Quantum Field Theory Exercises week 14

Exercise 22: calculating with QED + an example of a Ward identity

One can learn the calculational tricks of the trade best by studying the QED reaction $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$ at lowest order in perturbation theory. Suppressing spin quantum numbers, the associated s-channel Feynman diagram and amplitude are given by
$i \mathcal{M}\left(e^{-}(k) e^{+}\left(k^{\prime}\right) \rightarrow \mu^{-}(p) \mu^{+}\left(p^{\prime}\right)\right)$
$=\bar{v}\left(k^{\prime}\right)\left(+i|e| \gamma^{\rho}\right) u(k)\left(\frac{-i g_{\rho \sigma}}{q^{2}+i \epsilon}\right) \bar{u}(p)\left(+i|e| \gamma^{\sigma}\right) v\left(p^{\prime}\right)$
$=\frac{i e^{2}}{q^{2}}\left[\bar{v}\left(k^{\prime}\right) \gamma^{\rho} u(k)\right]\left[\bar{u}(p) \gamma_{\rho} v\left(p^{\prime}\right)\right]$,

where we have used that the charge of the electron and muon are equal to $-|e|$. For determining the (differential) cross section we need to calculate $|\mathcal{M}|^{2}$ as in §4.3.
(a) First show that $\left[\bar{v}\left(k^{\prime}\right) \gamma^{\nu} u(k)\right]^{*}=\bar{u}(k) \gamma^{\nu} v\left(k^{\prime}\right)$ and $\left[\bar{u}(p) \gamma_{\nu} v\left(p^{\prime}\right)\right]^{*}=\bar{v}\left(p^{\prime}\right) \gamma_{\nu} u(p)$.
(b) We can make use of this to rewrite the expression for $|\mathcal{M}|^{2}$ in terms of traces in spinor space:

$$
|\mathcal{M}|^{2}=\frac{e^{4}}{q^{4}} \operatorname{Tr}\left(\left[v\left(k^{\prime}\right) \bar{v}\left(k^{\prime}\right)\right] \gamma^{\rho}[u(k) \bar{u}(k)] \gamma^{\nu}\right) \operatorname{Tr}\left([u(p) \bar{u}(p)] \gamma_{\rho}\left[v\left(p^{\prime}\right) \bar{v}\left(p^{\prime}\right)\right] \gamma_{\nu}\right) .
$$

If we are not able to produce polarized beams or to measure the polarization of the finalstate muons, then we have to average over the initial-state polarizations and to sum over the final-state polarizations:

$$
\begin{aligned}
& \frac{1}{2} \sum_{s} \frac{1}{2} \sum_{s^{\prime}} \sum_{r, r^{\prime}}\left|\mathcal{M}\left(s, s^{\prime} \rightarrow r, r^{\prime}\right)\right|^{2}=\frac{1}{4} \sum_{\text {pol. }}|\mathcal{M}|^{2} \\
& =\frac{e^{4}}{4 q^{4}} \operatorname{Tr}\left(\left[\sum_{s^{\prime}} v^{s^{\prime}}\left(k^{\prime}\right) \bar{v}^{s^{\prime}}\left(k^{\prime}\right)\right] \gamma^{\rho}\left[\sum_{s} u^{s}(k) \bar{u}^{s}(k)\right] \gamma^{\nu}\right) \times \\
& \quad \times \operatorname{Tr}\left(\left[\sum_{r} u^{r}(p) \bar{u}^{r}(p)\right] \gamma_{\rho}\left[\sum_{r^{\prime}} v^{r^{\prime}}\left(p^{\prime}\right) \bar{v}^{r^{\prime}}\left(p^{\prime}\right)\right] \gamma_{\nu}\right) \\
& =\frac{e^{4}}{4 q^{4}} \operatorname{Tr}\left(\left[\not x^{\prime}-m_{e}\right] \gamma^{\rho}\left[\not p+m_{e}\right] \gamma^{\nu}\right) \operatorname{Tr}\left(\left[\not p+m_{\mu}\right] \gamma_{\rho}\left[\not p^{\prime}-m_{\mu}\right] \gamma_{\nu}\right) .
\end{aligned}
$$

Apply the trace technology worked out in exercise 16 to obtain

$$
\begin{aligned}
\frac{1}{4} \sum_{\text {pol. }}|\mathcal{M}|^{2} & =\frac{4 e^{4}}{q^{4}}\left[k^{\prime \rho} k^{\nu}+k^{\prime \nu} k^{\rho}-g^{\rho \nu}\left(k \cdot k^{\prime}+m_{e}^{2}\right)\right]\left[p_{\nu}^{\prime} p_{\rho}+p_{\rho}^{\prime} p_{\nu}-g_{\rho \nu}\left(p \cdot p^{\prime}+m_{\mu}^{2}\right)\right] \\
& =\frac{8 e^{4}}{q^{4}}\left[\left(p^{\prime} \cdot k\right)\left(p \cdot k^{\prime}\right)+\left(p^{\prime} \cdot k^{\prime}\right)(p \cdot k)+m_{e}^{2}\left(p \cdot p^{\prime}\right)+m_{\mu}^{2}\left(k \cdot k^{\prime}\right)+2 m_{e}^{2} m_{\mu}^{2}\right]
\end{aligned}
$$

(c) Use CM kinematics (see p.62) and neglect m_{e} to simplify this to

$$
\frac{1}{4} \sum_{\text {pol. }}|\mathcal{M}|^{2}=e^{4}\left[1+\frac{m_{\mu}^{2}}{E^{2}}+\left(1-\frac{m_{\mu}^{2}}{E^{2}}\right) \cos ^{2} \theta\right]
$$

where $E=E_{\text {CM }} / 2$ is the energy of all four particles in the initial and final state.
Hint: the initial-state momenta are given by $k_{A}=k$ and $k_{B}=k^{\prime}$, whereas the final-state momenta are given by $p_{1}=p$ and $p_{2}=p^{\prime}$.
(d) Derive that the unpolarized total cross section is given by

$$
\sigma_{\mathrm{tot}}^{\mathrm{unpol} .}=\Theta\left(E-m_{\mu}\right) \frac{\pi \alpha^{2}}{3 E^{2}} \sqrt{1-m_{\mu}^{2} / E^{2}}\left[1+\frac{m_{\mu}^{2}}{2 E^{2}}\right]
$$

where $\alpha=e^{2} /(4 \pi)$ is the electromagnetic fine structure constant. Sketch the behaviour of this energy-dependent function.
(e) Attach an additional photon with momentum w and Minkowski index τ to the electronpositron line in the above Feynman diagram. Show that the corresponding matrix element \mathcal{M}^{τ} vanishes upon contraction with the photon momentum w_{τ}, i.e. $w_{\tau} \mathcal{M}^{\tau}=0$.

