrix element M!

Fully onneted diagrams: the disussion above reets the following general priniple.

7a Only fully onneted diagrams, in whih all lines are onneted to eah

other, ontribute to the T -matrix and hene to the matrix element M.

At lowest non-vanishing order we �nd M(k

A

; k

B

! p

1

; p

2

) = �� in the salar �

4

-theory,

whih an be obtained diretly from the momentum-spae interation vertex = � i�.

Inluding higher-order terms, while keeping the external lines onneted:

h~p

1

~p

2

ji

^

T j

~

k

A

~

k

B

i =

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+

1

B

2

A

+ � � �

+

1

A

2

B

+ � � �

+

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+ � � �

The three sets of diagrams that our on the separate lines of this expression are now

disussed individually.

Set 1: these diagrams ontribute to M. Beyond leading order diagrams our that involve

the reation and annihilation of additional \virtual" partiles. Suh higher-order ontri-

butions are alled loop orretions.

Set 2: these diagrams involve disonneted vauum bubbles, whih will again exponentiate

to an overall phase fator that is irrelevant for physial observables! These graphs take

into aount the energy shift between the ground state of the free theory and the ground
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state of the interating theory with respet to whih sattering takes plae. So, indeed

only fully onneted diagrams matter!

Set 3: suh diagrams give rise to ontributions of the form

x

y

p

1

p

2

k

A

k

B

k

0

l

=

1

2

Z

d

4

k

0

(2�)

4

i

k

02

�m

2

+ i�

Z

d

4

l

(2�)

4

i

l

2

�m

2

+ i�

�

� (� i�)(2�)

4

Æ

(4)

(k

A

+ k

0

� p

1

� p

2

)(� i�)(2�)

4

Æ

(4)

(k

B

� k

0

)

=

1

2

(� i�)

2

(2�)

4

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

)

i

k

2

B

�m

2

+ i�

Z

d

4

l

(2�)

4

i

l

2

�m

2

+ i�

:

This ontribution ontains two propagators, D

F

(x�y) and D

F

(y�y), and two Æ-funtions

from the integrals over x and y . It blows up, sine external partiles are on-shell,

i.e. k

2

B

= m

2

. In fat, the diagrams

+ + + + � � �

represent the evolution of j~p i

0

in the free theory into j~p i in the interating theory, whih

auses the omplex poles of the propagator to shift away from the free-partile positions at

p

2

= m

2

. As we will see later, this evolution will give rise to overall proportionality fators

in the T -matrix. All this reets the fat that a partile is never truly free in quantum

�eld theory, being surrounded by a loud of virtual partiles. In quantum �eld theory it is

simply not possible to swith o� interations.

The amputation proedure: in order to deal with ontributions of the latter type, the

following proedure is used.

7b Starting at the tip of eah external leg, �nd the last point at whih the

diagram an be ut by removing a single propagator in suh a way that this

separates the leg from the rest of the diagram. The amputation proedure tells

us to ut the diagram at those points.

Contributions to the T -matrix are then obtained as

(2�)

4

Æ

(4)

�

k

A

+k

B

�

P

f

p

f

�

iM

�

k

A

; k

B

! fp

f

g

�

= sum of all fully onneted amputated

Feynman diagrams in position spae, multiplied by appropriate proportionality fators

at loop level.
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The missing details onerning the amputation proedure will be disussed after we have

seen some properties of loop orretions.

Position-spae Feynman rules for matrix elements in the salar �

4

-theory:

1. For eah propagator

x

1

x

2

insert D

F

(x

1

� x

2

).

2. For eah vertex

x

insert (�i�)

R

d

4

x.

3. For eah external line

x

q

insert e

�iq�x

.

4. Divide by the symmetry fator.

Formulated in momentum spae: in order to deal with plane-wave states it is more

natural to swith from position spae to momentum spae. As explained before, in mo-

mentum spae eah interation vertex gives rise to an energy-momentum Æ-funtion. As

we have seen in the example disussed above, one of these Æ-funtions is the overall energy-

momentum Æ-funtion of the T -matrix. Therefore, in momentum spae one diretly obtains

the matrix element as

7

iM

�

k

A

; k

B

! fp

f

g

�

= sum of all fully onneted amputated Feynman diagrams

in momentum spae, multiplied by appropriate proportionality fators at loop level.

Momentum-spae Feynman rules for matrix elements in the salar �

4

-theory:

1. For eah propagator

q

insert

i

q

2

�m

2

+ i�

.

2. For eah vertex insert �i�.

3. For eah external line

q

insert 1.

4. Impose momentum onservation at eah vertex.

5. Integrate over eah undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

6. Divide by the symmetry fator.

Momentum-spae Feynman rules for the salar Yukawa theory: for ompleteness

we also list here the Feynman rules for the salar Yukawa theory as derived in the exerises.

1. For eah �-propagator

q

insert

i

q

2

�m

2

+ i�

.

For eah  -propagator

q

insert

i

q

2

�M

2

+ i�

.
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2. For eah vertex insert �ig .

3. For eah external �-line

q

insert 1.

For eah inoming  -line

k

insert 1, originating from

^

 .

For eah inoming

�

 -line

k

insert 1, originating from

^

 

y

.

For eah outgoing  -line

p

insert 1, originating from

^

 

y

.

For eah outgoing

�

 -line

p

insert 1, originating from

^

 .

4. Impose energy-momentum onservation at eah vertex.

5. Integrate over eah undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

The following observations an be made. First of all, in ontrast to the salar �

4

-theory no

symmetry fators are needed in the salar Yukawa theory, sine all �elds in the interation

are di�erent. Seondly, whereas the arrows on the dashed �-lines have no speial meaning,

this is not true for the arrows on the solid lines, whih orrespond to the

^

 and

^

 

y

�elds.

This arrow is needed for distinguishing partiles ( ) from antipartiles (

�

 ).

7d Drawing onvention: draw arrows on the  -lines and the

�

 -lines.

These arrows represent the diretion of partile-number ow: partiles ow along

the arrow, antipartiles ow against it. In this onvention

^

 orresponds to an

arrow owing into a vertex, whereas

^

 

y

orresponds to an arrow owing out

of a vertex. Sine every interation vertex features both

^

 and

^

 

y

, the arrows

link up to form a ontinuous ow.

2.7 Non-relativisti limit: fores between partiles

7e We are now in the position to address our �rst major question: how do

fores ome about in quantum �eld theory?

To answer this question we ompare the lowest-order relativisti matrix element for the

reation �(k

A

)�(k

B

)! �(p

1

)�(p

2

), i.e.

iM =

p

1

p

2

k

A

k

B

= � i� ;
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to the non-relativisti amplitude for elasti potential sattering in Born approximation.

Sine the matrix element is Lorentz invariant, we are free to hoose the enter-of-mass

(CM) frame. In this frame

~

k

A

= �

~

k

B

�

~

k and ~p

1

= � ~p

2

� ~p with j

~

k j = j~p j for elasti

sattering. The non-relativisti limit amounts to j

~

k j ; j~p j � m, from whih it follows that

!

~

k

= !

~p

� m +O(

~

k

2

=m). For sattering from states with momenta �

~

k into states with

momenta � ~p the omparison then reads:

NR

h~p jV (

^

~r )j

~

k i

NR

=

Z

d~r V (~r ) e

i(

~

k�~p )�~r

�

Z

d~r V (~r ) e

i

~

��~r

� �

M

�

k

A

; k

B

! p

1

; p

2

�

=2

(2m)

2

;

where the fator 1=2 multiplying the matrix element originates from having idential parti-

les in the reation. Furthermore, it has been used that the relativisti and non-relativisti

momentum states are related aording to

j~p i

0

=

p

2!

~p

j~p i

NR

�

p

2m j~p i

NR

;

resulting in a relative fator (2m)

2

. By inverse Fourier transformation one obtains

V (~r ) �

Z

d

~

�

(2�)

3

�

�M

8m

2

�

e

�i

~

��~r

M=��

======

�

8m

2

Æ(~r )

for the interation potential.

7e The salar �

4

-theory involves a so-alled ontat interation / Æ(~r ),

whih refers to the fat that the partiles interat in one spaetime point at lowest order.

We an repeat this for  (k

A

) (k

B

)!  (p

1

) (p

2

) sattering in the salar Yukawa theory.

In that ase all external on-shell partiles have mass M and the lowest-order matrix ele-

ment reads (see Ex. 9):

iM =

p

1

p

2

k

A

k

B

+

p

2

p

1

k

A

k

B

� iM

1

+ iM

2

= � ig

2

�

1

(k

A

� p

1

)

2

�m

2

+ i�

+

1

(k

A

� p

2

)

2

�m

2

+ i�

�

NR

� ig

2

�

1

(

~

k � ~p )

2

+m

2

+

1

(

~

k + ~p )

2

+m

2

�

;

using CM momenta and k

0

A

� p

0

1

=

p

~

k

2

+M

2

�

p

~p

2

+M

2

� (

~

k

2

� ~p

2

)=(2M). The +i�

terms have been dropped as a result of the fat that the energy omponents are suppressed.
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Note that there are two ontributions this time, originating from interhanging the �nal-

state partiles (i.e. ~p! �~p ). Using spherial oordinates for the inverse Fourier transform

with polar axis along ~r it now follows that

V (~r ) = �

1

4M

2

Z

d

~

�

(2�)

3

M

1

e

�i

~

��~r

��j

~

�j

===== � (g=2M)

2

1

Z

�1

d os �

(2�)

2

1

Z

0

d�

�

2

e

�i�r os �

�

2

+m

2

= �

(g=2M)

2

4�

2

ir

1

Z

0

d� �

e

i�r

� e

�i�r

�

2

+m

2

= �

(g=2M)

2

4�

2

ir

1

Z

�1

d�

�e

i�r

(� + im)(�� im)

= �

(g=2M)

2

4�

2

ir

Z

C

d�

�e

i�r

(� + im)(�� im)

= �

(g=2M)

2

4�r

e

�mr

;

where the integration ontour C is given in �gure 5.

Re�

Im�

C

in�nite semi irle

*

*

+ im

� im

Figure 5: Closed integration ontour for the determination of the Yukawa potential.

7e The salar Yukawa theory involves an attrative Yukawa interation be-

tween the  -partiles, whih dies o� exponentially at 1=m distanes. This

length sale (range) is in fat the Compton wavelength of the exhanged virtual

�-partiles, whih mediate the interation.

These virtual partiles are short-lived o�-shell partiles, i.e. p

2

6= m

2

. In fat, they are too

short-lived for their energy to be measured aurately. Hene the name virtual partiles.

Over 1=m distanes the energy an utuate by O(m), whih is suÆient to reate the

�-partiles. Over larger distanes the energy an utuate less, resulting in the exponen-

tial derease of the fore. If the virtual partiles are massless (like the photon) then the

Yukawa interation has an in�nite range and hanges into the familiar Coulomb potential

/ 1=r , whih is not dereasing exponentially.
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The true Yukawa theory for the interation between fermions and salars was used to de-

sribe the interations between nuleons. In that ase the mediating partile is a pion.

It has a mass of about 140MeV and therefore an assoiated harateristi length sale of

roughly 1.4 fm, whih agrees niely with the e�etive range of the nulear fores.

Fores in quantum �eld theory: the fores between partiles are aused (mediated)

by the exhange of virtual partiles! Interations aused by spin-0 fore arriers (suh

as the Yukawa interations) are universally attrative, just like interations due to the

exhange of spin-2 partiles (suh as gravity). The exhange of spin-1 partiles an result

in both attrative and repulsive interations, as we know from eletromagnetism.

The relevant details of this statement are worked out in Ex. 10 and 11. The impliations

an be seen all around us. Gravity is attrative and gives rise to struture formation

in the universe. The fore that holds together nuleons inside a nuleus is mediated

by the spin-0 pion, giving rise to a strong nulear fore that is attrative and of fem-

tometer range. This nulear binding fore overomes the repulsive eletromagneti fore

between the like-harged protons. The proton repulsion inuenes the nulear binding-

energy properties of heavy nulei, leading to the observed neutron over proton ratio and

nulear instability of heavy elements as well as the possibility of nulear �ssion. The fat

that the eletromagneti fore an be both repulsive and attrative is responsible for the

multi-faeted properties of atoms and the hemistry among moleules. This involves the

intriate (quantum-mehanial) interplay between attrative fores that bind eletrons to

nulei and the repulsive fores among the eletrons and among the nulei.

Intermezzo 2: ux laws for fores with massless mediators

The previous disussion basially tells us that the interation potential between partiles

results from the inverse Fourier transform of the fore arrier's propagator. For massless

fore arriers suh as photons (eletromagnetism) and gravitons (gravity) this immediately

implies a onstant ux law for the orresponding fore (Gauss' law):

�

Z

S(V )

d~s �

~

F (r) =

Z

S(V )

d~s �

~

5

V (r)

m=0

==== �C

Z

S(V )

d~s �

~

5

Z

d

~

�

(2�)

3

e

�i

~

� �~r

�

2

Gauss

===== �C

Z

V

d~r

~

5

�

~

5

Z

d

~

�

(2�)

3

e

�i

~

��~r

�

2

= C

Z

V

d~r

Z

d

~

�

(2�)

3

e

�i

~

��~r

= C

Z

V

d~r Æ(~r ) = C ;

for a sphere V entered around the origin ~r=

~

0 of the interation (CM) and with surfae

S(V ). Sine d~s �

~

F (r) is onstant on S(V ), we obtain for n spatial dimensions that

V

(n)

(r) = �

C

(n� 2)S

n

(1)

1

r

n�2

)

~

F

(n)

(r) = �

C

S

n

(1)

~r

r

n

= �

C

S

n

(1)

~e

r

r

n�1
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for the orresponding interation potential and fore, with S

n

(1) the surfae area of the

unit sphere in n dimensions. For n = 3 we obtain V

(3)

(r) = �C=(4�r), whih indeed

oinides with a massless Yukawa potential with (g=2M)

2

= C . The power law for the

fore simply reets that at onstant fore ux the fore lines spread (dilute) more rapidly

in higher-dimensional spaes.

Appliation: gravity in ompat extra spatial dimensions

An idea to redue the sale hierarhy between the Standard Model and the energy sale at

whih gravity beomes strong (Plank sale) is to assume that the graviton an propagate

in ompat extra spatial dimensions of size R . Aording to the previous disussion this

auses gravity to beome stronger at r < R distanes due to the di�erent power law:

F

grav

(r < R) =

�m

1

m

2

(�

n

r)

n�1

retrieving

����������!

Newton

F

grav

(r � R) =

�m

1

m

2

�

n�1

n

R

n�3

r

2

�

�m

1

m

2

(�

P

r)

2

;

where the Plank sale an be expressed in terms of Newton's ontstant as �

P

= 1=

p

G .

\our world"

Figure 6: As an illustrative example onsider an in�nite ylindrial shell (tube) with small

radius R. At r < R distanes (blue region) the fore lines (red) spread more rapidly as a

result of the wrapped extra dimension of size R. At r > R distanes the spreading of the

fore lines in the extra dimension will start to saturate and for r� R the 1-dimensional

ase (representing \our world") is approahed asymptotially (yellow irle).

The fundamental Plank sale in n spatial dimensions then beomes

�

n

=

�

�

2

P

=R

n�3

�

1=(n�1)

= �

P

=

�

�

P

R

�

(n�3)=(n�1)

:

By making �

P

R = R=10

�35

m suÆiently large, whih is usually referred to as models with

\large extra dimensions", the e�etive Plank sale an be lowered from O(10

19

GeV) to

O(TeV). For n� 3 = 2; � � � ; 6 extra dimensions we an ahieve this by setting the size of

the ompat extra dimensions to R = 10

�3

m; � � � ; 10

�14

m. This would imply that in those

senarios gravity would beome strong at the O(10

�19

m) length sales probed at the LHC,

giving rise to the prodution of mirosopi blak holes. Alternatively, the idea of extra

dimensions an be tested by performing dediated submillimeter gravity experiments.
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2.8 Translation into probabilities (§ 4.5 in the book)

8 At this point we know how to alulate amplitudes for deay proesses and

sattering reations by means of Feynman diagrams and Feynman rules. In the

next step we derive the probabilisti interpretation belonging to these amplitudes.

2.8.1 Deay widths

Consider an initial state onsisting of a single partile in the momentum state j

~

k

A

i, de-

aying into a �nal state onsisting of n partiles in the momentum state j~p

1

� � � ~p

n

i. The

probability density for this deay to our is given by

jh~p

1

� � � ~p

n

j

^

S j

~

k

A

ij

2

h

~

k

A

j

~

k

A

ih~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i

;

with

h

~

k

A

j

~

k

A

i = 2E

~

k

A

(2�)

3

Æ(

~

0 )

p. 15

==== 2E

~

k

A

V and h~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i =

n

Y

j=1

(2E

~p

j

V ) :

This is also valid for idential partiles in the �nal state. Finding a set of partiles with

the required momenta e�etively identi�es the partiles. Sine the initial and �nal states

are di�erent in a deay proess, the S-matrix element is in fat equivalent with the or-

responding T -matrix element. In the rest frame of the deaying partile

~

k

A

=

~

0 and

E

~

k

A

= m

A

, hene

jh~p

1

� � � ~p

n

ji

^

T j

~

k

A

ij

2

h

~

k

A

j

~

k

A

ih~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i

=

jM(k

A

! fp

j

g)j

2

2m

A

V

h

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

i

2

1

n

Q

j=1

(2E

~p

j

V )

(2�)

4

Æ

(4)

(0)=V T

===========

jM(k

A

! fp

j

g)j

2

2m

A

V

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

V T

n

Q

j=1

(2E

~p

j

V )

:

The linear time fator T =

R

t

+

t

�

dt in this expression was to be expeted from Fermi's

Golden Rule! This fator an be divided out in order to obtain the orresponding onstant

deay rate.

Next we integrate over all possible momenta of the n �nal-state partiles. This time

it does matter whether there are idential partiles in the �nal state. In order to avoid

double ounting we have to restrit the integration to inequivalent on�gurations or divide

by 1=n

k

! fators for any group of n

k

idential �nal-state partiles. Generially we will

indiate this ombinatorial �nal-state idential-partile fator by C

f

. The �nal expression

for the integrated onstant deay rate then beomes
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�

n

= C

f

�

R

density of states

z }| {

n

Y

j=1

V

Z

d~p

j

(2�)

3

�

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

jM(k

A

! fp

j

g)j

2

2m

A

�

n

Q

j=1

2E

~p

j

V

�

=

1

2m

A

C

f

Lorentz invariant

z }| {

Z

d�

n

jM(k

A

! fp

j

g)j

2

;

in terms of the relativistially invariant n-body phase-spae element

d�

n

�

�

n

Y

j=1

d~p

j

(2�)

3

1

2E

~p

j

�

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

; (3)

whih is sometimes denoted by dPS

n

in other textbooks. This deay rate is alled the

partial deay width for the deay mode into the onsidered n-partile �nal state.

After summation over all possible �nal states one obtains the so-alled total deay width

� =

1

2m

A

X

�nal states

C

f

Z

d�

f

jM(k

A

! fp

f

g)j

2

;

with d�

f

orresponding to a given �nal state.

8a This total deay width is related to the half-life of the deaying partile

through the relation � = 1=�. If the deaying partile is not at rest, the de-

ay width is redued by a fator m

A

=E

~

k

A

. This leads to an inreased half-life

� E

~

k

A

=m

A

= �=

p

1� ~v

2

� � , where ~v is the veloity of the deaying partile.

2.8.2 Cross setions for sattering reations

target

v

B

`

A

`

B

beam

O

�

B

�

A

Consider a beam of B partiles hitting a target at

rest onsisting of A partiles. The ase of two ol-

liding partile beams an be obtained from this

by an appropriate Lorentz boost. Let's start by

assuming onstant densities �

A

and �

B

in tar-

get and beam. The number of sattering events

will be proportional to (�

A

`

A

)(�

B

`

B

)O , with O

the ross-setional overlap area ommon to both

the beam and the target. The ratio

# sattering events

(O`

A

�

A

)(O`

B

�

B

)=O

�

1

N

A

# sattering events

N

B

=O

� �
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de�nes the ross setion � as the e�etive area of a hunk taken out of the beam by eah

partile in the target. The quantities N

A

and N

B

are the numbers of A and B partiles

that are relevant for sattering, i.e. the partiles that at some point in time belong to the

overlap between beam and target. All of this an be equally well formulated in terms

of time-related quantities like the sattering rate and the inoming partile ux: simply

replae the number of sattering events by the number of sattering events per seond and

`

B

�

B

by the ux v

B

�

B

of beam partiles. Hene,

� =

1

N

A

sattering rate

beam ux

Approximate plane-wave states: in reality �

A

and �

B

are not onstant, sine the

olliding partiles are desribed quantum mehanially by wave pakets and both beam

and target have a density pro�le. However,

the studied range of the interation between the olliding partiles is usually

muh smaller than the width of the individual wave pakets perpendiular to

the beam, whih in turn is muh maller than the atual diameter of the beam.

Therefore, in good approximation �

A

and �

B

an be onsidered as loally onstant on

quantum mehanial (i.e. interation) length sales

3

, whereas the density pro�les inside

the beam and target an be inorporated properly by averaging over the overlap region:

`

A

`

B

Z

d

2

x

?

�

A

(x

?

)�

B

(x

?

) � N

A

N

B

=O :

Here N

A

and N

B

are the e�etive numbers of A and B partiles that are relevant for

sattering and x

?

is the spatial oordinate perpendiular to the beam. From this it

follows that

# sattering events = �N

A

N

B

=O ;

where � an be alulated for e�etively onstant values of �

A

and �

B

orresponding to

approximately plane-wave initial states. By the way, we don't have to restrit ourselves to

the total number of sattering events. In a similar way we an study the ross setion for

sattering into the region d~p

1

� � � d~p

n

around the n-partile �nal-state momentum point

~p

1

; � � � ; ~p

n

. This is atually what detetors usually do: they detet partiles with energy and

momentum in ertain �nite bins, whih are given by the detetor resolution. These bins

annot resolve the momentum spread of any of the wave pakets, just like the detetor ells

an in general not resolve the partile positions at the level of the de Broglie wavelengths.

For all pratial purposes detetors observe lassial point-like partiles with well-de�ned

momenta (in diretion and magnitude). So, in the �nal state it makes sense to use plane

waves as well.

3

These (slowly hanging) densities an even be loally zero!
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8b Calulating ross setions therefore amounts to alulating transition prob-

abilities in momentum spae. These transition probabilities are universal in the

sense that they are independent of details of the experiment, suh as the prop-

erties of the beams, the targets or the preparation of the initial-state partiles.

The di�erential ross setion: onsider an initial state onsisting of one target par-

tile and one beam partile in the momentum state j

~

k

A

;

~

k

B

i sattering into a �nal state

onsisting of n partiles in a momentum state with momenta inside the bin d~p

1

� � � d~p

n

around ~p

1

; � � � ; ~p

n

. In analogy with the alulation in § 2.8.1, the orresponding di�erential

transition probability per unit time and per unit ux is given by

d� =

1

F

1

4E

~

k

A

E

~

k

B

V

jM(k

A

; k

B

! fp

j

g)j

2

d�

n

;

whih is usually referred to as the di�erential ross setion. As explained in § 2.8.1 this

result for d� is also valid for idential partiles in the �nal state. In this expression F

stands for the ux assoiated with the inoming beam partile:

F =

1

V

j~v

rel

j =

j~v

A

� ~v

B

j

V

~v= ~p=E

======

j

~

k

A

=E

~

k

A

�

~

k

B

=E

~

k

B

j

V

;

where we have hosen ~e

z

along the beam axis. Furthermore, we have used that the four-

momentum of a massive partile reads p

�

0

= (m;

~

0 ) in its rest frame, whih beomes

p

�

=

�

 (E

0

+~v � ~p

0

);  (~p

0

+E

0

~v )

�

E

0

=m; ~p

0

=

~

0

========= (m;m~v ) upon boosting with veloity v

along the ~e

p

-diretion. We therefore �nd

d� =

jM(k

A

; k

B

! fp

j

g)j

2

d�

n

4jE

~

k

B

~

k

A

� E

~

k

A

~

k

B

j

for the di�erential ross setion.

8b The so-alled ux fator

1

4

jE

~

k

B

~

k

A

� E

~

k

A

~

k

B

j

�1

is invariant under boosts

along the beam diretion and the same goes for the di�erential ross setion d�,

as expeted for a ross-setional area perpendiular to the beam.

2.8.3 CM kinematis and Mandelstam variables for 2! 2 reations

Consider a 2 ! 2 reation with matrix element M

�

k

A

; k

B

! p

1

; p

2

�

. In the CM frame

with the z-diretion taken along the beam axis and oriented parallel to the inoming A

partiles the orresponding kinematis reads:
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~

k

A

A

CM ~

k

B

B

before

CM

z-axis

2

~p

2

1

~p

1

�

�

after

k

�

A

= (E

A

; 0; 0; k) ; k

�

B

= (E

B

; 0; 0;�k) p

�

1

= (E

1

; ~p ) ; p

�

2

= (E

2

;�~p ) :

Hene, the two �nal-state partiles are produed bak-to-bak in the CM frame. Written

in ompat notation the CM momenta and energies are given by

k =

q

E

2

A;B

�m

2

A;B

; p = j~p j =

q

E

2

1;2

�m

2

1;2

and E

A

+ E

B

= E

1

+ E

2

� E

CM

) E

A;B

=

E

2

CM

+m

2

A;B

�m

2

B;A

2E

CM

; k =

p

(E

2

CM

�m

2

A

�m

2

B

)

2

� 4m

2

A

m

2

B

2E

CM

;

E

1;2

=

E

2

CM

+m

2

1;2

�m

2

2;1

2E

CM

; p =

p

(E

2

CM

�m

2

1

�m

2

2

)

2

� 4m

2

1

m

2

2

2E

CM

:

The matrix element is Lorentz invariant, so it an be expressed in terms of invariant

ombinations of the partile momenta. Sine only three out of four partile momenta are

independent, this leaves six kinematial variables: the squared masses of the four partiles,

three so-alled Mandelstam variables that ombine two of the partile momenta and one

ondition. We start with the Mandelstam variable

s � (k

A

+ k

B

)

2

= (p

1

+ p

2

)

2

= E

2

CM

:

In order to guarantee that both k; p � 0 and E

A;B

� m

A;B

this variable has to satisfy the

inequalities s � (m

A

+m

B

)

2

and s � (m

1

+m

2

)

2

. The expressions for the CM energies

and momenta then beome

E

A;B

=

s+m

2

A;B

�m

2

B;A

2

p

s

; E

1;2

=

s+m

2

1;2

�m

2

2;1

2

p

s

;

k =

p

(s�m

2

A

�m

2

B

)

2

� 4m

2

A

m

2

B

2

p

s

and p =

p

(s�m

2

1

�m

2

2

)

2

� 4m

2

1

m

2

2

2

p

s

:

The other two Mandelstam variables are

t � (k

A

� p

1

)

2

= (k

B

� p

2

)

2

and u � (k

A

� p

2

)

2

= (k

B

� p

1

)

2

;

whih ontain the angular dependene of the reation through

2

~

k

A

� ~p

1

= 2k~e

z

� ~p = 2kp os � and 2

~

k

A

� ~p

2

= � 2k~e

z

� ~p = � 2kp os � :
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These three Mandelstam variables satisfy the energy-momentum onservation ondition

s + t+ u = m

2

A

+m

2

B

+m

2

1

+m

2

2

:

A few onventions: in general 2! 2 reations the most similar initial- and �nal-state

partiles are ombined into the t-variable. For instane, in the reation e

+

e

�

! �

+

�

�

one should ombine the momenta of the eletron (e

�

) and muon (�

�

), or equivalently the

momenta of the positron (e

+

) and antimuon (�

+

). A reation hannel is referred to as

s-hannel (or t-hannel, or u-hannel) if the Mandelstam variable s (or t, or u) features in

the propagator at lowest order.

s-hannel:

A B

t-hannel:

1

A

u-hannel:

2

A

The 2-body phase-spae element: in the CM frame, where

~

k

A

= �

~

k

B

� k~e

z

, the

beam ux reads

F

CM

=

k(E

A

+ E

B

)

E

A

E

B

V

�

kE

CM

E

A

E

B

V

:

The di�erential ross setion for a 2! 2 reation in the CM frame therefore beomes

d�

CM

=

jM(k

A

; k

B

! p

1

; p

2

)j

2

d�

2

4kE

CM

:

8b Note that the di�erential ross setion falls o� as 1=E

2

CM

at high energies.

This is a destrutive interferene e�et aused by probing the relevant intera-

tion length sale with partiles that have a muh smaller de Broglie wavelength.

In analogy with equation (3) the Lorentz invariant phase-spae element for two �nal-state

partiles beomes

Z

d�

2

=

Z

d~p

1

(2�)

3

1

2E

1

Z

d~p

2

(2�)

3

1

2E

2

(2�)

4

CM: Æ(E

CM

�E

1

�E

2

)Æ(~p

1

+~p

2

)

z }| {

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

)

CM

===

Z

dp

16�

2

p

2

E

1

E

2

Z

d
 Æ(E

CM

� E

1

� E

2

) :

Replaing the integration variable p by E

1

+E

2

=

p

p

2

+m

2

1

+

p

p

2

+m

2

2

this beomes

Z

d�

2

=

Z

d(E

1

+ E

2

)

16�

2

E

1

E

2

p

2

p=E

1

+ p=E

2

Z

d
 Æ(E

CM

� E

1

� E

2

)

=

p

16�

2

E

CM

Z

d
 =

p

16�

2

E

CM

Z

2�

0

d�

Z

1

�1

d os � ;
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where � is the polar sattering angle with respet to the beam axis and � the azimuthal

sattering angle around the beam axis (as displayed in the �gure at the start of this

paragraph). From this the following angular di�erential ross setion an be obtained:

�

d�

d


�

CM

=

p

64�

2

kE

2

CM

jM

�

k

A

; k

B

! p

1

; p

2

�

j

2

: (4)

In view of rotational symmetry about the z-axis there will be no �-dependene and the

�-integral will straightforwardly yield a fator 2� . One we also integrate over � to obtain

the total ross setion �, one has to restrit this integration to inequivalent on�gurations

or multiply by the appropriate �nal-state idential-partile fator C

f

.

To give a simple example, we again onsider the proess

�(k

A

) + �(k

B

) ! �(p

1

) + �(p

2

)

in the salar �

4

-theory. As we have seen on page 48, the lowest-order matrix element for

this proess is given by ��. Hene,

�

d�

d


�

CM

=

jMj

2

64�

2

E

2

CM

p

k

=

�

2

64�

2

E

2

CM

=

�

2

64�

2

s

and � =

1

2

Z

d


�

d�

d


�

CM

=

�

2

32�s

;

where the fator 1=2 ourring in the last expression is the idential-partile fator for two

idential �nal-state partiles. Further examples of ross setions for 2 ! 2 reations an

for instane be found in Ex. 11.

2.9 Dealing with states in the interating theory (§7.1 in the book)

9 In order to lose the gaps that were left behind during previous steps, we now

have to address some of the non-perturbative properties of the interating theory.

We study these issues by onsidering n-point orrelation funtions (Green's funtions) in

the salar �

4

-theory:

G

(n)

(x

1

; � � � ; x

n

) �

h
jT

�

^

�(x

1

) � � �

^

�(x

n

)

�

j
i

h
j
i

:

Here

^

�(x

1

); � � � ;

^

�(x

n

) are Heisenberg �elds in the interating theory and j
i is the ground

state of the interating theory, whih satis�es

^

H j
i = E

0

j
i and h
j
i = 1 :

These Green's funtions play an important role in the derivation of sattering amplitudes

and are interesting objets in their own right, for instane for studying density pertur-

bations. Without loss of generality we an take x

0

1

= t

1

� x

0

2

= t

2

� � � � � x

0

n

= t

n

,
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so that

h
jT

�

^

�(x

1

) � � �

^

�(x

n

)

�

j
i = h
j

^

�(x

1

) � � �

^

�(x

n

)j
i

p. 34

==== h
j

^

U

�1

(t

1

; 0)

^

�

I

(x

1

)

^

U(t

1

;t

2

)

z }| {

^

U(t

1

; 0)

^

U

�1

(t

2

; 0) � � �

^

U(t

n�1

;t

n

)

z }| {

^

U(t

n�1

; 0)

^

U

�1

(t

n

; 0)

^

�

I

(x

n

)

^

U(t

n

; 0)j
i :

Projeting on the free-partile vauum: for an arbitrary state j i it will prove handy

to onsider

h j

^

U(0; t

�

)j0i

^

H

0

j0i�0

====== h je

i

^

Ht

�

j0i

ompleteness relation for

^

H

====================

X

n

h je

i

^

Ht

�

jnihnj0i

= e

iE

0

t

�

h j
ih
j0i +

X

n 6=


e

iE

n

t

�

h jnihnj0i

and subsequently take the limit t

�

! �1. The \summation" over the exited states

fjni 6= j
ig is just a shorthand notation, in fat it will involve an integration over energy

(see later). Provided that there is a �nite energy gap between the ground state j
i and

the exited states jn 6=
i, as is for instane the ase for massive exitations, we an employ

the Riemann{Lebesgue lemma. This lemma states that

lim

�!�1

Z

v

1

v

0

dv f(v) e

i�v

= 0

for any integrable funtion f and any ompat or non-ompat interval [v

0

; v

1

℄. Using this

lemma one �nds for an arbitrary state j i the identity

lim

t

�

!�1

e

�iE

0

t

�

h j

^

U(0; t

�

)j0i

h
j0i

= h j
i + lim

t

�

!�1

X

n 6=


e

i(E

n

�E

0

)t

�

h jnihnj0i

h
j0i

= h j
i :

Similarly we an derive the identity

lim

t

+

!+1

e

iE

0

t

+

h0j

^

U(t

+

; 0)j i

h0j
i

= h
j i :

This proedure losely resembles Fermi's Golden Rule for time-dependent perturbation

theory. By supplying j0i with the right frequeny fator and waiting long enough, only

the j
i omponent of j0i survives as a result of destrutive phase interferene.

Note: on pages 86 and 87 of the textbook by Peskin & Shroeder the same

identities are obtained by tilting the time axis aording to t ! t(1� i�) with

� 2 R in�nitesimal. This proedure is losely related to the i� presription for

obtaining the Feynman propagator in § 1.6.
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Inserting these identities in the numerator and denominator of the Green's funtions yields

G

(n)

(x

1

; � � � ; x

n

)

= lim

t

�

!�1

h0j

^

U(t

+

;t

1

)

z }| {

^

U(t

+

; 0)

^

U

�1

(t

1

; 0)

^

�

I

(x

1

)

^

U(t

1

; t

2

) � � �

^

U(t

n�1

; t

n

)

^

�

I

(x

n

)

^

U(t

n

;t

�

)

z }| {

^

U(t

n

; 0)

^

U(0; t

�

) j0i

h0j

^

U(t

+

; 0)

^

U(0; t

�

)j0i

= lim

t

�

!�1

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

)

^

U(t

+

; t

�

)

�

j0i

h0j

^

U(t

+

; t

�

)j0i

=

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

)

^

S

�

j0i

h0j

^

S j0i

;

9a linking Green's funtions and the time-ordered vauum expetation values

with vauum bubbles removed that we studied in § 2.5.

Interpretation of the vauum bubbles: we have seen that

lim

t

�

!�1

e

iE

0

(t

+

�t

�

)

e

P

j

V

j

z }| {

h0j

^

U(t

+

; t

�

)j0i = h0j
ih
j
ih
j0i = jh
j0ij

2

:

From this it follows that e

P

j

V

j

/ e

�iE

0

(t

+

�t

�

)

= e

�iE

0

T

. The sum of all vauum bubbles is

therefore related to the di�erene in the ground-state zero-point energies of the interating

theory and the free theory, the latter of whih was de�ned to be 0 in the disussion above.

Bearing in mind that V

j

ontains an in�nite spaetime fator (2�)

4

Æ

(4)

(0) = V T , the

energy density of the ground state of the interating theory reads

E

0

V

= �

X

j

Im(V

j

)

V T

= �

Im

�

P

j

V

j

�

(2�)

4

Æ

(4)

(0)

:

The long-distane in�nity from the in�nite extent of spaetime has been removed in this

way, leaving behind the UV in�nity that reets our ignorane about the physis governing

the ultra-high-energy regime.

2.9.1 K�all�en{Lehmann spetral representation

9b In the free theory h0jT

�

^

�

I

(x)

^

�

y

I

(y)

�

j0i ould be interpreted as the ampli-

tude for a partile to propagate from y to x. The question now is: how should

the orresponding 2-point Green's funtion h
jT

�

^

�(x)

^

�

y

(y)

�

j
i be interpreted

in the interating theory? This question is related to the partile interpretation

of the interating theory.

Complete set of interating states: we start out by having a generi look at the exited

states of the interating theory, with the orresponding energies being de�ned relative to

the ground-state energy E

0

. This analysis will be based on the fat that

�

^

H;

^

~

P

�

= 0,

whih implies that there is a simultaneous set of eigenfuntions of

^

H�E

0

^

1 and

^

~

P . These

states an onsist of an arbitrary number of partiles or they an even be bound states.
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1) Zero-momentum states: let fj�

~

0

ig be the set of exited eigenstates of

^

H with van-

ishing total three-momentum, i.e.

^

~

P j�

~

0

i =

~

0. These simultaneous eigenvalues of

^

H�E

0

^

1

and

^

~

P an be ombined into the four-vetor p

�

0

= (m

�

;

~

0 ), where m

�

> 0 is the \mass"

assoiated with the partiular zero-momentum state.

2) Finite-momentum states: the generator of spaetime translations

^

P

�

� (

^

H�E

0

^

1;

^

~

P )

transforms as a ontravariant four-vetor under boosts:

^

U

�1

(�)

^

P

�

^

U(�) = �

�

�

^

P

�

. This

implies that all boosts of the states j�

~

0

i have all possible total three-momenta ~p and are

also eigenstates of

^

H�E

0

^

1 with energy E

~p

(�) �

p

~p

2

+m

2

�

. The other way round,

any eigenstate with expliit three-momentum an be boosted to a zero-momentum eigen-

state provided that m

�

> 0. The sets of eigenvalues p

�

= (E�E

0

; ~p ) are thus organized

into hyperboloids, as shown in the �gure below. The lowest-lying isolated hyperboloid

orresponds to the \1-partile" states of the interating theory, whereas the other ones

orrespond to possible bound states. Above a ertain threshold value of m

�

a ontinuum

of \multipartile" states starts (see later).

j~p j

E�E

0

\partile" at rest

moving \partile"

\multipartile"

ontinuum

bound states

m

ph

Proof of the boost statement: onsider the Lorentz transformation � that transforms

p

�

0

= (m

�

;

~

0 ) into p

�

= �

�

�

p

�

0

= (E

~p

(�); ~p ). Then j�

~p

i �

^

U(�)j�

~

0

i indeed satis�es

^

P

�

j�

~p

i =

^

U(�)

^

U

�1

(�)

^

P

�

^

U(�)j�

~

0

i = �

�

�

^

U(�)

^

P

�

j�

~

0

i = �

�

�

p

�

0

^

U(�)j�

~

0

i = p

�

j�

~p

i :

By reversing the argument, the reversed statement an be proven as well, bearing in mind

that E�E

0

> 0 for the exited states so that the ombined four-momentum eigenvalues

p

�

= (E�E

0

; ~p ) have to satisfy p

2

� 0.

Completeness relation: in the interating theory we an therefore use the following

ompleteness relation assoiated with this omplete set of states:

^

1 = j
ih
j +

X

�

Z

d~p

(2�)

3

j�

~p

ih�

~p

j

2E

~p

(�)

;

where the �rst term orresponds to the ground state and the seond one to all exited states.
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The 2-point Green's funtion: next we take x

0

> y

0

and insert the above-given om-

pleteness relation into the 2-point Green's funtion. This results in the following split-up:

h
jT

�

^

�(x)

^

�

y

(y)

�

j
i = h
j

^

�(x)j
ih
j

^

�

y

(y)j
i

+

X

�

Z

d~p

(2�)

3

1

2E

~p

(�)

h
j

^

�(x)j�

~p

ih�

~p

j

^

�

y

(y)j
i :

In the absene of preferred diretions in the universe, the ground state j
i should be

invariant under spaetime translations and Lorentz transformations, i.e. e

i

^

P �x

j
i = j
i

and

^

U(�)j
i = j
i. Therefore

h
j

^

�(x)j�

~p

i

p.19

==== h
je

i

^

P �x

^

�(0)e

�i

^

P �x

j�

~p

i = e

�ip�x

h
j

^

�(0)j�

~p

i

�

�

�

p

0

=E

~p

(�)

= e

�ip�x

h
j

^

U

�1

(�)

^

U(�)

^
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^

U
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(�)

^
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i

�

�

�
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p.22

==== e

�ip�x

h
j

^

�(�0)j�

~

�p

i

�

�

�

p

0

=E

~p

(�)

take � suh that

~

�p=

~

0

================ e

�ip�x

h
j

^

�(0)j�

~

0

i

�

�

�

p

0

=E

~p

(�)

and similarly

h
j

^

�(x)j
i = h
j

^

�(0)j
i � v :

The ground-state expetation value v, whih in the literature is sloppily alled the \va-

uum expetation value" or short vev of the �eld

^

�, usually is taken to be 0. If this is not

the ase then one should reformulate the theory in terms of the �eld

^

�

0

(x) =

^

�(x) � v ,

whih has a vanishing vev. The rest goes in the same way as desribed below. Leaving out

the vev we now obtain

h
j

^

�(x)

^

�

y

(y)j
i =
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�

+ i�

:

The integral on the last line we reognize as the Feynman propagator belonging to a

\�-partile" with mass m

�

, i.e. D

F

(x� y;m

2

�

).

9b The partile interpretation has in fat hanged in the interating theory

from free partiles to dressed partiles (quasi-partiles), so the \partiles" we

are dealing with here are not the partiles that we know from the free theory!

K�all�en{Lehmann spetral representation: a similar proedure an be applied in the

ase that x

0

< y

0

. Combining both ases one arrives at the so-alled K�all�en{Lehmann

spetral representation of the 2-point Green's funtion:

h
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^

�(x)

^

�

y

(y)

�

j
i =

Z

1

0

ds

2�

�(s)D

F

(x� y; s) ;
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where the funtion �(s) in the squared invariant mass s is a positive spetral density

funtion given by

�(s) =

X

�

2�Æ(s�m

2

�

) jh
j

^

�(0)j�

~

0

ij

2

:

The states in the interating theory that desribe a single dressed partile orrespond to

an isolated Æ-funtion in the spetral density funtion:

�

1-part.

(s) = 2�Æ(s�m

2

ph

)

�

�

h
j

^

�(0)j�

~

0

i

1-part.

�

�

2

� 2�ZÆ(s�m

2

ph

) :

9b The �eld-strength/wave-funtion renormalization Z is the probability for

^

�

y

(0) to reate a state that desribes a single dressed partile from the ground

state, whereas m

ph

is the observable physial mass of the dressed partile, be-

ing the energy eigenvalue in its rest frame. This physial (dressed) mass is in

general not equal to the (bare) mass parameter m ourring in the Lagrangian,

whih is not observable diretly!

In momentum spae: the K�all�en{Lehmann spetral representation trivially reads

Z

d

4

x e

ip�x

h
jT

�

^

�(x)

^

�

y

(0)

�

j
i =

Z

1

0

ds

2�
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i
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2

� s+ i�
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iZ
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2
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2

ph

+ i�

+

Z

1

�s

th

ds

2�

�(s)

i

p

2

� s+ i�

in momentum spae, where s

th

denotes the threshold for the reation of the ontinuum

of \multipartile" states. The fat that the last integral does not start exatly at s

th

is

aused by the possible existene of multipartile bound states. Graphially the analyti

(pole/ut) struture in the omplex p

2

-plane an be depited as follows:

Im p

2

m

2

ph

\1-partile"

pole

s

th

bound-state

poles

branh ut

(ontinuum of poles)

Re p

2

Figure 7: Poles and uts of the 2-point Green's funtion.

Interating theory vs free theory:

� In the interating theory jh
j

^

�(0)j�

~

0

ij

2

= jh
j

^

�(0)j�

~p

ij

2

represents the probability

for the �eld

^

�

y

(0) to reate a given dressed state from the ground state, with the

fator Z being the assoiated probability for reating a \1-dressed-partile" state.
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The fator Z di�ers from unity sine in the interating theory

^

�

y

(0) an also reate

\multipartile" intermediate states with a ontinuous mass spetrum, unlike in the

free theory.

� In the free theory �(s) = 2�Æ(s�m

2

) and Z = 1, sine

h~p j

^

�

y

I

(0)j0i = h0j

p

2E

~p

â

~p

Z

d~q

(2�)

3
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b
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+ â

y

~q

p

2E

~q

j0i = h0j0i = 1 :

For x

0

> 0 the quantity

Z

d
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x e

ip�x

h0jT

�

^

�(x)

^

�

y

(0)

�

j0i =

i

p

2

�m

2

+ i�

is interpreted as the amplitude for a partile to propagate from 0 to x.

2.9.2 2-point Green's funtions in momentum spae (§ 6.3 and 7.1 in the book)

9 Question: does all this also follow from an expliit diagrammati alula-

tion within perturbation theory?

In order to address this question we onsider the 2-point Green's funtion for  -partiles

in the salar Yukawa theory (with tadpole diagrams exluded, as will be explained later):

Z
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where

� i�

2

(p

2

) = (�ig)

2
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d

4
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1

(2�)

4

i

`

2

1

�M

2

+ i�

i

(p� `

1

)

2

�m

2

+ i�

is the so-alled  -partile self-energy at O(g

2

). Sine the orresponding diagram involves

one loop and therefore one energy-momentum integration, we usually refer to this self-

energy as the 1-loop self-energy.

9 There are two main approahes to alulate suh an integral:

1. perform the `

0

1

-integration in the omplex plane, involving four omplex

poles, and work out the resulting

~

`

1

-integration;

2. apply the following two alulational triks.
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Trik 1: use Feynman parameters. Writing the denominators in the integral as

D

1

� `

2

1

�M

2

+ i� and D

2

� (p� `

1

)

2

�m

2

+ i� ;

we an ombine the two denominators into
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2

D

2

)

2

:

The parameters �

1;2

are alled Feynman parameters. Inserting the spei� expressions for

the denominators we then obtain
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;

with
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:

We have gained the following in this �rst step:

� The original integrand had four poles in the omplex `

0

1

-plane, whereas now we have

only two poles in the omplex `

0

-plane.

� The integrand has beome spherially invariant, implying that integrals with an odd

numerator in ` should vanish, i.e.
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In ontrast, integrals with an even numerator in ` an be simpli�ed. For instane
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using that
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:

These properties will in partiular prove important for non-salar partiles.

� The trik works equally well for an arbitrary number of propagators ourring in the

loop:
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Trik 2: perform Wik rotation. In order to perform the `

0

-part of the integral

R

d

4

` (`

2

��+ i�)

�j

=(2�)

4

the integration ontour C indiated in �gure 8 is used. Sine

the poles are situated outside the integration ontour in the omplex `

0

-plane, the integral

along the real `

0

-axis is transformed into an integral along the imaginary axis.
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C

Figure 8: Closed integration ontour used for performing Wik rotation.

In this way a Minkowskian integral an be transformed into a Eulidean one:
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where the norm `

2
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is positive de�nite in Eulidean spae.

In the penultimate step it was used that in an n-dimensional Eulidean spae the transition

to spherial oordinates is given by
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where the gamma funtion �(z) satis�es

�(1=2) =

p

� ; �(1) = 1 and �(z + 1) = z�(z) :

The result after applying both triks:
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where the in�nity originates from the large-momentum regime `

2
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2 [0; 1℄, whih results in the requirement that p

2
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2

.

9 There is a minimal value p

2

min

= (M + m)

2

of p

2

for whih the branh

ut of the 2-point Green's funtion in the salar Yukawa theory starts, being

the threshold for the reation of a two-partile state with masses M and m.

This is preisely what we would expet based on the K�all�en{Lehmann spetral

representation.
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Dyson series: to all orders in perturbation theory the 2-point Green's funtion (a.k.a. the

full propagator or dressed propagator) is given by the Dyson series
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) = + + + + � � �

is the olletion of all 1-partile irreduible (1PI) self-energy diagrams. Diagrams are alled

1-partile irreduible if they annot be split in two by removing a single line.

The single-partile pole and physial mass: the Dyson series is in fat a geometri

series, whih an be summed aording to
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:

The full propagator has a simple pole loated at the physial mass M

ph

, whih is shifted

away from M by the self-energy:
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Close to this pole the denominator of the full propagator an be expanded aording to
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where �

0

(p

2

) stands for the derivative of the self-energy with respet to p

2

.

9 Just like in the K�all�en{Lehmann spetral representation, the full propa-

gator has a single-partile pole of the form iZ=(p

2

�M

2

ph

+ i�) with residue

Z = 1=

�

1 � �

0

(M

2

ph

)

�

. This observed lose onnetion to the non-perturbative

analyti struture of the 2-point Green's funtion serves as justi�ation for our

proedure, whih involved summing the geometri series outside its formal ra-

dius of onvergene.
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2.9.3 Deriving n-partile matrix elements from n-point Green's funtions

For real salar �elds

^

�(x) we have seen that
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;

by whih is meant that the quantities on either side have the same single-partile poles and

residues at the physial mass squared m

2

ph

. The wave-funtion renormalization fator Z

an be obtained straightforwardly from the 2-point Green's funtion in momentum spae

by multiplying by (p
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)=i and taking the limit p
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.

9d We now wish to use this single-partile pole struture to obtain the asymp-

toti \in" and \out" states of the theory and in partiular their matrix elements.

Consider to this end
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.

What an we say about the pole struture of this integrated Green's funtion?

� The integration region x

0

2 [T

�

; T

+

℄: sine the temporal integration interval is

bounded and the integrand has no p

0

-poles, the result of the integral is an analyti
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without any poles.

� The other two integration regions: the integrand still has no poles, but the integration

intervals are unbounded. Therefore singularities in p
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where h
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= E

~q

(�). This fat an be quanti�ed

expliitly by adding a damping fator e

��x

0

(with in�nitesimal � > 0) to the integral, in

order to ensure that it is well-de�ned. This proedure is equivalent with the i� presription

for obtaining the Feynman propagator in § 1.6 and the tilted time axis presription in the

textbook by Peskin & Shroeder. After performing the trivial ~x integration we get
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;

whih orresponds to isolated 1-partile poles, isolated bound-state poles or multipartile

branh-ut poles. Subsequently we note that
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have the same residues at the pole p

0

= E

~p

(�)� i�.

The 1-partile state in the far future orresponds to an isolated pole at the

on-shell energy p

0
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=

q
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using the notation j~p i

out

� j�

~p

i

1-part.

for a 1-partile eigenstate with momentum ~p that is

reated at asymptotially large times.

The integration interval x

0

2 (�1; T

�

℄ : in this ase the steps are similar to the ones for

the previous integration interval. The following hanges should be made though: the

damping fator e

��x

0

should be replaed by e

+�x

0

,

^

�(x) is now situated at the end of the

operator hain, e

�iq�x

should be replaed by e

+iq�x

and the pole energy p

0

= E

~p

(�) � i�

now hanges to p

0

= �E

~p

(�) + i�.

The 1-partile state in the far past orresponds to an isolated pole at the on-shell

energy p

0
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LSZ redution formula: the proedure desribed above an atually be worked out for

situations with as many 1-partile poles as there are �eld operators in the Green's funtion.

This leads to the so-alled LSZ (H. Lehmann, K. Symanzik, W. Zimmermann) redution

formula:
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; (5)

where the use of e

�ik

j

0

�y

j

0

ensures that the partiles in the \in" state have positive energy.

The S-matrix element involving n

0

partiles in the \in" state and n partiles in the

\out" state an be obtained from the orresponding (n + n

0

)-point Green's funtion by

extrating the leading singularities in the energies k

0

j

0

and p

0

j

, whih oinide with the

situations where the external partiles beome on-shell.

9d The pole struture of the Green's funtions emerging at asymptoti times ontains all

relevant information about the sattering amplitudes of the theory! To selet the required

information one should projet on the right singularities by using appropriate plane waves.

Wave pakets instead of plane waves:

� In the asymptoti treatment of multipartile states it is better to use normalized wave

pakets. In that ase x is onstrained to lie within a small band about the trajetory

of a partile with momentum ~p , with the spatial extent of the band being determined

by the wave paket. In this way the partiles do not interfere and an e�etively be

onsidered free at asymptoti times, unlike plane-wave states. Therefore we formally

should have made the replaement
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;

with '(

~

k ) a funtion that is peaked around ~p , and we should have taken the limit

of a sharply peaked wave paket '(

~

k )! (2�)

3

Æ(

~

k�~p ) at the end of the alulation.

� A 1-partile wave paket spreads out di�erently than a multipartile wave paket, so

the overlap between them goes to zero as the elapsed time goes to in�nity. Although

^

�(x) reates some multipartile states, we an \selet" the 1-partile state that we

want by using an appropriate wave paket. By waiting long enough we an make

the multipartile ontribution to the matrix element as small as we like (f. Fermi's

Golden Rule for time-dependent perturbation theory).
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� An n-partile asymptoti state is reated/annihilated by n �eld operators that are

onstrained to lie in distant wave pakets and therefore are e�etively loalized.

Under these onditions an n-partile exitation in the ontinuum an be represented

by n distint (independent) 1-partile exitations of the ground state.

Translated in terms of Feynman diagrams: in order to investigate the impliations

of the LSZ redution formula we onsider the 4-point Green's funtion
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in the salar �

4

-theory. From this we want to derive the T -matrix element for the sattering

proess �(k

A

)�(k

B

)! �(p

1

)�(p

2

). To this end we need to onsider the ontributions from

fully onneted diagrams, as was explained in § 2.6. These diagrams an be represented

generially by

amp

p
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A

p

2

k

B

p

1
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B

The blob in the entre of the diagram represents the sum of all amputated 4-point diagrams:
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The shaded irles indiate that the orresponding full propagators
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= + + + � � �

represents the 1-partile irreduible salar self-energy diagrams in �

4

-theory. Near the

physial partile pole p
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the full propagator an be expanded aording to
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As a result, the sum of all fully onneted diagrams ontains a produt of four poles:
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;

multiplying the amputated 4-point diagrams. Aording to the LSZ redution formula (5)

the T -matrix element for the sattering proess �(k

A

)�(k

B

)! �(p

1
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) thus reads
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with all external momenta being on-shell.
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B

Any 4-point diagram that is not fully onneted, like the

one displayed in the �gure on the right, does not ontain

a produt of four poles. Suh diagrams are therefore pro-

jeted out in the transition from the Green's funtion to

the T -matrix.

9d This ompletes the derivation of the onnetion between sattering ma-

trix elements and fully onneted amputated Feynman diagrams that was given

on page 50 of these leture notes. In fat we have also obtained the missing

ingredient in the Feynman rules for the salar �

4

-theory on page 50.

Multiply the sum of all possible fully onneted amputated Feynman diagrams in posi-

tion/momentum spae by a fator (

p

Z )

n+n

0

for n+n

0

external partiles.

2.9.4 The optial theorem (§ 7.3 in the book)

From the unitarity of the S-operator it follows that
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In order to investigate the impliations of this equation we onsider the sattering proess
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where in the last step a omplete set of intermediate plane-wave states has been inserted.

In terms of matrix elements this beomes:
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ontaining the n-body phase-spae element that was de�ned in equation (3). Using the

abbreviations a � k

A

; k

B

, b � p

1

; p

2

and f � fq

j

g this results in the generalized optial

theorem

� iM(a! b) + iM
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X
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Z
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f

M

�

(b! f)M(a! f) ;

where C

f

stands for the ombinatorial idential-partile fator belonging to the state f

(i.e. the fators 1=n! in this �

4

example). This generalized optial theorem is equally

valid for initial/�nal states onsisting of one partile or more than two partiles. In more

ompliated theories the summation on the right-hand-side of the optial theorem runs

over all possible sets of \�nal-state" partiles that an be reated by the initial state a.

Speialized to forward sattering, i.e. p

1

= k

A

and p

2

= k

B

() a = b), this yields the

optial theorem in its standard form:
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= inverse ux fator��

tot

(a! anything) ;

where the inverse ux fator reads 4E

CM

j

~

k j in the CM frame of the reation.

9e The optial theorem expresses the total ross setion for sattering in terms

of the attenuation (redution) of the forward-going wave as the beams pass

through eah other. This is aused by the destrutive interferene between the

sattered wave and the beam.

Diagrammati example for �

4

-theory at �rst non-trivial order: in Ex. 12 it is

worked out that
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:

The fators � i on the left-hand-side are in fat anelled by the fator i from Wik-

rotating the loop integral. Note the absene of the lowest-order matrix element on the

left-hand-side, beause it has no imaginary part. This is niely onsistent with the right-

hand-side, whih ontributes at O(�

2

) rather than at O(�).
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Soures of imaginary parts: the imaginary parts that feature in the optial theorem

originate from the i� parts of the propagators. For instane
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where P stands for the prinipal value. When going from p

2

� i� to p

2

+ i� there is a

� 2�iÆ(p

2

�m

2

) jump (disontinuity) in the propagator.

9e Non-vanishing imaginary parts orrespond to those situations where inter-

mediate partiles inside the loop(s) beome on-shell. The assoiated lines of

the diagram are in that ase referred to as being \ut". The imaginary parts

are the result of branh-ut disontinuities, marking invariant-mass values for

whih ertain multipartile intermediate states beome physially possible.

The Cutkosky utting rules (without proof): the disontinuities of an arbitrary

Feynman diagram an be obtained by means of a general method that is based on the

disontinuities of the individual propagators. It involves the following three-step proedure

(usually referred to as the Cutkosky utting rules):

� ut the diagram in all possible ways, with all ut propagators beoming on-shell

simultaneously;

� replae 1=(p

2

� m

2

+ i�) by � 2�iÆ(p

2

�m

2

) in eah ut propagator and perform

the loop integrals;

� sum the ontributions of all (kinematially) possible uts.

2.10 The onept of renormalization (hapter 10 in the book)

Before we lose this hapter on interating salar �eld theories, there is one

�nal issue to be addressed.

As we have already observed in the previous disussion, there still is the issue of UV di-

vergenes from the loop integrals

R

1

0

d`

2

E

`

2

E

=(`

2

E

+�� i�)

j

for j � 2.

10 Question: how should we deal with UV divergenes that our at loop level

in the perturbative expansion of interating quantum �eld theories, bearing in

mind that physial observables should be �nite?

The ourrene of singularities should not ome as a surprise, though. Inside the loops

partiles of all energies are taken into aount as being desribed by the same theory, i.e. we

treat them as point-partiles at all length sales, whih is rather unrealisti.
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Regularization: before we an ontinue the disussion we �rst have to quantify the UV

divergene. This is alled regularization.

10a An obvious way to quantify UV divergenes is by using a uto� method:

Z
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0
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2

E

to be replaed by

����������!

Z

�

2

0

d`

2

E

;

whih removes all Fourier modes with momentum larger than �.

This means that the orresponding �elds are not allowed to utuate too energetially.

In this way we look at the physis through blurry glasses: we are interested in length

sales L

>

�

1=�, but we do not are about length sales L < 1=�. This approah reets

that quantum �eld theory is in some sense an e�etive �eld theory with � marking the

threshold of our ignorane beyond whih quantum �eld theory eases to be valid. As suh,

the uto� � plays the role that 1=a played in the 1-dimensional quantum hain in Ex. 1,

although � does not orrespond to a spei� energy/mass sale in the theory and should

in fat be taken muh larger than any suh sale.

10e We speak of a renormalizable quantum �eld theory if it keeps its preditive

power in spite of its shortomings at small length sales.

Tehnially this means that we should be able to absorb all UV divergenes of the theory

into a �nite number of parameters of the theory (like ouplings and masses).

Example: onsider the �

4

-proess �(k

A

)�(k

B

) ! �(p

1

)�(p

2

) at 1-loop order in the CM

frame of the reation. To make life easy we will neglet the mass of the partiles in this

study, whih will not a�et the outome. Indiating the relevant invariant-mass sale of

the proess by s, the matrix element reads
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Details of the alulation are worked out in Ex. 12. As we will see later Z = 1+O(�

2

), so

there will be no 1-loop ontribution from the wave-funtion renormalization fator (

p

Z )

4

in �

4

-theory.

From this result a few interesting observations follow.

1. The Lagrangian parameter (bare oupling) � is not an observable quantity! The

quantum orretions are an integral part of the e�etive oupling, whih an be

measured through jM

��!��

(s; �)j

2

.
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10b This e�etive oupling is energy-dependent due to the reation and

annihilation of virtual partiles (quantum utuations) at 1-loop order. So,

the e�etive strength of the �

4

-interation hanges with energy!

2. M

��!��

(s; �) depends logarithmially on the uto� at O(�

2

). A short but sloppy

way of saying this is that \M

��!��

(s; �) is logarithmially divergent".

3. jM

��!��

(s; �)j

2

is observable and should therefore be independent of �. After all, �

an be hosen arbitrarily and as suh an observable annot depend on it. To ahieve

this, the unobservable bare oupling � should depend on the uto� �:
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10b This is an example of a so-alled Renormalization Group Equation

(or short: RGE), whih tells us that �(�

2

) grows with �

2

if �(�

2

) > 0.

The mirale of vanishing divergenes: renormalization

Suppose we measure the above-given e�etive 4-point oupling at s = �

2

and � = �=2,

and let's all this physial observable �

ph

:

M

��!��

(s = �

2

; �=2) � ��

ph

= � � +

�

2

32�

2

�

3 log

�

�

2

�

2

�

+ log(4) + i� + 3

�

+ O(�

3

) :

The bare oupling � an then be expressed in terms of the physial oupling �

ph

and the

divergene log(�

2

=�

2

) aording to

�� = � �

ph

�

�

2

ph

32�

2

�

3 log

�

�

2

�

2

�

+ log(4) + i� + 3

�

+ O(�

3

ph

) :

If we now want to know the e�etive 4-point oupling at an arbitrary sale s and sattering

angle �, then we an simply write

M

��!��

(s; �) = ��

ph

+

�

2

ph

32�

2

�

3 log

�

�

2

s

�

� log(sin

2

�)

�

+ O(�

3

ph

) ;
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where the log(�

2

=s) term is ompletely governed by the above-given RGE for �. This re-

ets that the observable e�etive 4-point oupling should not depend on the hoie of

referene sale �.

The referene sale � labels an entire equivalene lass of parametrizations of

the �

4

-theory and it should not matter whih element of the lass we hoose for

setting up the theory.

When expressed in terms of the physial oupling �

ph

, the e�etive oupling jM

��!��

(s; �)j

2

is independent of the uto� �, as expeted for a orret observable! The uto� dependene

has been absorbed into a rede�nition of the unobservable Lagrangian parameter (bare ou-

pling) � in terms of the observable physial parameter (e�etive oupling) �

ph

. In the

literature this physial observable is usually referred to as the renormalized oupling �

R

,

although this terminology is a bit strange bearing in mind that the original oupling was

not normalized to begin with. This is an example of the onept of renormalization.

10 Renormalization: express physially measurable quantities in terms of

physially measurable quantities and not in terms of bare Lagrangian parameters.

� For setting up a perturbative expansion, the bare Lagrangian parameters are in fat

not the right parameters. Instead the physially measurable parameters should be

used (f. the disussion about m and m

ph

in § 2.9.2).

� The ourrene of in�nities in the loop integrals is linked to this. Our initial pertur-

bative expansion onsisted of taking � ! 1 while keeping � and m �nite. From

the renormalization group viewpoint, however, the set (�=�=1; � <1; m <1)

does not belong to the equivalene lass of the �

4

-theory!

� The onvergene of the perturbative series an be further improved by using phys-

ial quantities at the \right sale", thereby avoiding large logarithmi fators like

log(�

2

=s) in the example above. This hoie of sale has no onsequene for all-order

alulations, but it does if the series is trunated at a ertain perturbative order.

To omplete the story for the salar �

4

-theory we onsider the UV divergenes that are

present in the salar self-energy. This time the mass parameter is essential and therefore

should not be negleted.

Salar self-energy at O(�):

� i�(p

2

)

O(�)

====

p p

`

1

=

� i�

2

Z

d

4

`

1

(2�)

4

i

`

2

1

�m

2

+ i�

uto� �� m

�����������!

Wik rotation

� i�

32�

2

Z

�

2

0

d`

2

E

`

2

E

`

2

E

+m

2

� i�

=

� i�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

:
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After Dyson summation the full propagator beomes

i

p

2

�m

2

� �(p

2

) + i�

�

iZ

p

2

�m

2

ph

+ regular terms :

Sine the 1-loop salar self-energy does not depend on p

2

, it is absorbed ompletely into

the physial mass:

m

2

ph

= m

2

+ �(m

2

ph

)

O(�)

==== m

2

+

�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

;

whereas the residue of the pole remains 1.

10d Note the strong �

2

dependene of the salar mass, whih implies that this

mass is very sensitive to high-sale quantum orretions. This is in fat a gen-

eral feature of salar partiles, like the Higgs boson: intrinsially the quantum

orretions to the mass of a salar partile are dominated by the highest mass

sale the salar partile ouples to!

Salar self-energy at O(�

2

): the residue of the pole is a�eted at 2-loop level by the

ontribution

p p

`

2

`

1

=

(�i�)

2

6

Z

d

4

`

1

(2�)

4

Z

d

4

`

2

(2�)

4

i

`

2

1

�m

2

+ i�

i

`

2

2

�m

2

+ i�

i

(`

1

+ `

2

+ p)

2

�m

2

+ i�

= a+ bp

2

+ p

4

+ � � � :

To assess the UV behaviour of this diagram we perform naive power ounting, whih in-

volves treating all loop momenta as being of the same order of magnitude. For `

1;2

!1

we obtain an integral of the order

R

d

8

`

E

=`

6

E

`

E

� �

����! �

8�6

= �

2

.

� a = O(�

2

) is obtained by setting p = 0;

� b = O(log�) is obtained by taking

1

2

�

2

=�p

2

0

and then setting p = 0. In naive power

ounting this logarithmially divergent term orresponds to integrals of order �

0

.

�  = O(1) is obtained by taking

1

4!

�

4

=�p

4

0

and then setting p = 0.

Adding all self-energy ontributions and foussing on the diverging terms

i

p

2

�m

2

� �(p

2

) + i�

!

i

p

2

�m

2

� A� Bp

2

�

iZ

p

2

�m

2

ph

+ regular terms ;

Z =

1

1�B

= O(log �) ; m

2

ph

=

m

2

+A

1�B

� Zm

2

+ Æm

2

; Æm

2

=

A

1�B

= O(�

2

) :
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This leads to an O(�

2

) shift in the mass and an O(log�) ontribution to the wave-

funtion renormalization, whih an be absorbed in the �eld � itself.

So, UV divergent loop orretions in �

4

-theory are present in �(p

2

) andM

��!��

(s; �), with

�(m

2

ph

) = m

2

ph

�m

2

= (Z � 1)m

2

+ Æm

2

� m

2

Æ

Z

+ Æm

2

; �

0

(m

2

ph

) = 1� 1=Z

and M

��!��

(s = �

2

; �=2) = ��

ph

� �Z

2

�� Æ

�

:

The ourrene of the fator Z

2

in the last expression originates from the multipliative

fator (

p

Z )

4

that should be added aording to the Feynman rules.

2.10.1 Physial perturbation theory (a.k.a. renormalized perturbation theory)

10 The lowest-order �

4

-theory should have been written in terms of the ex-

perimentally measurable physial parameters m

ph

and �

ph

, and perturbation

theory should have been de�ned with respet to this lowest-order theory.

This is done as follows: take the original Lagrangian and write

� = �

R

p

Z ; m

2

Z = m

2

ph

� Æm

2

; �Z

2

= �

ph

� Æ

�

and Z � 1 + Æ

Z

so that

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

�

�

4!

�

4

=

1

2

(�

�

�

R

)(�

�

�

R

) �

1

2

m

2

ph

�

2

R

�

�

ph

4!

�

4

R

+

1

2

Æ

Z

(�

�

�

R

)(�

�

�

R

) +

1

2

Æm

2

�

2

R

+

Æ

�

4!

�

4

R

:

We get bak the original Lagrangian in terms of renormalized objets (�rst line) and we

obtain extra interations that are alled ounterterms (seond line), sine their purpose

is to anel the divergenes in the theory. The Feynman rules for the propagators and

verties inluding ounterterms are now given by

p

=

i

p

2

�m

2

ph

+ i�

; = �i�

ph

;

�

p p

= i(p

2

Æ

Z

+ Æm

2

) ;

�

= iÆ

�

:

Renormalization onditions: as an expliit example, the full propagator now reads

i=

�

p

2

�m

2

ph

��

R

(p

2

)

�

, with the renormalized self-energy given by

� i�

R

(p

2

) = +

�

+ + +

�

+

�

+ � � �
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The parameters Æ

Z

and Æm

2

an be �xed by imposing the renormalization onditions

�

R

(m

2

ph

) = 0 and �

0

R

(m

2

ph

) = 0 ) full propagator =

i

p

2

�m

2

ph

+regular terms :

The pole struture of the full propagator then resembles that of a free partile, so in that

sense the physial 1-partile states have been re-normalized by this proedure. Adding

one more renormalization ondition based on M

��!��

in order to �x Æ

�

, we have three

onditions �xing three ounterterm parameters. This will in fat be suÆient to make all

observables of the �

4

-theory �nite.

10e The salar �

4

-theory is alled renormalizable: \the in�nities of the theory

an be absorbed into a �nite number of parameters".

2.10.2 What has happened?

The above proedure seems odd: we alulated something that turned out to be in�nite,

then subtrated in�nity from our original mass and oupling in an arbitrary way and ended

up with something �nite. Moreover, we have added divergent terms to our Lagrangian and

we have suddenly ended up with a sale-dependent oupling. Why would a proedure

onsisting of suh ill-de�ned mathematial triks be legitimate? To see what has really

happened, let us losely examine the starting point of our alulation.

In general, we start with a Lagrangian ontaining all possible terms that are ompatible

with basi assumptions suh as relativity, ausality, loality, et. It still ontains a few

parameters suh as m and � in the ase of �

4

-theory. It is tempting to all them \mass"

and \oupling", as they turn out to be just that in the lassial (i.e. lowest-order) theory.

However, up to this point they are just free parameters. In order to make the theory

preditive, the parameters need to be �xed by a set of measurements: we should alulate

a set of ross setions at a given order in perturbation theory, measure their values and then

�t the parameters so that they reprodue the experimental data. After this proedure, the

theory is ompletely determined and beomes preditive.

The bare parameters m and � are only useful in intermediate alulations and will be

replaed by physial (i.e. measured) quantities in the end anyway. So, we might as well

parametrize the theory in terms of the latter. The renormalizability hypothesis is that this

reparametrization of the theory is enough to turn the perturbation expansion into a well-

de�ned expansion. The divergene problem then has nothing to do with the perturbation

expansion itself: we have just hosen unsuitable parameters to perform it. Also, the

fat that our physial oupling is sale-dependent should not surprise us. The physial

reason for this \running" is the existene of quantum utuations, whih were not there

in the lassial theory. These utuations orrespond to intermediate partile states: at
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suÆiently high (i.e. relativisti) energies, new partiles an be reated and annihilated.

As the available energy inreases, more and more energeti partiles an be reated. This

e�etively hanges the ouplings.

Having traded the bare parameters m and � for renormalized parameters m

ph

and �

ph

,

let us take a loser look at the internal onsisteny of the renormalization proedure. We

have introdued the physial oupling at a referene sale �, but we ould equally well have

hosen an energy sale �

0

with orresponding e�etive oupling �

0

ph

. Physial proesses

should not depend on our hoie of referene sale, hene the ouplings should be related

in suh a way that for any observable O we have O = O(m

ph

; �; �

ph

) = O(m

ph

; �

0

; �

0

ph

).

In other words, there should exist an equivalene lass of parametrizations of the theory

and it should not matter whih element of the lass we hoose. This observation lari�es

where the divergenes ame from: our initial perturbation expansion onsisted of taking

� !1 while keeping m and � �nite. From the viewpoint of the renormalization group,

however, the set (� = � =1 ; m <1 ; � <1) does not belong to any equivalene lass

of the �

4

-theory.

2.10.3 Super�ial degree of divergene and renormalizability

10e The statement at the end of §2.10.1 was a bit premature. In fat we still

have to prove that amplitudes with more than four external partiles do not

introdue a new type of in�nity that annot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will ontain singular building bloks like and that should beome �nite

one we perform the afore-mentioned renormalization proedure. The question that re-

mains is whether the overall 6-point diagram an give rise to a new type of in�nity. To assess

this we perform naive power ounting, i.e. we treat all loop momenta as being of the same

order of magnitude. The outome of this power ounting is alled the super�ial degree of

divergene D of the diagram, with D = 0 denoting logarithmi divergene.

Consider a 1PI amputated diagram with N external lines, P propagators and V verties.

� In �

4

-theory four lines enter eah vertex, eah propagator ounts twie towards the

total number of lines entering verties and eah external line ounts one. This results

in the ondition

4V = N + 2P ) P = 2V �N=2 and N = even number :
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� The number of loop momenta is given by the number of propagators � the number

of four-momentum Æ-funtions + 1, sine one of the Æ-funtions orresponds to the

external momenta and will not �x an internal loop momentum. This results in

L = P � V + 1 = V �N=2 + 1

independent loop momenta. So, loop diagrams require V � N=2.

Power ounting: assume for argument's sake that the loop momenta are d-dimensional.

That means that in the ontext of naive power ounting eah loop momentum ontributes

�

d

and eah propagator �

�2

. The super�ial degree of divergene of the diagram then reads

D = dL� 2P = d(V �N=2 + 1)� 2(2V �N=2) = d+ V (d� 4) +N(1� d=2) ;

whereas the oupling � has mass dimension [�℄ = 4� d in d dimensions.

Super�ially the diagram diverges like �

D

if D > 0 and like log(�) if D = 0,

provided it ontains a loop. The diagram does not diverge super�ially if D < 0.

Let's now onsider a few values for the dimensionality d of spaetime.

d = 4: D = 4 � N is independent of V and [�℄ = 0 ) the theory is renormalizable.

Divergenes our at all orders, but only a �nite number of amplitudes diverges

super�ially (i.e. amplitudes with N = 2 or 4)! The theory keeps its preditive

power in spite of the in�nities that our if we assume it to be valid at all energies.

d = 3: D = 3�N=2� V and [�℄ = 1 ) the theory is superrenormalizable. At most a

�nite number of diagrams diverges super�ially (i.e. the diagrams with N = 2 and

V = 1 or V = 2), as the diagrams get less divergent if the loop order is inreased!

d = 5: D = 5� 3N=2 + V and [�℄ = � 1 ) the theory is nonrenormalizable. Now all

amplitudes will diverge super�ially at a suÆiently high loop order! An in�nite

amount of ounterterms would be required to remove all divergenes, whih means

that all preditive power is lost if we assume the theory to be valid at all energies!

10e If we express the super�ial degree of divergene in terms of V and N,

the oeÆient in front of V determines whether the theory is superrenormaliz-

able (negative oeÆient), renormalizable (zero oeÆient) or nonrenormaliz-

able (positive oeÆient)!

In onlusion: for d > 4 the salar �

4

-theory is nonrenormalizable and [�℄ < 0, for d = 4

it is renormalizable and [�℄ = 0, and for d < 4 it is superrenormalizable and [�℄ > 0.

These onlusions agree niely with the general disussion on page 28 of these leture notes.
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3 The Dira �eld

During the next three and a half letures Chapter 3 of Peskin & Shroeder will be overed.

We have seen various aspets of salar theories, desribing spin-0 partiles. However, most

partiles in nature have spin 6= 0.

11a Question: how should we �nd Lorentz-invariant equations of motion for

�elds that do not transform as salars?

Consider to this end an n-omponent multiplet �eld �

a

(x) with a = 1; � � � ; n, whih has

the following linear transformation harateristi under Lorentz transformations:

�

a

(x)

Lorentz transf.

����������! M

ab

(�)�

b

(�

�1

x)

with summation over the repeated index implied. A ompat way of writing this is

�(x)

Lorentz transf.

����������! M(�)�(�

�1

x) :

In the ase of salar �elds the transformation matrix M(�) was simply the identity matrix.

In order to �nd di�erent solutions, we make use of the fat that the Lorentz transformations

form a group: �

�

�

= g

�

�

is the unit element, �

�1

= �

T

is the inverse, and for �

1

and

�

2

being Lorentz transformations also �

3

= �

2

�

1

is a Lorentz transformation. The

transformation matries M(�) should reet this group struture:

M(g) = I

n

; M(�

�1

) = M

�1

(�) and M(�

2

�

1

) = M(�

2

)M(�

1

) ;

where I

n

is the n�n identity matrix. To phrase it di�erently, the transformation matries

M(�) should form an n-dimensional representation of the Lorentz group!

The ontinuous Lorentz group (rotations and boosts): transformations that lie

in�nitesimally lose to the identity transformation de�ne a vetor spae, alled the Lie

algebra of the group. The basis vetors for this vetor spae are alled the generators of

the Lie algebra. The Lorentz group has six generators J

��

= �J

��

, three for boosts and

three for rotations. These generators are antisymmetri, as a result of �

�1

= �

T

, and they

satisfy the following set of fundamental ommutation relations:

�

J

��

; J

��

�

= i

�

g

��

J

��

� g

��

J

��

� g

��

J

��

+ g

��

J

��

�

:

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by

K

j

� J

0j

respetively J

j

�

1

2

�

jkl

J

kl

) J

jk

= �

jkl

J

l

(j ; k ; l = 1; � � � ; 3) ;

with summation over the repeated spatial indies implied. The latter generators, whih

span the Lie algebra of the rotation group, satisfy the fundamental ommutation relations

�

J

j

; J

k

�

= i�

jkl

J

l

:
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11a In fat it is proven in Ex. 15 that all �nite-dimensional representations

of the Lorentz group orrespond to pairs of integers or half integers (j

+

; j

�

),

where both j

+

and j

�

orrespond to a representation of the rotation group.

The sum j

+

+ j

�

should be interpreted as the spin of the representation, sine

it orresponds to the atual rotations ontained in the Lorentz group.

A �nite Lorentz transformation is then in general given by exp(�i!

��

J

��

=2), where the

antisymmetri tensor !

��

2

IR

represents the Lorentz transformation. For instane:

!

12

= �!

21

= Æ� ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 0 0 0

0 0 �Æ� 0

0 Æ� 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal rotation about the z-axis (see Ex. 14), and

!

01

= �!

10

= Æv ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 Æv 0 0

Æv 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal boost along the x-diretion (see Ex. 14).

The task at hand is now to �nd the matrix representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

� (J

��

)

�

�

= i(g

��

g

�

�

� g

�

�

g

��

) are the six generators that desribe Lorentz transfor-

mations of ontravariant four-vetors:

x

�

Lorentz transf.

����������! �

�

�

x

�

=

�

exp(�i!

��

J

��

=2)

�

�

�

x

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�

x

�

:

This implies that g

�

�

�

i

2

!

��

(J

��

)

�

�

= g

�

�

+!

�

�

represents the in�nitesimal form of

the Lorentz transformation matrix �

�

�

, as is indeed the ase.

� J

��

= i(x

�

�

�

� x

�

�

�

) are the six generators in oordinate spae, whih desribe the

in�nitesimal Lorentz transformations of salar �elds

�(x)

Lorentz transf.

����������! �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) ;

as derived on page 11.
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11b Dira's trik: introdue four n� n matries 

�

that are referred to as

the -matries of Dira, whih satisfy the Dira algebra (Cli�ord algebra)

�



�

; 

�

	

� 

�



�

+ 

�



�

= 2g

��

I

n

;

with I

n

the n�n identity matrix. In Ex. 14 it is proven that this implies that

the n�n matries S

��

�

i

4

�



�

; 

�

�

form a representation of the generators

J

��

of the Lorentz group.

4

Four-dimensional solution to the Dira algebra: sine there are no solutions for

n = 2 or 3, the �rst solution an be found for n = 4. Written in 2�2 blok form in terms

of the 2�2 identity matrix I

2

and the Pauli spin matries

�

1

=

 

0 1

1 0

!

; �

2

=

 

0 � i

i 0

!

and �

3

=

 

1 0

0 � 1

!

;

the solution reads



0

=

 

0 I

2

I

2

0

!

and 

j

=

 

0 �

j

� �

j

0

!

(j = 1; 2; 3)

in the Weyl representation, whih is also known as the hiral representation. In fat there

is an in�nite number of suh four-dimensional representations, sine for any invertable 4�4

matrix V also V 

�

V

�1

is a solution. In the Weyl representation the generators of the

Lorentz group have a blok-diagonal form. The generators for boosts are given by

S

0j

=

i

4

�



0

; 

j

�

=

i

2



0



j

= �

i

2

 

�

j

0

0 � �

j

!

(j = 1; 2; 3) ;

whereas the generators S

1

, S

2

and S

3

for rotations follow from

S

jk

j 6=k

====

i

4

�



j

; 

k

�

= �

i

4

 

�

�

j

; �

k

�

0

0

�

�

j

; �

k

�

!

= �

jkl

 

1

2

�

l

0

0

1

2

�

l

!

� �

jkl

S

l

(j; k = 1; 2; 3)

) S

l

=

 

1

2

�

l

0

0

1

2

�

l

!

�

1

2

�

l

(l = 1; 2; 3) :

The generators for rotations look like twie repliated two-dimensional representations of

the rotation group. We will ome bak to this point later on. As a result of the properties

(

0

)

y

= 

0

; (

j

)

y

= � 

j

(j = 1; 2; 3) ) (

�

)

y

= 

0



�



0

;

the generators of the Lorentz group satisfy

(S

��

)

y

= �

i

4

�

(

�

)

y

; (

�

)

y

�

=

i

4

�

(

�

)

y

; (

�

)

y

�

= 

0

S

��



0

:

4

In fat this is true for any spaetime dimensionality
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This means that the generators of rotations are hermitian, sine (S

jk

)

y

= S

jk

, indiating

that rotations preserve normalization. On the other hand, the generators of boosts are

non-hermitian, sine (S

0j

)

y

= �S

0j

, indiating that boosts do not preserve normalization

owing to the Lorentz ontration of spatial volumes.

Dira spinors and adjoint Dira spinors: a four-omponent �eld  (x) that Lorentz

transforms aording to this four-dimensional representation of the Lorentz group is alled

a Dira spinor:

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x) with �

1=2

= exp(�i!

��

S

��

=2) :

The adjoint Dira spinor

�

 (x) is de�ned as

�

 (x) �  

y

(x)

0

and therefore transforms as

�

 (x)

Lorentz transf.

����������!

�

 (�

�1

x)�

�1

1=2

;

sine



0

�

y

1=2



0

= 

0

exp

�

i!

��

[S

��

℄

y

=2

�



0

(S

��

)

y

= 

0

S

��



0

============ exp(i!

��

S

��

=2) = �

�1

1=2

:

Using the important -matrix property

�



�

; S

��

�

=

i

2

�



�

; 

�



�

�

=

i

2

(

�



�



�

� 

�



�



�

) = i(g

��



�

� g

��



�

)

= i(g

��

g

�

�

� g

�

�

g

��

)

�

= (J

��

)

�

�



�

;

the following in�nitesimal Lorentz-transformation identity holds up to O(!):

�

I

4

+

i

2

!

��

S

��

�



�

�

I

4

�

i

2

!

��

S

��

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�



�

:

This reets that for �nite transformations

�

�1

1=2



�

�

1=2

= �

�

�



�

;

whih indiates that 

�

transforms like a ontravariant four-vetor provided it is properly

ontrated with Dira spinors and adjoint Dira spinors.

11d Consequently,  (x), 

�

�

�

 (x), 

�



�

�

�

�

�

 (x); � � � are good building bloks

for onstruting a Lorentz-invariant wave equation for Dira spinors, whereas

�

 (x) (x),

�

 (x)

�

�

�

 (x); � � � are salar building bloks for obtaining the or-

responding Lagrangian.
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3.1 Towards the Dira equation (§ 3.2 and 3.4 in the book)

11d Dira-�eld bilinears (urrents): the interesting objets in spinor

spae are of the form

�

 � , with � a 4� 4 matrix that onsists of a sequene

of -matries. These objets are alled bilinears or urrents. They will be

needed to onstrut Lagrangians that inlude interations with other �elds, like

�

 (x)

�

 (x)A

�

(x) for interations with a vetor �eld and

�

 (x)

�



�

 (x)h

��

(x)

for interations with a tensor �eld. A basis for � that satis�es �

y

= 

0

�

0

is

given by the following ombinations of -matries:

I

4

; 

�

; �

��

=

i

2

�



�

; 

�

�

; 

�



5

; i

5

;

where



5

� i

0



1



2



3

= �

i

4!

�

����



�



�



�



�

in terms of the totally antisymmetri tensor

�

����

=

8

>

>

>

<

>

>

>

:

+1 if (����) = even permutation of (0123)

� 1 if (����) = odd permutation of (0123)

0 else

:

Properties of 

5

: the properties of the matrix 

5

will prove important for the desription

of weak interations. They read:

(

5

)

y

= 

5

; (

5

)

2

= I

4

and

�



5

; 

�

	

= 0 (� = 0; � � � ; 3)

)

�



5

; S

��

�

= 0 )

�



5

;�

1=2

�

= 0 :

This means that 

5

is a \Lorentz salar" if it is properly ontrated with Dira spinors

and adjoint Dira spinors. Sine 

5

ommutes with the generators of Lorentz transforma-

tions in spinor spae, eigenvetors of 

5

orresponding to di�erent eigenvalues transform

independently (i.e. without mixing).

11 Aording to Shur's lemma this implies that the Dira representation of the

Lorentz group is reduible, i.e. we should be able to write it in terms of two in-

dependent lower-dimensional hiral representations.

In the Weyl representation of the -matries, the matrix 

5

has the following form in terms

of 2�2 bloks:



5

=

 

� I

2

0

0 I

2

!

:
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As a result,

P

R

�

1

2

(I

4

+ 

5

) =

 

0 0

0 I

2

!

and P

L

�

1

2

(I

4

� 

5

) =

 

I

2

0

0 0

!

are (hiral) projetion operators on 2-dimensional vetors  

R

and  

L

:

 �

 

 

L

 

R

!

! P

R

 =

 

0

 

R

!

and P

L

 =

 

 

L

0

!

;

whih are eigenvetors of 

5

orresponding to the hirality eigenvalues +1 and �1.

In terms of these right-handed Weyl spinors  

R

and left-handed Weyl spinors  

L

the in-

�nitesimal Lorentz transformations of  an be rewritten as (f. Ex. 15 and the generators

that are given on page 90)

 

 

L

 

R

!

Lorentz transf.

����������!

 

[I

2

� i

~

� � ~�=2�

~

� � ~�=2℄ 

L

[I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄ 

R

!

:

The real in�nitesimal parameters

~

� and

~

� oinide with the parameters Æ~� and Æ~v that

were used in Ex. 14. We see that the Weyl spinors transform independently, whih indeed

implies that the four-dimensional Dira representation of the Lorentz group is reduible

and an be split into two two-dimensional representations. For later use we mention the

following identity for the Pauli spin matries:

�

2

~�

�

= �~��

2

) �

2

 

�

L

Lorentz transf.

����������! �

2

[I

2

+ i

~

� � ~�

�

=2�

~

� � ~�

�

=2℄ 

�

L

= [I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄�

2

 

�

L

;

whih indiates that �

2

 

�

L

transforms like a right-handed Weyl spinor.

Chirality and urrents: from the 4� 4 matrix basis on the previous page all possible

hermitian urrents an be obtained as

�

 � , sine (

�

 � )

y

=  

y

�

y



0

 

�

y

=

0

�

0

========

�

 � .

These urrents and their assoiated ontinuous Lorentz transformations read:

salar urrent : j

S

(x) �

�

 (x) (x)

Lorentz transf.

����������! j

S

(�

�1

x) ;

vetor urrent : j

�

V

(x) �

�

 (x)

�

 (x)

Lorentz transf.

����������! �

�

�

j

�

V

(�

�1

x) ;

tensor urrent : j

��

T

(x) �

�

 (x)�

��

 (x)

Lorentz transf.

����������! �

�

�

�

�

�

j

��

T

(�

�1

x) ;

axial vetor urrent : j

�

A

(x) �

�

 (x)

�



5

 (x)

Lorentz transf.

����������! �

�

�

j

�

A

(�

�1

x) ;

pseudo salar urrent : j

P

(x) � i

�

 (x)

5

 (x)

Lorentz transf.

����������! j

P

(�

�1

x) ;

making use of the fat that �

�1

1=2



�

�

1=2

= �

�

�



�

and �

�1

1=2



5

�

1=2

= 

5

.
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Using the hiral projetion operators P

L=R

, the Dira spinors an be deomposed into

hiral omponents aording to

P

L=R

 (x) �  

L=R

)

�

 

L=R

� ( 

L=R

)

y



0

=  

y

P

L=R



0

=  

y



0

P

R=L

=

�

 P

R=L

:

This results in the following hiral deompositions of the urrents.

� The salar urrent mixes left- and right-handed Weyl spinors, sine

�

  =

�

 (P

R

+ P

L

) =

�

 (P

2

R

+ P

2

L

) =

�

 

L

 

R

+

�

 

R

 

L

:

This will prove important for the desription of massive spin-1/2 partiles.

� The vetor urrent treats left- and right-handed Weyl spinors on equal footing, sine

�

 

�

 =

�

 

�

(P

2

R

+ P

2

L

) =

�

 (P

L



�

P

R

+ P

R



�

P

L

) =

�

 

R



�

 

R

+

�

 

L



�

 

L

:

This will prove important for vetor-like theories, desribing for instane the eletro-

magneti and strong interations.

� Similarly the tensor urrent mixes left- and right-handed Weyl spinors:

�

 �

��

 =

�

 

L

�

��

 

R

+

�

 

R

�

��

 

L

:

This is needed for desribing Lorentz transformations, as we have seen already.

� The axial vetor urrent treats left- and right-handed Weyl spinors in opposite ways:

�

 

�



5

 =

�

 

�



5

(P

2

R

+ P

2

L

) =

�

 (P

L



�



5

P

R

+ P

R



�



5

P

L

) 

=

�

 

R



�



5

 

R

+

�

 

L



�



5

 

L



5

 

R=L

=� 

R=L

============

�

 

R



�

 

R

�

�

 

L



�

 

L

:

This will prove important for hiral theories, like the one that desribes weak inter-

ations.

� Similarly the pseudo salar urrent deomposes aording to

i

�

 

5

 = i

�

 

L



5

 

R

+ i

�

 

R



5

 

L

= i

�

 

L

 

R

� i

�

 

R

 

L

:

This will prove important in desribing interations between spin-0 and spin-1/2

partiles.

Handy ombinations of suh urrents are given by the left/right-handed vetor urrents

j

�

L=R

(x) �

�

 (x)

�

P

L=R

 (x) =

�

 

L=R

(x)

�

 

L=R

(x) ;

whih will feature in the Standard Model of eletroweak interations.
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11e Dira equation: let's now try to onstrut a Lorentz-invariant wave

equation that has the Klein-Gordon equation built in. The simplest andidate

is the Dira equation

(i

�

�

�

�m) (x) = 0 :

This is a �rst order di�erential equation, whereas the Klein-Gordon equation was a seond

order equation. This is possible beause 

�

behaves like a vetor without atually intro-

duing a preferred diretion, whih is not possible in salar theories!

Proof: �rst of all

0 = (i

�

�

�

+m)(i

�

�

�

�m) (x) = � (

�



�

�

�

�

�

+m

2

) (x)

= �

�

1

2

�



�

; 

�

	

�

�

�

�

+m

2

�

 (x)

f

�

;

�

g=2g

��

I

4

============ � (� +m

2

) (x) ;

so the Klein-Gordon equation is indeed built in! Seondly, under ontinuous Lorentz trans-

formations a Dira spinor transforms aording to  (x) !  

0

(x) = �

1=2

 (�

�1

x). If  (x)

satis�es the Dira equation then it follows that

8

x

(i

�

�

�

�m) (x) = 0 ) (i

�

�

�

�m)�

1=2

 (�

�1

x) = �

1=2

(i�

�

�



�

�

�

�m) (�

�1

x)

= �

1=2

�

i�

�

�



�

(�

�1

)

�

�

(�

�

 )(�

�1

x)�m (�

�1

x)

�

= �

1=2

�

i

�

�

�

 �m 

�

(�

�1

x) = 0

) (i

�

�

�

�m) 

0

(x) = 0 :

If the �eld  (x) satis�es the Dira equation then so does the Lorentz transformed �eld

 

0

(x), as required for having a Lorentz invariant wave equation.

In the Weyl representation the Dira equation reads

0 = (i

�

�

�

�m) =

 

�mI

2

i(I

2

�

0

+~� �

~

5

)

i(I

2

�

0

�~� �

~

5

) �mI

2

! 

 

L

 

R

!

�

 

�mI

2

i�

�

�

�

i��

�

�

�

�mI

2

! 

 

L

 

R

!

using the ompat notation

�

�

� (I

2

; ~� ) and ��

�

� (I

2

;�~� ) ) 

�

=

 

0 �

�

��

�

0

!

:

From this we onlude that

11e the two representations assoiated with  

L

and  

R

are mixed by the mass

term in the Dira equation! In the massless ase the Dira equation splits into

two independent wave equations for  

L

and  

R

, the so-alled Weyl equations

i��

�

�

�

 

L

(x) = 0 and i�

�

�

�

 

R

(x) = 0 :
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The Dira Lagrangian: the Lagrangian that orresponds to the Dira equation reads

L

Dira

(x) =

�

 (x)(i

�

�

�

�m) (x) :

Proof: the Euler-Lagrange equations for the

�

 and  �elds are given by

�

�

�

�L

�(�

�

�

 )

�

�

�L

�

�

 

= � (i

�

�

�

�m) = 0 ;

�

�

�

�L

�(�

�

 )

�

�

�L

� 

= �

�

�

i

�

 

�

�

+m

�

 =

�

 (i

 

�

�



�

+m) = 0 ;

whih are indeed the Dira equation and the orresponding adjoint equation

0 =

�

(i

�

�

�

�m) (x)

�

y



0

= � i

�

�

�

 

y

(x)

�



� y



0

�m 

y

(x)

0

= �

�

 (x)(i

 

�

�



�

+m) :

11e Conserved urrents: in preparation for the quantization of the free

Dira theory and the derivation of its partile interpretation, we have a loser

look at the onserved urrents for the solutions  (x) of the Dira equation.

1. The vetor urrent j

�

V

(x) is onserved.

Proof 1: �

�

j

�

V

= (�

�

�

 )

�

 +

�

 

�

�

�

 

Dira eqns.

======== im

�

  � im

�

  = 0 .

Proof 2: in Ex. 17 an alternative proof is given based on global U(1) invariane.

2. The axial vetor urrent j

�

A

(x) is onserved if m=0.

Proof 1: �

�

j

�

A

= (�

�

�

 )

�



5

 �

�

 

5



�

�

�

 

Dira eqns.

======== 2im

�

 

5

 = 0 if m = 0.

Proof 2: in Ex. 17 an alternative proof is given based on global hiral invariane.

3. The energy-momentum tensor T

��

is onserved.

Only the spaetime oordinates of

�

 (x) and  (x) transform under translations,

i.e. the spinors themselves do not transform. Consequently, the energy-momentum

tensor T

��

derived on page 8 will be onserved. This gives rise to four onserved

harges, the �eld energy

H =

Z

d~x H =

Z

d~x

h

�

 

_

 +

_

�

 �

�

 

� L

Dira

i

=

Z

d~x �

 

_

 

and �eld momentum

~

P = �

Z

d~x

h

�

 

~

5

 + (

~

5

�

 )�

�

 

i

= �

Z

d~x �

 

~

5

 :

Here we used that in these Noether harges  (x) should satisfy the Dira equation,

and that �

 

=

�L

Dira

�(�

0

 )

= i

�

 

0

= i 

y

as well as �

�

 

=

�L

Dira

�(�

0

�

 )

= 0 .

From these onjugate momenta we an read o� that out of the eight real

degrees of freedom of the Dira spinor  (x) in fat four belong to the

onjugate momentum.
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4. Under ontinuous Lorentz transformations a Dira spinor transforms as

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x)

inf.

�

�

I

4

�

i

2

!

��

S

��

�

 (x)�

1

2

!

��

�

x

�

�

�

� x

�

�

�

�

 (x) ;

where the �rst term is typial for Dira spinors and the seond term is the same

as for salar �elds. Bearing in mind that the Dira Lagrangian is a Lorentz salar,

we an generalize the derivation on page 11 to arrive at the following six onserved

Noether urrents:

J

���

(x) =

�L

Dira

�(�

�

 )

�

x

�

�

�

� x

�

�

�

� iS

��

�

 (x) +

�

g

��

x

�

� g

��

x

�

�

L

Dira

(x)

= T

��

x

�

� T

��

x

�

+

�

 (x)

�

S

��

 (x) :

11e The last term in these onserved Noether urrents is spei� for Dira

theories. After quantization of the Dira theory this term will help us to

determine the spin of the partiles desribed by the (free) Dira �eld theory.

3.2 Solutions of the free Dira equation (§ 3.3 in the book)

11f Sine solutions of the (free) Dira equation automatially satisfy the Klein-

Gordon equation, we an use the standard plane-wave (Fourier) deomposition

in order to deouple the degrees of freedom as muh as possible.

The positive-energy ase: aording to this deomposition we introdue

 

p

(x) � u(p)e

�ip�x

with p

2

= m

2

and p

0

> 0 ) p

�

=

�

p

~p

2

+m

2

; ~p ) � (E

~p

; ~p ) :

The spinor u(p) then has to satisfy the Dira equation in momentum spae:

(

�

p

�

�m)u(p) � (p=�m)u(p) = 0 ;

using Feynman slash notation. The laim is now that u(p) an be written as

u(p) =

 

p

p � � �

p

p � �� �

!

;

with � an arbitrary normalized 2-dimensional vetor.

Proof: using that

p

(p � �)(p � ��) =

p

(p

0

I

2

� ~p � ~� )(p

0

I

2

+ ~p � ~� )

f�

j

;�

k

g=2Æ

jk

I

2

=========== I

2

q

p

2

0

� ~p

2

= mI

2

;

it easily follows that

(p=�m)u(p) =

 

�mI

2

p � �

p � �� �mI

2

! 

p

p � � �

p

p � �� �

!

= 0 :
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The negative-energy ase: similarly we introdue

 

p

(x) � v(p)e

+ip�x

with again p

�

= (E

~p

; ~p )

to get two more independent solutions of the Dira equation. The spinor v(p) has to

satisfy

� (

�

p

�

+m)v(p) � � (p= +m)v(p) = 0

and is given by

v(p) =

 

p

p � � �

�

p

p � �� �

!

;

with � another arbitrary normalized 2-dimensional vetor.

Heliity: for the normalized base vetors �

1

; �

2

and �

1

; �

2

we ould for instane hoose

the eigenvetors of ~� � ~p=j~p j � ~� � ~e

p

with eigenvalues +1 ;�1. This results in

u

1

(p) =

 

p

E

~p

� j~p j �

1

p

E

~p

+ j~p j �

1

!

j~p j�m

����!

p

2E

~p

 

0

�

1

!

;

u

2

(p) =

 

p

E

~p

+ j~p j �

2

p

E

~p

� j~p j �

2

!

j~p j�m

����!

p

2E

~p

 

�

2

0

!

and

v

1

(p) =

 

p

E

~p

� j~p j �

1

�

p

E

~p

+ j~p j �

1

!

j~p j�m

����! �

p

2E

~p

 

0

�

1

!

;

v

2

(p) =

 

p

E

~p

+ j~p j �

2

�

p

E

~p

� j~p j �

2

!

j~p j�m

����!

p

2E

~p

 

�

2

0

!

:

11f In the ultrarelativisti limit the hiral states oinide with the eigenstates

of the heliity operator

^

h = ~e

p

�

^

~

S =

1

2

 

~� � ~e

p

0

0 ~� � ~e

p

!

:

In that ase positive heliity (h = +1=2) orresponds to right-handed hirality

( 

R

) and negative heliity (h = � 1=2) to left-handed hirality ( 

L

).

Heliity is frame dependent if m 6= 0, sine ~e

p

an be ipped by a boost along

that diretion. Heliity is frame independent if m = 0. The Lorentz invariane

of heliity for m = 0 is manifest in the notation of Weyl spinors, sine  

L=R

live in di�erent representations of the Lorentz group.
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Normalization and orthogonality of the u and v spinors: from the orthogonality

properties �

r y

�

s

= Æ

rs

and �

r y

�

s

= Æ

rs

of the normalized 2-dimensional base vetors �

1

; �

2

and �

1

; �

2

, it follows that

u

r y

(p)u

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � � �

s

p

p � �� �

s

!

= �

r y

(p � � + p � ��)�

s

= 2E

~p

Æ

rs

;

v

r y

(p)v

s

(p) =

�

�

r y

p

p � � ; � �

r y

p

p � ��

�

 

p

p � � �

s

�

p

p � �� �

s

!

= �

r y

(p � � + p � ��)�

s

= 2E

~p

Æ

rs

;

u

r y

(p)v

s

(~p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � �� �

s

�

p

p � � �

s

!

= 0 = v

r y

(~p)u

s

(p) ;

with ~p

�

� (p

0

;�~p ) ) ~p � �� = p �� and ~p �� = p � �� . This is obviously not boost-invariant.

Lorentz invariant ontrations are obtained through

�u

r

(p)u

s

(p) = u

r y

(p)

0

u

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � �� �

s

p

p � � �

s

!

= 2mÆ

rs

;

�v

r

(p)v

s

(p) = v

r y

(p)

0

v

s

(p) =

�

�

r y

p

p � � ; � �

r y

p

p � ��

�

 

�

p

p � �� �

s

p

p � � �

s

!

= � 2mÆ

rs

;

�u

r

(p)v

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

�

p

p � �� �

s

p

p � � �

s

!

= 0 = �v

r

(p)u

s

(p) :

Polarization sums: for dealing with Feynman diagrams that involve Dira fermions,

polarization sums (heliity sums) are an essential ingredient. These polarization sums read

2

X

s=1

u

s

(p)�u

s

(p) =

2

X

s=1

 

p

p � � �

s

p

p � �� �

s

!

�

�

s y

p

p � �� ; �

s y

p

p � �

�

=

0

B

B

�

p

p � �

2

P

s=1

�

s

�

s y

p

p � ��

p

p � �

2

P

s=1

�

s

�

s y

p

p � �

p

p � ��

2

P

s=1

�

s

�

s y

p

p � ��

p

p � ��

2

P

s=1

�

s

�

s y

p

p � �

1

C

C

A

ompl.

======

 

mI

2

p � �

p � �� mI

2

!

= 

�

p

�

+mI

4

= p= +mI

4

;

2

X

s=1

v

s

(p)�v

s

(p) = p=�mI

4

;

where in the third step the ompleteness relation for the 2-dimensional basis �

1

; �

2

is used.
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3.3 Quantization of the free Dira theory (§ 3.5 in the book)

11g The same philosophy will be applied as in the Klein-Gordon ase. We

diagonalize the Hamiltonian

^

H of the Dira theory in its quantized form by

expanding the solutions of the Dira equation in spatial plane-wave modes,

whih are written in terms of reation and annihilation operators. The par-

tile interpretation is obtained by letting these reation operators at on the

vauum state j0i, whih is de�ned to ontain no partiles (i.e. positive-energy

quanta) and to have the lowest energy. This leads to the requirement that

the spetrum of

^

H should be bounded from below. On top of that, we again de-

mand that ausality should be preserved for having a viable theory.

Derivation of the operator algebra: step 1. Aording to the disussion on page 96

H

Dira

(x) = �

 

(x)

_

 (x) = i 

y

(x)

_

 (x) :

In analogy with the salar ase we expand a solution of the Dira equation in terms of

plane-wave modes, bearing in mind that

^

 (x) is non-hermitian and has spinorial degrees

of freedom:

^

 (x) =

Z

d~p

(2�)

3

1

p

2E

~p

2

X

s=1

�

â

s

~p

u

s

(p)e

�ip�x

+

^

b

s y

~p

v

s

(p)e

ip�x

�

�

�

�

p

0

=E

~p

:

The di�erene with the salar ase is the ourrene of the u and v spinors that span

spinor spae. The Hamilton operator of the free Dira theory now reads

^

H =

Z

d~x i

^

 

y

(x)

_

^

 (x) =

Z

d~x

Z

d~p d~p

0

(2�)

6

p

E

~p

0

2

p

E

~p

2

X

s;s

0

=1

�

â

s y

~p

u

s y

(p)e

ip�x

+

^

b

s

~p

v

s y

(p)e

�ip�x

�

�

�

�

â

s

0

~p

0

u

s

0

(p

0

)e

�ip

0

�x

�

^

b

s

0

y

~p

0

v

s

0

(p

0

)e

ip

0

�x

�

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

~x integral

========

Z

d~p

(2�)

3

1

2

2

X

s;s

0

=1

�

â

s y

~p

â

s

0

~p

u

s y

(p)u

s

0

(p)�

^

b

s

~p

^

b

s

0

y

~p

v

s y

(p)v

s

0

(p)

+

^

b

s

~p

â

s

0

�~p

v

s y

(p)u

s

0

(~p)e

�2itE

~p

� â

s y

~p

^

b

s

0

y

�~p

u

s y

(p)v

s

0

(~p)e

2itE

~p

�

�

�

�

p

0

=E

~p

norm.

=====

Z

d~p

(2�)

3

2

X

s=1

E

~p

�

â

s y

~p

â

s

~p

�

^

b

s

~p

^

b

s y

~p

�

:
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From this expression for the Hamilton operator of the free Dira theory we an read o�

that

� the energy spetrum is not bounded from below if we use ommutation relations like

in the ase of salar theories;

� it does ertainly not help if

^

b

s y

~p

is replaed by ̂

s

~p

, sine in that ase the problem

annot be solved at all;

� 11g we are fored to impose fermioni antiommutation relations on the reation and

annihilation operators

^

b

s y

~p

and

^

b

s

~p

, being the alternative starting point for setting up

a many-partile quantum theory:

�

^

b

s

~p

;

^

b

s

0

y

~p

0

	

= (2�)

3

Æ(~p� ~p

0

)Æ

ss

0

^

1 and

�

^

b

s

~p

;

^

b

s

0

~p

0

	

=

�

^

b

s y

~p

;

^

b

s

0

y

~p

0

	

= 0 :

Upon implementing these antiommutation relations, the Hamilton operator indeed be-

omes bounded from below by a zero-point energy:

^

H =

Z

d~p

(2�)

3

2

X

s=1

E

~p

�

â

s y

~p

â

s

~p

+

^

b

s y

~p

^

b

s

~p

� (2�)

3

Æ(

~

0 )

^

1

�

:

� Again only positive-energy quanta feature in the Hamilton operator.

� This time we �nd an in�nite zero-point energy with opposite sign, whih an again

be removed by normal ordering:

^

b

y

^

b ! N(

^

b

y

^

b) =

^

b

y

^

b ;

^

b

^

b

y

! N(

^

b

^

b

y

) = �

^

b

y

^

b :

Note the extra minus sign that is required for normal ordering of fermioni operators.

This will also have reperussions on the derivation of Wik's theorem and the ensuing

Feynman rules.

The opposite-sign fermioni zero-point energy ould atually anel the in�nities

originating from bosoni zero-point energies. So, there might be some profound

physial onepts hidden in the zero-point setor . . . !?

Let's ignore the latter issue from now on and proeed with the operator algebra.

Question: do the operators â ; â

y

also obey fermioni antiommutation relations

or bosoni ommutation relations?
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Derivation of the operator algebra: step 2. To address the previous question we

need to study the ausal struture of the theory. In the salar ase this was intimately

linked to the partile and antipartile propagation amplitudes. This will involve both the

Dira operator �eld and the adjoint Dira operator �eld, whih is given by

^

�

 (x) =

Z

d~p

(2�)

3

1

p

2E

~p

2

X

s=1

�

â

s y

~p

�u

s

(p)e

ip�x

+

^

b

s

~p

�v

s

(p)e

�ip�x

�

�

�

�

p

0

=E

~p

=

^

 

y

(x)

0

:

We start by having a look at the propagation of positive-energy partiles from y to x.

This is de�ned aording to

h0j

^

 

a

(x)

^

�

 

b

(y)j0i =

Z

d~pd~p

0

(2�)

6

e

�ip�x+ip

0

�y

2

p

E

~p

E

~p

0

2

X

s;s

0

=1

u

s

a

(p)�u

s

0

b

(p

0

)h0jâ

s

~p

â

s

0

y

~p

0

j0i

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

2

X

s=1

u

s

a

(p)�u

s

b

(p)

�

�

�

p

0

=E

~p

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

(p= +mI

4

)

ab

�

�

�

p

0

=E

~p

= (i�=

x

+mI

4

)

ab

D(x� y) ;

where a; b are spinor indies and D(x � y) is given on page 19. This expression is valid

irrespetive of the statistis for the â-operators:

h0jâ

s

~p

â

s

0

y

~p

0

j0i = h0j

�

(2�)

3

Æ(~p� ~p

0

)Æ

ss

0

^

1 � â

s

0

y

~p

0

â

s

~p

�

j0i = (2�)

3

Æ(~p� ~p

0

)Æ

ss

0

;

where the +=� sign ourring after the �rst step refers to bosoni/fermioni statistis.

Similarly the propagation of positive-energy antipartiles from x to y is given by

h0j

^

�

 

b

(y)

^

 

a

(x)j0i =

Z

d~p d~p

0

(2�)

6

e

ip�x�ip

0

�y

2

p

E

~p

E

~p

0

2

X

s;s

0

=1

�v

s

0

b

(p

0

)v

s

a

(p)h0j

^

b

s

0

~p

0

^

b

s y

~p

j0i

�

�

�

p

0

=E

~p

; p

0

0
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~p

0

=

Z

d~p

(2�)

3

e

ip�(x�y)

2E

~p

2

X

s=1
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s

a

(p)�v
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b

(p)

�

�

�

p

0

=E

~p

=

Z

d~p

(2�)

3

e

ip�(x�y)

2E

~p

(p=�mI

4

)
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�

�

�

p

0

=E

~p

= � (i�=

x

+mI

4

)

ab

D(y � x) :

Important observation for the ausality disussion: for (x � y)

2

< 0 we know

from the salar ase that D(x� y) = D(y�x), hene we have to onlude that

h0j

�

^

 

a

(x);

^

�

 

b

(y)

�

j0i 6= 0 and h0j

�

^

 

a

(x);

^

�

 

b

(y)

	

j0i = 0 in that ase.
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Causality: in the oordinate representation any observable that involves Dira partiles

ontains an even number of spinor �elds, i.e. as many  as

�

 �elds, sine suh an observ-

able should have no open spinor indies. So, if either

�

^

 

a

(x) ;

^

�

 

b

(y)

�

=

�

^

 

a

(x);

^

 

b

(y)

�

= 0

or

�

^

 

a

(x) ;

^

�

 

b

(y)

	

=

�

^

 

a

(x);

^

 

b

(y)

	

= 0 for (x � y)

2

< 0, then measurements do not

inuene eah other for spaelike separations and ausality is preserved! As we have seen

above, the �rst option annot be ahieved but the seond option is possible. Based on the

previous disussion,

�

^

 

a
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^

�

 

b

(y)
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and

�
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(x) ;

^

 

b
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=
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0
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2
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is guaranteed for spaelike separations (x� y)

2

< 0 if

�

â

s

~p

; â
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1 =

�

^
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s

~p

;

^

b

s

0

y
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; with all other antiommutators being 0 :

Note: the antiommutation relation for â and â

y

follows from the �rst two terms in the

�rst expression, bearing in mind the antiommutation relation for

^

b and

^

b

y

as well as the

equality D(x� y) = D(y � x) for (x� y)

2

< 0.

11g In the free Dira theory both partiles and antipartiles have to be fermions.

On top of that, the reation and annihilation operators for partiles antiom-

mute with those for antipartiles. This implies that partiles and antipartiles

are versions of the same objet, di�ering merely by the quantum number harge

(as we will see below).
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Canonial equal-time antiommutation relations: from the fundamental fermioni

antiommutation relations for reation and annihilation operators it follows that

�

^

 

a

(~x; t);

^

�

 

b

(~y; t)

	

p:102

=====

Z

d~p

(2�)

3

^

1

2E

~p

h

e

i~p �(~x�~y )

(p=+mI

4

)

ab

+ e

� i~p �(~x�~y )

(p=�mI

4

)

ab

i

�

�

�

�

p

0

=E

~p

~p!� ~p in 2nd term

==============

Z

d~p

(2�)

3

e

i~p �(~x�~y )

(

0

)

ab

^

1 = (

0

)

ab

Æ(~x� ~y )

^

1

)

�

^

 

a

(~x; t); �̂

 



(~y ; t)

	

=

X

b

�

^

 

a

(~x; t); i

^

�

 

b

(~y; t)

	

(

0

)

b

(

0

)

2

= I

====== iÆ

a

Æ(~x� ~y )

^

1

and

�

^

 

a

(~x; t);

^

 



(~y; t)

	

=

�

�̂

 

a

(~x; t); �̂

 



(~y; t)

	

= 0 :

11g The quantization of the free Dira theory ould equally well have been

performed by imposing anonial equal-time antiommutation relations for the

�elds and their orresponding onjugate momenta.

Completing the partile interpretation: what else do we know about the partiles

and antipartiles in the Dira theory?

� After quantization the momentum arried by the Dira �eld beomes (f. page 96)

^

~

P = �

Z

d~x �̂

 

(x)

~

r

^

 (x) =

Z

d~x

^

 

y

(x)(�i

~

5

)

^

 (x)

=

Z

d~p

(2�)

3

~p

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s

~p

^

b

s y

~p

) =

Z

d~p

(2�)

3

~p

2

X

s=1

(â

s y

~p

â

s

~p

+

^

b

s y

~p

^

b

s

~p

) ;

just like in the salar ase.

� After quantization the onserved harge (alled partile number) originating from

the global U(1) gauge symmetry beomes

^

Q =

Z

d~x

^

j

0

V

(x) =

Z

d~x

^

 

y

(x)

^

 (x) =

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

+

^

b

s

~p

^

b

s y

~p

)

) N(

^

Q) =

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s y

~p

^

b

s

~p

) ;

whih implies that partiles/antipartiles have partile number +=� 1. Multiplied

by the eletromagneti harge q of the partiles this yields the total harge operator

for interations with eletromagneti �elds (see later). So, in that ase we an read

o� that partiles and antipartiles have opposite harge.
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� Based on the disussion on page 97, the total spin operator is given by

^

~

S =

Z

d~x

^

 

y

(x)

 

1

2

~� 0

0

1

2

~�

!

^

 (x) :

Just like in the previous ase, the order of the

^

b

s

~p

and

^

b

s y

~p

operators results in

opposite spin quantum numbers for antipartiles if we would set �

s

= �

s

in the

v and u spinors.

This allows us to read o� the partile ontent of the free Dira theory. We already know

that for antiommuting reation and annihilation operators there exists a groundstate

(vauum state) j0i suh that h0j0i = 1 and â

s

~p

j0i =

^

b

s

~p

j0i = 0 for all ~p and s. Then

N(

^

H)j0i = 0,

^

~

P j0i =

~

0 and N(

^

Q)j0i = 0, i.e. the vauum \has" energy E = 0,

momentum

~

P =

~

0 and harge Q = 0. From this groundstate the 1-partile exitations

an be obtained as â

s y

~p

j0i and

^

b

s y

~p

j0i, orresponding to an energy E

~p

, a momentum ~p ,

spin 1/2 and opposite harge/partile number. In view of the fermioni antiommutation

relations, â

y

reates fermioni partiles and

^

b

y

reates fermioni antipartiles.

11h We an summarize the partile interpretation of the free Dira theory as

follows: â

s y

~p

reates partiles with energy E

~p

, momentum ~p , spin 1/2, harge q

and polarization appropriate to �

s

, whereas

^

b

s y

~p

reates antipartiles with energy

E

~p

, momentum ~p , spin 1/2, harge �q and polarization opposite to �

s

. Hene,

if m = 0 then

^

 

L=R

(x) annihilates partiles with negative/positive heliity and

reates antipartiles with positive/negative heliity.

Inversion of the Dira equation: the retarded Green's funtion is obtained by

�

S

R

(x� y)

�

ab

� �(x

0

� y

0

)h0j

�

^

 

a

(x);

^

�

 

b

(y)

	

j0i

p. 102

===== �(x

0

� y

0

)(i�=

x

+mI

4

)

ab

�

D(x� y)�D(y � x)

�

= (i�=

x

+mI

4

)

ab

D

R

(x� y) :

We have used in the last step that �

0

�(x

0

� y

0

) = Æ(x

0

� y

0

) auses D(x� y)�D(y� x)

to vanish aording to property 2 on page 20, whih implies that it is safe to interhange

the order of �(x

0

� y

0

) and (i�=

x

+mI

4

)

ab

.

Proof that this Green's funtion indeed inverts the Dira equation:

(i�=

x

�m)S

R

(x�y) = (i�=

x

�m)(i�=

x

+m)D

R

(x�y) = � (�+m

2

)D

R

(x�y)I

4

= iÆ

(4)

(x�y)I

4

:

In Fourier language this inversion reads:

(i�=

x

�m)S

R

(x� y) =

Z

d

4

p

(2�)

4

(p=�m)

~

S

R

(p)e

�ip�(x�y)

= i

Z

d

4

p

(2�)

4

e

�ip�(x�y)

I

4

)

~

S

R

(p) =

i(p= +m)

p

2

�m

2

�

i

p=�m

;

105



with the same presription to go around the omplex poles as in the Klein-Gordon ase.

Similarly the Feynman presription yields the Feynman propagator

�

S

F

(x� y)

�

ab

=

Z

d

4

p

(2�)

4

i(p= +mI

4

)

ab

p

2

�m

2

+ i�

e

�ip�(x�y)

= (i�=

x

+mI

4

)

ab

D

F

(x� y)

=

8

>

<

>

:

(i�=

x

+mI

4

)

ab

D(x� y) = h0j

^

 

a

(x)

^

�

 

b

(y)j0i if x

0

> y

0

(i�=

x

+mI

4

)

ab

D(y � x) = �h0j

^

�

 

b

(y)

^

 

a

(x)j0i if x

0

< y

0

� h0jT (

^

 

a

(x)

^

�

 

b

(y))j0i :

Note the extra minus sign in the de�nition of time ordering for fermioni �elds. Just

like in the Klein-Gordon ase the Feynman propagator

�

S

F

(x� y)

�

ab

is the time-ordered

propagation amplitude, whih will play a ruial role in the Feynman rules for fermions.

Lorentz transformations and

^

 (x): just like in the Klein-Gordon ase the 1-partile

states are normalized aording to j~p; si �

p

2E

~p

â

s y

~p

j0i, with a similar expression holding

for 1-antipartile states. Using this de�nition we an de�ne the unitary operator that

implements (ative) Lorentz transformations in the Hilbert spae of quantum states:

j

�!

�p; si �

^

U(�)j~p; si )

q

2E

�!

�p

â

s y

�!

�p

j0i =

p

2E

~p

^

U(�) â
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~p

^

U
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(�)

� j0i

z }| {

^

U(�)j0i
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^
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^

U
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(�) =

s

E
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�p

E

~p

â

s y

�!

�p

;

provided that we hoose the axis of spin quantization to be parallel to the boost/rotation

axis. The transformation property of

^

b

s y

~p

has an analogous form. As a result:

^
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�ip
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��x

+

^

b
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�
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v

s

(p
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)

z }| {
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s

(�

�1

p
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ip
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��x
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^

U(�)
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 (x)

^

U

�1

(�) = �

�1

1=2

^

 (�x) ;

where the seond line is obtained by using that

R

d~p=(2E

~p

) and e

� ip�x

are all Lorentz

invariant. This implies that the transformed �eld reates/destroys antipartiles/partiles

at the spaetime point �x.
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3.4 Disrete symmetries

11i Apart from the symmetry under ontinuous Lorentz transformations and

translations, there are two more spaetime symmetries a free Lagrangian should

have in relativisti �eld theories. These orrespond to the disrete Lorentz trans-

formations that omplete the Lorentz group:

� parity (spatial inversion) P , whih reverses the handedness of spae: t; ~x

P

== t;�~x .

� time reversal T , whih interhanges forward and bakward light ones: t; ~x

T

== �t; ~x .

In addition it is also useful to onsider a non-spaetime disrete operation alled harge

onjugation C , whih interhanges partiles and antipartiles. In partiular P and C play

a ruial role in onstruting the Standard Model of eletroweak interations. In these

leture notes we will expliitly onsider parity transformations. The details for the other

disrete transformations an be found in the textbook of Peskin & Shroeder.

mirror

parity

~p �~p

Parity: this mirror-reetion spaetime trans-

formation is implemented in the Hilbert spae

of quantum states by a unitary operator (basis

transformation)

^

P . Its ation on the reation

and annihilation operators is suh that a state

j~p ; si is transformed into a state j �~p ; si, pro-

vided that the spin is quantized along an arbi-

trary �xed axis.

5

This implies

^

P â

s

~p

^

P

y

= �

a

â

s

�~p

and

^

P

^

b

s

~p

^

P

y

= �

b

^

b

s

�~p

;

where �

a;b

are phase fators. Applying

^

P twie

should have no e�et on observables in the Dira theory. These observables ontain as

many  as

�

 �elds, so the phase fators drop out as long as �

a

and �

b

are related

appropriately (see below). In analogy to the ase of ontinuous Lorentz transformations,

the transformation property of the Dira �eld under parity then beomes

^

P
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^

P
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=
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p

2E
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b
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ip�x
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�

�

�

p
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=E

~p

� �

(P )

1=2

^

 (~x) ;

with ~x

�

� (x

0

;�~x ). Using ~p

�

� (p

0

;�~p ) ) ~p � �� = p � � and ~p � � = p � �� , we an

rewrite the u and v spinors aording to

5

If we would instead use spin quantization along the momentum diretion, then also the assoiated

quantum number heliity would be reversed under parity.
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!
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0
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v
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p
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s

�

p
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p
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0

v
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(~p) :

Bearing in mind that the integral over ~p and the energy E

~p

are una�eted by the transition

from ~p to

~

~p = � ~p, this leads to
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�

�
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=E

~

~
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1=2

^

 (~x)

) �

�

b
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a

and �

(P )

1=2

= �

a



0

:

The transformation property of

^

�

 (x) then follows:

^

P

^

�

 (x)

^

P

y

=

^

P

^

 

y

(x)

0

^

P

y

�

^

P ; 

0
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= 0

=========

�

^

P

^
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^
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y

�
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�

a

^

�

 (~x)

0

=

^

�

 (~x)�

(P )

�1

1=2

;

sine

^

P ats on the Hilbert spae of quantum states and not on spinor spae. The e�etive

transformation properties of the -matries then read

�

(P )

�1

1=2



�

�

(P )

1=2

�

�

a

�

a

=1

====== 

0



�



0

= 

�

;

whih we an write as

�

(P )

�1
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�

�

(P )

1=2

= (�

P
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�

�



�

with (�

P
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�

�

=

0

B

B

�

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

= spatial inversion

in analogy with the ontinuous Lorentz transformations. Furthermore

�

(P )

�1

1=2
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�

(P )

1=2
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0

= � 

5

= det(�

P

)

5

:

Now we have all ingredients for deriving the transformation properties of the normal-

ordered urrents that are the basi building bloks for observables:

salar urrent : N

�

^

j

S

(x)

�

P

��! N

�

^

j

S

(~x)

�

;

vetor urrent : N

�

^

j

�

V

(x)

�

P

��! N

�

^

j

V

�

(~x)

�

;

tensor urrent : N

�

^

j

��

T

(x)

�

P

��! N

�

^

j

T

��

(~x)

�

;

axial vetor urrent : N

�

^

j

�

A

(x)

�

P

��! �N

�

^

j

A

�

(~x)

�

;

pseudo salar urrent : N

�

^

j

P

(x)

�

P

��! �N

�

^

j

P

(~x)

�

:
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These transformation properties atually follow from the fat that left/right-handed �elds

are transformed into right/left-handed �elds under partity. Note that the phase fator �

a

does not our in any of these transformation properties. Therefore we might just as well

set �

a

= � �

b

= 1, resulting in the following textbook statement:

11i in the Dira theory partiles and antipartiles have opposite intrinsi parity.

Sine �

�

P

��! �

�

, the free Dira Lagrangian is evidently invariant under parity.

Charge onjugation and time reversal: after similar sets of steps it an be derived

how the normal-ordered urrents transform under harge onjugation and time reversal.

These topis will not be disussed in these leture notes. The interested reader is referred

to p. 67{71 in the textbook of Peskin & Shroeder.

Interating relativisti �eld theories: the free Dira Lagrangian is invariant under

all three disrete symmetries. For interating theories involving Dira �elds, however, the

following holds:

� eletromagneti, strong and gravitational interations are P - and C-invariant;

� weak interations violate P - and C-invariane (maximally) in the Standard Model,

but preserve the ombined CP -invariane;

� rare proesses involving K-mesons violate CP -invariane: within the Standard Model

this leads to the requirement that there should be at least three families of fermions;

� all interating relativisti �eld theories should be CPT -invariant in order to have a

theory that preserves ausality and that has a Lorentz-salar hermitian Lagrangian.
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4 Interating Dira �elds and Feynman diagrams

The next leture overs § 4.7 of Peskin & Shroeder.

12 We have already seen in detail how the Feynman rules ome about in salar

theories. Next we move on to theories that involve Dira fermions. In that ase

the interation Hamiltonian will ontain an even number of spinor �elds in

order to have a Lorentz invariant ation.

4.1 Wik's theorem for fermions

The �rst thing we have to do is to generalize Wik's theorem. We start with the propagator

using expliit spinor indies a and b:
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< y

0

= �h0jT

�

^

�

 

b

(y)

^

 

a

(x)

�

j0i;

whih involves time-ordered �elds. For Wik's theorem we will have to generalize the

de�nition of time ordering to ases with more �elds. De�ne time ordering to pik up one

minus sign for eah interhange of fermioni operators: e.g. for x

0
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> x
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1

> x

0
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> x

0

2
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a

2

(x

2

) :

Similarly the de�nition of normal ordering is generalized for more than two fermioni op-

erators aording to

N(â

s

~p

â

r

~q

â

t y

~

l

) = (�1)

2

â

t y

~

l

â

s

~p

â

r

~q

= (�1)

3

â

t y

~

l

â

r

~q

â

s

~p

;

where again eah interhange of fermioni operators gives rise to a minus sign.

12a In the proof of Wik's theorem the order of the reation and annihilation

operators will matter this time.

Based on these generalizations of time ordering and normal ordering, we an extend the

de�nition of ontrations (see Ex. 18):
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+
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(x)
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=

�

S

F

(x� y)
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where

^

 

+

and

^

 

�

orrespond to the positive and negative frequeny parts. Furthermore

^

 

a

(x)

^

 

b

(y) =

^

�

 

a

(x)

^

�

 

b

(y) = 0 ;

sine these �elds antiommute.

Wik's theorem for fermioni �elds: let's again skip the subsript I that we would

normally use to indiate (free) interation piture �elds. Wik's theorem then states
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;

as before, with for example
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:

The proof of this version of Wik's theorem (see Ex. 18) proeeds in a way similar to the

one that was worked out for salar �elds.

4.2 Feynman rules for the Yukawa theory

In order to assess the onsequenes of the fermioni version of Wik's theorem we onsider

the Yukawa theory for the interations between fermions and salars. The Lagrangian of

the Yukawa theory is given by

L

Yukawa

=

�

 (i

�

�

�

�m

 

) +

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

�

2

� g

�

  � � L

Dira

+ L

KG

+ L

int

;

with � a real salar �eld and  a Dira �eld. This gives rise to the following interation

term in the Hamilton operator of the Yukawa theory:

^

H

int

= g

R

d~x

^

�

 (x)

^

 (x)

^

�(x).

4.2.1 Impliations of Fermi statistis

In order to study the onsequenes of fermioni minus signs we onsider the  -fermion

sattering reation

 (k

A

; s

A

) (k

B

; s

B

) !  (p

1

; r

1

) (p

2

; r

2

)

at lowest order in perturbation theory, with the momenta and spin states of the partiles

indiated between parentheses. In hapter 2 we have seen that the orresponding T -matrix

element is given by (skipping spin labels)
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�

fully onneted

and amputated

� fator

in terms of free-partile plane-wave states and interation-piture (free) �elds. The lowest-
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order ontribution to the  -sattering reation then reads
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:

In order to perform the orresponding alulation we have to de�ne
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k; si
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u
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with similar expressions for other initial and �nal states.

12b Sine

^

 

I

ontains â and

^

b

y

operators, it an be ontrated with a fermion

state on the right (initial state) or an antifermion state on the left (�nal state).

The opposite holds for

^

�

 

I

, sine it ontains

^

b and â

y

operators.

Minus signs from interhanging fermions: for the lowest-order  -fermion-sattering

T -matrix elements we obtain (with the numbers indiating the order of the ontrations)
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whih have opposite signs. Note that we have used here a de�nition for the two-fermion

initial and �nal states: j
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These T -matrix elements orrespond to the following Feynman diagrams:

iM

1

=

p

1

p

2

k

A

k

B

q = k

A

�p

1

and iM

2

=

p

2

p

1

k

A

k

B

q= k

A

�p

2

:

In these Feynman diagrams solid lines are used to indiate the fermions and dashed ones

to indiate the salar partiles.

12b Due to Fermi statistis the seond ontribution has a relative minus sign

with respet to the �rst one, sine it involves the interhange of two fermions.

The overall sign depends on the de�nitions of the multipartile states, for instane one

might de�ne h~p

1

~p

2

j / h0j â

~p

2

â

~p

1

instead of / h0j â

~p

1

â

~p

2

.

Minus signs from losed fermion loops: the Feynman rules for fermions result in a

fator �1 for losed fermion loops, as well as a trae of a produt of Dira matries. We

�nd for instane that

/
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:

In order to �gure out how the matries in the propagators should be ontrated, we have

used expliit (repeated) spinor labels during intermediate steps.

12b This sign di�erene between fermioni and bosoni loops has important im-

pliations for the high-energy behaviour of the fundamental interations: strong

interations are asymptotially free, eletromagneti interations are not.

4.2.2 Drawing onvention

12 In analogy with the onventions for the salar Yukawa theory, we also

draw arrows on the fermion lines in the atual Yukawa theory. These arrows

represent the diretion of partile-number ow: partiles ow along the arrow,

antipartiles ow against it. In this onvention

^

 orresponds to an arrow

owing into a vertex, whereas

^

�

 orresponds to an arrow owing out of a

vertex. Sine every interation vertex features both

^

 and

^

�

 , the arrows link

up to form a ontinuous ow. But this time there is more to it!
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Consider for example a Feynman diagram like
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In order to �gure out how the spinors and matries should be ontrated, we have used

expliit (repeated) spinor labels during intermediate steps.

12 Here we see the importane of introduing the arrow onvention: the spinor

indies are in this way always ontrated along the fermion line, with the arrow

indiating the reversed order. Phrased di�erently, you should insert -matries

and spinors while going against the arrow of partile-number ow!

4.2.3 K�all�en{Lehmann spetral representation for fermions

The non-perturbative analysis of the 2-point Green's funtion follows the same steps as in

the salar ase with just a few obvious modi�ations:
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x e
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+ i�
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Like before, Z

2

represents the probability for the fermioni quantum �eld to reate or

annihilate an exat \1-dressed partile" eigenstate of

^

H from the ground state, with m

ph

denoting its observable physial mass:

h
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; h
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 (0)j
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(k)
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;

h~p; rj
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 (0)j
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r

(p)

p

Z

2

; h~p; rj

^

 (0)j
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r

(p)

p

Z

2

:

More details will be worked out in the next hapter.
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4.2.4 Momentum-spae Feynman rules for the Yukawa theory

The Feynman rules that we have obtained for the Yukawa theory in the previous setions

an be summarized by the following list:

1. For eah salar propagator

q

insert

i

q

2

�m

2

�

+ i�

.

For eah fermion propagator

q

b

a

insert

i(q= +m

 

I

4

)

ab

q

2

�m

2

 

+ i�

.

2. For eah vertex insert �ig .

3. For eah external salar line

q

insert

p

Z .

For eah inoming fermion line

k

insert u

s

(k)

p

Z

2

, originating from

^

 .

For eah inoming antifermion line

k

insert �v

s

(k)

p

Z

2

, originating from

^

�

 .

For eah outgoing fermion line

p

insert �u

r

(p)

p

Z

2

, originating from

^

�

 .

For eah outgoing antifermion line

p

insert v

r

(p)

p

Z

2

, originating from

^

 .

4. Impose energy-momentum onservation at eah vertex.

5. Integrate over eah undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

6. Figure out the relative signs of the diagrams, aused by interhanging fermions.

7. Insert -matries and spinors while going against the arrow of partile-number ow.

8. Eah fermion loop reeives a minus sign and involves a trae over spinor spae.

The following observations an be made. First of all, no symmetry fators are needed in

the Yukawa theory sine all �elds in the interation are di�erent. Seondly, as an be seen

from the propagator, the sign (diretion) of the momentum matters for fermions. Finally,

eah distint type of partile in the theory will have its own wave-funtion renormalization

fator, i.e.

p

Z for the salar partiles and

p

Z

2

for the fermions.
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4.3 How to alulate squared amplitudes

12d The �nal expressions for amplitudes that involve external fermions typi-

ally feature subexpressions starting with a �u or �v spinor, followed by a hain

of ontrated matries in spinor spae, and losed by a u or v spinor. How

should we alulate squared amplitudes of that form?

In order to answer this question we selet a typial term that features in jMj

2

:

�

�u(p)�

1

u(k)

��

�u(p)�

2

u(k)

�

�

;

where the �rst fator originates from M and the seond one from M

�

. Here �

1;2

denote

arbitrary 4�4 matries in spinor spae.

Step 1: expressing things in terms of traes in spinor spae.

We an make use of the identity
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to rewrite the expression given above in terms of traes in spinor spae:
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:

Looking at the trae in the last line, the various ombinations of Dira spinors ourring

between square brakets are in fat 4�4 matries in spinor spae.

Step 2: employing polarization sums.

� If we are not able to produe polarized beams or to measure the polarization of the

�nal-state partiles, then we have to average over the initial-state polarizations and

to sum over the �nal-state polarizations:
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0

�

;

if we assume that one of the fermions is an initial-state fermion and the other one

a �nal-state fermion. The �nal trae an be worked out using the trae tehnology

developed in Ex. 16.
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� If we are able to polarize the beams or measure polarization, then we an use a similar

trik provided that we projet the Dira spinors on the orret polarization states:
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:

This allows us to perform the spin sums as before, but this time without plugging in

the spin average fator 1=2. The spin projetion matries P;

�

P and P

0

;

�

P

0

will selet

the orret states! This time we get
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:

One we know the spin projetion matries, the resulting traes an be alulated.

� If we are interested in polarized ross setions at high energies, then m

 

an be

negleted with respet to the energy of the fermions. On top of that it will in

that ase make sense to onsider heliity states as our polarization states of hoie.

After all, heliity eigenstates and hirality eigenstates oinide and are not mixed by

Lorentz transformations if m

 

= 0. In that ase the spin projetions beome

u

s

(k) ! P

R=L

u

s

(k) ; �u

s

(k) ! �u

s

(k)P

L=R

for heliity +=� fermions ;

v

s

(k) ! P

R=L

v

s

(k) ; �v

s

(k) ! �v

s

(k)P

L=R

for heliity �=+ antifermions ;

where it is used that

�

P

L=R

= P

R=L

. The indiated hiralities reet the fat that

partiles and antipartiles have an opposite de�nition for their polarization states.

12d To summarize: alulating ross setions involving fermions simply boils

down to working out a olletion of traes, irrespetive of the fat whether one

is able to polarize the beams and/or measure �nal-state polarization.

Trae tehnology: the most important trae identities have been worked out in Ex. 16.

The relevant part that we need later on is summarized by

Tr(

�

1

� � � 

�

2n+1

) = Tr(odd number of -matries) = 0 ;

Tr(

�

1

� � � 

�

2n+1



5

) = 0 ;

Tr(I

4

) = 4 ; Tr(

�



�

) = 4g

��

; Tr(

�



�



�



�

) = 4(g

��

g

��

� g

��

g

��

+ g

��

g

��

) ;

Tr(

5

) = Tr(

�



�



5

) = 0 ; Tr(

�



�



�



�



5

) = � 4i�

����

;

with �

����

�

����

= 2Æ

�

�

Æ

�

�

� 2Æ

�

�

Æ

�

�

.
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5 Quantum Eletrodynamis (QED)

During the last two letures material will be overed that is not treated in this form in the

textbook of Peskin & Shroeder.

13 In this last hapter we will have a look at eletromagneti interations of

matter partiles. This will be used as motivation for the gauge priniple, whih

introdues the onept of gauge bosons as fundamental fore arriers.

5.1 Eletromagnetism

We start with the derivation of Maxwell's equations in vauum in ovariant form. For an

eletromagneti �eld in vauum with harge density �



(t; ~x ) � �



(x) 2

IR

and urrent

density

~

j



(t; ~x ) �

~

j



(x) 2

IR

3

the Maxwell equations read:

~

5

�

~

B(x) = 0 ;

~

5

�

~

E(x) = �

�

�t

~

B(x) ;

~

5

�

~

E(x) = �



(x) ;

~

5

�

~

B(x) =

�

�t

~

E(x) +

~

j



(x) ;

where

~

E(t; ~x ) �

~

E(x) 2

IR

3

and

~

B(t; ~x ) �

~

B(x) 2

IR

3

are the eletri and magneti �elds.

Next we introdue the eletromagneti 4-vetor potential

A

�

(x) �

�

�(x) ;

~

A(x)

�

;

suh that

~

E(x) = �

~

5

�(x) �

�

�t

~

A(x) ;

~

B(x) =

~

5

�

~

A(x) :

In this way the two Maxwell equations on the �rst line are satis�ed automatially, sine

~

5

�

�

~

5

�

~

A(x)

�

= 0 and

~

5

�

�

~

5

�(x)

�

=

~

0 . The other two Maxwell equations an be

rewritten as

�



(x) = �

�

�t

�

~

5

�

~

A(x)

�

�

~

5

�

�

~

5

�(x)

�

=

�

�

2

�t

2

�

~

5

2

�

�(x) �

�

�t

�

~

5

�

~

A(x) +

�

�t

�(x)

�

and

~

j



(x) =

~

5

�

�

~

5

�

~

A(x)

�

+

�

2

�t

2

~

A(x) +

�

�t

~

5

�(x)

=

�

�

2

�t

2

�

~

5

2

�

~

A(x) +

~

5

�

~

5

�

~

A(x) +

�

�t

�(x)

�

;
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using the identity

~

5

�

�

~

5

�

~

A(x)

�

general

======

~

5

�

~

5

�

~

A(x)

�

�

~

5

2

~

A(x) :

De�ning the eletromagneti 4-urrent density

j

�



(x) �

�

�



(x) ;

~

j



(x)

�

Maxwell's equations an be ast in the form of the ovariant eletromagneti wave equation

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

= j

�



(x) :

Gauge freedom: the vetor potential A

�

(x) is not �xed ompletely by its relation to

the eletri and magneti �elds. For an arbitrary, suÆiently di�erentiable salar funtion

�(x) that vanishes suÆiently quikly as j~x j ! 1, the transformed vetor potential

A

�

(x) ! A

0 �

(x) = A

�

(x) + �

�

�(x)

gives rise to the same eletri and magneti �elds and therefore desribes the same physis.

13a The assoiated freedom to hoose the vetor potential is alled the gauge freedom.

Sine the urrent density j

�



(x) is a physial observable, the �eld-derivative ombination

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

should be gauge invariant, i.e. independent of the hoie of gauge.

Proof: introdue the eletromagneti �eld tensor (see Ex. 2)

F

��

(x) = �

�

A

�

(x)� �

�

A

�

(x) = �F

��

(x) =

0

B

B

B

B

B

�

0 �E

1

(x) �E

2

(x) �E

3

(x)

E

1

(x) 0 �B

3

(x) B

2

(x)

E

2

(x) B

3

(x) 0 �B

1

(x)

E

3

(x) �B

2

(x) B

1

(x) 0

1

C

C

C

C

C

A

;

then the eletromagneti wave equation an be rewritten as

j

�



(x) = �

�

�

�

A

�

(x)� �

�

�

�

A

�

(x) = �

�

�

�

�

A

�

(x)� �

�

A

�

(x)

�

= �

�

F

��

(x) :

Sine the eletromagneti �eld tensor is gauge invariant, i.e.

F

0��

(x) = �

�

A

0 �

(x)��

�

A

0 �

(x) = �

�

�

A

�

(x)+�

�

�(x)

�

��

�

�

A

�

(x)+�

�

�(x)

�

= F

��

(x) ;

the same holds for �

�

F

��

(x) = j

�



(x).

Loal harge onservation: from the eletromagneti wave equation one an derive that

�

�

j

�



(x) = �

�

�

�

F

��

(x) = 0 ;

sine F

��

(x) = �F

��

(x). Hene,

13a the urrent density j

�



(x) is a onserved urrent and the eletri harge

R

V

d~x j

0



(x) =

R

V

d~x �



(x) is onserved loally.
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Eletromagneti Lagrangian: the Lagrangian density belonging to the eletromagneti

wave equation is given by

L

e.m.

(x) = �

1

4

F

��

(x)F

��

(x) � j

�



(x)A

�

(x) :

Proof: �rst we onsider

�L

e.m.

�(�

�

A

�

)

= �

1

4

�

�

�(�

�

A

�

)

F

��

�

F

��

�

1

4

F

��

�

�

�(�

�

A

�

)

F

��

�

Ex.2

==== �

1

4

(g

�

�

g

�

�

� g

�

�

g

�

�

)F

��

�

1

4

F

��

(g

��

g

��

� g

��

g

��

) = �F

��

:

As a result, the Euler-Lagrange equation for the �eld A

�

(x) indeed reads

� �

�

F

��

(x) + j

�



(x) = 0 ) �

�

F

��

(x) = j

�



(x) :

5.2 QED and the gauge priniple

For Dira fermions (matter partiles) with harge q the eletromagneti urrent density

is given by j

�

 ;Dira

(x) = q

�

 (x)

�

 (x), sine

� this urrent is indeed onserved (f. page 96);

� after normal ordering the 0

th

omponent an indeed be identi�ed with the total

harge density (f. page 104):

Z

d~x N

�

^

j

0

 ;Dira

(x)

�

= q

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s y

~p

^

b

s

~p

) ;

ounting partiles with harge q and antipartiles with harge �q .

Minimal substitution and QED: the Lagrangian density of Dira fermions with harge

q in an eletromagneti �eld is obtained by applying the

13b minimal substitution presription p

�

! p

�

�qA

�

QM

===) i�

�

! i�

�

�qA

�

to the Lagrangian density L

Dira

(x) of the free Dira theory and by subsequently adding

the kineti pure eletromagneti term L

Maxwell

(x) = �

1

4

F

��

(x)F

��

(x).

13b This results in the Lagrangian density for Quantum Eletrodynamis (QED):

L

QED

(x) =

�

 (x)(i�=�m) (x) �

1

4

F

��

(x)F

��

(x) � q

�

 (x)

�

 (x)A

�

(x) ;

ontaining the aforementioned interation term

L

int

(x) = � q

�

 (x)

�

 (x)A

�

(x) = � j

�

;Dira

(x)A

�

(x) :
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As in the ase of the Yukawa interations, also the loal eletromagneti interations be-

tween the matter partiles are mediated by fore arriers. This was to be expeted, bearing

in mind that harged objets are observed to interat while being at non-zero distane!

Sine [ ℄ = [

�

 ℄ = 3=2 and [A

�

℄ = 1, the eletri harge q 2

IR

is a dimensionless oupling

onstant. We will see later that this dimensionless oupling onstant indeed implies that

QED is a renormalizable theory.

QED from a symmetry priniple: gauge invariane and the gauge priniple.

Alternatively we ould start from the free Dira Lagrangian

L

Dira

(x) = i

�

 (x)

�

�

�

 (x) � m

�

 (x) (x) ;

whih is invariant under the global gauge transformation (abelian U(1) transformation)

 (x)!  

0

(x) = e

i�

 (x) ;

�

 (x)!

�

 

0

(x) = e

� i�

�

 (x) (� 2

IR

independent of x

�

) :

Aording to Noether's theorem this global gauge symmetry an be assoiated with a

onserved urrent and harge. In non-relativisti quantum mehanis this global gauge

invariane of a free-fermion system simply underlines the unobservability of the absolute

phase of a wave funtion: only relative phases are observable through interferene.

13

The gauge priniple: in the ontext of relativisti gauge theories, whih should

be loal, it is now postulated that this gauge invariane should also hold loally.

Consider to this end the loal gauge transformation

 (x)!  

0

(x) = e

i�(x)

 (x) ;

�

 (x)!

�

 

0

(x) = e

� i�(x)

�

 (x) (�(x) a real salar �eld) :

The requirement of loal gauge invariane

6

has profound onsequenes, sine the kineti

term transforms as

i

�

 (x)

�

�

�

 (x) ! i

�

 (x)e

� i�(x)



�

�

�

�

e

i�(x)

 (x)

�

= i

�

 (x)

�

�

�

 (x)�

�

 (x)

�

 (x)

�

�

�

�(x)

�

and therefore is not invariant under loal gauge transformations. The last term, whih

involves the ovariant vetor �eld �

�

�(x), expliitly spoils the invariane. So, we need

to replae the ordinary derivative �

�

by a gauge ovariant derivative (or short: ovariant

derivative) D

�

suh that

D

�

 (x) ! D

0

�

 

0

(x) = e

i�(x)

D

�

 (x) ;

ausing D

�

 (x) and  (x) to transform similarly under loal gauge transformations! This

an be ahieved by

D

�

� �

�

+ igA

�

(x) ; with A

�

(x) ! A

0

�

(x) = A

�

(x)�

1

g

�

�

�(x) ;

6

See the bahelor thesis of Pim van Oirshot for more details and extra motivation
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where g is a gauge oupling and A

�

(x) a gauge �eld. In view of the Lorentz transforma-

tion property of �

�

�(x), this gauge �eld should be a ovariant vetor �eld. Its transfor-

mation property resembles a gauge transformation for the eletromagneti vetor potential

with �(x) = ��(x)=g. This observed gauge-freedom redundany in the eletromagneti

desription is exploited here to reveal the more profound loal gauge invariane of QED!

Proof:

D

0

�

 

0

(x) =

�

�

�

+ ig

�

A

�

(x)�

1

g

�

�

�(x)

�

�

e

i�(x)

 (x)

= e

i�(x)

�

�

�

 (x) + i (x)�

�

�(x) + igA

�

(x) (x)� i (x)�

�

�(x)

�

= e

i�(x)

D

�

 (x) :

This means that the Lagrangian

i

�

 (x)

�

D

�

 (x) � m

�

 (x) (x) = i

�

 (x)

�

�

�

 (x) � m

�

 (x) (x) � g

�

 (x)

�

 (x)A

�

(x)

is loally gauge invariant. It ontains the gauge interation

L

int

(x) = � g

�

 (x)

�

 (x)A

�

(x) ;

whih involves a gauge �eld that is oupled to a onserved urrent. Finally we an add

the gauge-invariant kineti term L

Maxwell

(x) = �

1

4

F

��

(x)F

��

(x) for a free gauge �eld,

where the �eld tensor F

��

(x) is de�ned as

igF

��

(x) �

�

D

�

; D

�

�

=

�

�

�

+ igA

�

(x)

��

�

�

+ igA

�

(x)

�

�

�

�

�

+ igA

�

(x)

��

�

�

+ igA

�

(x)

�

= ig

�

�

�

A

�

(x)� �

�

A

�

(x)

�

:

In onlusion, for g = jej we �nd the same Lagrangian L

QED

as obtained by minimal

substitution for a partile with harge +jej. For a general harge q = Qjej one has to

modify the gauge transformation aording to e

i�(x)

! e

iQ�(x)

and the ovariant deriva-

tive aording to D

�

! �

�

+ iQjejA

�

(x) = �

�

+ iqA

�

(x). Suh a resaling leaves the

transformation property of the gauge �eld una�eted, but hanges the interation strength

from jej to q .

Massless gauge �elds: a massive gauge �eld would orrespond to an extra mass term

+

1

2

M

2

A

A

�

(x)A

�

(x) in the Lagrangian, whih is obviously not gauge invariant. A theory

that is manifestly invariant under loal gauge transformations requires the gauge bosons

desribed by A

�

(x) to be massless, i.e. M

A

= 0. So, in order to give mass to gauge bosons

an additional mehanism is required in the ontext of gauge theories.

13 Going beyond QED: motivated by the suess of desribing QED through

the gauge priniple, this postulate will later on be extended to other types of
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gauge transformations in order to desribe other fundamental interations in

nature, i.e. the strong and weak interations. The assoiated extended gauge

interations will desribe the fundamental interations between matter fermions

as being mediated by gauge bosons, just like we have just worked out for the ele-

tromagneti interations that are mediated by photons. In order to �nd the right

group struture for the extended gauge transformations, we will be guided by ex-

perimental observations of partile interations and harge onservation laws!

5.2.1 Quantization of the free eletromagneti theory

The gauge freedom of the eletromagneti vetor potential ompliates the usual

quantization proedure. The reason for this lies in the following observations.

The eletromagneti gauge freedom revisited:

� The gauge freedom for non-onstant �(x) reets the redundany in our desription

of eletromagnetism: the gauge-transformed �elds desribe the same physis and

are therefore to be identi�ed. This an be traed bak to the eletromagneti wave

equation

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

= (g

�

�

�� �

�

�

�

)A

�

(x) = j

�



(x) ;

where the di�erential operator (g

�

�

� � �

�

�

�

) is not invertible in the Green's fun-

tion sense as (g

�

�

� � �

�

�

�

)�

�

�(x) = 0 for arbitrary �(x). Given an initial �eld

on�guration A

�

(t

0

; ~x ) we annot unambiguously determine A

�

(t; ~x ), sine A

�

(x)

and A

�

(x) + �

�

�(x) are not distinguishable.

13a Hene, A

�

(x) is atually not a physial objet as it ontains redundant

information! All �elds that are linked by a gauge transformation form an

equivalene lass and are therefore to be identi�ed: the physis is uniquely

desribed by seleting a representative of eah equivalene lass. Di�erent

on�gurations of these representatives are alled di�erent gauges. By �xing

the gauge the redundany is removed and an unambiguous eletromagneti

evolution is obtained. We an hoose freely here, but some hoies will

prove more handy for ertain problems than others.

� By hoosing an appropriate �(x) it is possible to ast A

�

(x) in suh a form that

the Coulomb ondition

~

5

�

~

A

trans

(x) = A

trans

0

(x) = 0 is satis�ed. In this form we

see immediately that A

trans

�

(x) has in fat only two physial (transverse) degrees of

freedom! These are the degrees of freedom that should be quantized in the orre-

sponding quantum �eld theory . . . however, the Coulomb ondition is not Lorentz

invariant and therefore leads to Feynman rules that are rather unpleasant.
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� Lorentz invariane is manifest, resulting in simple Feynman rules, if we hoose �(x)

suh that the Lorenz ondition � � A(x) = 0 is satis�ed. In this form we do not

see straightaway that A

�

(x) has two physial degrees of freedom. One would ex-

pet three physial degrees of freedom in view of the Lorenz ondition � �A(x) = 0,

but there is still more gauge freedom left as a result of the gauge transformation

A

�

(x)! A

0

�

(x) = A

�

(x) + �

�

�

0

(x) with ��

0

(x) = 0.

Quantized free eletromagneti �eld: the quantized eletromagneti theory should

reprodue the lassial Maxwell theory in the lassial limit. Due to the orrespondene

priniple this implies that the above-given gauge-�xing onditions are to be implemented

as expetation values for physial (asymptoti) Fok states j i. As a diret onsequene

of implementing the Lorenz ondition h j� �

^

A(x)j i = 0, all relevant omponents of the

eletromagneti potential satisfy the massless KG equation �A

�

(x) = 0. In the Coulomb

gauge we an therefore quantize as in the massless salar ase:

^

A

trans

�

(x)

^

A

y

�

(x)=

^

A

�

(x)

==========

Z

d~p

(2�)

3

1

p

2E

~p

2

X

r=1

�

â

r

~p

�

r

�

(p)e

�ip�x

+ â

ry

~p

�

r�

�

(p)e

ip�x

�

�

�

�

p

0

=E

~p

= j~p j

;

in terms of the two physial transverse polarization vetors

�

1

0

(p) = �

2

0

(p) = 0 ; ~�

1

(p) � ~p = ~�

2

(p) � ~p = 0

with normalization ondition �

r

(p) � �

r

0

�

(p) = � Æ

rr

0

. The reation and annihilation opera-

tors â

ry

~p

and â

r

~p

of the

13d massless eletromagneti spin-1 energy quanta (photons = antiphotons)

satisfy the bosoni quantization onditions

�

â

r

~p

; â

r

0

y

~p

0

�

= (2�)

3

Æ

rr

0

Æ(~p� ~p

0

)

^

1 and

�

â

r

~p

; â

r

0

~p

0

�

=

�

â

r y

~p

; â

r

0

y

~p

0

�

= 0 :

If we replae the Coulomb ondition by the Lorenz ondition, the two versions of the

eletromagneti �eld are linked by the identity h j

^

A

�

(x)j i = h j

^

A

trans

�

(x)j i + �

�

�(x) ,

with ��(x) = 0. This identity reets the remaining gauge arbitrariness of the lassial

eletromagneti �eld h j

^

A

�

(x)j i in the Lorenz gauge.

Feynman propagator and polarization sum: for performing Feynman-diagram al-

ulations we need one more ingredient, the photon propagator. The amplitude for the

propagation of photons from y to x reads

h0j

^

A

trans

�

(x)

^

A

trans

�

(y)j0i =

Z

d~p d~p

0

(2�)

6

e

�ip�x+ip

0

�y

2

p

E

~p

E

~p

0

2

X

r;r

0

=1

�

r

�

(p)�

r

0

�

�

(p

0

)h0jâ

r

~p

â

r

0

y

~p

0

j0i

�

�

�

�

p

0

= j~p j ; p

0

0

= j~p

0

j

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

2

X

r=1

�

r

�

(p)�

r�

�

(p)

�

�

�

�

p

0

= j~p j

:
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This expression for the propagation amplitude is rather awkward, sine it involves the

so-alled polarization sum for external (physial) photons:

2

X

r=1

�

r

�

(p)�

r�

�

(p) = � g

��

�

p

�

p

�

(n � p)

2

+

p

�

n

�

+ n

�

p

�

n � p

;

expressed in terms of the temporal unit vetor n

�

� (1;

~

0 ). Suh a ompliated expression

is unavoidable for external photons and for the propagator in the Coulomb gauge, but we

an exploit the gauge freedom in the Lorenz gauge to remove all terms / p

�

; p

�

. In this

so-alled 't Hooft-Feynman gauge the photon propagator redues to

h0jT

�

^

A

�

(x)

^

A

�

(y)

�

j0i =

Z

d

4

p

(2�)

4

�ig

��

p

2

+ i�

e

�ip�(x�y)

= � g

��

D

F

(x� y;m

2

= 0) :

14a The propagator for internal (virtual) photons has beome extremely simple

and manifestly Lorentz ovariant in the 't Hooft-Feynman gauge!

5.3 Feynman rules for QED (§ 4.8 in the book)

In order to obtain the full set of momentum-spae Feynman rules for QED we simply have

to supplement the Feynman rules for fermions, whih were given in the ontext of the

Yukawa theory, by the following four photoni Feynman rules:

1. For eah photon propagator

q

�

�

insert

�ig

��

q

2

+ i�

.

2. For eah QED vertex

�

insert �iq

�

.

3. For eah inoming photon line

�

p

=

^

A

�

(x)j~p ; ri

0

insert �

r

�

(p)

p

Z

3

(r=1; 2).

For eah outgoing photon line

�

p

=

0

h~p; rj

^

A

�

(x) insert �

r�

�

(p)

p

Z

3

(r=1; 2).

The following remarks are in order. First of all, the polarization vetors featuring in

the last two Feynman rules are transverse (physial) ones and

p

Z

3

is the wave-funtion

renormalization fator for photons. Seondly, the sign (diretion) of the momentum in the

photon propagator does not matter, like in the salar ase. Finally, the -matrix ourring

in the QED vertex will be wedged between Dira spinors, with the Dira indies ontrated

as usual along the fermion line against the arrow.

14a Remark: sine h j

^

A

�

(x)j i = h j

^

A

trans

�

(x)j i+�

�

�(x) with ��(x) = 0,

we an always add to �

r

�

(p) a term / p

�

with p

2

= 0 without hanging the

physis outome (see § 5.5).
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5.4 Full fermion propagator (§ 7.1 in the book)

To all orders in perturbation theory the full fermion propagator in QED is given by the

Dyson series

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

�

 (0)

�

j
i �

p p

=

p

+

1PI

p p

+

1PI 1PI

p p p

+ � � � ;

where

1PI

� � i�(p=) = + + + + � � �

is the olletion of all 1-partile irreduible fermion self-energy diagrams. This Dyson series

an again be summed up as a geometri series:

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

�

 (0)

�

j
i =

p p

=

i(p= +m)

p

2

�m

2

+ i�

+

i(p= +m)

p

2

�m

2

+ i�

�

� i�(p=)

�

i(p= +m)

p

2

�m

2

+ i�

+ � � �

=

i

p=�m� �(p=)

� S(p) ;

using that �(p=) = �

S

(p

2

)m+ �

V

(p

2

) p= ommutes with p= and the mass parameter m in

the Lagrangian. The full propagator has a simple pole loated at the physial mass m

ph

,

whih is shifted away from m by the fermion self-energy:

h

p=�m� �(p=)

i

�

�

�

�

p==m

ph

= 0 ) m

ph

�m� �(p= = m

ph

) = 0 :

Close to this pole the denominator of the full propagator an be expanded aording to

p=�m� �(p=) � (p=�m

ph

)

�

1� �

0

(p= = m

ph

)

�

+ O

�

[p=�m

ph

℄

2

�

for p= � m

ph

;

where �

0

(p=) stands for the derivative of the fermion self-energy with respet to p=. Just like

in the K�all�en{Lehmann spetral representation, the full propagator has a single-partile

pole of the form iZ

2

(p=+m

ph

)=(p

2

�m

2

ph

+ i�) with Z

2

= 1=

�

1��

0

(p= = m

ph

)

�

(see p.114).

The fermion self-energy: in order to �nd out whether the fermion self-energy is more

diÆult to alulate we onsider the 1-loop ontribution in QED. Indiating the photon
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mass by � we then obtain

p p

`

1

p� `

1

= � i�

2

(p=) = (�iq)

2

Z

d

4

`

1

(2�)

4



�

i(=̀

1

+m)

`

2

1

�m

2

+ i�



�

�ig

��

(p�`

1

)

2

� �

2

+ i�

�

�

�

�

�#0

= � q

2

Z

d

4

`

1

(2�)

4

4m� 2=̀

1

�

`

2

1

�m

2

+ i�

��

(p�`

1

)

2

� �

2

+ i�

�

p. 69 , `

1

= `+�

2

p

============== � q

2

Z

1

0

d�

2

Z

d

4

`

(2�)

4

4m� 2=̀� 2�

2

p=

(`

2

��+ i�)

2

= � q

2

Z

1

0

d�

2

(4m� 2�

2

p=)

Z

d

4

`

(2�)

4

1

(`

2

��+ i�)

2

;

with

� = �

2

�

2

+ (1� �

2

)m

2

� �

2

(1� �

2

)p

2

just like in the salar ase. In the seond line of this expression we have used that



�

(=̀

1

+m)

�

= (m� =̀

1

)

�



�

+ 2=̀

1

= 4m� 2=̀

1

:

The threshold for the reation of a fermion{photon 2-partile state is here situated at

p

2

= (m + �)

2

, whih approahes m

2

in the limit �#0 for massless photons. The rest of

the alulation, inluding the regularization of the UV divergene, goes like in the salar

ase worked out in § 2.9.2. Note that the fermion mass reeives a UV-divergent shift

�

2

(p= = m

ph

) / m

ph

log(�

2

=m

2

ph

).

14b Fermion masses are naturally proteted against high-sale quantum orre-

tions: if there would be no oupling between left- and right-handed Dira �elds

in the Dira Lagrangian (i.e. m = 0), then no suh oupling an be indued by

the perturbative vetor-urrent QED orretions! Fermion masses are proteted

by the invariane under hiral transformations of the massless theory.

5.5 The Ward {Takahashi identity in QED (§ 7.4 in the book)

14 Question: how does the gauge invariane of QED manifest itself in Green's

funtions and sattering amplitudes?

In order to answer this question, we onsider a QED diagram to whih we want to attah

an additional photon with momentum k . Upon ontration of this photon line with the

orresponding momentum k a speial identity an be derived that is related to the U(1)

gauge symmetry.
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Step 1: how an the photon be attahed to an arbitrary diagram involving (anti)fermions

and photons?

� The photon annot be attahed to a photon, sine it has harge 0.

� The photon an be attahed to a fermion line that onnets two external points or

to a fermion loop.

Step 2: onsider an arbitrary fermion line with j photons attahed to it and all photon

momenta de�ned to be inoming. Graphially this an be represented by

`

j

k

j

�

j

`

j�1

k

j�1

�

j�1

`

j�2

`

2

k

2

�

2

`

1

k

1

�

1

`

0

where `

i

= `

0

+

i

P

n=1

k

n

. This line an either ow between external points or lose into a

loop (whih means that l

0

= l

j

) and the photons an either be on-shell or virtual. There

will be j +1 plaes to insert the extra photon with momentum k , for example between

photons i and i+1:

k

�

�

`

i

+k

k

�

`

i

�

i

`

i�1

= � � �

h

i

=̀

i

+ k=�m

�

�iqk=

�

i

=̀

i

�m

�

�iq

�

i

�

i

=̀

i�1

�m

i

� � �

= � � �

h

q

�

i

=̀

i

�m

�

i

=̀

i

+ k=�m

�

�

�iq

�

i

�

i

=̀

i�1

�m

i

� � � ;

where we have used that k= = =̀

i

+ k= �m � (=̀

i

�m) in the last step. Insertion between

photons i�1 and i gives in a similar way:

� � �

h

i

=̀

i

+ k=�m

�

�iq

�

i

�

q

�

i

=̀

i�1

�m

�

i

=̀

i�1

+ k=�m

� i

� � � :

Note that the seond term of the i

th

insertion anels the �rst term of the (i�1)

th

insertion.

Finally we have to sum over all possible insertions along the fermion line. This auses all
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terms to anel pairwise exept for two unpaired terms at the very end of the hain:

j

X

i=0

k

�

�

`

j

+k `

i

+k

k

�

`

i

`

0

= q �

`

j

k

j

`

j�1

k

j�1

k

2

`

1

k

1

`

0

� q �

`

j

+k

k

j

`

j�1

+k

k

j�1

k

2

`

1

+k

k

1

`

0

+k

Consequene 1: if the fermion line is part of an on-shell matrix element and onnets two

of the external states, then the orresponding amputation proedure removes both terms

on the right-hand-side. This is aused by the fat that one of the endpoints gives rise to a

shifted 1-partile pole, i.e. 1=(`

2

j

�m

2

) instead of 1=[(`

j

+k)

2

�m

2

℄ or 1=[(`

0

+k)

2

�m

2

℄

instead of 1=(`

2

0

�m

2

).

Consequene 2: if the fermion line loses in itself to form a loop (i.e. `

0

= `

j

+ k), then

the two terms on the right-hand-side give rise to the integrals

� q

j+1

Z

d

4

`

0

(2�)
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�

Tr
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=̀

0
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�
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�
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=̀

1
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�

1

�

� Tr

�

1

=̀
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�

j

1

=̀
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+ k=�m



�

j�1
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1

=̀

1

+ k=�m



�

1

�

�

= 0 ;

if we are allowed to hange the integration variable from `

0

to `

0

+ k in the �rst term!

Consequene 3: the Ward {Takahashi identity for Green's funtions reads

k

�

�

q

1

q
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p

1

p
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= q

n

X
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q

1
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p

n
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n
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q

1
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n
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p

n

p
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where the blobs represent all possible diagrams and photon insertions. In formula language

this an be written ompatly as

k

�

G

�

(k; p

1

; � � � ; p

n

; q

1

; � � � ; q

n

) = q

X

i

�

G(p

1

; � � � ; p

n

; q

1

; � � � ; q

i�1

; q

i

� k; q

i+1

; � � � ; q

n

)

� G(p

1

; � � � ; p

i�1

; p

i

+ k; p

i+1

; � � � ; p

n

; q

1

; � � � ; q

n

)

�

:

14 This is the diagrammati identity that imposes the U(1) gauge symmetry

and assoiated eletri harge onservation on quantum mehanial amplitudes!

Example of a Ward{Takahashi identity:

k

�

�

�

k

p

p+k

amp

= k

�

�

�

k

p

p+k

= S(p+ k)

�

�iq k

�

�

�

(p+ k; p)

�

S(p)

Ward{Takahashi

=========== q S(p)� q S(p+ k)

) �ik

�

�

�

(p+ k; p) = S

�1

(p+ k)� S

�1

(p) = �i

�

k=+ �(p=)� �(p= + k=)

�

:

Here S(p) is the full fermion propagator, �(p=) the orresponding 1-partile irreduible

self-energy and �iq �

�

(p + k; p) the sum of all amputated 3-point diagrams ontributing

to the QED vertex. Hene, �

�

(p + k; p) is given by 

�

at lowest order in perturbation

theory, whih is indeed in agreement with the Ward{Takahashi identity.

5.6 The photon propagator (§ 7.5 in the book)

The Ward {Takahashi identity has important impliations for the properties of

the photon propagator.

Transversality: the 1-partile irreduible photon self-energy

i�

��

(k) �

�

k

1PI

�

k

satis�es the Ward {Takahashi identity (transversality ondition)

k

�

�

��

(k) = 0 :

In view of Lorentz ovariane �

��

(k) an be deomposed into only two possible terms, a

term / g

��

and a term / k

�

k

�

. Therefore the Ward{Takahashi identity translates into

the ondition

�

��

(k) = (k

2

g

��

� k

�

k

�

)�(k

2

) ;
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with �(k

2

) regular at k

2

= 0 sine a pole at k

2

= 0 would imply the existene of a single-

massless-partile intermediate state. As a result, the full photon propagator is of the form

�
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= +
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+
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�

�
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�
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:

Mass of the photon: onsider an arbitrary internal photon line

�

k

�

k

q = Q jej q

0

= Q

0

jej

on-shell on-shell

The k

�

and k

�

terms in the full propagator yield a vanishing ontribution due to the

Ward {Takahashi identity for on-shell amplitudes. Hene,

�

k

�

k

e�etively

����������!

�ig

��

(k

2

+ i�)

�

1� �(k

2

)

�

;

whih has a pole at k

2

= 0 with residue Z

3

�

�

1 � �(0)

�

�1

. As a result of the Ward {

Takahashi identity, whih in turn is a onsequene of the gauge symmetry, m

photon

= 0 to

all orders in perturbation theory:

14b + 14 the loal U(1) gauge symmetry protets the photon from beoming

massive through quantum orretions.

Observable harge: onsider the same amplitude as before for

� low jk

2

j ) e ! e

p

Z

3

, whih is the �nite physially observable harge obtained

from the singular quantities e and Z

3

;

� high jk

2

j )
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;
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where the fator Z

3

in front of

�

�(k

2

)��(0)

�

turns e

2

inside the photon self-energy

into the �nite ombination Z

3

e

2

.

14d The eletromagneti �ne struture onstant beomes a running oupling,

i.e. a oupling that hanges with invariant mass. In fat it beomes larger

with inreasing invariant mass, ausing the exhanged (virtual) photon to

propagate more easily through spaetime.

The physial piture behind this is that virtual fermion-antifermion pairs that are

reated from the vauum partially sreen the harges of the interating partiles

(vauum polarization), resulting in a lower e�etive harge. For larger jk

2

j more of

the polarization loud is penetrated and hene more of the atual harge an be felt.

All ouplings in the Standard Model of ele-

troweak interations are in fat running ou-

plings. As an be seen in the plot, the be-

haviour of the hyperharge oupling, indiated

by U(1), resembles the one for QED. How-

ever, due to bosoni loop e�ets the ouplings

of the weak interations, indiated by SU(2),

and strong interations, indiated by SU(3),

atually beome weaker for inreasing invari-

ant mass.

UV divergenes: at 1-loop order the photon self-energy in QED is given by
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where � = m

2

� �

2

(1� �

2

)k

2

. The resulting integral is learly divergent.

Transversality lost: if we were to regularize (quantify) the UV divergene in the usual

way by means of a uto� �, then �

��

2

(k) would ontain a leading singularity that is pro-

portional to g

��

R

�

2

0

d`

2

E

= �

2

g

��

. This has disastrous onsequenes, sine it violates the

transversality requirement and gives the photon an in�nite mass. After all, a �

2

g

��

term

in �

��

(k) gives rise to a �

2

=k

2

ontribution to �(k

2

) and therefore shifts the pole of

k

2

�

1� �(k

2

)

�

away from k

2

= 0.

Question: what has happened here?

In fat the fermion-loop Ward {Takahashi identity on p. 129 has been invalidated, sine we

are atually not allowed to shift the integration variable without onsequenes when using

the uto� method.

14e We need another regularization sheme that preserves the fundamental U(1)

symmetry, otherwise the results annot be trusted. Dimensional regularization

('t Hooft {Veltman, 1972): ompute Feynman diagrams as analyti funtions

of the dimensionality of spaetime. Use to this end a d-dimensional Minkowski

spae onsisting of one time dimension and d�1 spatial dimensions.

� For suÆiently small d any loop integral will onverge in the UV domain

and the fermion-loop Ward {Takahashi identity is retained for all d.

� The �nal expressions for observables are then obtained as d! 4 limits.

Examples of integrals alulated with dimensional regularization (DREG):
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Here we have used the integral identity
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in terms of the gamma funtion �(z), whih satis�es

�(1=2) =

p

� ; �(1) = 1 and �(z + 1) = z�(z) :
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This time �(2�d=2) represents the UV singularities, sine the gamma funtion �(z) has

poles at z = 0;�1;�2; � � � and therefore �(2�d=2) has poles at d = 4; 6; 8; � � � :

�(2�d=2)

d�4
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+O(d� 4) with 

E

= 0:5772 = Euler's onstant :

In a similar way one �nds
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:

Transversality restored: returning to the integrand on page 132, we see that the non-

transverse term indeed vanishes:
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E
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�

integrals

����! 0 ;

as required by gauge symmetry. So, dimensional regularization is a viable way of dealing

with UV divergenes in the ontext of gauge symmetries. This regularization method was

used suessfully by 't Hooft and Veltman to prove the renormalizability of the Standard

Model of eletroweak interations, for whih they were awarded the Nobel Prize in 1999.
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