
Quantum Field Theory Exerises week 3

Exerise 4 : The omplex KG theory (partile interpretation and \vauum properties")

Consider the free quantum �eld theory for a omplex-valued salar �eld �(x) with mass m . As

derived in exerise 3, the Hamilton operator of this theory is given by
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(a) In order to diagonalize the Hamilton operator, introdue reation and annihilation operators

by deomposing the Shr�odinger-piture �eld

^

�(~x ) in spatial plane-wave modes. In hapter 2

of Peskin and Shroeder this is done for a hermitian Klein-Gordon �eld. You an redue the

problem at hand to this ase by rewriting
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{ Determine the ommutation relations for the reation and annihilation operators that

feature in the above-given expression for
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On the left-hand side of this equation you will have to �gure out what the onjugate

momentum of i

^
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is in relation to the onjugate momentum �̂
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of
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(b) Show that
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H an be expressed in terms of the number operators â
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indiate the onstant remainder proportional to the unit operator, whih is usually referred

to as the zero-point energy.

() Do the same for the \harge" operator
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Q , whih is given by
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up to a onstant fator.

(d) What an you onlude on the basis of parts (b) and () about the partile interpretation

of the omplex Klein-Gordon theory, i.e. what is the energy and harge of the fundamental

quanta that are reated by â
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and
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(e) If we would have started from lassial de�nitions of the Hamiltonian and harge in whih

the order of the �elds was reversed, we would upon quantization have obtained the same

zero-point energy but a zero-point harge with the opposite sign. Argue that this is indeed

the ase.
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(f) Prove that the vauum expetation value h0j
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j (~x )j0i vanishes for the spatial part of the

Noether (harge) urrent
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(g) This was to be expeted, sine a non-zero urrent would give the vauum a preferred diretion.

Atually this should hold for all inertial observers. Given that
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ombined into the ontravariant four-vetor
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(h) In most QFT textbooks normal ordering is used to remove unwanted (read: unphysial) va-

uum properties. Another method that ould be applied is Weyl-ordering, whih involves

averaging over all possible de�nitions (i.e. orderings) of the quantum observables.

Disuss the pros and ons of both methods by onsidering the impliations for the energy and

harge properties of the vauum.
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