Quantum Field Theory Exercises week 8

Exercise 10 (continued)

Complete exercise 10 by deriving Newton's gravitational potential in part b.

Exercise 11: decay rates, cross sections and reaction channels

Read §2.8.3 of the lecture notes about CM kinematics and consider the scalar Yukawa theory.

- (a) Calculate the lowest-order decay width $\Gamma_{\phi \to \psi \bar{\psi}}$ in the rest frame of the decaying particle. For which masses is this decay possible?
- (b) Consider the process $\psi \bar{\psi} \rightarrow \phi \phi$ in the centre-of-mass frame.
 - Which channels contribute to this process?
 - What do the corresponding diagrams say about the θ -dependence?
 - For which centre-of-mass energies can this process occur?
 - Calculate the lowest-order differential cross section $\left(d\sigma/d\Omega \right)_{CM}$.
- (c) Consider the process $\psi \bar{\psi} \rightarrow \psi \bar{\psi}$ in the centre-of-mass frame.
 - Which channels contribute to this process?
 - What are the ranges of the Mandelstam variables?
 - For which centre-of-mass energies can this process occur?
 - Calculate the lowest-order differential cross section.
 - Assume that m > 2M. Look at the energy dependence of both reaction channels separately. Do you notice something special in one of them?
 - Use the other reaction channel to determine whether the Yukawa interaction between ψ -particles and $\bar{\psi}$ -particles is attractive or repulsive.

Hint: don't perform an explicit calculation, just use the analogy with the calculation that is presented on pages 52 and 53 of the lecture notes.