Quantum Field Theory Exercises week 15

Exercise 19 (continued)

Complete exercise 19.

Exercise 20

Consider the electromagnetic Lagrangian density with 't Hooft-Feynman gauge fixing term:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2}(\partial \cdot A)^{2}
$$

in terms of the electromagnetic field tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. Since the Euler-Lagrange equation takes the form of the massless Klein-Gordon equation $\square A_{\mu}(x)=0$, the quantized solution can be written as

$$
\begin{aligned}
\hat{A}_{\mu}(x) & =\hat{A}_{\mu}^{(+)}(x)+\hat{A}_{\mu}^{(-)}(x), \\
\hat{A}_{\mu}^{(+)}(x) & =\left.\int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}} \sum_{r=0}^{3} \hat{a}_{\vec{p}}^{r} \epsilon_{\mu}^{r}(p) e^{-i p \cdot x}\right|_{p_{0}=E_{\vec{p}}=|\vec{p}|}, \\
\hat{A}_{\mu}^{(-)}(x) & =\left.\int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}} \sum_{r=0}^{3} \hat{a}_{\vec{p}}^{r \dagger} \epsilon_{\mu}^{r *}(p) e^{i p \cdot x}\right|_{p_{0}=E_{\vec{p}}=|\vec{p}|} .
\end{aligned}
$$

The creation and annihilation operators $\hat{a}_{\vec{p}}^{r \dagger}$ and $\hat{a}_{\vec{p}}^{r}$ of the massless electromagnetic energy quanta (photons $=$ antiphotons) satisfy the bosonic quantization conditions

$$
\left[\hat{a}_{\vec{p}}^{r}, \hat{a}_{\vec{p}^{\prime}}^{r^{\prime} \dagger}\right]=-(2 \pi)^{3} g^{r r^{\prime}} \delta\left(\vec{p}-\vec{p}^{\prime}\right) \hat{1} \quad \text { and } \quad\left[\hat{a}_{\vec{p}}^{r}, \hat{a}_{\vec{p}^{\prime}}^{r^{\prime}}\right]=\left[\hat{a}_{\vec{p}}^{r \dagger}, \hat{a}_{\vec{p}^{\prime}}^{r^{\prime} \dagger}\right]=0,
$$

The polarization vectors $\epsilon_{\mu}^{r}(p)$, with $r=0, \cdots, 3$ span Minkowski space:

$$
\begin{array}{rlll}
r=0 & \rightarrow & \epsilon_{0}^{0}(p)=1, & \vec{\epsilon}^{0}(p)=\overrightarrow{0} \\
r=1,2 & \rightarrow & \text { (scalar polarization) } & \Rightarrow \epsilon_{0}^{r}(p)=0, \quad \epsilon^{r}(p) \cdot p=E_{\vec{p}}, \\
r=3 & \rightarrow & \epsilon_{0}^{3}(p)=0, \quad \vec{\epsilon}^{3}(p)=\frac{\vec{p}}{E_{\vec{p}}} \quad \text { (transverse polarization) } \quad \Rightarrow \quad \epsilon^{r}(p) \cdot p=0, \\
& \text { (longitudinal polarization) } \quad \Rightarrow \quad \epsilon^{3}(p) \cdot p=-E_{\vec{p}},
\end{array}
$$

with the normalization condition $\epsilon^{r}(p) \cdot \epsilon^{r^{\prime} *}(p)=g^{r r^{\prime}}$.
The weird minus sign in one of the commutation relations (i.e. for $r=r^{\prime}=0$) is a consequence of the wrong sign of the kinetic term for the unphysical scalar A^{0}-field in the Lagrangian density:

$$
\mathcal{L}(x) \xrightarrow{\text { kinetic terms }} \frac{1}{2} \dot{\vec{A}}^{2}-\frac{1}{2} \dot{A}_{0}^{2}
$$

The energy spectrum thus seems unbounded from below. However, that is caused by unphysical modes of the theory! So, let's try to decouple the unphysical (non-transverse) asymptotic Fock states from physical ones. To this end we want to select physical states $|\psi\rangle$ in Fock space such that these states implement the Lorenz condition (gauge choice) $\partial \cdot A=0$ at the quantum level. This selection procedure should, however, be consistent with the canonical quantization condition

$$
\left[\hat{A}_{\mu}(\vec{x}, t), \hat{\pi}_{\nu}(\vec{y}, t)\right]=i g_{\mu \nu} \delta(\vec{x}-\vec{y}) \hat{1} \quad \text { with in particular } \quad \hat{\pi}_{0}(\vec{y}, t)=-\partial \cdot \hat{A}(\vec{y}, t) .
$$

(a) Why does this exclude the implementation of the Lorenz condition at the operator level, $\partial \cdot \hat{A}=0$, or restricted to physical states, $\partial \cdot \hat{A}|\psi\rangle=0$?
(b) We resort to the weaker condition $\partial \cdot \hat{A}^{(+)}|\psi\rangle=0$. Show that the Lorenz condition has been implemented as $\langle\psi| \partial \cdot \hat{A}|\psi\rangle=0$ in this way, i.e. as an expectation value.
(c) Use the definition of the polarization vectors $\epsilon_{\mu}^{r}(p)$ to derive that the condition $\partial \cdot \hat{A}^{(+)}|\psi\rangle=0$ is equivalent to $\left(\hat{a}_{\vec{p}}^{0}-\hat{a}_{\vec{p}}^{3}\right)|\psi\rangle=0$ for arbitrary photon momentum \vec{p}.

To quantify what this implies we write the physical states $|\psi\rangle$ as

$$
|\psi\rangle \equiv\left|\psi_{T}\right\rangle|\phi\rangle=\left|\psi_{T}\right\rangle\left[\left|\phi_{0}\right\rangle+c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+\cdots\right] \quad\left(c_{1}, c_{2}, \cdots \in \mathbb{C}\right) .
$$

- $\left|\psi_{T}\right\rangle$ is a normalized physical state containing transverse photons only: $\left\langle\psi_{T} \mid \psi_{T}\right\rangle=1$ and $\hat{a}_{\vec{p}}^{0}\left|\psi_{T}\right\rangle=\hat{a}_{\vec{p}}^{3}\left|\psi_{T}\right\rangle=0$.
- $|\phi\rangle$ is a state containing the right mix of scalar and longitudinal photons, without involving any transverse photons: $\left(\hat{a}_{\vec{p}}^{0}-\hat{a}_{\vec{p}}^{3}\right)|\phi\rangle=0, \hat{a}_{\vec{p}}^{1}|\phi\rangle=\hat{a}_{\vec{p}}^{2}|\phi\rangle=0$.
- $\left|\phi_{n}\right\rangle$ contains n scalar or longitudinal photons.
- $\left|\phi_{0}\right\rangle$ is the normalized scalar/longitudinal vacuum state: $\left\langle\phi_{0} \mid \phi_{0}\right\rangle=1$.
(d) Consider the number operator for scalar and longitudinal photons:

$$
\hat{N}_{S L}=\int \frac{d \vec{p}}{(2 \pi)^{3}}\left(\hat{a}_{\vec{p}}^{3 \dagger} \hat{a}_{\vec{p}}^{3}-\hat{a}_{\vec{p}}^{0 \dagger} \hat{a}_{\vec{p}}^{0}\right) .
$$

- Use the commutation relations for $\hat{a}_{\vec{p}}^{r \dagger}$ and $\hat{a}_{\vec{p}}^{r}$ to show that the state

$$
\left|1_{s}\right\rangle \equiv \int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}} f(\vec{p}) \hat{a}_{\vec{p}}^{0 \dagger}|0\rangle
$$

with f some complex-valued function, contains one such photon.

- Use $\hat{N}_{S L}$ to prove that $n\left\langle\phi_{n} \mid \phi_{n}\right\rangle=0 \Rightarrow\left\langle\phi_{n} \mid \phi_{n}\right\rangle=0$ if $n \geq 1$.
(e) Use the form of the Hamiltonian:

$$
N(\hat{H})=\int \frac{d \vec{p}}{(2 \pi)^{3}} E_{\vec{p}}\left(\sum_{r=1}^{3} \hat{a}_{\vec{p}}^{r \dagger} \hat{a}_{\vec{p}}^{r}-\hat{a}_{\vec{p}}^{0 \dagger} \hat{a}_{\vec{p}}^{0}\right)
$$

to derive that

$$
\langle\psi| N(\hat{H})|\psi\rangle=\int \frac{d \vec{p}}{(2 \pi)^{3}} E_{\vec{p}} \sum_{r=1}^{2}\left\langle\psi_{T}\right| \hat{a}_{\vec{p}}^{r \dagger} \hat{a}_{\vec{p}}^{r}\left|\psi_{T}\right\rangle \geq 0 .
$$

Note again the wrong-sign contribution of the unphysical $r=0$ modes to the Hamiltonian, which reflects the wrong sign of the corresponding kinetic term. In the physical energy expectation values, however, this contribution exactly cancels the contribution from the unphysical $r=3$ modes!
(f) Show that $\langle\psi| \hat{A}_{\mu}(x)|\psi\rangle=\left\langle\psi_{T}\right| \hat{A}_{\mu}^{(t r)}(x)\left|\psi_{T}\right\rangle+\partial_{\mu} \chi(x)$, with $\square \chi(x)=0$. Here $\hat{A}^{(t r)}(x)$ contains transverse modes only and $\partial_{\mu} \chi(x)$ represents the contribution from scalar and longitudinal modes. Hint: first prove the relation $E_{\vec{p}}\left(\epsilon_{\mu}^{0}(p)+\epsilon_{\mu}^{3}(p)\right)=p_{\mu}$.
(g) Why can the physical photon states be chosen as $|\psi\rangle=\left|\psi_{T}\right\rangle\left|\phi_{0}\right\rangle$, consisting of transverse photons only?

