
Quantum Field Theory Exerises week 6

Exerise 7 : Feynman rules for the salar Yukawa theory + arrow onvention

Take the Lagrangian for the salar Yukawa theory:
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with � 2 R and  2 C .

(a) Whih term in the Lagrangian gives rise to an interation?

(b) Calulate up to �rst order in g :
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indiating the Feynman propagator for the  �eld by
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Hint: use that h0jT
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j0i = 0 aording to exerise 5(b).

() Write the answer in part (b) in terms of Feynman diagrams. Use a solid line for the

 propagators and a dotted line for the � propagators. Use the following extra drawing

onvention: draw an arrow on  propagators, representing the diretion of partile-number

ow. Hene, the  -partiles are de�ned to ow along the arrow, whereas  -antipartiles ow

against it!

Explain in this ontext why the operator
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(x) orresponds to an arrow that ows into

the external/internal point x, whereas

^

 

y
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(x) orresponds to an arrow that ows out of the

external/internal point x.

(d) { Extrat the Feynman rules in position spae.

{ Why do we not have to worry about symmetry fators?

(e) Translate these Feynman rules to the momentum representation.

Exerise 8 : More on the arrow onvention for partiles and antipartiles

In exerises 5 and 7 you have seen various aspets of partile ow (arrows) in the salar Yukawa

theory, pertaining to internal/external points as well as propagators. Use these aspets to explain

why the arrows in the assoiated Feynman diagrams link up to form a ontinuous ow.

What onservation law is atually ausing this phenomenon?
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Exerise 9 : dealing with matrix elements in the salar Yukawa theory

Consider the salar Yukawa theory, for whih you have derived some Feynman rules in exerise 7.

(a) Derive the additional momentum-spae Feynman rules that are needed in order to alulate

amplitudes in this theory. Explain in this ontext why you should treat  -partiles and

�

 -partiles (i.e.  -antipartiles) separately.

Use the same drawing onvention as introdued in exerise 7: draw an arrow on  and

�

 lines,

representing the diretion of partile-number ow. Hene, the  -partiles are de�ned to ow

along the arrow, whereas

�

 -partiles ow against it! Use solid lines to indiate  =

�

 -partiles

and dashed lines for the �-partiles.

If you have derived the additional Feynman rules orretly you should have found

that
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(x) orresponds to an arrow that ows into the interation vertex, whereas
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(x) orresponds to an arrow that ows out of the interation vertex!

(b) Use these Feynman rules to alulate the amplitude for the deay proess
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to lowest non-vanishing order, whih is usually referred to as the lowest-order amplitude. To

this end you may use that at lowest non-vanishing order iM = sum of all fully onneted

amputated Feynman diagrams in momentum spae.

Compare to page 36 of the leture notes and judge for yourself whether you like Feynman

rules or not.

() Calulate the lowest-order amplitudes for the following sattering proesses:
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where k

A

and k

B

are the momenta of the initial-state partiles and p

1

and p

2

the momenta

of the �nal-state partiles. Compare the matrix elements for the �rst and third proess, and

indiate how the third matrix element an be obtained diretly from the �rst one. This way

of swithing from partiles in the initial/�nal state to antipartiles in the �nal/initial state

(and vie versa) is alled rossing.

(d) Explain why the lowest-order amplitude vanishes for the sattering proess
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