Quantum Field Theory Exercises week 1

Exercise 1: A 1-dimensional periodic lattice (going from discrete to continuum)

Consider a 1-dimensional periodic lattice of N point particles of mass m that are connected by springs with spring constant k_{s}. The equilibrium position of particle n is given by $\bar{x}_{n}=n a$, where $a>0$ is the fixed average inter-particle distance. The positions of the particles relative to the equilibrium positions are indicated by the coordinates $\phi_{n}(t)$, which are assumed to be small with respect to a. The periodicity condition implies that particle $N+1$ coincides with particle 1 .

(a) Explain that the Lagrangian of the discrete system is given by:

$$
L\left(\left\{\phi_{n}\right\},\left\{\dot{\phi}_{n}\right\}\right)=\sum_{n=1}^{N}\left(\frac{1}{2} m \dot{\phi}_{n}^{2}(t)-\frac{1}{2} k_{s}\left[\phi_{n+1}(t)-\phi_{n}(t)\right]^{2}\right)
$$

(b) Derive the Lagrange equations for the coordinates $\phi_{n}(t)$.
(c) Considered on a macroscopic length scale $L=N a \gg a$ the lattice can be viewed as a continuous system, i.e. a can be viewed as being infinitesimal compared to L. The corresponding continuum limit is given by $\left.\phi_{n}(t) \rightarrow \sqrt{a} \phi(x, t)\right|_{x=n a}$, where $\phi(x, t) \in[0, L]$ is a smooth function describing the lattice fluctuations. Taylor expand in " a " up to the first non-vanishing order $a^{p}(p>0)$ to prove that:

- $L\left(\left\{\phi_{n}\right\},\left\{\dot{\phi}_{n}\right\}\right) \rightarrow \int_{0}^{L} d x\left(\frac{1}{2} m \dot{\phi}^{2}-\frac{1}{2} k_{s} a^{2}[\partial \phi / \partial x]^{2}\right) \equiv \int_{0}^{L} d x \mathcal{L}\left(\phi, \partial_{t} \phi, \partial_{x} \phi\right)$,
- the Lagrange equations derived in (b) become $m\left(\partial_{t}^{2}-\frac{k_{s} a^{2}}{m} \partial_{x}^{2}\right) \phi(x, t)=0$,
where $\partial_{t} \equiv \partial / \partial t$ and $\partial_{x} \equiv \partial / \partial x$.
(d) Show that the latter equation of motion coincides with the Euler-Lagrange equation of the continuous system.
(e) What are the solutions of this equation going to describe?
(f) Determine the Hamiltonian density of the continuous system.

Exercise 2: Free electromagnetic theory (dealing with Minkowski indices)

Solve exercise 2.1(a) from Peskin and Schroeder. Additional hints:

- Use that

$$
\epsilon^{i j k}= \begin{cases}+1 & \text { if }(i, j, k)=\text { even permutation of }(1,2,3) \\ -1 & \text { if }(i, j, k)=\text { odd permutation of }(1,2,3) \\ 0 & \text { else }\end{cases}
$$

so $\epsilon^{i j k} \epsilon^{i j l}=2 \delta^{k l}$ with summation over i and j implied.

- From this definition it follows that $(\vec{a} \times \vec{b})^{k}=\epsilon^{i j k} a^{i} b^{j}$ for the cross product (= vector product) of two three-dimensional vectors \vec{a} and \vec{b}. Again summation over i and j is implied here.
- Two of the four Maxwell equations follow from the general form of $F_{\mu \nu}$, i.e. $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, rather than from the equations of motion.

