## Solution 13:

(a) Only one amputated diagram contributes to the one-loop correction to the $\phi^{3}$ interaction:

(b) In the diagram of part (a) we have three propagators and one loop momentum. After Wick rotation and Feynman parametrization, the integral will have the form

$$
\int_{0}^{\Lambda^{2}} d \ell_{E}^{2} \frac{\ell_{E}^{2}}{\left(\ell_{E}^{2}+\Delta-i \epsilon\right)^{3}}
$$

Since there are four powers of $\ell_{E}$ in the numerator and six in the denominator, the integral is finite. This can be understood from a dimensional reasoning. For a 4-dimensional theory we have $[\mathcal{L}]=4$. Since $\mathcal{L}$ contains a term of the form $m^{2} \phi^{2}$, that means that $[\phi]=1$, so $\left[\phi^{3}\right]=3$ and therefore $[\lambda]=4-3=1$. According to the discussion on page 28 of the lecture notes the $\phi^{3}$ interaction is thus weak at high energies, which explains its finiteness.
$(c+d)$ First we consider the self-energy diagram


Taking into account the symmetry factor, this diagram yields:

$$
\begin{aligned}
\frac{1}{2} \int \frac{d^{4} \ell_{1}}{(2 \pi)^{4}} \frac{\lambda^{2}}{\left[\ell_{1}^{2}-m^{2}+i \epsilon\right]\left[\left(\ell_{1}+p\right)^{2}-m^{2}+i \epsilon\right]} & =\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d \alpha \int_{0}^{\Lambda^{2}} d \ell_{E}^{2} \frac{\ell_{E}^{2}}{\left(\ell_{E}^{2}+\Delta\left(\alpha, m^{2}, p^{2}\right)-i \epsilon\right)^{2}} \\
& =\frac{i \lambda^{2}}{32 \pi^{2}} \log \left(\Lambda^{2}\right)+\text { finite terms for } \Lambda \rightarrow \infty
\end{aligned}
$$

Note that for the leading behaviour we do not need to determine the precise form of $\Delta$. For the calculation of the integral, see exercise 12.

The second ("tadpole") diagram
 yields:

$$
\begin{aligned}
\frac{1}{2} \int \frac{d^{4} \ell_{1}}{(2 \pi)^{4}} \frac{-\lambda^{2} / m^{2}}{\left[\ell_{1}^{2}-m^{2}+i \epsilon\right]} & =\frac{i \lambda^{2}}{32 \pi^{2} m^{2}} \int_{0}^{\Lambda^{2}} d \ell_{E}^{2} \frac{\ell_{E}^{2}}{\ell_{E}^{2}+m^{2}-i \epsilon} \\
& =\frac{i \lambda^{2}}{32 \pi^{2}} \frac{\Lambda^{2}}{m^{2}}+\text { less divergent terms for } \Lambda \rightarrow \infty
\end{aligned}
$$

(e) The full propagator in the $\phi^{3}$-theory reads:

$$
\frac{i}{p^{2}-m^{2}-\Sigma\left(p^{2}\right)+i \epsilon} \equiv \frac{i Z}{p^{2}-m_{p h}^{2}+i \epsilon}+\text { regular terms at the pole } m_{p h}^{2}
$$

with $\Sigma\left(p^{2}\right)$ the self-energy. The physical mass $m_{p h}$ is determined by the location of the pole:

$$
m_{p h}^{2}-m^{2}-\Sigma\left(m_{p h}^{2}\right)=0
$$

We know that the physical mass $m_{p h}$ is an observable and thus cannot depend on $\Lambda$. According to part ( $c+d$ ) the self-energy is divergent for $\Lambda \rightarrow \infty$, so the same should hold for the Lagrangian parameter $m$.
(f) The analysis on page 87 of the lecture notes is for $\phi^{4}$-theory. For $\phi^{3}$-theory we have:

- three lines meet in each vertex, each external line is connected to one vertex and each propagator is connected to two vertices or to the same vertex twice, so $3 V=N+2 P \Rightarrow$ $P=\frac{3}{2} V-\frac{1}{2} N$.
- By the same reasoning as on page 87 , we have $L=P-V+1=\frac{1}{2} V-\frac{1}{2} N+1$ so we only have loops if $V \geq N$.
- The superficial degree of divergence is given by $D=n L-2 P=\left(\frac{1}{2} n-3\right) V+(1-n / 2) N+n$.

Now as for renormalizability:
$\boldsymbol{n}=4$ In our four-dimensional world we have $D=4-V-N$, so $D$ decreases at higher loop order since the coefficient in front of $V$ is negative. The only divergences occur at $N=1$ and $V=1$ or 3 (tadpole graphs) and $V=N=2$ (the one-loop self-energy graph from part c), bearing in mind that $V=N+2(L-1)$. So this case is superrenormalizable.
$\boldsymbol{n}=\mathbf{6}$ In this case we have $D=6-2 N$, so $D \geq 0$ for $N \leq 3$. That means that divergences occur at all orders, but there is only a finite number of divergent amplitudes. So this theory is renormalizable.
$\boldsymbol{n}<\mathbf{6}$ For any theory with $n<6$, a similar argumentation as in the $n=4$ case shows that it is superrenormalizable.
$\boldsymbol{n}>6$ All amplitudes become divergent at sufficiently high loop order, since the coefficient in front of $V$ is positive, so the theory is nonrenormalizable.
(g) For an $n$ dimensional theory, we have $[\mathcal{L}]=n$. Since $\mathcal{L}$ contains a term of the form $m^{2} \phi^{2}$, that means that $[\phi]=(n-2) / 2$, so $\left[\phi^{3}\right]=3(n-2) / 2$ and therefore $[\lambda]=n-3(n-2) / 2=$ $3-n / 2$. That means that $\lambda$ is dimensionless for $n=6$, which is the renormalizable case. For $n<6,[\lambda]>0$, so the $\phi^{3}$ interaction is weak at high energies, which explains why it is superrenormalizable. For $n>6,[\lambda]<0$, so the $\phi^{3}$ interaction is strong at high energies, which explains why the integrals diverge and the theory is nonrenormalizable.
(h) According to part (f), the superficially divergent 1-particle irreducible one-loop diagrams for four-dimensional spacetime are the self-energy diagram $\quad \propto \log \left(\Lambda^{2}\right)$ and the tadpole diagram $\propto \Lambda^{2}$. This agrees with the discussion in part (d).

## Solution 14:

(a) Infinitesimal rotation in terms of rotation angle $\delta \alpha$ and rotation axis $\vec{e}_{n}$ :
$\vec{x} \rightarrow \vec{x}^{\prime} \approx \vec{x}+\delta \alpha \vec{e}_{n} \times \vec{x} \equiv \vec{x}+\delta \vec{\alpha} \times \vec{x}$.
Rewritten as infinitesimal Lorentz transformation $x^{\prime \rho}=\Lambda^{\rho}{ }_{\sigma} x^{\sigma} \approx\left(g^{\rho}{ }_{\sigma}+\omega^{\rho}{ }_{\sigma}\right) x^{\sigma}$ :
$x^{\prime 0}=x^{0} \Rightarrow \omega_{0 \sigma}=0$ for $\sigma=0,1,2,3$.
$x^{\prime j} \approx x^{j}+(\delta \vec{\alpha} \times \vec{x})^{j}=x^{j}+\epsilon^{j l k}(\delta \alpha)^{l} x^{k} \Rightarrow \omega_{j 0}=0$ and $\omega_{j k}=-\epsilon^{j l k}(\delta \alpha)^{l}=\epsilon^{j k l}(\delta \alpha)^{l}$.
The non-vanishing components are: $\omega_{12}=-\omega_{21}=(\delta \alpha)^{3}$ and cyclic permutations thereof.
(b) Infinitesimal boost with boost velocity $\delta \vec{v}: x^{0} \rightarrow x^{\prime 0} \approx x^{0}+\delta \vec{v} \cdot \vec{x}, \vec{x} \rightarrow \vec{x}^{\prime} \approx \vec{x}+x^{0} \delta \vec{v}$.

Rewritten as infinitesimal Lorentz transformation $x^{\prime \rho}=\Lambda^{\rho}{ }_{\sigma} x^{\sigma} \approx\left(g^{\rho}{ }_{\sigma}+\omega^{\rho}{ }_{\sigma}\right) x^{\sigma}$ : $\omega_{00}=0, \omega_{0 j}=\delta v^{j}$ from the temporal part and $\omega_{i j}=0, \omega_{j 0}=-\delta v^{j}$ from the spatial part.

