
Quantum Field Theory Exerises week 11

Exerise 14 (ontinued)

Complete exerise 14.

Exerise 15 : generi �nite-dimensional representations of the Lorentz group

Do exerise 3.1 parts (a) and (b) from Peskin and Shroeder, using that
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with summation over the repeated index l implied. The real in�nitesimal parameters
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oinide with the parameters Æ~� and Æ~v that were used in Ex. 14.

Exerise 16 : trae tehnology for gamma-matries

The -matries 
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have the following properties:
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Use the �rst two properties to answer a few questions about trae identities.

(a) { Show that for an odd number of -matries Tr(
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) = 0 .

Hint: multiply the argument of the trae by (
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and use one of the above-given

identities as well as the yli property of traes.

{ Why does that automatially imply that Tr(
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) = 0 ?

(b) Reason that similar triks an be applied to prove that Tr(
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) = 0 .

() Show that Tr(
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) an be expressed as a sum where eah term is of the form
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(d) Use this method to derive the following trae identities:
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(e) { Argue that Tr(
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) = 0 if (����) 6= permutation of (0123) .

{ Determine Tr(
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+1 if (����) = even permutation of (0123)

� 1 if (����) = odd permutation of (0123)

0 else.
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