Quantum Field Theory: Tutorial #10 Solutions

Solution 13:

(a)

(b)

(c+d)

Only one amputated diagram contributes to the one-loop correction to the ¢3 interaction:

In the diagram of part (a) we have three propagators and one loop momentum. After Wick

rotation and Feynman parametrization, the integral will have the form
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Since there are four powers of /g in the numerator and six in the denominator, the integral
is finite. This can be understood from a dimensional reasoning. For a 4-dimensional theory
we have [£] = 4. Since £ contains a term of the form m?2¢?, that means that [¢] = 1, so
[#3] = 3 and therefore [A\] = 4 — 3 = 1. According to the discussion on page 28 of the lecture

notes the ¢3 interaction is thus weak at high energies, which explains its finiteness.

First we consider the self-energy diagram

b

p+4

Taking into account the symmetry factor, this diagram yields:
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Note that for the leading behaviour we do not need to determine the precise form of A. For

the calculation of the integral, see exercise 12.
2

The second (“tadpole”) diagram yields:
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(e)

1 / d X m? N /“d 2 2
2) 2m)* (2 —m2+ie]  32n2m2 B2+ m? e
')\2 A2
= #—2 + less divergent terms for A — oo .
w2 m

The full propagator in the ¢>-theory reads:
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with ¥(p?) the self-energy. The physical mass My, is determined by the location of the pole:

We know that the physical mass myp, is an observable and thus cannot depend on A. Ac-
cording to part (c+d) the self-energy is divergent for A — 0o, so the same should hold for the

Lagrangian parameter m.
The analysis on page 87 of the lecture notes is for ¢*-theory. For ¢3-theory we have:

— three lines meet in each vertex, each external line is connected to one vertex and each
propagator is connected to two vertices or to the same vertex twice, so 3V = N+2P =
_ 3 1
P =35V -3N.
— By the same reasoning as on page 87, we have L =P -V +1 = %V — %N + 1 so we
only have loops if V > N.

— The superficial degree of divergence is given by D = nL—2P = (3n—3)V+(1-n/2)N+n.
Now as for renormalizability:

n = 4 In our four-dimensional world we have D =4 —V — N, so D decreases at higher loop
order since the coeflicient in front of V is negative. The only divergences occur at N =1
and V =1 or 3 (tadpole graphs) and V = N = 2 (the one-loop self-energy graph from
part c¢), bearing in mind that V' = N 4+ 2(L — 1). So this case is superrenormalizable.

n = 6 In this case we have D =6 —2N,so D > 0 for N < 3. That means that divergences
occur at all orders, but there is only a finite number of divergent amplitudes. So this

theory is renormalizable.

n < 6 For any theory with n < 6, a similar argumentation as in the n = 4 case shows that

it is superrenormalizable.

n > 6 All amplitudes become divergent at sufficiently high loop order, since the coefficient

in front of V is positive, so the theory is nonrenormalizable.
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(g) For an n dimensional theory, we have [£] = n. Since £ contains a term of the form m?2¢?,
that means that [¢] = (n — 2)/2, so [¢°] = 3(n — 2)/2 and therefore [A\] = n — 3(n — 2)/2 =
3 —n/2. That means that A is dimensionless for n = 6, which is the renormalizable case.
For n < 6, [\] > 0, so the ¢* interaction is weak at high energies, which explains why it is
superrenormalizable. For n > 6, [\] < 0, so the ¢ interaction is strong at high energies,

which explains why the integrals diverge and the theory is nonrenormalizable.

(h) According to part (f), the superficially divergent 1-particle irreducible one-loop diagrams for

four-dimensional spacetime are the self-energy diagram —O— o log(A?) and the

tadpole diagram oc A?. This agrees with the discussion in part (d).

Solution 14:

(a) Infinitesimal rotation in terms of rotation angle dar and rotation axis €, :
T — T =~ Z+d0ae, XxT =T+daxT.
Rewritten as infinitesimal Lorentz transformation z/? = A”, 2% ~ (gp 4+ WP, o) x?
20 =2 = wy, =0 for 0 =0,1,2,3.
2 2l + (6@ x 7)Y = 27 + ¥ (§a)lzh = wjo =0 and wj, = — € (da)! = ekl (sa)'.
The non-vanishing components are: wis = —wo1 = ((Sa)3 and cyclic permutations thereof.
(b) Infinitesimal boost with boost velocity dv': 2% — 2’ ~ 2% +67-% , ¥ — &' ~ 7+ 2%67.

Rewritten as infinitesimal Lorentz transformation z'” = A%, 27 ~ (¢% + w’5) 27:

wop =0, woj = §v? from the temporal part and wij =0, wjo = — §v? from the spatial part.
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