## Quantum Field Theory Exercises week 11

## Exercise 14 (continued)

Complete exercise 14.

## Exercise 15: generic finite-dimensional representations of the Lorentz group

Do exercise 3.1 parts (a) and (b) from Peskin and Schroeder, using that

$$
\epsilon_{l m n} \epsilon_{l m^{\prime} n^{\prime}}=\delta_{m m^{\prime}} \delta_{n n^{\prime}}-\delta_{m n^{\prime}} \delta_{n m^{\prime}}
$$

with summation over the repeated index $l$ implied. The real infinitesimal parameters $\vec{\theta}$ and $\vec{\beta}$ coincide with the parameters $\delta \vec{\alpha}$ and $\delta \vec{v}$ that were used in Ex. 14 .

## Exercise 16: trace technology for gamma-matrices

The $\gamma$-matrices $\gamma^{\mu}$ for $\mu=0,1,2,3$ and $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ have the following properties:

1. $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} I_{4} \Rightarrow\left(\gamma^{0}\right)^{2}=-\left(\gamma^{1}\right)^{2}=-\left(\gamma^{2}\right)^{2}=-\left(\gamma^{3}\right)^{2}=\left(\gamma^{5}\right)^{2}=I_{4}$,
2. $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$,
3. $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and $\left(\gamma^{5}\right)^{\dagger}=\gamma^{5}$.

Use the first two properties to answer a few questions about trace identities.
(a) - Show that for an odd number of $\gamma$-matrices $\operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{2 n+1}}\right)=0$.

Hint: multiply the argument of the trace by $\left(\gamma^{5}\right)^{2}=I_{4}$ and use one of the above-given identities as well as the cyclic property of traces.

- Why does that automatically imply that $\operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{2 n+1}} \gamma^{5}\right)=0$ ?
(b) Reason that similar tricks can be applied to prove that $\operatorname{Tr}\left(\gamma^{5}\right)=\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right)=0$.
(c) Show that $\operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{2 n}}\right)$ can be expressed as a sum where each term is of the form $\operatorname{Tr}([2 n-2] \gamma$-matrices $) \times$ a metric tensor.
(d) Use this method to derive the following trace identities:

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}, \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right) .
\end{aligned}
$$

(e) - Argue that $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=0$ if $(\mu \nu \rho \sigma) \neq$ permutation of (0123).

- Determine $\operatorname{Tr}\left(\gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{5}\right)$ and argue that $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{\mu \nu \rho \sigma}$ with

$$
\epsilon^{\mu \nu \rho \sigma}=\left\{\begin{aligned}
+1 & \text { if }(\mu \nu \rho \sigma)=\text { even permutation of (0123) } \\
-1 & \text { if }(\mu \nu \rho \sigma)=\text { odd permutation of }(0123) \\
0 & \text { else. }
\end{aligned}\right.
$$

