
Quantum Field Theory: Tutorial #13 Solutions

Solution 20:

Notation: in â

s

~p

the label s labels the spin quantum number and ~p the three-momentum. All

�elds used in this exerise are free �elds, i.e. they would be interation-piture �elds in ase of an

interating theory.
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The proof of Wik's theorem follows the steps outlined on p. 38 and 39 of the leture notes with

^
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j

representing a fermioni �eld at the spaetime point x

j

, i.e. either
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Sine interhanging two �elds now generates a minus sign, the di�erenes to the salar ase are
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where we have used that N(
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For the four-point Green's funtion this implies:
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where only fully ontrated terms ontribute and the minus sign originates from Fermi statistis.
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Solution 21:

Let's onsider a fermioni theory with Lagrangian
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 (x)(i

�

�

�

�m

 

) (x) +

1

2

�

�

�

�(x)

��

�

�

�(x)

�

�

1

2

m

2

�

�

2

(x) � g

�

 (x)� (x)�(x) ;

with � a spei� 4� 4 matrix, �(x) a real salar �eld and  (x) a Dira �eld. This gives rise to

the following interation term in the Hamilton operator:

^
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(a) We �rst derive the Euler-Lagrange equations for all three �elds:
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(b) We know that the ation has mass dimension 0, i.e. [S℄ = 0. Therefore we have

h
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4

xL
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= 0 ) [L℄ = 4 :

Furthermore, we know that
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�
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℄ = 1 :

This leads to the following mass dimensions for the remaining objets:
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3
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Hene, g is a dimensionless oupling onstant in four spaetime dimensions! So, we antiipate

to be dealing with a renormalizable theory.

() The non-interating (interation piture) �eld
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y
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sine in both ases the two sets of operators ontained in the two �elds antiommute and

therefore annihilate the vauum j0i or h0j .

(d) Next we want to determine
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to �rst order in the oupling onstant g . Expanding the time-ordered produt up to �rst
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order in the interation and applying Wik's theorem, we �nd
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Note that the lowest-order term in the expansion vanishes, beause it is a produt of three

�elds and therefore annot be fully ontrated. Furthermore, we used that ontrations of

^

 

with

^

 vanish, just like ontrations of

^

�

 with

^

�

 (in aordane with part d).

Next, we should replae ontrations by propagators. The fermioni propagator is de�ned as

the following ontration:
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Therefore, the propagator piks up an additional minus sign if the order of the two �elds is

interhanged. Altogether, we �nd for the O(g) terms:
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Diagrammatially this an be represented by

x

3 z

x

2

b

x

1

a

+

x

2

b

x

1

a

x

3 z

Note that the analyti expressions niely on�rm the Feynman rules for fermion loops, for

the vertex in the Yukawa theory and for the various aspets of the arrow onvention!

(e+f) The lowest-order sattering amplitude iM
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given by

iM =
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+
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�
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:

The �rst of these ontributions orresponds to the ontrations
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�
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^
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and the seond one to the ontrations
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^
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As expeted from Fermi statistis, the two diagrams have a relative minus sign as a result of

the interhange of the two idential �nal-state antifermions.

(g) For � = I

4

the one-loop ontribution to the self-energy of a salar boson with arbitrary

momentum p is given as follows:

� i�

�

(p

2

)
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=======

p

`

1

`

1

+ p
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i
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4
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4
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=
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=
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1

+

=
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�
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2

1
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1

+ p)

2

�m

2
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:

Note that the �rst minus sign and the trae appear beause we are dealing with a fermion

loop. We an now evaluate the trae with the identities that we found in exerise 16. Reall

that the trae over an odd number of gamma matries vanishes, and that

Tr(I

4

) = 4 and Tr(

�



�

) = 4g

��

:

We then �nd for the trae
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`
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1

+

=
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=

`

1

+

=

p) +m

2

 

�

= 4

�

`

1

� (`

1

+ p) +m

2

 

�

;

giving us the desired result.
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(h) Consider an arbitrary 1-partile irreduible amputated loop diagram in the Yukawa theory

with N

F

external fermions, N

B

external bosons, P

F

fermion propagators, P

B

boson propa-

gators, V verties, and L loop momenta:

{ two fermions and one boson meet in eah vertex, eah external line is onneted to one

vertex and eah propagator is onneted to two verties or to the same vertex twie:

2V = N

F

+ 2P

F

; V = N

B

+ 2P

B

;

whih implies that N

F

is always even and

P

F

= V �

1

2

N

F

; P

B

=

1

2

(V �N

B

) ;

{ as usual L = P � V + 1, with P the total number of propagators, i.e.

L = (P

F

+ P

B

)� V + 1 =

1

2

(V �N

F

�N

B

) + 1 ) L � 1 if V � N

B

+N

F

:

Naive power ounting tells us that eah loop momentum yields �

4

, eah boson propagator

yields �

�2

, and eah fermion propagator �

�1

, as long as we are working in four spaetime

dimensions. Therefore the super�ial degree of divergene of the onsidered loop diagram

equals

D = 4L� 2P

B

� P

F

= 4�

3

2

N

F

�N

B

:

Sine D is independent of V , divergenes (i.e. D � 0) an our at all loop orders, but

there is only a �nite number of divergent amplitudes (i.e. amplitudes with N

F

= 0 ; N

B

� 4

or N

F

= 2 ; N

B

� 1). As antiipated, the Yukawa theory is indeed renormalizable in four

spaetime dimensions!

(i) The super�ially divergent 1-partile irreduible one-loop diagrams an be divided into two

ategories. The one involving a fermion loop and one, two, three or four external boson lines:

, , ,

and the one with two external fermion lines and either zero or one external boson line:

,

The �rst divergene an be absorbed by shifting the salar �eld. The self-energy diagrams in

both sets an be renormalized by applying mass and wave-funtion renormalization to the free

salar/Dira parts of the Langrangian. The divergene in the last diagram an be absorbed

into the oupling onstant g . The odd ones out are the last two diagrams in the �rst set. In

order to renormalize the assoiated divergenes expliit triple and quarti salar interations

have to be added as ounterterms to the Lagrangian, whih suÆes to absorb all divergenes!
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