
Quantum Field Theory Exercises week 16

Exercise 20

Consider the electromagnetic Lagrangian density with ’t Hooft-Feynman gauge fixing term:
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(∂ ·A)2

in terms of the electromagnetic field tensor Fµν = ∂µAν−∂νAµ . Since the Euler-Lagrange equation
takes the form of the massless Klein-Gordon equation �Aµ(x) = 0, the quantized solution can be
written as
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µ (x) ,
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The polarization vectors ǫrµ(p), with r = 0, · · · , 3 span Minkowski space:

r = 0 → ǫ00(p) = 1 , ~ǫ 0(p) = ~0 (scalar polarization) ⇒ ǫ0(p) · p = E~p ,

r = 1, 2 → ǫr0(p) = 0 , ~ǫ r(p) · ~p = 0 (transverse polarization) ⇒ ǫr(p) · p = 0 ,

r = 3 → ǫ30(p) = 0 , ~ǫ 3(p) =
~p

E~p

(longitudinal polarization) ⇒ ǫ3(p) · p = −E~p ,

with the normalization condition ǫr(p) · ǫr
′∗(p) = grr

′

. We want to select physical states |ψ〉 in
Fock space such that these states implement the Lorenz condition. This selection procedure should,
however, be consistent with the canonical quantization condition

[

Âµ(~x, t), π̂ν(~y, t)
]

= igµνδ(~x− ~y )1̂ with in particular π̂0(~y, t) = − ∂ · Â(~y, t) .

(a) Why does this exclude the implementation of the Lorenz condition at the operator level,
∂ · Â = 0, or restricted to physical states, ∂ · Â |ψ〉 = 0?

(b) We resort to the weaker condition ∂ · Â(+) |ψ〉 = 0. Show that the Lorenz condition has been
implemented as 〈ψ|∂ · Â|ψ〉 = 0 in this way, i.e. as an expectation value.

(c) Use the definition of the polarization vectors ǫrµ(p) to derive that the condition ∂ ·Â(+) |ψ〉 = 0
is equivalent to (â0~p − â3~p ) |ψ〉 = 0 for arbitrary photon momentum ~p .

To quantify what this implies we write the physical states |ψ〉 as

|ψ〉 ≡ |ψT 〉|φ〉 = |ψT 〉
[

|φ0〉+ c1 |φ1〉+ c2 |φ2〉+ · · ·
]

(c1, c2, · · · ∈ C) .

• |ψT 〉 is a normalized physical state containing transverse photons only: 〈ψT |ψT 〉 = 1 and
â0~p |ψT 〉 = â3~p |ψT 〉 = 0.

• |φ〉 is a state containing the right mix of scalar and longitudinal photons, without involving
any transverse photons: (â0~p − â3~p ) |φ〉 = 0, â1~p |φ〉 = â2~p |φ〉 = 0.

• |φn〉 contains n scalar or longitudinal photons.

• |φ0〉 is the normalized scalar/longitudinal vacuum state: 〈φ0|φ0〉 = 1.
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(d) Consider the number operator for scalar and longitudinal photons:

N̂SL =

∫

d~p

(2π)3
(â3†~p â

3
~p − â

0†
~p â

0
~p ) .

– Use the commutation relations for âr†~p and âr~p to show that the state

|1s〉 ≡

∫

d~p

(2π)3
1

√

2E~p

f(~p ) â0†~p |0〉 ,

with f some complex-valued function, contains one such photon.

– Use N̂SL to prove that n〈φn|φn〉 = 0 ⇒ 〈φn|φn〉 = 0 if n ≥ 1.

(e) Use the form of the Hamiltonian:

N(Ĥ) =
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(2π)3
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0†
~p â
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to derive that

〈ψ|N(Ĥ)|ψ〉 =

∫

d~p

(2π)3
E~p

2
∑

r=1

〈ψT |â
r†
~p â

r
~p |ψT 〉 ≥ 0 .

(f) Show that 〈ψ|Âµ(x)|ψ〉 = 〈ψT |Â
(tr)
µ (x)|ψT 〉 + ∂µχ(x), with �χ(x) = 0. Here Â(tr)(x)

contains transverse modes only and ∂µχ(x) represents the contribution from scalar and lon-
gitudinal modes. Hint: first prove the relation E~p

(

ǫ0µ(p) + ǫ3µ(p)
)

= pµ .

(g) Why can the physical photon states be chosen as |ψ〉 = |ψT 〉|φ0〉 , consisting of transverse
photons only?
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