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1 Occupation-number representation

In this chapter the quantum mechanics of identical-particle systems will be

worked out in detail. The corresponding space of quantum states will be con-

structed in the occupation-number representation by employing creation and

annihilation operators. This will involve the introduction of the notion of quasi

particles and the concept of second quantization.

Similar material can be found in Schwabl (Ch. 1,2 and 3) and Merzbacher

(Ch. 21,22 and the oscillator part of Ch. 14).

1.1 Summary on identical particles in quantum mechanics

Particles are called identical if they cannot be distinguished by means of specific intrinsic

properties (such as spin, charge, mass, · · · ).

This indistinguishability has important quantum mechanical implications in situations

where the wave functions of the identical particles overlap, causing the particles to be ob-

servable simultaneously in the same spatial region. Examples are the interaction region of

a scattering experiment or a gas container. If the particles are effectively localized, such as

metal ions in a solid piece of metal, then the identity of the particles will not play a role.

In those situations the particles are effectively distinguishable by means of their spatial

coordinates and their wave functions have a negligible overlap.

For systems consisting of identical particles two additional constraints have to be imposed

while setting up quantum mechanics (QM).

• Exchanging the particles of a system of identical particles should have no observ-

able effect, otherwise the particles would actually be distinguishable. This gives

rise to the concept of permutation degeneracy, i.e. for such a system the expecta-

tion value for an arbitrary many-particle observable should not change upon inter-

changing the identical particles in the state function. As a consequence, quantum

mechanical observables for identical-particle systems should be symmetric functions

of the separate 1-particle observables.

• Due to the permutation degeneracy, it seems to be impossible to fix the quantum

state of an identical-particle system by means of a complete measurement. Nature

has bypassed this quantum mechanical obstruction through the

symmetrization postulate: identical-particle systems can be described by means

of either totally symmetric state functions if the particles are bosons or totally

antisymmetric state functions if the particles are fermions. In the non-relativistic

QM it is an empirical fact that no mixed symmetry occurs in nature.
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In this chapter the symmetrization postulate will be reformulated in an alternative

way, giving rise to the conclusion that only totally symmetric/antisymmetric state

functions will fit the bill.

Totally symmetric state functions can be represented in the so-called q-representation by

ψS(q1, · · · , qN , t), where q1 , · · · , qN are the “coordinates” of the N separate identical par-

ticles. These coordinates are the eigenvalues belonging to a complete set of commuting

1-particle observables q̂ . Obviously there are many ways to choose these coordinates. A

popular choice is for instance qj = (spatial coordinate ~rj , magnetic spin quantum number

msj ≡ σj , · · · ), where the dots represent other possible internal (intrinsic) degrees of free-

dom of particle j . For a symmetric state function we have

∀̂
P

P̂ ψS(q1, · · · , qN , t) = ψS(qP (1)
, · · · , q

P (N)
, t) = ψS(q1, · · · , qN , t) , (1)

with P̂ a permutation operator that permutes the sets of coordinates of the identical

particles according to

q1 → q
P (1)

, q2 → q
P (2)

, · · · , qN → q
P (N)

. (2)

Particles whose quantum states are described by totally symmetric state functions are

called bosons. They have the following properties:

- bosons have integer spin (see Ch. 4 and 5);

- bosons obey so-called Bose–Einstein statistics (see Ch. 2);

- bosons prefer to be in the same quantum state.

Totally antisymmetric state functions can be represented in the q-representation by

ψA(q1, · · · , qN , t), with

∀
P̂

P̂ ψA(q1, · · · , qN , t) = ψA(qP (1)
, · · · , q

P (N)
, t) =







+ ψA(q1, · · · , qN , t) even P̂

− ψA(q1, · · · , qN , t) odd P̂
. (3)

A permutation P̂ is called even/odd if it consists of an even/odd number of two-particle

interchanges. Particles whose quantum states are described by totally antisymmetric state

functions are called fermions. They have the following properties:

- fermions have half integer spin (see Ch. 5);

- fermions obey so-called Fermi–Dirac statistics (see Ch. 2);

- fermions are not allowed to be in the same quantum state.
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If the above (anti)symmetrization procedure results in spatial symmetrization, the particles

have an increased probability to be in each other’s vicinity. Note that this can apply to

identical fermions if they happen to be in an antisymmtric spin state. On the other hand,

spatial antisymmetrization gives rise to a decreased probability for the particles to be in

each other’s vicinity. Note that this can apply to identical spin-1 bosons if they happen to

be in an antisymmtric spin state.

Isolated non-interacting many-particle systems: many-particle systems with negi-

gible interactions among the particles are called non-interacting many-particle systems.

The properties of such systems are determined by the type(s) of particles involved and the

possible influence of external potentials on the system (e.g. caused by a magnetic field).

We speak of an ideal gas if the number of non-interacting particles is very large and if we

place the system in a macroscopic finite enclosure.

Isolated non-interacting many-particle systems (such as free-particle systems,

ideal gasses, . . . ) play a central role in this lecture course, both for determining

the physical properties of identical-boson/fermion systems and for setting up

relativistic QM.

Since we are dealing here with isolated systems, the total energy is conserved and the state

function can be expressed in terms of stationary states

ψE(q1, · · · , qN , t) = exp(−iEt/~)ψE(q1, · · · , qN) ,

with Ĥ ψE(q1, · · · , qN) = E ψE(q1, · · · , qN) . (4)

The Hamilton operator describing a non-interacting many-particle system comprises of

pure 1-particle Hamilton operators, i.e. Hamilton operators that depend exclusively on

observables belonging to individual single particles. Denoting the 1-particle Hamilton

operator of particle j by Ĥj , the N -particle Hamilton operator reads

Ĥ =
N∑

j=1

Ĥj , with
[
Ĥj , Ĥk

]
= 0 for all j , k = 1 , · · · , N . (5)

This implies that the Hamilton operators of the individual particles are compatible observ-

ables, as expected for non-interacting particles. Suppose now that the 1-particle energy-

eigenvalue equation

Ĥj ψλj
(qj) = Eλj

ψλj
(qj) (6)

gives rise to an orthonormal set {ψλj
(qj)} of energy eigenfunctions belonging to the energy

eigenvalues Eλj
, which are labeled by a complete set of quantum numbers. Examples of

such complete sets of quantum numbers are for instance λj = nj for a linear harmonic
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oscillator or λj = (nj , ℓj , mℓj , msj ) for a 1-electron atom. For the orthonormal set of

energy eigenstates of the complete non-interacting N -particle system we can identify three

scenarios.

A) The particles are distinguishable. The orthonormal set of N -particle energy eigen-

states comprises of states of the form

ψE(q1, · · · , qN) = ψλ1(q1)ψλ2(q2) · · · ψλN
(qN) , with E =

N∑

j=1

Eλj
. (7)

Such so-called product functions describe an uncorrelated system for which the prop-

erties of a specific particle can be measured without being influenced by the other

particles.

The complete set of all product functions spans the space of all possible

N-particle states involving distinguishable particles.

B) The particles are indistinguishable bosons. The orthonormal set of N -particle en-

ergy eigenstates comprises of totally symmetric states of the form

ψS(q1, · · · , qN) =
1

N
S

∑

diff.perm.

ψλ1(qP (1)
)ψλ2(qP (2)

) · · · ψλN
(q

P (N)
) ,

with N
S

=
√

number of different permutations of λ1, · · · , λN . (8)

The possible energy eigenvalues are the same as in equation (7).

The space of bosonic N-particle states is spanned by a reduced set of linear

combinations of product functions. As expected, this describes a correlated

system for which the measurement of the properties of a specific particle is

influenced by the other particles.

C) The particles are indistinguishable fermions. The orthonormal set of N -particle en-

ergy eigenstates comprises of totally antisymmetric states of the form

ψA(q1, · · · , qN) =
1√
N !

∑

perm.

(−1)P ψλ1(qP (1)
)ψλ2(qP (2)

) · · · ψλN
(q

P (N)
)

=
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψλ1(q1) ψλ2(q1) · · · ψλN
(q1)

ψλ1(q2) ψλ2(q2) · · · ψλN
(q2)

...
...

. . .
...

ψλ1(qN) ψλ2(qN) · · · ψλN
(qN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (9)

where the determinant is known as the Slater determinant. The possible energy

eigenvalues are again the same as in equation (7), bearing in mind that λ1, · · · , λN

4



have to be all different. If two complete sets of quantum numbers λj and λk coin-

cide, then two of the columns in the Slater determinant are identical and the totally

antisymmetric eigenfunction ψA vanishes. This is known as the

Pauli exclusion principle for identical fermions: no two identical fermions can be in

the same fully specified 1-particle quantum state.

Also the space of fermionic N-particle states is spanned by a reduced set

of linear combinations of product functions. This too describes a correlated

system for which the measurement of the properties of a specific particle is

influenced by the other particles.

1.2 Occupation-number representation

Our aim: we want to construct the space of quantum states (Fock space) for a

many-particle system consisting of an arbitrary number of unspecified identical

particles. This Fock space makes no statements about the physical scenario that

the considered particles are in, such as being subject to interactions, external

influences, etc.. It simply is the complex vector space (Hilbert space, to be more

precise) that includes all possible many-particle states, on which the quantum

mechanical many-particle theory should be formulated. The actual construction

of Fock space involves finding a complete set of basis states for the decomposition

of arbitrary many-particle state functions. The properties of these basis states

will fix the properties of the Fock space.

The general rules for the construction of Fock space are:

• states should not change when interchanging particles;

• in order to guarantee the superposition principle, Fock space should not change when

changing the representation of the basis states.

1.2.1 Construction of Fock space

Consider identical particles of an unspecified type and assume q̂ to be a corresponding

complete set of commuting 1-particle observables. Take the fully specified eigenvalues of

these observables to be exclusively discrete: qj labeled by j = 1 , 2 , · · · . The correspond-

ing 1-particle basis of normalized eigenstates of q̂ is indicated by {|qj〉, j = 1 , 2 , · · ·} .
Subsequently we span the space of many-particle states by means of (special) linear com-

binations of product functions constructed from these 1-particle basis states, in analogy

to the 1-particle energy eigenfunctions that were used in § 1.1 to span the space of non-

interacting many-particle states. Since we are dealing with identical particles, a legitimate
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many-particle state can make no statement about the identity of a particle in a specific

1-particle eigenstate. Such a many-particle state can at best make statements about the

number of particles nj that reside in a given fully specified 1-particle eigenstate belong-

ing to the eigenvalue qj . These numbers are called occupation numbers and can take the

values 0 , 1 , · · · (if allowed).

Postulate (replacing the symmetrization postulate): the collective set of hermitian

number operators n̂1 , n̂2 , · · · , which count the number of identical particles in each of the

1-particle quantum states |q1〉 , |q2〉 , · · · , form a complete set of commuting many-particle

observables. The employed complete set of 1-particle observables q̂ can be chosen freely.

The hidden postulate aspect is that the state space for interacting particles can be

constructed from non-interacting building blocks that are based on 1-particle ob-

servables. Since the complete set of 1-particle observables can be chosen freely,

the superposition principle is automatically incorporated without any restric-

tions. This will guarantee that no mixed symmetry will occur in Fock space.

Hence, the corresponding set of normalized eigenstates |n1, n2, · · ·〉 will span Fock space

completely:

0-particle state : |Ψ(0)〉 ≡ |0, 0, · · ·〉 ≡ vacuum state ,

1-particle states : |Ψ(1)
j 〉 ≡ |0, · · · , 0, nj=1, 0, · · ·〉 ≡ |qj〉 ,

. . .

(10)

with

n̂j | · · · , nj, · · ·〉 = nj | · · · , nj , · · ·〉 , (11)

where · · · indicates the other occupation numbers. The representation of states corre-

sponding to this type of basis is called the occupation-number representation.

We will build up Fock space from the vacuum by adding particles to the basis states step

by step. To this end we introduce the creation operator â†j , which adds a particle with

quantum number qj to a basis state | · · · , nj , · · ·〉 according to

â†j | · · · , nj , · · ·〉 =
√
nj+1 exp

(
iαj(· · · , nj, · · · )

)
| · · · , nj+1, · · ·〉 . (12)

In principle the phase factor exp
(
iαj(· · · , nj, · · · )

)
could depend on the chosen basis state

| · · · , nj , · · ·〉 as well as the label j . From the orthonormality of the many-particle basis it
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follows automatically that

〈· · · , nj, · · · | â†j | · · · , n′
j, · · ·〉

(12)
====

√

n′
j+1 exp

(
iαj(· · · , n′

j, · · · )
)
δnj ,n′

j+1

definition
==== 〈· · · , n′

j , · · · | âj | · · · , nj, · · ·〉∗ ,

such that

âj | · · · , nj, · · ·〉 =
√
nj exp

(
−iαj(· · · , nj−1, · · · )

)
| · · · , nj−1, · · ·〉 (13)

holds for the annihilation operator âj . This definition of the creation and annihilation

operators is consistent with the notion of the vacuum as a state with no particles, since

âj |Ψ(0)〉 (10),(13)
==== 0 ⇒ 〈Ψ(0)| â†j = 0 . (14)

Note that â†j 6= âj , which implies that the creation and annihilation operators themselves

are not observables. At this point we can fix the first part of the phase convention of

the many-particle basis by specifying the action of â†j and âj on the basis states |Ψ(0)〉
respectively |Ψ(1)〉 :

â†j |Ψ(0)〉 ≡ |Ψ(1)
j 〉 , âj |Ψ(1)

k 〉 ≡ δjk |Ψ(0)〉 ⇒ exp
(
iαj(0, 0, · · · )

)
= 1 . (15)

For arbitrary basis states we then have

[
n̂j , â

†
k 6=j

]
| · · · , nj, · · · , nk, · · ·〉

(11),(12)
====

(
nj − nj

)
â†k 6=j | · · · , nj , · · · , nk, · · ·〉 = 0 ,

[
n̂j , â

†
j

]
| · · · , nj , · · ·〉

(11),(12)
====

(
[nj+1]− nj

)
â†j | · · · , nj , · · ·〉 = â†j | · · · , nj , · · ·〉 ,

resulting in the commutator relations

[
n̂j , â

†
k

]
= δjk â

†
k

herm. conj.
======⇒

[
n̂j, âk

]
= − δjk âk . (16)

The above-defined creation and annihilation operators can be linked directly to the associ-

ated number operators. To this end we consider the following matrix elements for arbitrary

basis states:

〈· · · , nj , · · · | â†j âj | · · · , n′
j , · · ·〉

(13)
==== nj δnj ,n′

j
.

This matrix is duly diagonal and has the correct occupation numbers as eigenvalues, i.e.

n̂j = â†j âj . (17)
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Switching to another discrete 1-particle representation.

Next we switch from the 1-particle basis {|qj〉, j = 1 , 2 , · · ·} belonging to the complete

set of observables q̂ to a 1-particle basis {|pr〉, r = 1 , 2 , · · ·} belonging to the alternative

complete set of observables p̂. From the completeness relations it follows that

|qj〉 =
∑

r

|pr〉〈pr|qj〉 and |pr〉 =
∑

j

|qj〉〈qj|pr〉 , (18)

where the transformation matrix (crj) ≡ (〈pr|qj〉) satisfies the unitarity conditions

∑

r

〈qk|pr〉〈pr|qj〉 = 〈qk|qj〉 = δjk and
∑

j

〈pr|qj〉〈qj |pv〉 = 〈pr|pv〉 = δrv . (19)

Fock space can be set up equally well in terms of these 1-particle eigenstates |pr〉 and

corresponding creation and annihilation operators b̂†r and b̂r . If we take the two vacuum

states in both representations to be identical, the following relations should hold for the

old 1-particle basis states |Ψ(0)〉 , |Ψ(1)
j 〉 and the new ones |Φ(0)〉 , |Φ(1)

r 〉 :

vacuum state : |Φ(0)〉 ≡ |0, 0, · · ·〉 = |Ψ(0)〉 ,

1-particle states : â†j |Ψ(0)〉 = |Ψ(1)
j 〉 = |qj〉

(18)
====

∑

r

|pr〉〈pr|qj〉 (20)

=
∑

r

〈pr|qj〉|Φ(1)
r 〉 =

∑

r

〈pr|qj〉 b̂†r |Φ(0)〉 =
∑

r

b̂†r 〈pr|qj〉|Ψ(0)〉 .

Without loss of generality, the (1-particle) relation among the two sets of creation and

annihilation operators can be extended to the entire Fock space:

â†j =
∑

r

b̂†r 〈pr|qj〉
herm. conj.
======⇒ âj =

∑

r

b̂r 〈qj|pr〉 ,

b̂†r =
∑

j

â†j 〈qj |pr〉
herm. conj.
======⇒ b̂r =

∑

j

âj 〈pr|qj〉 . (21)

Just as in ordinary 1-particle quantum mechanics, the creation of a particle with quantum

number qj is equivalent to a linear superposition of independently created particles with

all possible quantum numbers pr , each with their own amplitude 〈pr|qj〉 .

An important cross check of the procedure so far is provided by the total number operator

N̂ =
∑

j

n̂j . (22)

This operator counts the total number of particles of a given identical-particle system,

which should be invariant under an arbitrary basis transformation. Indeed we find

N̂
(17)

====
∑

j

â†j âj
(21)

====
∑

j,r,v

b̂†r b̂v 〈pr|qj〉〈qj|pv〉
(19)

====
∑

r,v

b̂†r b̂v δrv =
∑

r

b̂†r b̂r .
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Construction of Fock space: part one.

For an arbitrary many-particle state |Ψ〉 it should hold that â†j â
†
k |Ψ〉 and â†k â

†
j |Ψ〉 fun-

damentally describe the same state. This implies a relation of the type
(

â†j â
†
k − exp

(
iβ(Ψ, j, k)

)
â†k â

†
j

)

|Ψ〉 = 0 ,

where the phase factor exp
(
iβ(Ψ, j, k)

)
can depend on the many-particle state |Ψ〉 as well

as the labels j and k .

Next we invoke the superposition principle to prove that exp
(
iβ(Ψ, j, k)

)
has to be in-

dependent of the many-particle state |Ψ〉 . Consider to this end two different arbitrary

many-particle basis states |Ψ1〉 and |Ψ2〉 in the q-representation. The superposition

principle then states that also |Ψ〉 = c1 |Ψ1〉 + c2 |Ψ2〉 with c1,2 ∈ C should describe a

legitimate many-particle state. From this it follows that

c1 exp
(
iβ(Ψ, j, k)

)
â†k â

†
j |Ψ1〉 + c2 exp

(
iβ(Ψ, j, k)

)
â†k â

†
j |Ψ2〉

= exp
(
iβ(Ψ, j, k)

)
â†k â

†
j |Ψ〉 = â†j â

†
k |Ψ〉 = â†j â

†
k (c1 |Ψ1〉+ c2 |Ψ2〉)

= c1 exp
(
iβ(Ψ1, j, k)

)
â†k â

†
j |Ψ1〉 + c2 exp

(
iβ(Ψ2, j, k)

)
â†k â

†
j |Ψ2〉.

Here â†k â
†
j |Ψ1〉 and â†k â

†
j |Ψ2〉 are again two different basis states. Therefore

∀
Ψ1,Ψ2

exp
(
iβ(Ψ1, j, k)

)
= exp

(
iβ(Ψ2, j, k)

)
≡ exp

(
iβ(j, k)

)
,

which implies that

∀
Ψ

(

â†j â
†
k − exp

(
iβ(j, k)

)
â†k â

†
j

)

|Ψ〉 = 0 ⇒ â†j â
†
k − exp

(
iβ(j, k)

)
â†k â

†
j = 0 .

Subsequently the representation independence of Fock space can be used by rewriting this

operator identity according to equation (21) in terms of an arbitrary alternative 1-particle

representation, for which a similar operator identity holds:

∑

r,v

〈pr|qj〉〈pv|qk〉
[
b̂†r b̂

†
v − exp

(
iβ(j, k)

)
b̂†v b̂

†
r

]
= 0 and b̂†r b̂

†
v − exp

(
iβ ′(r, v)

)
b̂†v b̂

†
r = 0 .

For each unique (r, v)-combination in the p-representation we find

〈pr|qj〉〈pv|qk〉
[
exp
(
iβ ′(r, v)

)
− exp

(
iβ(j, k)

) ]

+ 〈pv|qj〉〈pr|qk〉
[
1 − exp

(
iβ(j, k)

)
exp
(
iβ ′(r, v)

) ]
= 0 .

Since this has to hold true for an arbitrary basis transformation, we eventually obtain

exp
(
iβ(j, k)

)
= exp

(
iβ ′(r, v)

)
= ± 1 ≡ exp(iβ) .
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In this way we have found the phase factor exp(iβ) to be universal and to give rise to two

branches of solutions:

∀
Ψ

[
â†j , â

†
k

]
|Ψ〉 = 0 ⇒ commutation relations :

[
â†j , â

†
k

]
=
[
âj , âk

]
= 0

or (23)

∀
Ψ

{
â†j , â

†
k

}
|Ψ〉 = 0 ⇒ anticommutation relations :

{
â†j , â

†
k

}
=
{
âj , âk

}
= 0 ,

introducing the anticommutator

{
Â, B̂

}
≡ ÂB̂ + B̂Â . (24)

Construction of Fock space: part two.

Finally this result can be combined with the general commutation identities (16). To this

end we use the fact that a commutator of the type
[
ÂB̂, Ĉ

]
can be written both in terms

of commutators and anticommutators:

[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂ = Â

{
B̂, Ĉ

}
−
{
Â, Ĉ

}
B̂ . (25)

In this way we find for the commuting set of solutions in equation (23) that

[
n̂j , â

†
k

] (17)
====

[
â†j âj, â

†
k

]
= â†j

[
âj , â

†
k

]
+
[
â†j , â

†
k

]
âj

(23)
==== â†j

[
âj, â

†
k

] (16)
==== δjk â

†
j ,

and for the anticommuting set of solutions that

[
n̂j , â

†
k

] (17)
====

[
â†j âj , â

†
k

]
= â†j

{
âj , â

†
k

}
−
{
â†j, â

†
k

}
âj

(23)
==== â†j

{
âj, â

†
k

} (16)
==== δjk â

†
j .

All in all the creation and annihilation operators should thus satisfy either

commutation relations :
[
â†j , â

†
k

]
=
[
âj , âk

]
= 0 ,

[
âj, â

†
k

]
= δjk 1̂ , (26)

the corresponding identical particles are called bosons ,

or

anticommutation relations :
{
â†j, â

†
k

}
=
{
âj, âk

}
= 0 ,

{
âj , â

†
k

}
= δjk 1̂ , (27)

the corresponding identical particles are called fermions .

In the next chapter it will be shown that these two branches of creation and annihilation

operators for identical many-particle systems give rise to utterly different statistical the-

ories. In the exercise class it will be proven that the (anti)commutation relations retain

their form under an arbitrary change of representation, which implies that to a given type
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of particle belongs a given type of statistics and that mixed statistics is indeed excluded.

In addition it will be shown that the many-particle states

|n1, n2, · · ·〉 ≡ (â†1)
n1

√
n1!

(â†2)
n2

√
n2!

· · · |Ψ(0)〉 ≡
∏

j

(â†j)
nj

√
nj !

|Ψ(0)〉 (28)

form the orthonormal basis of Fock space that we set out to construct. This universal basis

applies to bosons and fermions alike. Note, though, that the order of the creation operators

matters in the fermionic case and does not matter in the bosonic case!

Properties of bosonic many-particle systems (see exercise 1):

• The basis given above corresponds to the explicit phase convention

exp
(
iαj(· · · , nj, · · · )

)
≡ 1 (29)

in equation (12), such that

âj | · · · , nj, · · ·〉 =
√
nj | · · · , nj−1, · · ·〉 ,

â†j | · · · , nj, · · ·〉 =
√
nj+1 | · · · , nj+1, · · ·〉 .

(30)

• For k-fold annihilation (k = 0 , 1 , · · · ) this becomes

(âj)
k | · · · , nj, · · ·〉 =

√

nj(nj−1) · · · (nj−k+1) | · · · , nj−k, · · ·〉 ,

which only leads to a sensible result if the series terminates as soon as nj − k < 0.

From this we can deduce straightaway that nj can exclusively take on the values

nj = 0 , 1 , 2 , · · · , (31)

as expected for the eigenvalues of a number operator.

• The order in which the creation operators occur in the basis states is irrelevant. As

a result, the state functions will be totally symmetric in this version of Fock space,

as expected for bosonic states. This aspect will be worked out in § 1.3.

Properties of fermionic many-particle systems (see exercise 2):

• As a result of equation (27) we know that (â†j)
2 = 1

2

{
â†j, â

†
j

}
= 0. This we recognize

as the anticipated Pauli exclusion principle: no two fermions can occupy the same

fully specified 1-particle state.

11



• The occupation numbers can take on only two values,

nj = 0 , 1 . (32)

This follows from the fact that the number operators are projection operators in this

case:

n̂2
j

(17)
==== â†j âj â

†
j âj

(27)
==== â†j (1̂− â†j âj ) âj

â2j = 0
==== â†j âj = n̂j ,

concurring with Pauli’s exclusion principle.

• The basis given above corresponds to the explicit phase convention

exp
(
iαj(· · · , nj , · · · )

)
≡ (−1)N<j , N<j ≡

j−1
∑

k=1

nk (33)

in equation (12), such that

âj | · · · , nj, · · ·〉 = δnj ,1 (−1)N<j | · · · , nj−1, · · ·〉 ,

â†j | · · · , nj, · · ·〉 = δnj ,0 (−1)N<j | · · · , nj+1, · · ·〉 .
(34)

• This time the order in which the creation operators occur in the basis states does

matter and the state functions will be totally antisymmetric in this version of Fock

space, as expected for fermionic states. This latter aspect will be worked out in § 1.3

The state functions of arbitrary identical-particle systems can now be expressed in terms

of the basis states (28). Usually these state functions will describe a system with a fixed

number of particles. However, in particular in relativistic quantum mechanical situations

this may not be true, for instance when particles decay (such as n → p e− ν̄e ) or when a

photon is emitted during de-excitation of an excited atom (see Ch. 4). Maser and laser

systems fall into this category as well, as in that case the radiation is built coherently

(i.e. in phase). An example of such a coherent state will be worked out in § 1.6. Finally,

as artefacts of certain approximation methods situations may arise in which the number

of particles is effectively not conserved anymore (see § 1.6 and § 1.7).

1.3 Switching to a continuous 1-particle representation

Since Fock space does not depend on the chosen 1-particle representation, we could also

have opted for a complete set of commuting 1-particle observables k̂ with a continuous

eigenvalue spectrum {k} . Examples are the position and momentum operators. The cor-

responding “orthonormal” 1-particle basis is given by {|k〉} . In this case it makes no

sense to use an occupation-number representation based on counting, unless the continu-

ous k-space is partitioned in small cells.
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In analogy with the previous discussion we will introduce creation and annihilation oper-

ators

â†k ≡ â†(k) and âk ≡ â(k) , (35)

with the usual properties

â†(k)|Ψ(0)〉 ≡ |k〉 and â(k)|Ψ(0)〉 = 0 . (36)

The properties of these creation and annihilation operators follow directly from the disrete

case by performing a 1-particle basis transformation

â†j =

∫

dk â†(k)〈k|qj〉
herm. conj.
======⇒ âj =

∫

dk â(k)〈qj |k〉 ,

â†(k) =
∑

j

â†j 〈qj |k〉
herm. conj.
======⇒ â(k) =

∑

j

âj 〈k|qj〉 , (37)

which can be derived in analogy to equation (21) from

â†j |Ψ(0)〉 = |qj〉
compl.
====

∫

dk |k〉〈k|qj〉
(36)

====

∫

dk 〈k|qj〉 â†(k)|Ψ(0)〉 .

For this basis transformation the following unitarity conditions hold:

∑

j

〈k|qj〉〈qj|k′〉
compl.
==== 〈k|k′〉 = δ(k − k′) ,

∫

dk 〈qj|k〉〈k|qj′〉
compl.
==== 〈qj|qj′〉 = δjj′ . (38)

Subsequently equations (26) and (27) for a discrete 1-particle representation can be used

to obtain

[
â†(k), â†(k′)

]
=
[
â(k), â(k′)

]
= 0 ,

[
â(k), â†(k′)

]
= δ(k − k′)1̂ (39)

for a bosonic system in a continuous 1-particle representation and

{
â†(k), â†(k′)

}
=
{
â(k), â(k′)

}
= 0 ,

{
â(k), â†(k′)

}
= δ(k − k′)1̂ (40)

for a fermionic system in a continuous 1-particle representation.

Proof: the derivation of the vanishing (anti)commutators is trivial. In addition

â(k) â†(k′) ∓ â†(k′) â(k)
(37)

====
∑

j, j′

〈k|qj〉〈qj′|k′〉
(
âj â

†
j′ ∓ â†j′ âj

) (26),(27)
====

∑

j

〈k|qj〉〈qj|k′〉 1̂

(38)
==== δ(k − k′)1̂ ,
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where the minus (plus) sign refers to bosonic (fermionic) systems.

The representation-independent total number operator N̂ can in this case be expressed in

terms of the number density operator

n̂(k) ≡ â†(k) â(k) (41)

according to

N̂
(22)

====
∑

j

n̂j
(17)

====
∑

j

â†j âj
(37)

====

∫

dk

∫

dk′ â†(k) â(k′)
∑

j

〈k|qj〉〈qj |k′〉

(38)
====

∫

dk

∫

dk′ â†(k) â(k′)δ(k − k′)
(41)

====

∫

dk n̂(k) . (42)

The basis of N -particle state functions takes the following form in the k-representation:

{

|k1, · · · , kN〉 ≡ 1√
N !

â†(k1) · · · â†(kN)|Ψ(0)〉 : k1 , · · · , kN ∈ {k}
}

. (43)

This is a direct consequence of the fact that
∫

dk1 · · ·
∫

dkN |k1, · · · , kN〉〈k1, · · · , kN | = 1̂N (44)

is the unit operator in the N -particle subspace, which will be proven in exercise 3. An

arbitrary N -particle state function |Ψ〉 can now be represented in the k-representation by

the function

ψ(k1, · · · , kN) ≡ 〈k1, · · · , kN |Ψ〉 . (45)

As expected, this function is totally symmetric for bosonic systems and totally antisym-

metric for fermionic systems. This too will be proven in exercise 3.

1.3.1 Position and momentum representation

The previous discussion can be generalized trivially to cases with mixed 1-particle eigen-

value spectra, which are partially discrete and partially continuous. Two examples of this

will be worked out now.

The position representation: as a first example of a mixed representation we consider spin-s

particles in the position representation. This representation will be used in chapter 5 when

setting up relativistic QM. In the previous expressions we now simply have to substitute

k̂ → (~̂r , Ŝz/~) , {k} → {~r ∈ IR3 , σ = ms = −s, −s+1 , · · · , s−1 , s} ,
∫

dk →
∑

σ

∫

d~r , δ(k − k′) → δσσ′ δ(~r − ~r ′) and â(k) → ψ̂σ(~r ) . (46)
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Quite suggestively the annihilation oparator â(k) is replaced in the position representation

by the so-called field operator ψ̂σ(~r ). This suggestive notation is introduced in order to

facilitate the discussion in § 1.5.

The momentum representation: as a second example of a mixed representation we consider

spin-s particles in the momentum representation. This representation is particularly useful

for systems that (in first approximation) consist of free particles, as will be used in chapter 5

for analysing relativistic quantum mechanical wave equations. In this case we have to

perform the following substitutions:

k̂ → (~̂p, Ŝz/~) , {k} → {~p ∈ IR3 , σ = ms = −s, −s+1 , · · · , s−1 , s} ,
∫

dk →
∑

σ

∫

d~p , δ(k − k′) → δσσ′ δ(~p− ~p ′) and â(k) → âσ(~p ) . (47)

These two representations are connected through a Fourier transformation:

ψ̂σ(~r )
(37)

====

∫

d~p 〈~r |~p 〉 âσ(~p ) =

∫

d~p
exp(i~p · ~r/~)
(2π~)3/2

âσ(~p ) ,

âσ(~p )
(37)

====

∫

d~r 〈~p |~r 〉ψ̂σ(~r ) =

∫

d~r
exp(−i~p · ~r/~)

(2π~)3/2
ψ̂σ(~r ) . (48)

In fact this is identical to the connection between the state functions in position and mo-

mentum space known from 1-particle QM (see the lecture course Quantum Mechanics 2).

1.4 Additive many-particle quantities and particle conservation

Observables: we have succeeded in constructing the state space applicable to

systems consisting of an arbitrary number of identical particles and we have

investigated what the basis states look like if we employ discrete and/or contin-

uous 1-particle representations. As a next step in the construction of the many-

particle toolbox we need to have a closer look at the many-particle observables.

In Fock space various kinds of many-particle observables are possible, as long as they are

duly symmetric under particle interchange. An important class of many-particle observ-

ables consists of observables that belong to so-called additive many-particle quantities.

These quantities can be categorized by the number of particles that participate as a clus-

ter in the physical quantity. Subsequently these clusters will be summed/integrated over.

A characteristic property of these additive many-particle quantities is the existence of a

specific representation that makes the corresponding many-particle observable expressible

solely in terms of number (density) operators. This automatically implies that different

eigenstates of the total number operator N̂ are not mixed by such a many-particle ob-

servable (which entails particle conservation).
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Additive many-particle quantities play a central role in setting up (free-particle) relativistic

QM and in the description of systems consisting of weakly interacting identical particles

(such as electrons in an atom or conduction electrons in a metal). In lowest-order approx-

imation the particles of a weakly interacting system can be considered non-interacting,

which causes the total energy to be expressible as a sum of individual 1-particle energies

(see § 1.1). As a first-order correction to this, the interactions between pairs of particles can

be added. In this way the particles contribute in sets of two to the energy correction. This

procedure can be extended trivially to allow for (progressively smaller) energy corrections

involving larger clusters of particles.

1.4.1 Additive 1-particle quantities

Consider a 1-particle observable Â. By employing the completeness relation for the discrete

q -representation, this observable can de written as

Â =
∑

j,j′

|qj〉〈qj|Â|qj′〉〈qj′| .

Each individual term occurring in this sum brings the particle from a state |qj′〉 to a

state |qj〉 , with the matrix element 〈qj |Â|qj′〉 as corresponding weight factor. Using this

1-particle observable a proper many-particle observable can be constructed:

Â
(1)
tot =

∑

α

Âα ,

where Âα is the 1-particle observable belonging to particle α . The action of Â
(1)
tot in Fock

space is to simply annihilate a particle in the state |qj′〉 and subsequently create a particle

in the state |qj〉 with weight factor 〈qj|Â|qj′〉 :

Â
(1)
tot =

∑

j,j′

â†j 〈qj |Â|qj′〉 âj′ =
∑

j,j′

〈qj|Â|qj′〉 â†j âj′ . (49)

We speak of an additive 1-particle quantity if the corresponding many-particle observable

can be represented in the form (49). This definition hinges on the fact that the given

expression has exactly the same form for any discrete 1-particle representation:

Â
(1)
tot

(18),(21)
====

∑

r,r′, j,j′

b̂†r 〈pr|qj〉〈qj|Â|qj′〉〈qj′|pr′〉 b̂r′
compl.
====

∑

r,r′

b̂†r 〈pr|Â|pr′〉 b̂r′ .

Many-particle observables belonging to additive 1-particle quantities can also be trans-

lated trivially to a continuous 1-particle representation. By means of the basis transfor-

mation (37) and the unitarity conditions (38), equation (49) changes into

Â
(1)
tot =

∫

dk1

∫

dk2 â
†(k1)〈k1|Â|k2〉 â(k2) =

∫

dk1

∫

dk2 〈k1|Â|k2〉 â†(k1) â(k2) . (50)
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The general expressions (49) and (50) are valid irrespective of the 1-particle observable Â

having discrete or continuous eigenvalues.

Special cases: let’s assume that the 1-particle observable Â has discrete eigenvalues and

is part of the complete set of commuting 1-particle observables q̂ . In that case

〈qj|Â|qj′〉 ≡ Aj′ 〈qj |qj′〉 = Aj δjj′
(49)

===⇒ Â
(1)
tot =

∑

j

Aj n̂j .

The special feature of this representation is the fact that it merely involves counting par-

ticles, in analogy to the total number operator N̂ . We actually already exploited this

concept in § 1.1 while determining the total energy of a non-interacting many-particle sys-

tem. Apart from additive 1-particle quantities with discrete eigenvalues, also additive

1-particle quantities exist with continuous eigenvalues (see below). In that case a contin-

uous representation can be found such that

〈k1|Â|k2〉 ≡ A(k2)〈k1|k2〉 = A(k1)δ(k1 − k2)
(50)

===⇒ Â
(1)
tot =

∫

dk1A(k1)n̂(k1) .

Particle conservation: a characteristic feature of additive many-particle quantities is that

the observables only consist of terms with as many creation as annihilation operators. As

such these observables commute with the total number operator N̂ and therefore do not

mix the different eigenstates of N̂ . In that respect one could speak of “conservation of the

number of particles”.

Additive 1-particle quantities in position and momentum representation.

In view of future applications, we now take a closer look at a few useful additive 1-particle

quantities in the mixed representations belonging to spin-s particles in either position or

momentum space.

The total momentum: in the momentum representation the 1-particle momentum opera-

tor ~̂p is part of the complete set of observables with respect to which the many-particle

Fock space is formulated. As a result, the total momentum operator takes on a particu-

larly simple form in the momentum representation (i.e. merely involving number density

operators in momentum space):

~̂P
(1)
tot =

∑

σ

∫

d~p ~p n̂σ(~p ) =
∑

σ

∫

d~r ψ̂†
σ(~r )

(

−i~~▽ψ̂σ(~r )
)

. (51)

The proof of the last step in this equation involves the Fourier transformation (48) for

switching frommomentum to position representation (see also App.A for additional details):
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−i~
∫

d~r ψ̂†
σ(~r )

~▽ψ̂σ(~r ) = −i~
∫

d~p

∫

d~p ′ â†σ(~p ) âσ(~p
′)

∫

d~r
exp(−i~p · ~r/~)

(2π~)3
~▽ exp(i~p ′·~r/~)

=

∫

d~p

∫

d~p ′ ~p ′ â†σ(~p ) âσ(~p
′)

∫

d~r
exp(i[~p ′−~p ] · ~r/~)

(2π~)3

=

∫

d~p

∫

d~p ′ ~p ′ â†σ(~p ) âσ(~p
′) δ(~p− ~p ′) =

∫

d~p ~p n̂σ(~p ) .

The total kinetic energy: the corresponding 1-particle observable T̂ = ~̂p 2/(2m) is again

diagonal in the momentum representation. In analogy to the previous example we find for

the total kinetic-energy operator:

T̂
(1)
tot =

∑

σ

∫

d~p
~p 2

2m
n̂σ(~p ) =

∑

σ

∫

d~r ψ̂†
σ(~r )

(

− ~2

2m
~▽2
ψ̂σ(~r )

)

. (52)

The total spin in the z-direction: in this case the corresponding 1-particle observable Ŝz is

part of the complete set of observables of both the position and momentum representation.

The total spin operator in the z-direction trivially reads:

~̂S
(1)
tot · ~ez =

∑

σ

∫

d~p ~σ n̂σ(~p ) =
∑

σ

∫

d~r ~σ n̂σ(~r ) ≡
∑

σ

~σN̂σ , (53)

where N̂σ counts the total number of particles with spin component ~σ along the z-axis.

The total potential energy in an external field: assume the particles to be subjected to

an external potential V (~r ). The corresponding 1-particle observable V (~̂r ) is obviously

diagonal in the position representation, resulting in the following total potential-energy

operator:

V̂
(1)
tot ≡

∑

σ

∫

d~r V (~r ) n̂σ(~r ) =
∑

σ

∫

d~k

∫

d~p V(~k ) â†σ(~p ) âσ(~p− ~~k) , (54)

using the definition V (~r ) ≡
∫
d~k V(~k ) exp(i~k ·~r ). The derivation of the right-hand side

of this equation follows the line of proof worked out in exercise 4 for a related type of

potential.

Second quantization: the additive many-particle observables discussed above resemble

quantized versions of the corresponding expectation values of the 1-particle observables

in ordinary 1-particle QM, i.e. expectation values with ψ → ψ̂ . This formal connection

between 1-particle and many-particle quantum theory is indicated somewhat suggestively

by the term “second quantization”.
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1.4.2 Additive 2-particle quantities

In the discrete q -representation the ordered 2-particle basis states are given by

|Ψ(2)
j,k>j〉 ≡ |0, · · · , 0, nj = 1, 0, · · · , 0, nk = 1, 0, · · ·〉 = â†j â

†
k |Ψ(0)〉 ,

|Ψ(2)
jj 〉 ≡ |0, · · · , 0, nj = 2, 0, · · ·〉 =

(â†j)
2

√
2

|Ψ(0)〉 , (55)

where the last pair state only has relevance for bosonic systems. With the help of the

corresponding completeness relation, a 2-particle observable B̂ can be written as

B̂ =
∑

j,j′,k,k′

|Ψ(2)
jk 〉〈Ψ

(2)
jk |B̂ |Ψ(2)

j′k′〉〈Ψ
(2)
j′k′| .

Each individual term occurring in this sum brings the particle pair from a state |Ψ(2)
j′k′〉

to a state |Ψ(2)
jk 〉 , with the matrix element 〈Ψ(2)

jk |B̂ |Ψ(2)
j′k′〉 as corresponding weight factor.

Using this 2-particle observable a proper many-particle observable can be constructed:

B̂
(2)
tot =

1

2

∑

α,β 6=α

B̂αβ ,

where B̂αβ is the 2-particle observable belonging to particles α and β 6= α . The factor

of 1/2 is introduced here to avoid double counting. The corresponding action of this

observable in Fock space simply reads

B̂
(2)
tot =

1

2

∑

j,j′,k,k′

â†j â
†
k 〈Ψ

(2)
jk |B̂ |Ψ(2)

j′k′〉 âk′ âj′ =
1

2

∑

j,j′,k,k′

〈Ψ(2)
jk |B̂ |Ψ(2)

j′k′〉 â†j â†k âk′ âj′ . (56)

This method of writing all creation operators on the left and all annihilation operators

on the right in a many-particle operator is usually referred to as normal ordering. We

speak of an additive 2-particle quantity if the corresponding many-particle observable can

be represented in the form (56). This type of expression has the same form for any

discrete 1-particle representation, bearing in mind that just like we have seen in § 1.4.1
each creation/annihilation operator in the expression is linked to a corresponding annihi-

lation/creation operator that is hidden in one of the basis states in the matrix element.

Switching to a continuous representation yields accordingly

B̂
(2)
tot =

1

2

∫

dk1 · · ·
∫

dk4 〈k1, k2|B̂ |k3, k4〉 â†(k1) â†(k2) â(k4) â(k3) . (57)

Again the generic expressions (56) and (57) are valid irrespective of the 2-particle observ-

abele B̂ having discrete or continuous eigenvalues.
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Special cases: let’s assume that the 2-particle observable B̂ has discrete eigenvalues and

is diagonal in the q -representation. Then

〈Ψ(2)
jk |B̂ |Ψ(2)

j′k′〉 ≡ Bj′k′ 〈Ψ(2)
jk |Ψ

(2)
j′k′〉 = Bjk δjj′ δkk′

(56)
===⇒ B̂

(2)
tot =

1

2

∑

j,k

Bjk â
†
j â

†
k âk âj =

1

2

∑

j,k

Bjk (n̂j n̂k − n̂j δjk) ,

where we have used that

â†j â
†
k âk âj

(16),(17)
==== â†j âj â

†
k âk−â†j δjk âj

(17)
==== n̂j n̂k−n̂j δjk = pair number operator . (58)

Of course, additive 2-particle quantites may also have continuous eigenvalues (see below).

In that case a continuous representation exists such that B̂ becomes diagonal, allowing to

express B̂
(2)
tot in terms of pair density operators belonging to that representation.

Example: spatial pair interactions in position and momentum representation.

Consider a system comprising of spin-s particles with spatial pair interactions described

by the observable U(~̂r1− ~̂r2). This observable is obviously diagonal in the position repre-

sentation, resulting in the following total operator for spatial pair interactions:

Û
(2)
tot ≡ 1

2

∑

σ1,σ2

∫

d~r1

∫

d~r2 U(~r1−~r2) ψ̂†
σ1
(~r1)ψ̂

†
σ2
(~r2)ψ̂σ2(~r2)ψ̂σ1(~r1) . (59)

In the momentum representation this becomes (see exercise 4)

Û
(2)
tot =

1

2

∑

σ1,σ2

∫

d~k

∫

d~p1

∫

d~p2 U(~k ) â†σ1
(~p1) â

†
σ2
(~p2) âσ2(~p2 + ~~k) âσ1(~p1 − ~~k ) , (60)

using the definition U(~r ) ≡
∫
d~k U(~k) exp(i~k ·~r ).

1.5 Heisenberg picture and second quantization

In preparation for the relativistic treatment of quantum mechanics in chapter 5,

we now address the time dependence of the creation and annihilation operators

in the Heisenberg picture of quantum mechanics.

Consider to this end an isolated identical-particle system described by a Hamilton operator

of the following form:

Ĥtot = Ĥ
(1)
tot + C 1̂ (C ∈ IR) , (61)

where the term Ĥ
(1)
tot is an additive observable of the type described in § 1.4.1. Next

we address the time evolution of this many-particle system in the Heisenberg picture.

As explained in the lecture course Quantum Mechanics 2, all state functions are time-

independent in the Heisenberg picture and all time dependence of the system resides in
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the time evolution of the operators. The differences with the many-particle formulation in

the Schrödinger picture, which we have used so far, can be summarized as follows:

Schrödinger picture : state functions → |Ψ(t)〉 = exp
(
−iĤtot t/~

)
|Ψ(0)〉 ,

observables → Â(t) ,
(62)

Heisenberg picture : state functions → |Ψ
H
(t)〉 = |Ψ(0)〉 ,

observables → Â
H
(t) = exp

(
iĤtot t/~

)
Â(t) exp

(
−iĤtot t/~

)
,

where we have assumed that both pictures coincide at the time stamp t = 0. For example

we have

Ĥtot
H
(t) = Ĥtot , (63)

since we are dealing here with an isolated system. In the Heisenberg picture the operators

satisfy the so-called Heisenberg equation of motion

d

dt
Â

H
(t) = − i

~

[
Â

H
(t), Ĥtot

]
+
( ∂Â(t)

∂t

)

H

. (64)

Next we investigate the implications for the creation and annihilation operators.

The discrete case: for a generic discrete 1-particle representation we get

Ĥ
(1)
tot

(49)
====

∑

r,r′

〈pr|Ĥ |pr′〉 b̂†r b̂r′
(63)

====
∑

r,r′

〈pr|Ĥ |pr′〉 b̂†r
H
(t) b̂r′

H
(t) ,

with Ĥ being the 1-particle Hamilton-operator belonging to the additive part of the many-

particle operator Ĥtot . From this it follows that

[
b̂v

H
(t), Ĥtot

]
=

∑

r,r′

〈pr|Ĥ |pr′〉
[
b̂v

H
(t), b̂†r

H
(t) b̂r′

H
(t)
] (26),(27)

====
∑

r,r′

〈pr|Ĥ |pr′〉 b̂r′
H
(t)δvr

=
∑

r′

〈pv|Ĥ |pr′〉 b̂r′
H
(t) .

The Heisenberg equation of motion then reads

i~
d

dt
b̂v

H
(t) =

∑

r

〈pv|Ĥ |pr〉 b̂r
H
(t) , (65)

where we have used that the creation and annihilation operators are time-independent

in the Schrödinger picture. This equation of motion strongly resembles the Schrödinger

equation for a 1-particle state function written in the p-representation:

i~
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 〈pv|∗

===⇒ i~
d

dt
〈pv|ψ(t)〉 compl.

====
∑

r

〈pv|Ĥ |pr〉〈pr|ψ(t)〉 .
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The coupled linear differential equations (65) can be decoupled if we choose a representation

for which 〈pv|Ĥ |pr〉 = Er 〈pv|pr〉 = Ev δrv , such that

i~
d

dt
b̂v

H
(t) = Ev b̂v

H
(t) ⇒ b̂v

H
(t) = exp(−iEvt/~) b̂v

H
(0) ≡ exp(−iEvt/~) b̂v .

Free particles in position space: in the Schrödinger picture the position-space annihi-

lation operator is given by the time-independent field operator ψ̂σ(~r ). The corresponding

time-dependent operator in the Heisenberg picture is concisely written as

(
ψ̂σ(~r )

)

H
(t) ≡ ψ̂σ(~r, t) , (66)

which can be translated to momentum space by means of the Fourier transformation

ψ̂σ(~r, t) =

∫

d~p
exp(i~p · ~r/~)
(2π~)3/2

âσ
H
(~p, t) . (67)

For free particles the Hamilton operator is given by the total kinetic-energy operator T̂
(1)
tot :

Ĥtot
(52)

====
∑

σ′

∫

d~p ′ ~p
′ 2

2m
n̂σ′(~p ′)

(63)
====

∑

σ′

∫

d~p ′ ~p
′ 2

2m
n̂σ′

H
(~p ′, t) . (68)

In the momentum representation the Heisenberg equation of motion reads

i~
∂

∂t
âσ

H
(~p, t)

(64),(68)
=======

∑

σ′

∫

d~p ′ ~p
′ 2

2m

[
âσ

H
(~p, t) , n̂σ′

H
(~p ′, t)

] (16)
====

~p 2

2m
âσ

H
(~p, t)

⇒ âσ
H
(~p, t) = exp(−iE~p t/~) âσ(~p ) with E~p ≡ ~p 2

2m
. (69)

This implies the following for the field operator ψ̂σ(~r, t) in the position representation:

i~
∂

∂t
ψ̂σ(~r, t)

(67),(69)
=======

∫

d~p
exp(i~p · ~r/~)
(2π~)3/2

~p 2

2m
âσ

H
(~p, t)

(67)
===⇒ i~

∂

∂t
ψ̂σ(~r, t) = − ~2

2m
~▽2
ψ̂σ(~r, t) . (70)

• In the Heisenberg picture the many-particle field operator ψ̂σ(~r, t) satisfies an equa-

tion that is identical to the free Schrödinger equation for a 1-particle wave function

in position space.1 For this reason ψ̂σ(~r, t) is also known as the Schrödinger field.

Equation (70) can be regarded as a quantized version of the “classical” Schrödinger

equation for quantum mechanical wave functions. Also this direct link between a

1-particle wave equation and a many-particle theory formulated in the Heisenberg

picture is a manifestation of the concept of second quantization.

1This relation extends to situations where potential-energy terms are added to the Hamilton operator.
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Second quantization will play a crucial role in the transition from non-

relativitic to relativistic QM. We will be forced to abandon the idea of a

1-particle quantum mechanical theory based on a relativistic wave equation

and replace it by a corresponding many-particle formulation that constitutes

the starting point for quantum field theory.

• As we have seen, the above-given equation of motion (wave equation) for ψ̂σ(~r, t)

can be solved (decoupled) straightforwardly by means of a Fourier decomposition

(plane-wave expansion):

ψ̂σ(~r, t)
(67),(69)

=======

∫

d~p
exp(i~p · ~r/~)
(2π~)3/2

exp(−iE~p t/~) âσ(~p ) . (71)

In fact this is a manifestation of particle–wave duality, as each annihilation/creation

of a particle is automatically accompanied by a corresponding plane-wave factor.

At a later stage we will make use of this aspect to come up with an alternative,

many-particle formulation of relativistic QM.

1.6 Examples and applications: bosonic systems

In the preceding discussion we have systematically used the generic term “par-

ticles” to talk about the fundamental quantum-mechanical objects of a specific

quantum system. It seems obvious what these particles should be: intuitively we

expect that the particles belonging to an atomic gas system should be the atoms

themselves. However, in the remainder of this chapter we will see that the

particle interpretation of quantum systems in terms of the corresponding funda-

mental energy quanta can change radically if the interaction parameters of the

system change. This will teach us to be more flexible with the term “particles”

than we are used to. This is actually one of the most profound new aspects of

many-particle quantum mechanics that is covered in this lecture course.

1.6.1 The linear harmonic oscillator as identical-particle system

We kick off with one of the simplest and at the same time one of the most widely used

quantum systems: the linear harmonic oscillator. Why the oscillator has such an important

role to play in quantum physics will become clear at a later stage.

A linear harmonic oscillator is by definition a 1-particle system. However, it also possesses

the hallmark features of an identical-particle system, which will play a crucial role in the

description of particles in the context of relativistic QM. A completely worked out example

along this line will be the photon description of electromagnetic fields in chapter 4. In order
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to highlight the analogy between a linear harmonic oscillator and an identical-particle

system we first rewrite the Hamilton operator:

Ĥ =
p̂2x
2m

+
1

2
mω2 x̂2 ≡ ~ω

2

(
P̂ 2 + Q̂2

)
,

with P̂ ≡ p̂x

√

1

m~ω
and Q̂ ≡ x̂

√
mω

~
. (72)

Subsequently we introduce the raising, lowering en number operator according to

raising operator : â† ≡ 1√
2

(
Q̂− iP̂

)
,

lowering operator : â ≡ 1√
2

(
Q̂+ iP̂

)
,

number operator : n̂ ≡ â† â . (73)

The dimensionless position and momentum operators Q̂ and P̂ have the following funda-

mental properties:

Q̂† = Q̂ =
â+ â†√

2
, P̂ † = P̂ =

â− â†

i
√
2

and
[
Q̂, P̂

]
=

1

~

[
x̂, p̂x

]
= i 1̂ . (74)

In the last step we have used that the coordinate x and momentum px form a conjugate

pair, which implies that the corresponding operators satisfy the usual (canonical) quantum

mechanical quantization conditions. From this we can deduce the following features:

• â† 6= â, i.e. raising and lowering operators are not hermitian and therefore do not

correspond to an observable quantity.

• n̂† = (â† â)† = n̂ , i.e. the number operator does correspond to an observable quantity.

• the raising and lowering operators satisfy bosonic commutation relations:

[
â, â†

]
= 1

2

[
Q̂ + iP̂ , Q̂− iP̂

] (74)
==== 1̂ and

[
â†, â†

]
=
[
â, â
]
= 0 . (75)

• from the relation

P̂ 2 + Q̂2 (74)
====

( â− â†

i
√
2

)2

+
( â + â†√

2

)2

= â† â + â â†

it follows that the Hamilton operator is linked directly to the number operator:

Ĥ =
~ω

2

(
P̂ 2 + Q̂2

)
=

~ω

2

(
â† â+ â â†

) (75)
==== ~ω

(
n̂ + 1

2
1̂
)
. (76)
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A linear harmonic oscillator effectively behaves like an identical-particle system consisting

of non-interacting bosons. These bosons can take on precisely one value for the 1-particle

energy, i.e. E1 = ~ω . As such they can be regarded as the energy quanta belonging to

the considered vibrational/oscillatory motions. These quanta are created by â†, annihi-

lated by â and counted by n̂. Except for a constant term (zero-point energy) 1
2
~ω , the

Hamilton-operator takes the form of a many-particle observable belonging to an additive

1-particle quantity.

The fundamental energy quanta of an oscillator system can be interpreted as

non-interacting bosonic particles. Nature displays many different bosonic vibra-

tion/oscillation quanta, in particular those that provide a particle interpretation

to wave phenomena in classical physics. Well-known examples are photons, re-

lated to electromagnetic waves (see Ch. 4), and phonons, related to collective

vibrational modes of lattices and other sound waves (see exercise 5).

In accordance with § 1.2.1 the energy eigenstates of the linear harmonic oscillator can be

written as

|n〉 (28)
====

(â†)n√
n!

|0〉 , with Ĥ |n〉 (11)
==== ~ω

(
n+ 1

2

)
|n〉 (n = 0 , 1 , 2 , · · ·) . (77)

The meaning of the designations “raising” and “lowering” becomes apparent if we consider

the action of the creation and annihilation operators:

â† |n〉 (30)
====

√
n+1 |n+1〉 ⇒ Ĥ â† |n〉 = ~ω

(
n+ 1 + 1

2

)
â† |n〉 ,

â|n〉 (30)
====

√
n |n−1〉 ⇒ Ĥ â|n〉 = ~ω

(
n− 1 + 1

2

)
â|n〉 . (78)

The raising (lowering) operator changes a given energy eigenstate into the energy eigenstate

belonging to the next excited (previous de-excited) energy level.

Remark: if we would have considered a fermionic oscillator

Ĥ = ~ω
(
n̂ + C 1̂

)
= ~ω

(
â† â+ C 1̂

)
(C ∈ IR) ,

with
{
â, â†

}
= 1̂ and

{
â†, â†

}
=
{
â, â
}

= 0 , (79)

Pauli’s exclusion principle would have allowed for only two energy eigenvalues, ~ωC and

~ω (C +1) corresponding to n = 0 and n = 1 respectively. Still, the operators â† and â

would have been raising and lowering operators, since the commutator identity
[
â, n̂
]
= â

holds equally well in the fermionic case.
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1.6.2 Forced oscillators: coherent states and quasi particles

Let’s now add an interaction to the linear harmonic oscillator of § 1.6.1 according to

Ĥ = ~ω
(
n̂− λâ† − λ∗ â + 1

2
1̂
)

= ~ω
(
n̂ + 1

2
1̂
)
− ~ω (Reλ)

(
â†+ â

)
− ~ω (Imλ)

(
iâ†− iâ

)

(72),(74)
====

p̂2x
2m

+
1

2
mω2 x̂2 − x̂ Reλ

√
2m~ω3 − p̂x Imλ

√

2~ω/m (λ ∈ C) . (80)

Systems of this type are called forced linear harmonic oscillators. They are omnipresent

in nature. For instance, taking λ = qE/
√
2m~ω3 and E ∈ IR we obtain an interaction

term of the form V̂ = −q x̂E , which we recognize as the interaction term of a charged

linear harmonic oscillator with charge q subjected to a classical electric field E along the

x-axis. The striking feature of the additional interaction term is that it does not conserve

the number of oscillator quanta, since

[
n̂, Ĥ

]
= − ~ω

[
n̂, λâ† + λ∗ â

] (16)
==== − ~ω (λâ† − λ∗ â) 6= 0 .

This is a first example of what is referred to as a non-additive interaction, i.e. an interaction

that does not conserve the total number of particles.

A new particle interpretation: nature is riddled with systems that involve non-additive

interactions. For instance, such systems are ubiquitous in particle physics (e.g. through

the production and decay of particles), quantum optics/spectroscopy (e.g. in laser systems

and when photons are being absorbed/emitted by atoms) and quantum electronics (e.g. in

describing charge flows).

In scenarios involving non-additive interactions it usually pays to switch to an

alternative particle interpretation, i.e. an alternative description of the interact-

ing quantum system in terms of non-interacting energy quanta that are called

quasi particles. Expressed in terms of these new energy quanta the Hamilton

operator will take on an additive 1-particle form, which causes the number of

quasi particles to be conserved. Furthermore, this implies the existence of a rep-

resentation that will make the Hamilton operator expressible in terms of number

operators for quasi particles.

To get a feel for what a quasi particle could be, consider a particle that propagates through

a medium while influencing other particles and while being influenced by other particles.

The combination of particle and ambient influences can collectively behave as a separate

free entity. For instance, a conduction electron propagating through a piece of metal can

excite vibrations (phonons) in the metal-ion lattice, while in turn the lattice vibrations can

affect the motions of the conduction electrons. The degree by which the quasi particles

will differ from the original particles depends on the nature and strength of the ambient

interactions.
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In all examples covered in this lecture course, the original particle interpretation

is retrieved in the limit of vanishing ambient influences. If the original particles

are bosons (fermions) then the same should be true for the quasi particles.

Therefore, while switching from particles to quasi particles, one set of bosonic (fermionic)

creation and annihilation operators will be replaced by another set. As such, it will not

come as a surprise that a particle–quasi particle transition actually boils down to per-

forming a unitary transformation in Fock space, since operator identities such as bosonic

commutation relations (fermionic anticommutation relations) will be invariant in that case.

Quasi particles and coherent states (Roy J. Glauber, 1963): in case of a forced

linear harmonic oscillator we can switch to new bosonic quasi-particle operators ĉ and ĉ†

by means of the transformation

ĉ = â− λ 1̂ , ĉ† = â† − λ∗ 1̂ ⇒
[
ĉ, ĉ†

]
=
[
â, â†

]
= 1̂ . (81)

The number operator for quasi particles ˆ̃n now reads

ˆ̃n = ĉ† ĉ
(81)

==== n̂ − λâ† − λ∗ â + |λ|2 1̂ ⇒ Ĥ = ~ω
(
ˆ̃n + 1

2
1̂ − |λ|2 1̂

)
, (82)

allowing us to express the energy eigenstates of the systen in terms of quasi-particle states:

|ñ〉λ
(28)

====
(ĉ†)n√
n!

|0̃〉λ , Ĥ |ñ〉λ = ~ω
(
ñ+ 1

2
−|λ|2

)
|ñ〉λ (ñ = 0 , 1 , 2 , · · ·) . (83)

The ground state of the forced linear harmonic oscillator is given by the state without any

quasi particles ( quasi-particle vacuum) |0̃〉λ ≡ |λ〉 , which satisfies

â |λ〉 (81)
====

(
ĉ+ λ 1̂

)
|λ〉 vacuum

======= λ|λ〉 . (84)

This quasi-particle vacuum is an eigenstate of the original annihilation operator â be-

longing to the eigenvalue λ . Such a state is called a coherent state, where the term

coherent refers to the fact that all original many-particle states contribute to this state

with related phases, as opposed to incoherent situations where the phases are completely

random (see Ch. 2).

Proof: express the state |λ〉 in terms of the original many-particle basis according to

|λ〉 ≡
∞∑

n=0

Cn |n〉
(84)

===⇒ 0 =
∞∑

n=0

Cn

(
â− λ 1̂

)
|n〉 (78)

====
∞∑

n=0

Cn

(√
n |n−1〉 − λ|n〉

)

basis
===⇒ Cn+1 =

λCn√
n+ 1

= · · · =
λn+1

√

(n + 1)!
C0 ,
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where the summation parameter n is increased by one in the term containing |n − 1〉 .
Next we have to normalize the state |λ〉 :

1 ≡ 〈λ|λ〉 = |C0|2
∞∑

n,n′=0

λn√
n!

(λ∗)n
′

√
n′!

〈n′|n〉 orth. basis
======= |C0|2

∞∑

n=0

|λ|2n
n!

= |C0|2 exp
(
|λ|2
)
.

By choosing C0 = exp(−|λ|2/2) we finally obtain

|λ〉 =
∞∑

n=0

exp(−|λ|2/2) λn√
n!

|n〉 , (85)

which can be rewritten by employing equation (28):

|λ〉 =
∞∑

n=0

exp(−|λ|2/2) λn√
n!

(â†)n√
n!

|0〉 = exp(−|λ|2/2) exp(λâ†)|0〉 . (86)

Indeed we observe that all original many-particle states feature in such a coherent state,

with the expectation value for the occupation number and associated quantum mechanical

uncertainty given by

n̄ ≡ 〈λ|n̂|λ〉 = 〈λ|â†â|λ〉 (84)
==== |λ|2 〈λ|λ〉 = |λ|2 ,

∆n ≡
√

〈λ|n̂2|λ〉 − 〈λ|n̂|λ〉2 =
√

〈λ|(â†â†â â+ â†â)|λ〉 − n̄2
(84)

====
√
n̄ . (87)

Here we used that n̂2 = â†â â†â
(75)

==== â†â†â â + â†â. The larger the value of |λ| =
√
n̄

becomes, the larger the average number will be of original oscillator quanta that are

present in the ground state of the forced oscillator and the smaller the relative error

∆n/n̄ = 1/
√
n̄ = 1/|λ| on this number will be!

The relation between particle number and phase: writing the complex eigenvalue

λ as λ = |λ| exp(iφλ), the corresponding coherent state has the characteristic feature that

the many-particle basis states |n〉 occur with phases that are related by exp(inφλ):

|λ〉 (86)
====

∞∑

n=0

exp(−|λ|2/2)
(
|λ| â†

)n

n!
exp(inφλ)|0〉 = exp(−|λ|2/2) exp

(
|λ|eiφλ â†

)
|0〉 .

⇒ − i
∂

∂φλ

|λ〉 = â† |λ|eiφλ |λ〉 = â†λ|λ〉 (84)
==== â†â |λ〉 = n̂ |λ〉 .

Since the coherent states form a complete set (see remark 1), the following relation between

particle number and phase emerges

− i
∂

∂φλ
= n̂
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in the coherent-state representation. This resembles the quantum mechanical relation be-

tween conjugate pairs of coordinates and momenta, such as the coordinate x and the cor-

responding momentum px for which we have the position-space relation p̂x = − i~∂/∂x.

As such we expect to find a kind of particle number–phase uncertainty relation of the

form

∆n∆φλ ≥ 1/2 , (88)

although it is not possible to define a unique phase operator in QM in view of the fact that

φλ is defined on the interval [0, 2π) only. For a fixed-n state we would therefore expect

to have a completely undetermined phase. Actually we have already made use of this in

§ 1.2 by exploiting the freedom to choose the overall phase of the occupation-number basis

states. For an arbitrary coherent state we expect to find a compromise between uncertainty

in particle number and uncertainty in phase (see remark 2)

Pseudo-classical properties of the coherent state |λ〉: we know that

〈λ|(â†)k(â)l|λ〉 = (λ∗)k(λ)l = 〈λ|â†|λ〉k〈λ|â|λ〉l

for normal-ordered operators, seemingly bypassing quantum mechanical commutation re-

lations by allowing the operators to be effectively replaced by complex parameters. Well,

hold your horses · · · this classical behaviour does not persist once we consider operators

that are not normal ordered, such as

〈λ|â â†|λ〉 = 〈λ|(â†â+ 1̂)|λ〉 = |λ|2 + 1 = 〈λ|â|λ〉〈λ|â†|λ〉+ 1 .

The commutation relations lead to relative corrections of O
(
1/|λ|2

)
= O(1/n̄) to classi-

cal behaviour. In the high occupation-number limit |λ| ≫ 1 this correction is suppressed

and a classical situation is approached that allows you to effectively replace the rele-

vant many-particle operators by complex numbers in the coherent-state expectation value.

Moreover, it will be shown in exercise 6 that the relative overlap between different coherent

states decreases substantially in that case (see also remark 2), allowing the coherent states

to be viewed as pseudo classical states consisting of an almost fixed, very large number of

oscillator quanta.

Unitary transformation: finally it will be shown in exercise 6 that a coherent state can

be obtained from the ground state of the linear harmonic oscillator. As expected this will

be achieved by means of a unitary transformation in Fock space:

|λ〉 = exp(λâ† − λ∗â)|0〉 . (89)

Coherent states are particularly useful in describing electromagnetic radiation

that is produced coherently through stimulated emission. For instance, masers

and lasers fall into this category as well as electromagnetic fields produced by
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classical electric currents (see Ch. 4). Coherent states also feature prominently

in the description of systems with macroscopically occupied 1-particle states,

such as Bose–Einstein condensates (see Ch. 2) and classical electromagnetic

fields (see Ch. 4).

Remark 1: overcomplete set (no exam material).

The collection of all coherent states

{
|λ〉 =

∞∑

n=0

exp(−|λ|2/2) λn√
n!

|n〉 : λ ∈ C
}

(90)

forms an overcomplete set. To this end we write the complex eigenvalue λ in terms of

polar coordinates in the complex plane as λ = |λ| exp(iφλ). That allows us to derive the

following generalized completeness relation for coherent states:

∞∫

−∞

d(Reλ)

∞∫

−∞

d(Imλ) |λ〉〈λ| =

∞∫

−∞

d(Reλ)

∞∫

−∞

d(Imλ) exp(−|λ|2)
∞∑

n,n′=0

λn (λ∗)n
′

√
n!n′ !

|n〉〈n′|

polar coord.
=======

∞∑

n,n′=0

|n〉〈n′|√
n!n′ !

∞∫

0

d|λ| |λ|n+n′+1 exp(−|λ|2)

2π δnn′

︷ ︸︸ ︷
2π∫

0

dφλ exp
(
iφλ[n−n′]

)

z = |λ|2
======= π

∞∑

n=0

|n〉〈n|
n!

∞∫

0

dz zn exp(−z) = π

∞∑

n=0

|n〉〈n| compl.
==== π 1̂ , (91)

where it is used that
∫∞

0
dz zn exp(−z) = n! for n = 0 , 1 , · · · . An arbitrary many-

particle state is therefore readily expressible in terms of coherent states!

Remark 2: two more pseudo-classical properties (no exam material).

A coherent state is also an example of a quantum state with minimal uncertainty that is

divided equally over position and momentum operators. By combining the results on the

previous page with equation (74), it can be proven straightforwardly that

(∆P )2 = 〈λ|P̂ 2|λ〉 − 〈λ|P̂ |λ〉2 = − 1
2
〈λ|(â− â†)2|λ〉+ 1

2
〈λ|(â− â†)|λ〉2 = 1

2
,

(∆Q)2 = 〈λ|Q̂2|λ〉 − 〈λ|Q̂|λ〉2 = + 1
2
〈λ|(â+ â†)2|λ〉 − 1

2
〈λ|(â+ â†)|λ〉2 = 1

2
,

which indeed yields (∆x)(∆px)
(72)

==== ~(∆P )(∆Q) = ~/2. The quantum mechanical

expectation values and uncertainties in the (Q,P )-plane are illustrated schematically in

the picture displayed below. From the quantum mechanical uncertainties (i.e. the grey
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circles with radius 1/
√
2 ) it can be read off that for increasing |λ| both the relative

uncertainty in |λ| and the absolute uncertainty in the phase φλ get smaller. This is

in marked contrast to the case λ = 0, for which the phase φλ is completely undeter-

mined! As will be shown in exercise 6, for |λ| ≫ 1 a classical situation is approached with

substantially decreased relative overlap between coherent states. In addition, upon close

inspection we indeed observe the anticipated uncertainty relation between particle number

and phase:
√
2 |λ|∆φλ ≥ 1/

√
2

(87)
===⇒ ∆n∆φλ ≥ 1/2.

Q

P

λ = 0 : |0〉

Q

P

λ 6= 0 : |λ〉

√
2 |λ|

√
2Reλ

√
2 Imλ

φλ

∆φλ

We finalize by noting that a coherent state is the quantum state that comes closest in

approximating the classical motion of a non-interacting linear harmonic oscillator. Equa-

tion (65) tells us that the annihilation operator â of a linear harmonic oscillator system

is given in the Heisenberg picture by

â
H
(t) = â exp(−iωt) ⇒ â

H
(t)|λ〉 = λ exp(−iωt)|λ〉 = |λ| exp

(
i[φλ−ωt]

)
|λ〉 ,

implying that

〈λ|Q̂
H
(t)|λ〉 =

√
2 Re

(
λ exp(−iωt)

)
and 〈λ|P̂

H
(t)|λ〉 =

√
2 Im

(
λ exp(−iωt)

)

indeed reproduce the time-dependent motion of a linear harmonic oscillator with a mini-

mum of quantum mechanical uncertainty.

1.6.3 Superfluidity

As a second application of the concept of quasi particles, we consider the quantum-

mechanical low-temperature phenomenon of superfluidity. The explicit example that will

be investigated will teach us that a low-energy spectrum of excitations in a bosonic many-

particle system can change radically upon switching from a non-interacting (ideal-gas)

scenario to a scenario in which the particles repel each other weakly. Before we go into the

details, first the concept of superfluidity will be introduced.
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~u

object at rest

−~u

fluid at rest

We speak of a superfluid flow inside a medium

if it is not subject to energy leakage through

friction. By means of an elegant argument

(formulated by L.D. Landau in 1941) it can

be established when a superfluid flow is possi-

ble. To this end we consider a fluid that flows

at uniform velocity ~u past a macroscopic ob-

ject. Next we switch to a frame of reference in

which the fluid is at rest (at absolute zero of

temperature) and the object moves at veloc-

ity −~u . Friction (viscosity) occurs only then,

when the object can convert part of its kinetic

momentum and energy into excitations in the fluid. Let’s have a closer look at such an ex-

citation with momentum ~p and energy ǫ(~p ). The conserved total momentum and energy

of the combined system, consisting of the fluid and the macroscopic object with mass M ,

is given by

~P = −M~u = ~p +M~u ′ and E =
1

2
M~u 2 = ǫ(~p ) +

1

2
M~u ′ 2 ,

with ~u ′ being the velocity of the object after exciting the fluid. By merging both equations

one obtains

ǫ(~p ) + ~p · ~u = − ~p 2

2M
.

From this it follows that the excitation is energetically not possible if the flow velocity of

the fluid satisfies the condition

u ≡ |~u | < ǫ(~p )

|~p | .

If the spectrum of fluid excitations ǫ(~p ) displays a minimum (critical velocity)

uc =
( ǫ(~p )

|~p |
)

min
> 0 , (92)

then superfluidity can set in at velocities u < uc provided that the temperature is suffi-

ciently low. This is the so-called Landau criterion for superfluidity.

We can distinguish a few special shapes (dispersion relations) of the excitation spectrum.

• ǫ(~p ) = ~p 2/(2m): this corresponds to the energy spectrum of free non-relativistic

particles. Example: a gas consisting of non-interacting massive particles. In that

case ǫ(~p )/|~p | = |~p |/(2m) does not possess a positive minimum and according to

Landau’s criterion no superfluidity can occur.

32



• ǫ(~p ) = cs |~p | : this corresponds to the energy spectrum of free massless quanta.

Example: quantized wave phenomena, such as sound waves in a fluid or crystal (see

exercise 5). In that case ǫ(~p )/|~p | equals the speed of propagation cs of the waves

inside the medium. According to Landau’s criterion, superfluidity can occur for flow

velocities u < cs . This example will feature prominently in the explicit calculation

presented below.

• The excitation spectrum has a finite energy gap

∆ = lim
|~p |→0

ǫ(~p ) between the ground state and the

first excited state. Example: the energy gap that

features in the energy spectrum of superconductors

as a result of attractive interactions between special

pairs (Cooper pairs) of conduction electrons. In that

case ǫ(~p )/|~p | clearly displays a minimum and super-

fluidity can occur if the corresponding flow velocity

is low enough.

ǫ(~p )ǫ(~p )/|~p |

0 |~p |

1.6.4 Superfluidity for weakly repulsive spin-0 bosons (part 1)

As an example we investigate the low-energy excitation spectrum of weakly repulsive

bosons. To this end we consider a system consisting of a very large, constant number

N of identical spin-0 particles with mass m. The particles are contained inside a large

cube with edges L and periodic boundary conditions, giving rise to a discrete momentum

spectrum:

{~p = ~~k : kx,y,z = 0 ,± 2π/L,± 4π/L, · · · } . (93)

In addition we assume the temperature to be low enough for the system to be effectively

in the ground state, i.e. effectively we are dealing with a T = 0 system.2

Without interactions among the particles: the total kinetic energy operator of the

non-interacting identical-particle system is diagonal in the momentum representation:

T̂tot =
∑

~k

~2~k 2

2m
â†~k â~k =

1

2

∑

~k 6=~0

~2~k 2

2m

(
â†~k â~k + â†

−~k
â−~k

)
, (94)

with kinetic-energy eigenvalues

E(0) =
∑

~k

~
2~k 2

2m
n
(0)
~k

. (95)

2The relevant details regarding temperature dependence and regarding the quantization aspects of the

container can be found in chapter 2.
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The second expression for T̂tot is given for practical purposes only (see below). It exploits

the symmetry of the momentum summation under inversion of the momenta. By adding

the total momentum operator

~̂Ptot =
∑

~k

~~k â†~k â~k =
1

2

∑

~k 6=~0

~~k
(
â†~k â~k − â†

−~k
â−~k

)
, (96)

we can readily read off the particle interpretation belonging to the creation and annihila-

tion operators used. Particles with energy ~
2~k 2/(2m) and momentum ~~k are created by

â†~k , annihilated by â~k and counted by n̂~k = â†~k â~k . The occupation number n
(0)
~k

indicates

how many particles can be found in the given momentum eigenstate in the absence of mu-

tual interactions. The ground state of the non-interacting N -particle system automatically

has n
(0)
~0

= N and n
(0)
~k 6=~0

= 0.

Including a weak repulsive interaction among the particles: in analogy with ex-

ercise 4, the inclusion of weak pair interactions that depend exclusively on the distance

between the two particles will lead to an additive many-particle interaction term of the

form

V̂ =
1

2

∑

~k,~k ′, ~q

U(q) â†~k â
†
~k ′
â~k ′+~q â~k−~q , (97)

where

U(q) ≡ U(|~q |) =
1

V

∫

V

d~r U(r) exp(−i~q ·~r ) (98)

is the Fourier transform of the spatial pair interaction per unit of volume. As argued in

exercise 4, the pair momentum of the interacting particles remains conserved under the

interaction (owing to translational symmetry) and U(q) merely depends on the absolute

value of ~q (owing to rotational symmetry).

What do we expect for the energy eigenstates in the ineracting case?

• First of all the state |n~0 = N, n~k 6=~0 = 0〉 will no longer be the ground state of the

interacting many-particle system. By applying V̂ we observe

V̂ |n~0 = N, n~k 6=~0 = 0〉 =
1

2

∑

~q

U(q) â†~q â†−~q â~0 â~0 |n~0 = N, n~k 6=~0 = 0〉

=
1

2
N(N−1)U(0)|n~0 = N, n~k 6=~0 = 0〉

+
1

2

√

N(N−1)
∑

~q 6=~0

U(q)|n~0 = N−2, n~q = n−~q = 1, other n~k = 0〉 .

Therefore we expect the true ground state to receive explicit (small) contributions

from pairs of particles that occupy excited 1-particle eigenstates with opposite mo-

mentum. In that way the net momentum ~Ptot= ~0 indeed remains unaffected.
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• In the non-interacting case the low-energy N -particle excitations involve just a few

particles in excited 1-particle states with O(h/L) momenta. Since all particles then

come with O(L) de Broglie wavelengths, we expect the quantum mechanical influ-

ence of the particles to extend across the entire system. Upon including repulsive

effects, we expect a single excitation to involve more than just bringing a single par-

ticle into motion and hence to require more energy than in the non-interacting case.

Approximations for weakly repulsive dilute Bose gases (Bogolyubov, 1947):

if the pair interaction is sufficiently weak and repulsive, we expect for the

low-energy N-particle states that still almost all particles occupy the 1-particle

ground state, i.e. N− 〈n̂~0〉 ≪ N . This allows us to apply two approximation

steps to simplify the many-particle interaction term, which hold as long as the

gas is sufficiently dilute to avoid too many particles from ending up in excited

1-particle states.

Approximation 1: for obtaining the low-energy N -particle states the effect from inter-

actions among particles in excited 1-particle states can be neglected. This boils down to

only considering interaction terms with two or more creation and annihilation operators

that belong to the 1-particle ground state:

V̂ ≈ 1

2
U(0)

n̂2
~0
− n̂~0

︷ ︸︸ ︷

â†~0 â
†
~0
â~0 â~0 + U(0)

n̂~0
︷︸︸︷

â†~0 â~0
∑

~k 6=~0

n̂~k
︷︸︸︷

â†~k â~k +
1

2

n̂~0
︷︸︸︷

â†~0 â~0
∑

~q 6=~0

U(q)
(

â†~q â~q + â†−~q â−~q

)

+
1

2

∑

~q 6=~0

U(q)
(

â~0 â~0 â
†
~q â

†
−~q + â†~0 â

†
~0
â~q â−~q

)

.

• The first term corresponds to the configuration ~k = ~k ′ = ~q = ~0 , where all creation

and annihilation operators refer to the 1-particle ground state.

• The remaining terms cover situations where only two out of three momenta vanish.

The second term corresponds to the configurations ~k = ~q = ~0 and ~k ′ = ~q = ~0 ,

the third term to ~k ′ = ~k − ~q = ~0 and ~k = ~k ′ + ~q = ~0 , and the last term to
~k − ~q = ~k ′ + ~q = ~0 and ~k = ~k ′ = ~0.

Subsequently the number operator n̂~0 can be replaced everywhere by N̂ − ∑
~q 6=~0

n̂~q and the

total number of particles N can be taken as fixed and very large:

V̂ ≈ N(N−1)

2
U(0) +

1

2

∑

~q 6=~0

U(q)
(

N â†~q â~q + N â†−~q â−~q + â~0 â~0 â
†
~q â

†
−~q + â†~0 â

†
~0
â−~q â~q

)

.
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Approximation 2, traditional approach: in Bogolyubov’s approach it is used that

the operators â~0 â~0 and â†~0 â
†
~0

can be effectively replaced by N when applied to the

lowest-energy N -particle states. In principle this could involve extra phase factors e2iφ0

and e−2iφ0 , however, these can be absorbed into a redefinition of the remaining cre-

ation and annihilation operators. This approach suggests that we are dealing with an

approximately classical situation, where the fact that the operators â~0 and â†~0 do not

commute only affect the considered N -particle states in a negligible way (as if they were

coherent states with |λ| ≫ 1). This assumption is plausible, bearing in mind that√
N −n ≈

√
N if N ≫ n. As a result, magnitude-wise the action of â~0 and â†~0 on

states with N−〈n̂~0〉 ≪ N will be effectively the same. In this way the following effective

approximation is obtained for the total Hamilton operator Ĥtot = T̂tot + V̂ applicable to

the lowest lying energy eigenstates:

Ĥtot ≈ N(N−1)

2
U(0) +

1

2

∑

~q 6=~0

(
~
2q2

2m
+N U(q)

)(

â†~q â~q + â†−~q â−~q

)

+
1

2

∑

~q 6=~0

N U(q)
(

â†~q â
†
−~q + â−~q â~q

)

. (99)

Owing to this second approximation the total number of particles is no longer conserved

under the interactions. The justification for such an approach is purely thermodynamic

by nature (see Ch. 2): “the physical properties of a system with a very large number of

particles do not change when adding/removing a particle”. Since approximations are un-

avoidable for the description of complex many-particle systems, non-additive quantities of

this type are ubiquitous in condensed-matter and low-temperature physics. Note, however,

that the total momentum of the many-particle system remains conserved under the inter-

action, since each term in Ĥ adds as much momentum as it subtracts.

Approximation 2, but this time conserving particle number (based on the bachelor

thesis by Leon Groenewegen): in order to avoid that particle number is not conserved

during the second approximation step we can again exploit approximation 1 and write

N ≈ â~0 â
†
~0
. Without loss of accuracy this allows to rewrite the total Hamilton operator

Ĥtot = T̂tot + V̂ as

Ĥtot ≈ N(N−1)

2
U(0) +

1

2

∑

~q 6=~0

(
~2q2

2mN
+ U(q)

)(

â~0 â
†
~0
â†~q â~q + â~0 â

†
~0
â†−~q â−~q

)

+
1

2

∑

~q 6=~0

U(q)
(

â~0 â~0 â
†
~q â

†
−~q + â†~0 â

†
~0
â−~q â~q

)
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≡ N(N−1)

2
U(0) +

1

2

∑

~q 6=~0

(
~2q2

2m
+N U(q)

)(

b̂†~q b̂~q + b̂†−~q b̂−~q

)

+
1

2

∑

~q 6=~0

N U(q)
(

b̂†~q b̂
†
−~q + b̂−~q b̂~q

)

, (100)

where the operators

b̂†
~q 6=~0

=
â~0 â

†
~q√
N

=
â†~q â~0√
N

and b̂~q 6=~0 =
â†~0 â~q√
N

=
â~q â

†
~0√
N

(101)

have a much clearer physical interpretation. By means of b̂†~q a particle is excited from

the 1-particle ground state to the 1-particle state with momentum ~~q 6= ~0, whereas b̂~q

describes the de-excitation of an excited particle to the 1-particle ground state. The total

number of particles is not affected in this way! However, the total Hamilton operator

is identical to equation (99), with the non-additive character of Ĥtot simply following

from the fact that the interaction can both excite pairs of particles from the 1-particle

ground state and make them fall back to the ground state. As a result of the macroscopic

occupation of the 1-particle ground state, the operators b̂†~q and b̂~q approximately behave

as ordinary creation and annihilation operators:

[
b̂~q , b̂~q ′

]
= 0 and

[
b̂~q , b̂

†
~q ′

]
=

1

N

[
â†~0 â~q , â

†
~q ′ â~0

]
=
[
â~q , â

†
~q ′

] n̂~0
N

−
â†~q ′ â~q

N
≈
[
â~q , â

†
~q ′

]
.

More details can be found in the bachelor thesis by Leon Groenewegen.

In analogy with § 1.6.2 it is opportune to switch now to a quasi-particle de-

scription that turns the approximated interacting system into a non-interacting

quasi-particle system, with a corresponding total Hamilton operator that is both

additive and diagonal (i.e. decoupled).

In this quasi-particle description we expect that we have to combine the operator pairs b̂†~q
and b̂−~q as well as b̂~q and b̂†−~q , since

• both operators within such a pair describe the same change in momentum and there-

fore affect the total momentum of the many-particle system in the same way;

• the quasi-particle number operators will then generate the correct terms b̂†~q b̂~q , b̂−~q b̂
†
−~q ,

b̂†~q b̂
†
−~q and b̂−~q b̂~q .

How to find the correct quasi-particle description will be addressed in the next intermezzo.

37



1.6.5 Intermezzo: the Bogolyubov transformation for bosons

Consider a many-particle system consisting of identical bosons that can occupy two fully

specified 1-particle quantum states |q1〉 and |q2〉 , such as the momentum states |~q 〉 and

|−~q 〉 in § 1.6.4. The corresponding creation and annihilation operators are given by â†1 , â
†
2

and â1 , â2 . The corresponding Fock space is spanned by the basis states |n1, n2〉 as given

in equation (28), where n1,2 represents the number of identical particles in each of the two

1-particle quantum states. Next we consider a non-additive Hamilton operator of the form

Ĥ = E (â†1 â1 + â†2 â2) + ∆(â†1 â
†
2 + â2 â1) (E > 0 and ∆ ∈ IR) . (102)

Evidently, the total number of particles is not conserved by such an operator, as the

occupation number of each of the two quantum states is raised by one or lowered by one

in the ∆ terms. However, by means of a so-called Bogolyubov transformation it can be

cast into an additive form up to a constant term.3 Such a transformation has the generic

form

ĉ1 ≡ u1 â1 + v1 â
†
2 , ĉ2 ≡ u2 â2 + v2 â

†
1 (u1,2 and v1,2 ∈ IR) . (103)

The real constants u1 , u2 , v1 and v2 will be chosen in such a way that the operators ĉ†1,2 and

ĉ1,2 satisfy the same bosonic commutator algebra as â†1,2 and â1,2 . This will allow us to

formulate a new particle interpretation, where ĉ†1,2 and ĉ1,2 describe the creation and an-

nihilation of quasi particles. In order to guarantee that both â†1,2 , â1,2 and ĉ†1,2 , ĉ1,2

satisfy bosonic commutation relations, the following conditions should hold:

u1v2 − v1u2 = 0 and u21 − v21 = u22 − v22 = 1

⇒ u1 = + u2 , v1 = + v2 and u21 − v21 = 1

or u1 = −u2 , v1 = − v2 and u21 − v21 = 1 .

(104)

Proof: the commutation relations
[
ĉ1, ĉ1

]
=
[
ĉ2, ĉ2

]
=
[
ĉ1, ĉ

†
2

]
= 0 follow directly from the

bosonic commutation relations for â†1,2 and â1,2 . The indicated conditions for u1,2 and

v1,2 then simply follow from the fact that the other commutators

[
ĉ1, ĉ2

] (103)
====

[
u1 â1 + v1 â

†
2 , u2 â2 + v2 â

†
1

] (26)
==== (u1v2 − v1u2)1̂ ,

[
ĉ1, ĉ

†
1

] (103)
====

[
u1 â1 + v1 â

†
2 , u1 â

†
1 + v1 â2

] (26)
==== (u21 − v21)1̂ ,

[
ĉ2, ĉ

†
2

] (103)
====

[
u2 â2 + v2 â

†
1 , u2 â

†
2 + v2 â1

] (26)
==== (u22 − v22)1̂ ,

have to satisfy the usual bosonic commutation relations.

3If the states |q1〉 and |q2〉 carry opposite quantum numbers, such as the momentum in the states |~q 〉
and |−~q 〉 in § 1.6.4, then both Ĥ and the Bogolyubov transformation conserve these quantum numbers.
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The sign in this transformation can be chosen freely. Usually one chooses the plus sign,

resulting in the following generic form for a bosonic Bogolyubov transformation:

ĉ1 ≡ u1 â1 + v1 â
†
2 , ĉ2 ≡ u1 â2 + v1 â

†
1 (105)

with inverse

â1 = u1 ĉ1 − v1 ĉ
†
2 , â2 = u1 ĉ2 − v1 ĉ

†
1 . (106)

In the literature one usually opts for a parametrization of u1 and v1 in terms of a real

parameter η according to u1 = cosh η and v1 = sinh η , which automatically satisfies the

condition u21 − v21 = 1.

Bringing the non-additive Hamilton operator of equation (102) in additive form.

To this end we consider two combinations of quasi-particle number operators. First of all

ĉ†1 ĉ1 − ĉ†2 ĉ2
(105)
==== (u1 â

†
1 + v1 â2)(u1 â1 + v1 â

†
2) − (u1 â

†
2 + v1 â1)(u1 â2 + v1 â

†
1)

(26)
==== u21 (â

†
1 â1 − â†2 â2) − v21 (â1 â

†
1 − â2 â

†
2)

(26)
==== (u21 − v21)(â

†
1 â1 − â†2 â2)

(104)
==== â†1 â1 − â†2 â2 . (107)

This expression tells us that certain quantum numbers are conserved under the transition

from particles to quasi particles, provided that these quantum numbers take on opposite

values in the states |q1〉 and |q2〉 (see the footnote on p. 38). In § 1.6.6 we will use this

property to conserve the momentum quantum numbers and thereby the total momentum

while performing the transformation, as anticipated in § 1.6.4. Secondly we have

ĉ†1 ĉ1 + ĉ†2 ĉ2 + 1̂ = (u21 + v21)(â
†
1 â1 + â†2 â2 + 1̂) + 2u1v1 (â

†
1 â

†
2 + â2 â1) . (108)

This implies that for |∆| < E the non-additive Hamilton operator Ĥ in equation (102)

can be rewritten as

Ĥ = E (â†1 â1 + â†2 â2 + 1̂) + ∆(â†1 â
†
2 + â2 â1) − E 1̂

=
√
E2−∆2 (ĉ†1 ĉ1 + ĉ†2 ĉ2 + 1̂) − E 1̂ . (109)

Proof: based on equation (108) we are looking for a factor C such that C(u21 + v21) = E

and 2Cu1v1 = ∆. This implies that E and C should have the same sign and that

E2 −∆2 = C2(u21 − v21)
2 (104)
==== C2 E,C > 0

======⇒ |∆| < E and C =
√
E2−∆2 .

As promised at the start of this intermezzo, the Hamilton operator has been cast into a

form that consists exclusively of a unit operator and number operators for quasi particles.

In exercise 7 it will be shown that the corresponding ground state (i.e. the state without

quasi-particle excitations) is comprised of coherently created pairs of particles. In § 1.7.2
the fermionic version of all this will be derived by employing a similar procedure.
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1.6.6 Superfluidity for weakly repulsive spin-0 bosons (part 2)

The approximation (100) for the total Hamilton operator at the end of § 1.6.4 is exactly of

the form discussed in the previous intermezzo. Therefore, an appropriate set of Bogolyubov

transformations can be performed to recast the Hamilton operator in the additive form

Ĥ ≈ N(N−1)

2
U(0) − 1

2

∑

~q 6=~0

(
~2q2

2m
+N U(q)− ǫ~q

)

+
1

2

∑

~q 6=~0

ǫ~q (ĉ
†
~q ĉ~q + ĉ†−~q ĉ−~q)

=
N(N−1)

2
U(0) − 1

2

∑

~q 6=~0

(
~2q2

2m
+N U(q)− ǫ~q

)

+
∑

~q 6=~0

ǫ~q ĉ
†
~q ĉ~q , (110)

with corresponding quasi-particle excitation spectrum

ǫ~q = ǫ−~q =
~2q2

2m

√

1 +
4mN U(q)

~2q2
. (111)

For each pair of momenta ~q and − ~q with ~q 6= ~0 a bosonic Bogolyubov transformation

of the type

ĉ~q ≡ u~q b̂~q + v~q b̂
†
−~q , ĉ−~q ≡ u~q b̂−~q + v~q b̂

†
~q

should be used, based on the following energy parameters in equations (102) and (109):

E → 1

2

(
~2q2

2m
+N U(q)

)

, ∆ → 1

2
NU(q) .

For the total momentum operator we find with the help of approximation 2 on p. 37 that

~̂Ptot
(96)

====
1

2

∑

~q 6=~0

~~q
(
â†~q â~q − â†−~q â−~q

)
≈ 1

2

∑

~q 6=~0

~~q
â~0 â

†
~0

N

(
â†~q â~q − â†−~q â−~q

)
(112)

(101)
====

1

2

∑

~q 6=~0

~~q
(
b̂†~q b̂~q − b̂†−~q b̂−~q

) (107)
====

1

2

∑

~q 6=~0

~~q
(
ĉ†~q ĉ~q − ĉ†−~q ĉ−~q

)
=
∑

~q 6=~0

~~q ĉ†~q ĉ~q .

Now we can read off the new particle interpretation. Quasi particles with energy ǫ~q and

momentum ~~q are created by ĉ†~q , annihilated by ĉ~q and counted by ĉ†~q ĉ~q . The ground

state of the new many-particle system still contains no quanta with momentum ~~q 6= ~0 .

However, both the composition of the ground state in terms of the original particles and

the shape (dispersion relation) of the elementary excitation spectrum have changed as a

result of the interaction.
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1) Approximated excitation spectrum for weakly repulsive spin-0 bosons:

• For large excitation energies ~2q2 ≫ mN |U(q)| the quasi-particle excitation spec-

trum ǫ~q ≈ ~2q2/(2m)+NU(q) hardly differs from the non-interacting spectrum. As

such, the quasi particles have the same properties as the original bosons.

• For small excitation energies ~2q2 ≪ mN U(q) the quasi-particle excitation spec-

trum ǫ~q ≈ ~q
√

N U(q)/m ≈ ~q
√

N U(0)/m changes substantially. The quasi

particles describe massless quanta, i.e. quantized sound waves inside the considered

medium with speed of propagation

cs = lim
q→0

ǫ~q
~q

=

√

N U(0)
m

for U(0) =
1

V

∫

V

d~r U(r) . (113)

The low-energy quasi-particle interpretation of the

interacting system therefore differs fundamentally

from the original particle interpretation of the non-

interacting system. Moreover, we have gone from a

free-particle system that does not allow for the possi-

bility of superfluidity to an interacting system that can

display superfluidity if u < uc ≈ cs .

ǫ~q

|~q |

linear

quadratic

2) Approximated ground state for weakly repulsive spin-0 bosons: another thing that has

changed substantially is the composition of the ground state of the interacting many-

particle system in terms of the original particles (see exercise 7).

• In the non-interacting case all particles occupy the 1-particle ground state with mo-

mentum ~0 and energy 0 (i.e. n
(0)
~0

= N and n
(0)
~k 6=~0

= 0). This condensate has spatial

correlations on all distance scales in view of the corresponding macroscopic de Broglie

wavelength.

• The latter still holds in the interacting case. However, the particle excitations for
~k 6= ~0 are replaced by quasi-particle excitations with the same momentum. In the

new ground state none of these quasi-particle excitations are occupied (i.e. n~k=~0 ≈ N

and for the quasi particles ñ~k 6=~0 = 0). This situation without excited quasi particles

differs markedly from the situation without excited particles. Written in terms of

the original particle interpretation the new condensate actually contains particles

that are not in the ground state. To be more precise, it contains coherently excited

particle pairs with opposite momenta. The increase in kinetic energy is in that case

compensated by the decrease in repulsive interaction energy.
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Remark: if the average spatial pair interaction U(0) would have been attractive, i.e. if

U(0) < 0, then the ground state would have been unstable. This can be read off directly

from the spectrum (111), which would become complex at very low energies. In that case

it would be energetically favourable for the system to have a large number of low-energy

particle pairs outside of the 1-particle ground state, which invalidates the assumptions of

the previous approach. The fermionic version of such a pairing effect and the ensuing

“pair-bonding” instability play a crucial role in the quantum mechanical description of

superconductivity. A first exposure to this phenomenon can be found in exercise 9.

1.6.7 The wonderful world of superfluid 4He: the two-fluid model

|~q | [Å
−1

]

ǫ~q ∗ k−1
B

[K]

phonons
rotons

The many-particle system worked out above is

often used to model the low-energy excitations

in liquid 4He, which becomes superfluid be-

low Tλ = 2.18K (P.L. Kapitsa, J.F. Allen and

A.D. Misener, 1937). At this point we have to

add a critical note. The pair interactions cannot

be truly weak, as required by the approximation

method, as we are dealing with a fluid rather than

a gas. As a consequence, a second branch of ex-

citations enters the spectrum at higher energies,

lowering the critical velocity for superfluidity.

fraction helium I

fraction helium IIAt the absolute zero of temperature 4He is com-

pletely superfluid, i.e. no low-energy excitations

are excited thermally. At a temperature around

0.9K a noticable influence of thermally induced

excitations sets in. On the temperature inter-

val 0 < T < Tλ there are effectively two fluids.

On the one hand there is the excitation-free con-

densate. This fluid, referred to as helium II, is

superfluid and carries no thermal energy. On the

other hand there is the collection of thermally induced quasi-particle excitations. This

fluid, referred to as helium I, carries the thermal energy and gives rise to friction. For

T > Tλ the influence of the helium II component is negligible. By means of this so-called

two-fluid model a few surprising phenomena can be understood.

How to recognize Tλ (P.L. Kapitsa, 1937): a remarkable superfluid phenomenon is that

the boiling of liquid helium abruptly subsides the moment that the temperature drops be-

low Tλ . Helium I will flow away from any spot where the fluid is locally warmer, thereby

carrying away thermal energy, whereas non-thermal helium II will flow towards that spot in
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order to compensate for the drop in mass density. This superfluid helium II is characterized

by an infinitely efficient heat conductance, making it effectively impossible to have a tem-

perature gradient in the fluid. Already for temperatures just below Tλ the heat transport

becomes a millionfold more efficient and gas bubbles will have no time to form.

Friction for T < Tλ : objects moving through 4He at temperatures below Tλ experience

friction exclusively from the helium I component and not from the helium II component.

This allows us to experimentally determine the helium I and helium II fluid fractions (see

the picture on the previous page). For temperatures below about 0.9K the fluid behaves

almost entirely as a superfluid, giving rise to a persistent current once the fluid is set in

motion (e.g. at higher temperature).

Frictionless flow through porous media: as a result of friction the helium I component can

not flow through very narrow capillary channels. However, the superfluid helium II compo-

nent can do this without the need for a pressure difference between the two ends of such a

channel. So, 4He can flow through porous surfaces if T < Tλ . This flow will be completely

frictionless. Such a situation where a selective superfluid flow occurs is called a super leak.

Fisher and Pickett, Nature 444, 2006The fontain effect (J.F. Allen and H. Jones, 1938):

consider an experimental set-up consisting of two

containers with 4He that are connected by means

of a porous plug. Both containers are cooled down

to the same temperature below Tλ . If the tem-

perature in one of the containers is raised slightly,

e.g. by shining a pocket torch on it, then the num-

ber of thermally induced excitations will increase

in that container. As a result, the helium I com-

ponent increases at the expense of the helium II

component. In order to compensate for the differ-

ence in helium II concentration, helium II from the

other container will pass through the porous plug.

However, a compensatory reverse flow of helium I

to the other container, where the helium I concen-

tration is lower, is hampered by friction. Conse-

quently, an increased fluid concentration will ac-

cumulate in the heated container (heat pump). By providing the heated container with a

capillary safety-relief outlet, a spectacular helium fountain (fontain effect) is produced.
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Creeping helium film: 4He has as an additional

property that the mutual van der Waals bond-

ing is weaker than the van der Waals bonding

to other atoms. Because of this a 30 nm thick

2-dimensional helium film (Rollin film) attaches

itself to the entire wall of a closed helium con-

tainer. If part of this helium film could flow or

drip to a lower level within the container (see

picture), then a superfluid helium II flow will

start that terminates only when the helium level

reaches its energetic optimum everywhere in the

container. During this process the helium liquid is seemingly defying gravity.

In case you want to see some video evidence for the bold statements that were made about

the weird and wacky world of superfluid 4He, then you are advised to have a look at

http://www.youtube.com/watch?v=2Z6UJbwxBZI or to do your own YouTube search.

1.7 Examples and applications: fermionic systems

1.7.1 Fermi sea and hole theory

Consider a fermionic many-particle system consisting of a very large, constant number N

of electrons with mass m. The electrons are contained inside a large cube with edges L

and periodic boundary conditions, giving rise to a discrete momentum spectrum:

{~p = ~~k : kx,y,z = 0 ,± 2π/L,± 4π/L, · · · } . (114)

Without mutual interactions among the electrons the total kinetic-energy operator

of the non-interacting identical-particle system can be written in diagonal form in the

momentum representation:

T̂tot =
∑

~k

∑

ms=±1/2

~
2~k 2

2m
â†~k,ms

â~k,ms
, (115)

with kinetic energy eigenvalues

E =
∑

~k,ms

~2~k 2

2m
n~k,ms

. (116)

By adding the total momentum operator and total spin operator along the z-direction

~̂Ptot =
∑

~k,ms

~~k â†~k,ms
â~k,ms

and ~̂Stot · ~ez =
∑

~k,ms

ms~ â
†
~k,ms

â~k,ms
(117)
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we can trivially read off the particle interpretation belonging to the creation and an-

nihilation operators used. Particles with kinetic energy ~2~k 2/(2m), momentum ~~k and

spin component ms~ along the z-axis are created by â†~k,ms
, annihilated by â~k,ms

and

counted by n̂~k,ms
= â†~k,ms

â~k,ms
. The occupation number n~k,ms

indicates how many parti-

cles can be found in the given momentum and spin eigenstate in the absence of mutual

interactions.

Ground state : for the ground state of the non-interacting N -electron system this auto-

matically implies that n~k,ms
= 1 if |~k | ≤ kF and n~k,ms

= 0 if |~k | > kF . Such a system is

called a completely degenerate electron gas. The fully specified 1-particle energy levels are

occupied from the bottom up by one electron up to the Fermi-energie EF = ~2k2F/(2m).

In that case

N =
∑

~k,ms

n~k,ms
= 2

∑

|~k |≤kF

and Eground = 2
∑

|~k |≤kF

~2~k 2

2m
. (118)

The corresponding ground state is given by

|Ψground〉 =
∏

|~k |≤kF

â†~k, 1
2

â†~k,− 1
2

|Ψ(0)〉 ⇒ â~k,ms
|Ψground〉 = 0 if |~k | > kF . (119)

This ground state, better known as the Fermi sea , has vanishing total momentum and

spin, but a substantial kinetic energy. Even in the ground state the electron gas exerts

pressure (see Ch. 2)!

kF

empty

occupied

ground state:

full Fermi sea

~k1

~k2

electron–hole

excitation

Excited states : the simplest excited states

can be obtained by exciting a single electron

in the Fermi sea to an energy that places it

above the Fermi sea (see picture). As the

states inside the Fermi sea are all occupied,

excitations are (energetically) easier from en-

ergy levels near the edge of the Fermi sea than

from lower-lying energy levels. This aspect

plays a decisive role in the thermal properties

of fermionic many-particle systems at moderate temperatures (see Ch. 2). An excitation

of this type can be represented in creation and annihilation language in the following way:

|Ψex〉 = â†~k2,ms2

â~k1,ms1
|Ψground〉 if |~k1| ≤ kF < |~k2| . (120)

Since the excitation creates a hole in the Fermi sea, it also goes under the name of

electron–hole excitation. In the quantum mechanical approach of hole theory this aspect
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is highlighted by employing the Bogolyubov transformations

â~k,ms
≡ ĉ†

−~k,−ms
if |~k | ≤ kF and â†~k,ms

≡ ĉ†~k,ms
if |~k | > kF (121)

to switch to a description where a hole in the Fermi sea is upgraded to the status of

quasi particle with opposite quantum numbers. In that case the Fermi sea constitutes

a state without any holes in the sea or excitations above it, i.e. the Fermi sea is the cor-

responding quasi-particle vacuum state! An excited state of the above type simply boils

down to quasi-particle pair creation. The hole-theory approach is particularly useful for

the description of electrical conduction and for Dirac’s attempt to set up relativistic QM.

This approach is only possible for fermions: we have actually made use of

Pauli’s exclusion principle, which states that n~k,ms
∈ [0, 1], in order to in-

terchange the role of empty and occupied in the particle interpretation of hole

theory. The advantage of doing this is that the Fermi sea (ground state) is the

vacuum state within this alternative particle interpretation and that an excited

state corresponds to the creation of a quasi-particle pair. In the hole-theory ap-

proach conservation of the number of (quasi) particles is sacrificed deliberately

for achieving ease of use!

Weak interactions among the electrons: for weakly repulsive interactions we can in

general use perturbation theory, utilizing the above-mentioned non-interacting situation

as unperturbed starting point. According to hole theory the Fermi sea can be treated as

vacuum state. For weakly attractive interactions the situation changes substantially. In

exercise 9 it will be shown how the presence of the Fermi sea of occupied states can give

rise to the so-called Cooper instability. This entails that two electrons that occupy states

above a Fermi sea of occupied states will always form a “bound” pair with finite binding

energy as long as their mutual interaction is attractive. In contrast to a 1-particle bound

state in a potential well, this many-particle binding effect occurs irrespective of the strength

of the interaction. Moreover, it cannot be described by means of perturbation theory.

1.7.2 The Bogolyubov transformation for fermions

Also a fermionic version of the Bogolyubov transformation of § 1.6.5 exists. To this end

we consider exactly the same 2-level system as described on page 38. Only after equation

(103) things will start to deviate. So, also here the transformation will be defined by

ĉ1 = u1 â1 + v1 â
†
2 and ĉ2 = u2 â2 + v2 â

†
1 .

In contrast to the bosonic case, both â†1,2 , â1,2 and ĉ†1,2 , ĉ1,2 have to satisfy fermionic

anticommutation relations. That implies the following conditions for the real constants
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u1,2 and v1,2 :

u1v2 + v1u2 = 0 and u21 + v21 = u22 + v22 = 1

⇒ u1 = + u2 , v1 = − v2 and u21 + v21 = 1

or u1 = −u2 , v1 = + v2 and u21 + v21 = 1 .

(122)

Proof: the anticommutation relations
{
ĉ1, ĉ1

}
=
{
ĉ2, ĉ2

}
=
{
ĉ1, ĉ

†
2

}
= 0 follow directly

from the fermionic anticommutation relations for â†1,2 and â1,2 . The indicated conditions

for u1,2 and v1,2 then simply follow from the fact that the other anticommutators

{
ĉ1, ĉ2

} (103)
====

{
u1 â1 + v1 â

†
2 , u2 â2 + v2 â

†
1

} (27)
==== (u1v2 + v1u2)1̂ ,

{
ĉ1, ĉ

†
1

} (103)
====

{
u1 â1 + v1 â

†
2 , u1 â

†
1 + v1 â2

} (27)
==== (u21 + v21)1̂ ,

{
ĉ2, ĉ

†
2

} (103)
====

{
u2 â2 + v2 â

†
1 , u2 â

†
2 + v2 â1

} (27)
==== (u22 + v22)1̂ ,

have to satisfy the usual fermionic anticommutation relations. The sign in this transforma-

tion can be chosen freely. Usually one chooses the upper sign (i.e. u1 = u2 and v1 = − v2),

resulting in the following generic form for a fermionic Bogolyubov transformation:

ĉ1 ≡ u1 â1 + v1 â
†
2 , ĉ2 ≡ u1 â2 − v1 â

†
1 (123)

with inverse

â1 = u1 ĉ1 − v1 ĉ
†
2 , â2 = u1 ĉ2 + v1 ĉ

†
1 . (124)

In the literature one usually opts for a parametrization of u1 and v1 in terms of a real

parameter θ according to u1 = cos θ and v1 = sin θ , which automatically satisfies the

condition u21 + v21 = 1.

Special case: if u1 = u2 = 0, then the signs of both v1 and v2 can be chosen indepen-

dently. Usually one will choose v1 = v2 = 1, as we did in § 1.7.1 while describing the quasi

particles in hole theory.

The fermionic quasi-particle vacuum : removing a particle from a particular state is in

the fermionic case equivalent with the creation of a hole in the occupation of that state. The

type of quasi particle we are dealing with here is therefore a linear combination of a particle

and a hole. This type of quasi particle is used abundantly in condensed-matter physics for

describing systems of interacting fermions such as conduction electrons. In exercise 8 the

fermionic quasi-particle vacuum |0̃〉 will be expressed in terms of the original basis states
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|n1, n2〉 , resulting in the compact expression

|0̃〉 up to a phase factor
============= u1 |0, 0〉 − v1 |1, 1〉 =

(
u1 − v1 â

†
1 â

†
2

)
|0, 0〉 . (125)

Bringing the non-additive Hamilton operator of equation (102) in additive form.

To this end we consider two combinations of quasi-particle number operators. First of all

ĉ†1 ĉ1 − ĉ†2 ĉ2
(123)
==== (u1 â

†
1 + v1 â2)(u1 â1 + v1 â

†
2) − (u1 â

†
2 − v1 â1)(u1 â2 − v1 â

†
1)

(27)
==== u21 (â

†
1 â1 − â†2 â2) − v21 (â1 â

†
1 − â2 â

†
2)

(27)
==== (u21 + v21)(â

†
1 â1 − â†2 â2)

(122)
==== â†1 â1 − â†2 â2 . (126)

This expression tells us again that certain quantum numbers are conserved under the

transition from particles to quasi particles, provided that these quantum numbers take on

opposite values in the states |q1〉 and |q2〉 .

Secondly we have

ĉ†1 ĉ1 + ĉ†2 ĉ2 − 1̂ = (u21 − v21)(â
†
1 â1 + â†2 â2 − 1̂) + 2u1v1 (â

†
1 â

†
2 + â2 â1) . (127)

The non-additive Hamilton operator Ĥ in equation (102) can then be rewritten as

Ĥ = E (â†1 â1 + â†2 â2 − 1̂) + ∆(â†1 â
†
2 + â2 â1) + E 1̂

= ±
√
E2+∆2 (ĉ†1 ĉ1 + ĉ†2 ĉ2 − 1̂) + E 1̂ . (128)

Proof: based on equation (127) we are looking for a factor C such that C(u21 − v21) = E

and 2Cu1v1 = ∆. From this it follows that E2+∆2 = C2(u21+ v21)
2 (122)
==== C2 , where the

sign of C is determined by the sign of (u21 − v21)/E .

As desired, the Hamilton operator has been cast into a form that consists exclusively of

a unit operator and number operators for quasi particles. For the description of electron

holes in § 1.7.1 we have actually used a special version of this where ĉ1 = â†2 en ĉ2 = â†1 .

In that case E (â†1 â1 + â†2 â2) = −E (â1 â
†
1 + â2 â

†
2 − 2) = −E (ĉ†2 ĉ2 + ĉ†1 ĉ1 − 2). From the

perspective of the Fermi energy, the creation of a hole in the Fermi sea results in a negative

energy contribution. As noted in the proof given above, the sign of the energy of the quasi

particle is fixed by the sign of (u21− v21)/E, which indeed indicates whether the considered

type of quasi particle is more particle than hole (positive sign) or more hole than particle

(negative sign).
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2 Quantum statistics

In this chapter the concept of mixed quantum mechanical ensembles will be

introduced. Based on this concept the various types of quantum statistics will

be derived, which govern many-particle systems that are in thermal equilibrium.

Similar material can be found in Griffiths (the quantum statistics part in Ch. 5),

Merzbacher (Ch. 15,16,22) and Bransden & Joachain (Ch. 10,14).

Up to now we have been working with pure quantum mechanical ensembles belonging to a

pure quantum state, i.e. a collection of identical, independent, identically prepared systems

that can be described by a single state function |ψ〉 . This state function can be determined

up to a phase by performing a complete measurement on a complete set of commuting ob-

servables. The systems that make up the ensemble are independent of each other and can

consist of individual particles, interacting particle clusters (such as atoms/molecules) or

even entire many-particle systems (such as gases). These pure quantum states can be

realized experimentally by employing dedicated filters, such as a Stern–Gerlach filter for

selecting a pure spin state.

Question: What happens if not all the degrees of freedom that are relevant for the consid-

ered systems are taken into account, thereby leaving out certain quantum information?

cooled gas reservoir:

O(1023) particles

our favourite system

cooling elements

This situation actually reflects the unavoidable

reality of the quantum mechanical world that we

experience. During a quantum experiment the stud-

ied system is for instance prepared by filters and

subsequently subjected to the environment of the

experimental set-up (gases, electromagnetic fields,

etc.). All these environmental influences caused

by the contact with the macroscopic outside world

in fact determine the properties of the quantum

mechanical ensemble that eventually will be mea-

sured. Examples of this are quantum systems

that have their themodynamical properties fixed by the contact with a macroscopic

gas reservoir present within the measurement apparatus, or a particle beam that

is produced by a particle source and subsequently passes through a set of filters.

It is not feasible to determine the state function of the entire experimental apparatus by

means of a complete measurement. The macroscopic outside world simply has way too

many degrees of freedom. In such situations the only practical approach is to explic-

itly integrate out (read: leave out) the degrees of freedom of the outside world, thereby

reducing the quantum mechanical description to the space spanned by the degrees of free-
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dom of the studied system itself. Note: sometimes it is not really necessary to integrate

out certain degrees of freedom, but it simply happens to be more convenient to do so. An

example is the polarization of a particle beam, for which it is convenient not to have to

deal with the spatial degrees of freedom (see § 2.2).

Integrating out degrees of freedom: to get an idea of what happens when integrating

out quantum mechanical degrees of freedom, we consider a spin-1/2 system described by

the following normalized pure state function in the position representation:

χ(~r ) =

(

ψ+(~r )

ψ−(~r )

)

= ψ+(~r )χ 1
2
, 1
2
+ ψ−(~r )χ 1

2
,− 1

2
,

with

∫

d~r ψ∗
λ(~r )ψλ′(~r ) = Wλδλλ′ (λ, λ′ = ±) and W+ +W− = 1 .

For convenience we have taken ψ±(~r ) to be orthogonal. Next we integrate out the spatial

degrees of freedom in order to reduce the quantum mechanical description to the two-

dimensional spin space. Consider to this end an arbitrary spin observable Â, which acts as

a 2×2 matrix A in spin space and which has no action in position space. The corresponding

expectation value for the state χ(~r ) then reads

〈Â〉 =

∫

d~r χ†(~r )Aχ(~r ) = Tr
(

A

∫

d~r χ(~r )χ†(~r )
)

≡ Tr(Aρ) ,

with ρ =

~r integrated out
︷ ︸︸ ︷
∫

d~r 〈~r |χ〉〈χ|~r 〉 =

(

W+ 0

0 W−

)

= density matrix in spin space

and Tr = trace in spin space .

Here we used that A commutes with ~r and we exploited the fact that for D-dimensional

vectors v and D×D matrices M the following holds:

D∑

i,j=1

v∗iMij vj =

D∑

i,j=1

Mij (vjv
∗
i ) ≡

D∑

i,j=1

MijWji = Tr(MW ) .

The expectation value for the complete system splits up according to

〈Â〉 = W+ Tr
(
Aχ 1

2
, 1
2
χ†

1
2
, 1
2

)
+ W−Tr

(
Aχ 1

2
,− 1

2
χ†

1
2
,− 1

2

)
= W+ 〈Â〉+ + W− 〈Â〉−

into two independent expectation values, one for the pure spin state χ 1
2
, 1
2

with weight

W+ ≥ 0 and one for the pure spin state χ 1
2
,− 1

2
with weight W− = 1 − W+ ≥ 0. The
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quantum mechanical description in spin space is now determined by the density matrix ρ,

which is composed of statistical weights and projection operators on pure states:

ρ = W+ χ 1
2
, 1
2
χ†

1
2
, 1
2

+ W− χ 1
2
,− 1

2
χ†

1
2
,− 1

2

= W+

(

1 0

0 0

)

+ W−

(

0 0

0 1

)

.

Mixed ensembles : integrating out quantum mechanical degrees of freedom gives rise

to so-called mixed ensembles. These ensembles are incoherent mixtures (i.e. statistical

mixtures) of pure subensembles, implying double statistics:

• on the one hand the pure quantum mechanical state functions that describe the

pure subensembles have a statistical interpretation;

• on the other hand the complete mixed ensemble comprises of a statistical mixture

of such subensembles.

The quantum physics in such scenarios is determined by the density operator, which

contains the relevant properties of the mixed ensemble. These relevant properties are

the pure quantum mechanical state functions that describe the pure subensembles and

the corresponding statistical weights.

You might be inclined to think that a mixed ensemble somehow corresponds to

a kind of superposition of pure state functions. As will become clear from the

example given below, this is not the case.

Mixed ensembles vs pure ensembles: consider the previous example with equal statis-

tical weights W± = 0.5, resulting in a statistical mixture with density matrix ρ = 1
2
I for

which 50% of the particles are in the spin state χ 1
2
, 1
2
and 50% in the spin state χ 1

2
,− 1

2
.

Such an incoherent mixture of pure spin states χ 1
2
,± 1

2
cannot be represented as a linear

combination of states such as (χ 1
2
, 1
2
+ χ 1

2
,− 1

2
)/
√
2, in spite of the fact that such a pure

state indeed corresponds to a 50% chance to measure the particles in each of the two spin

states. However, other measurable quantities exist that will result in completely different

measurement results in both situations. For instance, the state (χ 1
2
, 1
2
+ χ 1

2
,− 1

2
)/
√
2 is a

pure eigenstate of the spin operator Ŝx belonging to the eigenvalue ~/2. Upon measuring

the spin in the x-direction the outcome of the measurement will be fixed: 100% of the

particles will correspond to the measurement value ~/2. For the mixed ensemble, however,

we have

〈Ŝx〉 =
~

2
Tr(σxρ)

ρ̂ = 1

2
1̂

=======
~

4
Tr(σx) = 0 6= ~

2
,

since none of the two types of particles on which the measurement is performed actu-

ally is in an eigenstate of Ŝx . An incoherent mixture in fact implies that the phases of

51



the separate components in the mixture are unrelated, which excludes a linear combina-

tion of pure state functions. The ensemble splits up in independent subensembles , each

with a specific spin state and statistical weight.

Density operators find applications in many branches of physics. In this chapter we will

encounter a few characteristic examples from scattering theory and statistical physics

(with applications in solid-state physics, nuclear physics, astrophysics and low-temperature

physics). Density operators are also the tools of choice for the description of the state-

function collapse of a microscopic system as caused by the influence of a macroscopic piece

of measurement equipment.

2.1 The density operator (J. von Neumann, 1927)

Consider an ensemble consisting of a statistical mixture of N independent subensembles,

each described by a normalized pure state function

|ψ(α)〉 ≡ |α〉 , with 〈α|α〉 = 1 (α = 1 , · · · , N ) . (129)

Each subensemble is a collection of identical, independent, identically prepared systems

described by the corresponding state function |α〉 . The independent systems represented

by the various state functions |α〉 are of identical composition, but they differ by the state

they are in. There is no need for these states to be eigenstates of one and the same observ-

able, so that in general 〈α|α′〉 6= 0 if α 6= α′. An example could be an electron beam of

which 40% of the particles are polarized along the z-axis, 30% along the y-axis and 30%

along the x-axis. This beam is composed of three independent subensembles that are each

described by a pure spin function. The three types of systems described by these pure spin

functions all consist of one electron, but the spin is quantized in a different direction in

each of the three cases.

From expectation value to ensemble average: take {|n〉} to be an orthonormal set

of eigenstates belonging to a complete set of commuting observables of the considered type

of system. For discrete values of n we then have

〈n|n′〉 = δnn′ and
∑

n

|n〉〈n| = 1̂ . (130)

For n-values belonging to the continuous part of the spectrum, as usual δnn′ should be

replaced by δ(n−n′) and the sum by an integral. Next we can decompose the normalized

pure state functions |α〉 in terms of this basis according to

|α〉 (130)
====

∑

n

|n〉〈n|α〉 ≡
∑

n

c(α)n |n〉 , with 〈α|α〉 =
∑

n

|c(α)n |2 = 1 . (131)
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Let Â be an observable pertaining to the considered type of system, with corresponding

(classical) dynamical variable A . For each of the normalized states |α〉 the expectation

value (= quantum mechanical average) of the dynamical variable A is given by

〈Â〉α ≡ 〈α|Â|α〉 (130)
====

∑

n,n′

〈α|n′〉〈n′|Â|n〉〈n|α〉 (131)
====

∑

n,n′

c(α)n c
(α) ∗
n′ 〈n′|Â|n〉 . (132)

Subsequently we take into account that we are dealing with a statistical mixture of pure

subensembles. To this end we indicate the statistical weight of the pure state |α〉 in the

ensemble by Wα , corresponding to the fraction of systems in the state |α〉. In short, the

factor Wα is the probability for the system to be in the state |α〉 . The ensemble average

(= statistical average) [Â] of the dynamical variable A can be expressed in a representa-

tion independent way as

[Â] =

N∑

α=1

Wα 〈Â〉α , with Wα ∈ [0, 1] and

N∑

α=1

Wα = 1 . (133)

Definition of the density operator: by means of equation (132) the expression for the

ensemble average can be rewritten as

[Â] =

N∑

α=1

∑

n,n′

Wα 〈n|α〉〈α|n′〉〈n′|Â|n〉 ≡
∑

n,n′

〈n|ρ̂|n′〉〈n′|Â|n〉 , (134)

where the density operator ρ̂ of the ensemble is composed of projection operators on the

pure states:

ρ̂ =

N∑

α=1

Wα |α〉〈α| . (135)

Since Wα ∈ IR, this density operator is hermitian and therefore

∀
ψ1,ψ2

〈ψ2|ρ̂|ψ1〉∗
(135)
====

N∑

α=1

Wα 〈ψ2|α〉∗〈α|ψ1〉∗ =
N∑

α=1

Wα 〈ψ1|α〉〈α|ψ2〉 = 〈ψ1|ρ̂|ψ2〉 .

In the n-representation the density operator is characterized by the so-called density matrix

ρnn′ = 〈n|ρ̂|n′〉 (131),(135)
=======

N∑

α=1

Wαc
(α)
n c

(α) ∗
n′ . (136)

In matrix language the ensemble average of the dynamical variable A simply reads

[Â ]
(134)
====

∑

n,n′

〈n|ρ̂|n′〉〈n′|Â|n〉 (130)
====

∑

n

〈n|ρ̂Â|n〉 = Tr(ρ̂Â) = [Â ] . (137)
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Properties of the density operator:

• Since the density operator ρ̂ is hermitian, an orthonormal basis exists of density-

operator eigenstates {|k〉} with real eigenvalues {ρk} . Such an eigenvalue

ρk = 〈k|ρ̂|k〉 (136)
====

N∑

α=1

Wα |c(α)k |2 ∈ [0, 1] (138)

can be interpreted as the probability for the system to be in the pure state |k〉 .

• Conservation of probability implies

Tr(ρ̂) = 1 . (139)

Proof: Tr(ρ̂)
(137)
==== [1̂]

(133)
====

N∑

α=1

Wα 〈1̂〉α
〈α|α〉=1
====

N∑

α=1

Wα
(133)
==== 1 .

• For arbitrary ensembles we have

Tr(ρ̂2) ≤ 1 . (140)

Proof: in terms of the eigenvalues ρk ∈ [0, 1] of ρ̂ one readily finds

[ ρ̂ ]
(137)
==== Tr(ρ̂2) =

∑

k

ρ2k ≤
∑

k

ρk = Tr(ρ̂)
(139)
==== 1 .

• The following criterion holds for a system in a pure state:

Tr(ρ̂2) = 1 ⇔ ρ̂2 = ρ̂ ⇔ the system is in a pure state . (141)

Proof (⇐): assume that the system is in the pure state |λ〉 . In that case Wα = δαλ

and the density operator ρ̂
(135)
==== |λ〉〈λ| is a projection operator on |λ〉 . This

automatically implies that ρ̂2 = ρ̂ and Tr(ρ̂2) = Tr(ρ̂) = 1.

Proof (⇒): let Tr(ρ̂2) = Tr(ρ̂) = 1. In terms of the orthonormal basis {|k〉} of

eigenstates of ρ̂ we then have

∑

k

ρ2k =
∑

k

ρk = 1
ρ2k ≤ ρk
===⇒ ∃

λ
ρk = δkλ

⇒ spectral decomposition : ρ̂ =
∑

k

ρk |k〉〈k| = |λ〉〈λ| = ρ̂2 .

Because the density operator can apparently be expressed as a projection operator

ρ̂ = |λ〉〈λ| , it follows automatically that we are dealing with a pure ensemble with

the system being in the pure state |λ〉 .
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If the system happens to be in a pure state |λ〉 , then

ρ̂ = |λ〉〈λ| ≡ ρ̂λ (142)

and all eigenvalues of ρ̂ equal 0 except for one eigenvalue 1 belonging to the eigen-

state |λ〉 . In this situation the ensemble average of the dynamical variable A obviously

coincides with the expectation value for the state |λ〉 :

[Â] = Tr(ρ̂λÂ)
(133)
==== 〈Â〉λ = 〈λ|Â|λ〉 . (143)

2.2 Example: polarization of a spin-1/2 ensemble

As a first application of the density-matrix formalism we consider a beam of spin-1/2 par-

ticles. A good understanding of the properties of such a beam is of particular interest

for scattering experiments in high-energy physics, since at least one of the beams usu-

ally involves spin-1/2 particles (such as electrons, positrons, protons or antiprotons). In

scattering experiments the beams are sufficiently dilute to treat the beam particles as in-

dependent. In this sense the beam should not be regarded as an identical-particle system

anymore, but rather as a (mixed) ensemble of beam particles that can be used to perform

a repeated quantum mechanical scattering experiment.

The pure states of the beam particles can for instance be decomposed in terms of the

basis {|~p,ms〉 : ~p ∈ IR3 and ms = ± 1/2} , where ~p is the momentum eigenvalue of

the beam particle and ms~ the spin component along the z-axis. Next we leave out the

momentum variables from the quantum mechanical description and choose to work with

the reduced density matrix in the 2-dimensional spin space. Spin information is actually

an important tool to analyse scattering data in detail.

Preparatory step: combining two pure beams.

Consider two beams. Beam a consists of Na spin-1/2 particles prepared in the pure spin

state |χ(a)〉 and beam b consists of Nb spin-1/2 particles prepared in the pure spin state

|χ(b)〉 . Subsequently both beams are merged. This results in a statistical mixture of the

two pure subensembles with weights Wa = Na/(Na+Nb) and Wb = Nb/(Na+Nb). The

density operator of this mixed ensemble is given by

ρ̂ = Wa |χ(a)〉〈χ(a)| + Wb |χ(b)〉〈χ(b)| . (144)

With respect to the standard basis {|χ1〉 ≡ χ 1
2
, 1
2
, |χ2〉 ≡ χ 1

2
,− 1

2
} we have

|χ(a)〉 = c
(a)
1 |χ1〉+ c

(a)
2 |χ2〉 and |χ(b)〉 = c

(b)
1 |χ1〉+ c

(b)
2 |χ2〉 , (145)
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giving rise to the density matrix

ρ
(136)
====




Wa |c(a)1 |2 + Wb |c(b)1 |2 Wac

(a)
1 c

(a) ∗
2 + Wbc

(b)
1 c

(b) ∗
2

Wa c
(a) ∗
1 c

(a)
2 + Wb c

(b) ∗
1 c

(b)
2 Wa |c(a)2 |2 + Wb |c(b)2 |2



 (146)

in spin space. If the original pure beam states happen to coincide with the chosen basis

states of spin space, i.e. |χ(a)〉 = |χ1〉 and |χ(b)〉 = |χ2〉 , then the density matrix simplifies

to a diagonal matrix:

ρ =

(

Wa 0

0 Wb

)

=






Na

Na+Nb
0

0
Nb

Na+Nb




 . (147)

Polarization of an arbitrary spin-1/2 ensemble: consider the 2×2 density matrix ρ

in spin space. This matrix can be decomposed as

ρ = A0 I2 + ~A · ~σ (A0 ∈ C and Ax,y,z ∈ C) , (148)

in terms of the 2-dimensional identity matrix I2 and Pauli spin matrices σx , σy and σz

that together form a basis for 2×2 matrices (see App.B). From the trace identities (B.5)

for these basis matrices we can deduce that

Tr(ρ) = A0Tr(I2) + ~A · Tr(~σ ) (B.5)
==== 2A0

(139)
==== 1 ,

[σj ] = Tr(ρσj) = A0Tr(σj) +
∑

k

AkTr(σkσj)
(B.5)
====

∑

k

2Ak δjk = 2Aj (j , k = x, y, z ) .

In terms of the spin operator ~̂S = ~~σ/2 the density matrix is given by

ρ =
1

2

(

I2 + ~P · ~σ
)

=
1

2




1+Pz Px− iPy

Px+ iPy 1−Pz



 , ~P = [~σ ] =
2

~
[ ~̂S ] ∈ IR3 . (149)

The density matrix is determined by three (real) parameters Px,y,z that together form the

polarization vector ~P of the ensemble. The fact that ρ has three degrees of freedom is

relatively easy to comprehend. A complex 2×2 matrix that is hermitian and has a unit

trace is fixed by 2× (2× 2)× 1
2
− 1 = 3 independent real parameters.

The physical interpretation of the polarization vector ~P : to this end we make use of the

fact that the eigenvalues λ of the matrix 2ρ should satisfy

(1 + Pz − λ)(1− Pz − λ)− P 2
x − P 2

y = (1− λ)2 − ~P 2 = 0 ⇒ λ = 1± |~P | . (150)
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Hence, in diagonal form the density matrix looks as follows:

ρdiag =
1

2

(

1 + |~P | 0

0 1− |~P |

)

, (151)

which follows from equation (149) by choosing the spin quantization axis (z-axis) parallel

to ~P . Next define the spin eigenvectors χ↑ and χ↓ for spin quantization along ~P , so that

(~P · ~σ )χ↑ = |~P |χ↑ and (~P · ~σ )χ↓ = − |~P |χ↓ . Then it follows from equation (147) that

1

2
(1 + |~P |) = W↑ =

N↑

N↑ +N↓

and
1

2
(1− |~P |) = W↓ =

N↓

N↑ +N↓

⇒ |~P | = W↑ −W↓ =
N↑ −N↓

N↑ +N↓

∈ [0, 1] , (152)

where N↑ and N↓ count the number of spin-1/2 particles in the spin states χ↑ and χ↓ .

In that way |~P | can be readily interpreted as the degree of polarization of the ensemble

and ~e
P
= ~P/|~P | as the direction of polarization.

Special cases:

• If the ensemble refers to a pure spin state, then we know because of equation (141)

that ρ = ρ2. From this it follows directly that ρ is now determined by two real

parameters and a sign (as a result of squaring): by means of equation (149) as well

as the relation

(~σ · ~A )(~σ · ~B )
(B.6)
==== ( ~A · ~B )I2 + i~σ · ( ~A× ~B ) ( ~A, ~B ∈ IR3 ) (153)

the condition ρ = ρ2 amounts to

ρ =
1

2

(

I2+ ~P ·~σ
)

= ρ2 =
1

4

(

I2+ ~P ·~σ
)2

=
1

2

(
1+ ~P 2

2
I2 + ~P ·~σ

)

⇒ |~P | = 1 .

In diagonal form the density matrix is given by the projection operator

ρdiagpure =

(

1 0

0 0

)

: 100% polarization with quantization axis parallel to ~P .

(154)

This corresponds to maximal order (read: maximal quantum information), with all

particles polarized in the direction of the polarization vector ~P .

• For 0 < |~P | < 1 the ensemble is partially polarized, represented by the inequality
1
2
< Tr(ρ2) = 1

2
(1 + ~P 2) < 1.
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• We speak of an unpolarized ensemble if |~P | = 0. In that case

ρ
~P=~0

= 1
2
I2 (155)

and Tr(ρ2) takes on its minimal value Tr(ρ2) = 1
2
. In this situation as many parti-

cles are in the spin “↑” state as in the spin “↓” state. As such we are dealing with

an equal admixture of two totally polarized subensembles, one with spin parallel to

the quantization axis and one with spin antiparallel to the quantization axis. Note,

though, that the direction of this quantization axis can be chosen freely! An unpolar-

ized ensemble is in fact an example of a completely random ensemble with maximal

disorder (see § 2.4).

• An ensemble (beam) with degree of polarization |~P | can be viewed as being com-

posed of a totally polarized part and an unpolarized part. In diagonal form this

reads

ρdiag
(151)
==== |~P |

(

1 0

0 0

)

+
1− |~P |

2

(

1 0

0 1

)

.

Freedom to choose: the density matrix (155) of a completely random ensemble does not

depend on the choice of representation for the considered space, in contrast to the density

matrix (154) for a pure ensemble. Moreover, a given mixed ensemble can be decomposed in

different ways in terms of pure ensembles . For instance, a mixture with 20% of the par-

ticles polarized in the positive x-direction, 20% in the negative x-direction, 30% in the

positive z-direction and 30% in the negative z-direction results in a net unpolarized en-

semble, since 0.2 (ρ
~P =~ex

+ ρ
~P =−~ex

) + 0.3 (ρ
~P =~ez

+ ρ
~P =−~ez

) = 1
2
I2 .

2.3 The equation of motion for the density operator

As a next step towards quantum statistics we determine the equation of motion for the

density operator in the Schrödinger picture. Consider to this end a statistical mixture of

pure states that is characterized at t = t0 by the density operator

ρ̂(t0) =

N∑

α=1

Wα |α(t0)〉〈α(t0)| . (156)

Assume the weights Wα of the statistical mixture not to change over time. Then the

density operator evolves according to

|α(t)〉 = Û(t, t0)|α(t0)〉 ⇒ ρ̂(t) =

N∑

α=1

Wα |α(t)〉〈α(t)| = Û(t, t0) ρ̂(t0)Û
†(t, t0) . (157)

As shown in the lecture course Quantum Mechanics 2, the evolution operator Û(t, t0)

satisfies the differential equation

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) , (158)
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where Ĥ(t) is the Hamilton operator belonging to the type of system described by the

ensemble. From this we obtain the following equation of motion for the density operator:

i~
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
, (159)

which is better known as the Liouville equation. This is the quantum mechanical analogue

of the equation of motion for the phase-space probability density in classical statistical me-

chanics, which can be formulated in terms of Poisson brackets as ∂ρcl/∂t = −{ρcl ,Hcl} .
For this reason the name “density operator” was given to ρ̂ .

Note: ρ̂(t) does not possess the typical time evolution that we would expect for a quantum

mechanical operator. Since ρ̂(t) is defined in terms of state functions, it is time indepen-

dent in the Heisenberg picture and time dependent in the Schrödinger picture. This is

precisely the opposite of the behaviour of a normal quantum mechanical operator.

Time evolution of the ensemble average of the dynamical variable A: the en-

semble average [Â] as defined in § 2.1 satisfies the evolution equation

d

dt
[Â ]

(137)
====

d

dt
Tr(ρ̂Â) = Tr

(
ρ̂
∂Â

∂t

)
+ Tr

( dρ̂

dt
Â
)

(159)
==== Tr

(
ρ̂
∂Â

∂t

)
− i

~
Tr
(
Ĥρ̂Â− ρ̂ĤÂ

)
= Tr

(
ρ̂
∂Â

∂t

)
− i

~
Tr
(
ρ̂ÂĤ − ρ̂ĤÂ

)

(137)
====

[ ∂Â

∂t

]
− i

~
[ÂĤ − ĤÂ ] =

d

dt
[Â ] , (160)

where ∂Â/∂t refers to the explicit time dependence of Â . In the penultimate step we have

used that the trace is invariant under cyclic permutations, i.e. Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) =

Tr(B̂ĈÂ). The evolution equation (160) has the same form as the evolution equation for

the expectation value of a dynamical variable in ordinary QM. However, this time we have

averaged twice in view of the double statistics!

2.4 Quantum mechanical ensembles in thermal equilibrium

As we have seen, there are marked differences between pure ensembles (with

maximal order) and completely random ensembles (with maximale disorder).

We are now going to investigate the generic differences a bit closer.

Let {|k〉} be an orthonormal set of eigenstates of ρ̂ corresponding to the eigenvalues {ρk} .
As such, these eigenstates together span the (reduced) D-dimensional space on which the

pure state functions of the subensembles are defined. This dimensionality D indicates the

maximum number of independent quantum states that can be identified in the reduced
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space on which we have chosen to consider the quantum mechanical systems. For instance,

the density matrix in the spin-1/2 spin space has dimensionality D = 2. With respect to

this basis we have

ρpure =












0
. . . Ø

0
1

0
Ø

. . .
0












vs ρrandom =
1

D








1
1 Ø

. . .
Ø 1

1







.

Examples of these extreme forms of density matrices have been given in equations (154)

and (155) in § 2.2. In case of a pure ensemble the density matrix is simply the projection

matrix on the corresponding pure state vector, which depends crucially on the chosen

representation of the D-dimensional space. In case of a completely random ensemble, the

D orthonormal basis states each receive the same statistical weight 1/D to guarantee

that Tr(ρ̂) = 1. In that case each state is equally probable and the density matrix is

proportional to the D-dimensional identity matrix, which does not depend at all on the

chosen representation.

In order to quantify the differences we introduce the quantity

σ ≡ −Tr(ρ̂ ln ρ̂)
compl.
==== −

D∑

k,k′=1

〈k|ρ̂|k′〉〈k′| ln ρ̂ |k〉 = −
D∑

k=1

ρk ln(ρk) ≡ S

kB

, (161)

where ρk represents the probability to find the system in the pure basis state |k〉 . This

quantity is minimal for pure states and maximal for a completely random ensemble :

σpure = 0 vs σrandom = −
D∑

k=1

1

D
ln(1/D) = ln(D) . (162)

That σrandom is maximal will be proven in § 2.4.3. In accordance with classical thermo-

dynamics, it can be deduced from σ = S/kB and σrandom = ln(D) that the quantity

S should be interpreted as the quantum mechanical entropy4 and kB as the well-known

Boltzmann constant. You could even say that this definition of the entropy is superior

to the classical one. In classical mechanics there is no such thing as counting states.

At best one could work with phase-space volumes that have to be made dimensionless

4This definition of entropy is also used in information theory in the form of the so-called Shannon

entropy −∑k Pk ln(Pk), which is an inverse measure for the amount of information that is encoded in

the probability distribution {P1, · · · , PN} . Each type of probability distribution in fact corresponds to a

specific type of ensemble. In the lecture course Statistical Mechanics a relation will be established between

the thermodynamical and quantum mechanical definitions of the entropy of a canonical ensemble.
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by means of an arbitrary normalization factor. For this reason the classical entropy can

only be defined up to an additive constant. In QM, however, there is a natural unit of

counting/normalization in the form of ~ .

2.4.1 Thermal equilibrium (thermodynamic postulate)

A quantum mechanical ensemble is regarded as being in thermal equilibrium if it effectively

satisfies the equilibrium conditions

∂

∂t
Ĥ = 0 and

d

dt
ρ̂ = 0

(159)
===⇒

[
Ĥ, ρ̂

]
= 0 (163)

and if the corresponding constant entropy is maximal. This last condition on the entropy

is the quantum mechanical analogue of the classical second law of thermodynamics, which

states that the entropy of macroscopic systems in non-equilibrium configurations always

increases until equilibrium is reached.

In thermal equilibrium all averaged system quantities [Â ] are constant, provided that

∂Â/∂t = 0. For example this holds for the average energy of the system, i.e. Â = Ĥ .

Proof :
d

dt
[Â]

(160), ∂Â/∂t=0
========= Tr

( dρ̂

dt
Â
) (163)

==== 0 .

In thermal equilibrium the density operator commutes with the Hamilton operator. There-

fore an orthonormal set of simultaneous eigenfunctions {|k〉} of both Ĥ and ρ̂ exists:

Ĥ |k〉 = Ek |k〉 and ρ̂ |k〉 = ρk |k〉 . (164)

Using this basis we will maximize the entropy in three different scenarios in § 2.4.2 – 2.4.4.

2.4.2 Canonical ensembles (J.W. Gibbs, 1902)

heat bath
NR , VR , T

system
N , V, T ∆E

(N,V,T)-ensemble closed bottle in a water container
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Consider a system with a constant number N of identical particles inside a macroscopic

finite enclosure with fixed volume V . Assume the considered system to be in thermal equi-

librium with a very large heat bath (outside world), with which it is in weak energy contact.

Together the heat bath and the embedded system form a closed system (isolated system).

Weak energy contact: by weak energy contact we mean that the embedded system and

heat bath can exchange energy, since only the total energy of the entire isolated system is

conserved, but that they do so without having a noticeable influence on each other’s energy

spectra. Since the mutual interaction is that weak, both the heat bath and the embedded

system can be in a definite energy eigenstate at every instance of time (separation of

variables). The system and heat bath merely depend on each other through the weak

energy contact, which makes the energy of the system time dependent. This weak energy

contact does have a role to play, since it provides the mechanism by which the system can

reach thermal equilibrium with the heat bath. A weak energy contact can for instance be

achieved by separating the system from the heat bath by means of a macroscopic partition

wall. This allows energy to be transferred by means of collisions with the atoms in the

wall. In that case only a negligible fraction of the enclosed particles will feel the presence

of the partition wall if the average de Broglie wavelength of the particles is much smaller

than the dimensions of the enclosure (see § 2.5). For instance this applies to systems with

sufficiently large (macroscopic) enclosures and/or sufficiently high temperatures.

The heat bath determines the mixture: we will see that in thermal equilibrium

all energy eigenstates of a closed system have equal probability, i.e. a closed

system is described by a completely random ensemble. For a fixed total energy

of the entire closed system the number of energy eigenstates of the heat bath is

largest if the energy of the heat bath is highest and therefore the energy of the

embedded N-particle system is lowest. Subsequently the degrees of freedom of

the large heat bath are integrated out, which causes the embedded N-particle

systems with the lowest energies to automatically have the highest statistical

weights. This gives rise to a so-called canonical ensemble, which is sometimes

referred to as (N , V, T )-ensemble. This is a statistical mixture of N-particle

systems in specific energy eigenstates. As a result of the weak energy contact

with the heat bath, such an N-particle system in thermal equilibrium will not

have a fixed energy value. However, the ensemble average Ē will remain con-

stant in thermal equilibrium.

The canonical density operator: in order to determine the density operator of a canon-

ical ensemble in thermal equilibrium, we have to maximize the entropy under the additional

constraints Tr(ρ̂) = 1 and Tr(ρ̂Ĥ) = [Ĥ ] ≡ Ē = constant. To this end we employ the

Lagrange-multiplier method (see App.C) by varying with respect to the eigenvalues ρk as
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well as the Lagrange multipliers, i.e.

0 = δ
(

σ−β
{
Tr(ρ̂Ĥ)−Ē

}
−λ
{
Tr(ρ̂)−1

}) (164)
==== δ

(

βĒ+λ−
∑

k

ρk
{
ln(ρk)+βEk+λ

})

for all variations δρk , δβ and δλ . Note: there is no need to vary with respect to the

energy eigenvalues Ek , as these energy eigenvalues are independent of the statistical mix-

ture in case of a weak energy contact. From the Lagrange-multiplier method it follows

automatically that the constraint conditions have to be satisfied as well as the condition

∀
δρk

∑

k

δρk
{
ln(ρk) + 1 + βEk + λ

}
= 0 ⇒ ρk = exp(−1−λ) exp(−βEk) .

The Lagrange multiplier λ can now be eliminated by means of the constraint condition

Tr(ρ̂) = exp(−1−λ)
∑

k′

exp(−βEk′) = 1 ,

which implies for ρk that

ρk =
exp(−βEk)

∑

k′
exp(−βEk′)

. (165)

In these sums the summation runs over all fully specified N -particle energy eigenvalues,

including the complete degree of degeneracy of these energy levels. Subsequently we use

the Lagrange multiplier β to define the temperature of the considered ensemble:

T ≡ 1

kBβ
. (166)

Out of the complete disorder of the closed system, the contact with the heat bath

has created order in the energy distribution of the embedded N-particle system.

Note: if the N-particle ground state is not degenerate, then the canonical en-

semble will change in the low-temperature limit T → 0 (β →∞) into a pure

ensemble where all N-particle systems will be in the ground state.

Finally we introduce the canonical partition function (normalization factor)

ZN(T ) ≡
∑

k′

exp(−βEk′) =
∑

k′

〈k′| exp(−βĤ)|k′〉 = Tr
(
exp(−βĤ)

)
. (167)

In spectral decomposition the density operator of a canonical ensemble then reads

ρ̂
(164)
====

∑

k

ρk |k〉〈k|
(165)
====

∑

k

exp(−βEk)

ZN(T )
|k〉〈k| =

1

ZN(T )
exp(−βĤ)

∑

k

|k〉〈k|

compl.
===⇒ ρ̂(Ĥ) =

1

ZN(T )
exp(−βĤ) =

exp(−βĤ)

Tr
(
exp(−βĤ)

) . (168)
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The label N in ZN(T ) refers to the number of particles of the considered type of embedded

system. An arbitrary averaged physical quantity of the embedded system is then given by

the ensemble average

[Â] =
1

ZN(T )
Tr
(
Â exp(−βĤ)

)
, (169)

allowing us to derive the average system energy from the partition function:

Ē = [Ĥ ] =
Tr
(
Ĥ exp(−βĤ)

)

ZN(T )
=

− ∂ZN(T )/∂β

ZN(T )
= − ∂

∂β
ln
(
ZN(T )

)
. (170)

Number of particles and the canonical-ensemble concept: the embedded systems of

a canonical ensemble can just as well consist of a single particle as of a macroscopic number

of particles (such as a gas). A popular way to link up with the classical thermodynamics of

ideal gases is to single out one particle in a larger gas system and consider the corresponding

(single-particle) canonical ensemble. This approach of treating the rest of the gas as part of

the heat bath has its limitations, though. The canonical-ensemble concept implies that the

influence exerted by the particles of the heat bath on the particle of the embedded system

is exclusively limited to a weak energy contact. This obviously breaks down if the particle

density is too high, causing the quantum mechanical overlap between the identical particles

in embedded system and heat bath to become relevant. In that case also the effective

quantum mechanical interaction induced by the (anti)symmetrization procedure should

be taken into account. These quantum mechanical effects will become more pronounced

with increasing particle densities (see § 2.5 – 2.7). In the two examples given below we will

nevertheless consider two canonical ensembles of systems that consist of a single particle.

The reason to do so is to first link up with classical statistical physics before zooming in

on the quantum mechanical aspects. In order to study these many-particle aspects, the

grand-canonical ensemble approach will turn out to be more handy.

Equipartition of energy: as a standard example we consider a canonical ensemble of

systems that each consist of a single free spin-0 particle with mass m that is contained in

a macroscopic enclosure (box). Since quantum mechanical many-particle aspects evidently

do not play a role in a 1-particle system, we expect the average energy per particle in that

case to obey the classical principle of equipartition of energy for an ideal gas. This states

that each kinetic and elastic degree of freedom of the considered type of system (i.e. a po-

sition/momentum degree of freedom that contributes quadratically to the Hamiltonian)

will contribute kBT/2 to the average energy. This is indeed confirmed by the quantum

mechanical calculation (see exercise 13), which tells us that the quantum mechanical defi-

nitions of entropy, temperature and Boltzmann constant are consistent with their classical

thermodynamic counterparts.
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Example: magnetization. Consider a canonical ensemble of systems that each consist

of a single free electron that is experiencing a constant homogeneous magnetic field in the

z-direction, ~B = B~ez . In spin space this corresponds to an interaction

Ĥ spin
B

= − ~̂MS · ~B =
2µ

B
B

~
Ŝz , (171)

in terms of the Bohr magneton µ
B
. The full Hamilton operator Ĥ = Ĥ spatial + Ĥ spin

B
of

the electron commutes with Ŝz and therefore the same should hold for ρ̂(Ĥ). Hence, the

density matrix is diagonal in spin space if we use a basis of eigenvectors of Ŝz to describe

it. For a given spatial energy level the density operator has the following form in spin

space:

ρ spin =
1

exp(−βµ
B
B) + exp(βµ

B
B)

(

exp(−βµ
B
B) 0

0 exp(βµ
B
B)

)

. (172)

This ensemble corresponds to the following polarization vector:

ρ spin =
cosh(βµ

B
B) I2 − sinh(βµ

B
B) σz

2 cosh(βµ
B
B) =

1

2

(

I2 − tanh(βµ
B
B) σz

)

(149)
===⇒ ~P = − tanh(βµ

B
B)~ez =

2

~
[Ŝz]~ez . (173)

From this we can derive the magnetization, i.e. the average magnetic moment per electron

in the direction of the magnetic field:

M
S

≡ 1

B [ ~̂MS · ~B ] = − 2µ
B

~
[Ŝz] = µ

B
tanh(βµ

B
B) . (174)

If βµ
B
B ≪ 1, for instance when the magnetic field is weak or the temperature high, then

we obtain Curie’s law:

M
S

≈ µ
B
(βµ

B
B) (166)

====
µ2

B

kBT
B ⇒ χ

S
(T ) ≡

( dM
S

dB
)

B=0
=

µ2
B

kBT
∝ T−1 , (175)

where χ
S
(T ) is called the paramagnetic susceptibility of the spin ensemble.

2.4.3 Microcanonical ensembles

If we do not impose the constraint Tr(ρ̂Ĥ) = Ē in the previous derivation, then we will

obtain the ensemble with maximum disorder once we maximize the entropy. After all,

there is no heat bath to integrate out and create any order in the ensemble. We speak

in that case of a microcanonical ensemble or (N , V, E)-ensemble, which determines the

thermodynamical properties of a closed system in thermal equilibrium. Because of the

absence of energy contact, the system energy is constant and not just the average value of
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the system energy. If we take the density matrix ρ to have dimensionality D , then we

find by employing the Lagrange-multiplier method that

δ
(

σ − λ
{
Tr(ρ̂)− 1

}) (164)
==== δ

(

λ −
D∑

k=1

ρk
{
ln(ρk) + λ

})

= 0

for all variations δρk and δλ . From this it follows that Tr(ρ̂) = 1 and ln(ρk)+1+λ = 0.

By combining the two conditions ρk = exp(−1 − λ) and Tr(ρ̂) = D exp(−1 − λ) = 1,

we arrive at the typical diagonal form ρk = 1/D as given in § 2.4 for a completely

random ensemble. This also proves the conjecture that the density matrix of a com-

pletely random ensemble gives rise to the absolute maximum of entropy. Note also that

from equation (168) it can be read off that a microcanonical ensemble coincides with the

high-temperature limit T→∞ (β→ 0) of a canonical ensemble .

2.4.4 Grand canonical ensembles (J.W. Gibbs, 1902)

reservoir
α,VR , T

system
α ,V, T ∆E , ∆N

(α ,V,T) or (µ,V,T)-ensemble open bottle in a water container

Finally, we consider a quantum mechanical ensemble that satisfies the same criteria as for

a canonical ensemble with the exception that the embedded system is allowed to exchange

both energy and particles with a reservoir . The (open) many-particle systems described

by the ensemble have a variable number of particles. However, the total many-particle

Hamilton operator Ĥtot of such a many-particle system satisfies certain particle-number

conservation laws.5 We know that the density operator has to be a constant of motion

and that any order in the ensemble is imparted by the contact with the reservoir. As

such, we expect the density operator to depend exclusively on observables that belong

to conserved quantities that can be exchanged between reservoir and open system. In the

considered case that would be the total many-particle Hamilton operator and the conserved

5For particles that are not constrained by conservation laws, such as thermal photons, only a canonical-

ensemble approach is formally applicable. This will be explained in chapter 4 during the discussion of

photon-gas systems.
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combinations of total number operators. Let’s for convenience assume that the open system

consists of one type of particle, i.e. we exclude the possibility of particle mixtures, and that

no reactions can occur that affect the number of particles (such as particle decays). In

that case Ĥtot has to be additive, i.e.
[
Ĥtot, N̂

]
= 0, to guarantee that N̂ is a constant

of motion. In this way the number of particles plays the same role as energy did in the

canonical case, simply because the open system has no fixed number of particles but the

complete closed system including the reservoir does. In thermal and diffusive equilibrium,

the resulting type of ensemble is called a grand canonical ensemble , (α ,V,T)-ensemble, or

(µ ,V,T)-ensemble.

Apart from the average energy we now also have to impose a constraint on the average

number of particles of the open system while maximizing the entropy. For this purpose

we use the total number operator N̂ that counts the total number of particles in the

open system, which has eigenvalues 0 , 1 , 2 , · · · . Apart from the Hamilton operator also

the density operator is additive, in order to guarantee that the entropy is additive. Hence,

the total number operator commutes with both the Hamilton operator and the density

operator. Bear in mind, though, that these two operators will depend on the precise

number of particles present in the open system . This gives rise to the following set of

mutually commuting observables N̂ , Ĥtot(N̂) and ρ̂(N̂), with corresponding orthonormal

basis {|k,N〉} :

N̂ |k,N〉 = N |k,N〉 , Ĥtot(N̂)|k,N〉 = Ek(N)|k,N〉

and ρ̂(N̂)|k,N〉 = ρk(N)|k,N〉 . (176)

The grand canonical density operator: in order to determine the density operator

of a grand canonical ensemble in thermal and diffusive equilibrium we have to maximize

the entropy under the additional constraints Tr(ρ̂) = 1, [Ĥtot(N̂)] ≡ Ētot = constant

and [N̂ ] ≡ N̄ = constant. By means of the Lagrange-multiplier method we find

0 ==== δ
(

σ − α
{
[N̂ ]− N̄

}
− β

{
[Ĥtot(N̂)]− Ētot

}
− λ
{
Tr(ρ̂)− 1

})

(176)
==== δ

(

αN̄ + βĒtot + λ −
∑

N

∑

k

ρk(N)
{
ln
(
ρk(N)

)
+ αN + βEk(N) + λ

})

(177)

for all variations δρk(N) , δα, δβ and δλ . From this it follows automatically that the

constraint conditions have to be satisfied as well as the condition

∀
δρk(N)

∑

N

∑

k

δρk(N)
{
ln
(
ρk(N)

)
+ 1 + αN + βEk(N) + λ

}
= 0 .
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Combined with the constraint Tr(ρ) = 1 this results in

ρk(N) =
exp
(
−βEk(N)− αN

)

∑

N ′

∑

k′
exp
(
−βEk′(N ′)− αN ′

) . (178)

As in equation (166), the temperature T of the ensemble is defined through T ≡ 1/kBβ .

Finally, we introduce the grand canonical partition function

Z(α, T ) ≡
∑

N ′

∑

k′

exp
(
−βEk′(N

′)− αN ′
) (167)

====
∑

N ′

exp(−αN ′)ZN′(T ) (179)

and rewrite the grand-canonical density operator as

ρ̂ =
1

Z(α, T )
exp
(
−βĤtot(N̂)− αN̂

)
= ρ̂

(
Ĥtot(N̂), N̂

)
. (180)

The quantity exp(−α) can be regarded as the fugacity of the ensemble, which describes

how easy it is to move a particle from the reservoir to the open system:

• if exp(−α) is small, than contributions from small N values dominate and quantum

mechanical many-particle aspects are not important;

• if exp(−α) is not small, than particle exchange is easier and quantum mechanical

many-particle aspects are relevant.

Often the fugacity is written as exp(βµ), with µ = −α/β known as the chemical potential.

The average total energy and the average number of particles of the open system can be

extracted directly from the grand canonical partition function:

Ētot = − ∂

∂β
ln
(
Z(α, T )

)
and N̄ = − ∂

∂α
ln
(
Z(α, T )

)
. (181)

Remark: in scenarios that do either involve chemical reactions, particle decays or rela-

tivistic energies, we have to abandon conservation laws for individual types of particles.

However, in those cases certain combinations of particle numbers often will be conserved.

While maximizing the entropy, these generalized conservation laws will have to be imposed

as constraints on the corresponding ensemble averages. As before this can be implemented

by means of the Lagrange-multiplier method, assigning to each conservation law a spe-

cific Lagrange multiplier and a related chemical potential. For instance, for relativistic

energies particle–antiparticle pair creation can occur, so that only the difference between

the number of particles and antiparticles remains conserved (which is equivalent to charge

conservation). Another example is provided by a statistical mixture of A-, B- and C-

particles for which the reversible reaction A⇋ B + C is in chemical equilibrium. In that

case the particle-number combination 2N
A
+N

B
+N

C
is conserved.
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Possible realization: if we are dealing with a vary large number of particles inside a

macroscopic volume, then the grand canonical ensemble can be realized straightforwardly

by partitioning the macroscopic volume in very many identical cells. The inherent condi-

tion is that the cells themselves are again sufficiently macroscopic to guarantee that the

energy contact with the reservoir (read: the other cells) can be regarded as weak. Repeated

measurements can be performed on such an ensemble by simply measuring locally. The

internal structure of a star can, for instance, be determined along these lines by partition-

ing the star in macroscopic volume elements that are of negligible size compared to the

dimensions of the star itself (see exercise 18). The relevant “measurable” quantities are in

that case the local particle densities and the local total energy density.

2.4.5 Summary

The differences between the three types of ensembles reside in the increasing degree of

order that is imparted on the embedded systems by the contact with the reservoir. In the

microcanonical case this contact is extremely weak. It is that weak that we could effectively

speak of the absence of any contact, causing E and N to be effectively fixed. Thermal

equilibrium is in that case equivalent with the absence of any order. In the canonical case

energy transfer occurs between reservoir and embedded system, with the total energy being

conserved. Since the reservoir has so many more degrees of freedom than the embedded

system, in thermal equilibrium order is generated in the energy mix of the embedded system

with a preference for lower energies (i.e. higher reservoir energies). In the grand canonical

case we add to this the possibility of particle exchange, with the corresponding particle con-

servation law translating into extra order in the particle mix of the embedded open system.

The three different types of ensembles give rise to identical physical results if the relative

fluctuations around the equilibrium values Ētot and N̄ are very small, causing the energy

and number of particles of the embedded system to be effectively fixed. It is then a matter

of choice which type of ensemble is more suitable for performing calculations (which in

most cases will be the grand canonical ensemble). For instance this applies to systems

consisting of a very large number of particles, in view of the extra factors 1/
√
N̄ that in

general occur in the average relative fluctuations on the measurements.
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A Fourier series and Fourier integrals

Fourier decompositions are used quite frequently in these lecture notes. We briefly list the

relevant aspects of these decompositions in this appendix.

A.1 Fourier series

Systems with a ring-shaped structure and systems that are enclosed spatially can be de-

scribed in terms of state functions with a certain degree of periodicity. Consider to this

end a 1-dimensional function f(x), for which the function as well as the spatial derivative

are stepwise continuous on the interval x ∈
(
−L/2 , L/2

)
and which additionally satisfies

the spatial periodicity condition f(x) = f(x+L). From Fourier analysis it follows (see the

lecture course “Trillingen en Golven”) that such a function can be decomposed in terms of

a basis of periodic plane waves (Fourier modes):

fn(x) =
1√
L

exp(2πinx/L) ≡ 1√
L

exp(ikx) (n = 0 ,±1 ,±2 , · · ·) . (A.1)

We readily recognize these functions as being momentum eigenstates belonging to the

quantized momentum eigenvalues ~k . This basis satisfies the orthonormality relation

1

L

x0+L∫

x0

dx exp
(
ix[k − k′]

)
= δkk′ , (A.2)

where x0 can be chosen arbitrarily. Since x is usually restricted to the interval
(
−L/2 , L/2

)
,

a handy choice is x0 = −L/2. By employing the completeness relation for periodic Fourier

modes, the periodic function f(x) can be written as a Fourier series:

f(x) =
∞∑

n=−∞

An√
L

exp(2πinx/L) (A.3)

=
A0√
L

+
∞∑

n=1

[ An + A−n√
L

cos(2πnx/L) + i
An − A−n√

L
sin(2πnx/L)

]

≡ B0√
L

+
∞∑

n=1

√

2

L

[

Bn cos(2πnx/L) + Cn sin(2πnx/L)
]

, (A.4)

with

An =
1√
L

L/2∫

−L/2

dx f(x) exp(−2πinx/L) . (A.5)

Periodic systems vs enclosed systems: the close relation between periodic systems and sys-

tems that are contained inside an enclosure can be seen as follows. If we assume the im-

penetrable walls of the enclosure to be positioned at x = 0 and x = L, the state functions
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have to satisfy the continuity condition ψ(0) = ψ(L) = 0 (see § 2.5). Inside the enclo-

sure this function coincides with a periodic function f(x) = f(x + 2L) with odd parity,

so that f(x) = − f(−x). As a result of this extra condition, only the standing waves

∝ sin(πnx/L) for n = 1 , 2 , · · · contribute to the Fourier series (A.4), which indeed guar-

antees that f(0) = f(L) = 0. The periodicity length is 2L now and at the same time n is

allowed to take on positive values only. The number of allowed quantized k values is in this

case identical to the number of k values for a system with periodicity length L, with the ex-

ception of the absence of the quantum number k = 0. The presence of the edge of the box

manifests itself in the absence of the constant Fourier mode with quantum number k = 0.

The influence of the edge of the enclosure is only felt when the quantum states with the

lowest absolute values for the momentum (and thus the largest de Broglie wavelengths)

contribute significantly to the description of the system. This happens for instance in

bosonic gases at low temperatures (see Ch. 2).

A.2 Fourier integrals

The Fourier decomposition of non-periodic quadratically integrable functions can be ob-

tained by taking the continuum limit L → ∞ of the periodic case given above. During

this transition the resulting basis of plane waves should be normalized to a δ function.

This is based on the fact that k = 2πn/L, causing the k-spectrum to become very closely

spaced for L→ ∞ and the summation over n to become an integral over k :

∞∑

n=−∞

L→∞
−−→ L

2π

∞∫

−∞

dk . (A.6)

The relevant basis functions are the momentum eigenfunctions belonging to the momentum

eigenvalues ~k :

fk(x) = fn(x)

√

L

2π

(A.1)
====

1√
2π

exp(ikx) (k ∈ IR) , (A.7)

with orthonormality relation

1

2π

∞∫

−∞

dx exp
(
ix[k − k′]

)
= δ(k − k′) . (A.8)

The Fourier series now becomes a Fourier transformation (Fourier integral):

f(x) =
1√
2π

∞∫

−∞

dk A(k) exp(ikx) and A(k) =
1√
2π

∞∫

−∞

dx f(x) exp(−ikx) .

(A.9)
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A.2.1 Definition of the δ function

The δ function in equation (A.8) is defined on an arbitrary continuous test function g(x):

∀
g

g(x) =

∞∫

−∞

dx′ g(x′)δ(x− x′) . (A.10)

Since g(x) is arbitrary, δ(x − x′) should vanish for x 6= x′ . The peak of δ(x − x′) at

x = x′ should be such that the integral over δ(x− x′) around x = x′ always yields one.

The δ function therefore only exists as a limit of a series of functions that progressively

become more peaked around x = x′. The result of such a limiting procedure is called a

distribution. An example of this is given by the integral

δǫ(x) =
1

2π

∞∫

−∞

dk exp(ikx− ǫ|k|) =
1

2π

( 1

ix+ ǫ
− 1

ix− ǫ

)

=
1

π

ǫ

x2 + ǫ2
(ǫ > 0) .

For decreasing ǫ the function δǫ(x) becomes smaller for all x 6= 0, whereas simultaneously

x2>0∫

x1<0

dx δǫ(x)
v=x/ǫ
====

1

π

x2/ǫ∫

x1/ǫ

dv

v2 + 1
=

1

π

(

arctan(x2/ǫ)− arctan(x1/ǫ)
) ǫ↓0

−−→ 1 .

The following series representations of the δ function will be used in these lecture notes:

δ(x) = lim
ǫ↓0

1

π

ǫ

x2 + ǫ2
=

1

2π

∞∫

−∞

dk exp(ikx) , (A.11)

δ(x) = lim
ǫ↓0

θ(x+ ǫ)− θ(x)

ǫ
= θ′(x) , (A.12)

where θ(x) is the usual Heaviside step function.

The following handy identities hold for the δ function:

g(x)δ(x− c) = g(c)δ(x− c) , (A.13)

as well as

δ
(
h(x)

)
=
∑

j

1

|h′(xj)|
δ(x− xj) for h(xj) = 0 and h′(xj) 6= 0 , (A.14)

provided that h(x) is sufficiently well-behaved close to the roots of the equation h(x) = 0.

In three dimensions, finally, the following compact notation can be used:

δ(~r ) ≡ δ(x)δ(y)δ(z) ⇒ 1

(2π)3

∞∫

−∞

dkx

∞∫

−∞

dky

∞∫

−∞

dkz exp(i~k ·~r ) (A.11)
==== δ(~r ) . (A.15)
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B Properties of the Pauli spin matrices

Since the world of QM is littered with spin-1/2 particles (such as electrons, nucleons, etc.),

we give here a short summary of the properties of the Pauli spin matrices

σx =

(

0 1

1 0

)

, σy =

(

0 − i

i 0

)

and σz =

(

1 0

0 −1

)

. (B.1)

These 2×2 matrices are linked directly to the spin operator ~̂S for spin-1/2 particles:

~σ ≡ 2

~

~̂S . (B.2)

From the fundamental commutator algebra for the spin operator and the fact that Ŝz has

eigenvalues ± ~/2, the following properties of the Pauli spin matrices can be derived:

σk = σ†
k , Tr(σk) = 0 , det(σk) = −1 (k = x, y, z)

and
[
σx, σy

]
= 2iσz (cyclic) . (B.3)

Denoting the identity matrix in spin space by I2, the following additional identities hold

for the Pauli spin matrices:

σ2
k = I2 (k = x, y, z) and σxσy = −σyσx = iσz (cyclic)

⇒
{
σj , σk

}
= 2δjk I2 (j , k = x, y, z ) . (B.4)

This allows us to complete the relevant trace identities in spin space to

Tr(I2) = 2 , Tr(σj)
(B.3)
==== 0 and Tr(σjσk)

(B.4)
==== 2δjk (j , k = x, y, z ) .

(B.5)

Moreover, for arbitrary 3-dimensional vectors ~A and ~B the following holds:

(~σ · ~A )(~σ · ~B ) =
1

2

∑

j,k

AjBk

( [
σj , σk

]
+
{
σj , σk

} ) (B.3),(B.4)
======= ( ~A · ~B )I2 + i~σ · ( ~A× ~B ) ,

(B.6)
using that

∑

j,k

AjBk

2

[
σj , σk

] (B.3)
==== iσz (AxBy −AyBx)+ iσx (AyBz −AzBy)+ iσy (AzBx−AxBz) .

Combined with the identity matrix the Pauli spin matrices form a basis of 2×2 matrices.

As such, an arbitrary 2×2 matrix A can be decomposed as

A = A0 I2 + ~A · ~σ (A0 ∈ C and Ax,y,z ∈ C) . (B.7)

iv



C Lagrange-multiplier method

Suppose we want to determine the extrema of a quantity F (q1, · · · , qN) while simultane-

ously trying to satisfy the boundary condition f(q1, · · · , qN) = C . In that case it makes

good sense to employ the so-called Lagrange-multiplier method. This consists in looking

for solutions to the variational equation

δ
(

F (q1, · · · , qN) − λ(q1, · · · , qN)
{
f(q1, · · · , qN)− C

})

= 0 , (C.1)

where δ denotes the action of independently varying the coordinates q1 , · · · , qN as well as

the Lagrange multiplier λ . This results in

N∑

j=1

( ∂F

∂qj
− (f − C)

∂λ

∂qj
− λ

∂f

∂qj

)

δqj − (f − C) δλ = 0 ∀
δλ, δqj

⇒ f(q1, · · · , qN) = C and
∂F

∂qj
= λ

∂f

∂qj
(j = 1 , · · · , N ) . (C.2)

In this way the boundary condition is indeed satisfied automatically. By substituting

the obtained solution(s) for q1 , · · · , qN in the boundary condition f(q1, · · · , qN) = C , the

Lagrange multiplier λ can be related to the constant C . The Lagrange-multiplier method

is used in these lecture notes to maximize the entropy of ensembles in thermal equilibrium

while simultaneously imposing certain additional constraints.

v


