Solution 1:

a.) $L=T-V$ with (i) kinetic term $T=\sum_{n=1}^{N} \frac{1}{2} m \dot{\phi}_{n}^{2}(t)$, as the kinetic energy of all point particles simply adds up, and (ii) elastic term $V=\sum_{n=1}^{N} \frac{1}{2} k_{s}\left(\phi_{n+1}-\phi_{n}\right)^{2}$, as the potential energy of all springs add up and $\left|\phi_{n+1}-\phi_{n}\right|$ is identical to the elongation/compression of the spring, i.e., the deviation from the equilibrium length.
b.)

$$
0=\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}_{n}}-\frac{\partial L}{\partial \phi_{n}}=m \ddot{\phi}_{n}+k_{s}\left(2 \phi_{n}-\phi_{n-1}-\phi_{n+1}\right)
$$

because

$$
\begin{aligned}
\frac{\partial}{\partial \phi_{n}} \sum_{j=1}^{N} \frac{1}{2} k_{s}\left(\phi_{j+1}-\phi_{j}\right)^{2} & =\sum_{j=1}^{N} \frac{1}{2} k_{s}\left(2 \phi_{j+1} \delta_{n, j+1}-2 \phi_{j} \delta_{n, j+1}-2 \phi_{j+1} \delta_{n, j}+2 \phi_{j} \delta_{n, j}\right) \\
& =\frac{1}{2} k_{s}\left(2 \phi_{n}-2 \phi_{n-1}-2 \phi_{n+1}+2 \phi_{n}\right)
\end{aligned}
$$

c.) a becomes so small that $\sum_{n=1}^{N} \rightarrow \frac{1}{a} \int_{0}^{L=N a} d x$. Thus

$$
L=\frac{1}{a} \int_{0}^{L} d x\left(\frac{1}{2} m(\sqrt{a} \dot{\phi}(x, t))^{2}-\frac{1}{2} k_{s}(\sqrt{a} \phi(x+a, t)-\sqrt{a} \phi(x, t))^{2}\right) .
$$

Employing the Taylor expansion $\phi(x \pm a, t)=\phi(x, t) \pm a \phi^{\prime}(x, t)+\frac{1}{2} a^{2} \phi^{\prime \prime}(x, t)+\ldots$ one gets

$$
L=\int_{0}^{L} d x \mathcal{L}, \quad \mathcal{L}=\frac{1}{2} m \dot{\phi}^{2}(x, t)-\frac{1}{2} k_{s} a^{2}\left(\phi^{\prime}(x, t)\right)^{2}
$$

The Taylor expansion is also used for the equation of motion (e.o.m.):

$$
\begin{aligned}
0 & =m \sqrt{a} \ddot{\phi}(x, t)+k_{s} \sqrt{a}(2 \phi(x, t)-\phi(x-a, t)-\phi(x+a, t)) \\
& =\sqrt{a}\left(m \ddot{\phi}(x, t)+k_{s}\left(2 \phi(x, t)-\phi(x, t)+a \phi^{\prime}(x, t)-\frac{1}{2} a^{2} \phi^{\prime \prime}(x, t)-\phi(x, t)-a \phi^{\prime}(x, t)-\frac{1}{2} a^{2} \phi^{\prime \prime}(x, t)\right)\right) \\
& =\sqrt{a}\left(m \ddot{\phi}(x, t)-k_{s} a^{2} \phi^{\prime \prime}(x, t)\right)
\end{aligned}
$$

In terms of $\partial_{t} \equiv \partial / \partial t$ and $\partial_{x} \equiv \partial / \partial x$ this becomes:

$$
\mathcal{L}\left(\phi, \partial_{t} \phi, \partial_{x} \phi\right)=\frac{1}{2} m\left(\partial_{t} \phi\right)^{2}-\frac{1}{2} k_{s} a^{2}\left(\partial_{x} \phi\right)^{2} \quad \text { and } \quad m\left(\partial_{t}^{2}-\frac{k_{s} a^{2}}{m} \partial_{x}^{2}\right) \phi(x, t)=0
$$

d.) In the Euler-Lagrange equation $\partial_{t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}+\partial_{x} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \phi\right)}-\frac{\partial \mathcal{L}}{\partial \phi}=0$ the last term vanishes, the first two terms give directly

$$
m \partial_{t}^{2} \phi(x, t)-k_{s} a^{2} \partial_{x}^{2} \phi(x, t)=0
$$

e.) The solutions are of the form $\phi_{+}\left(x+v_{p} t\right)+\phi_{-}\left(x-v_{p} t\right)$, i.e. phonons (sound waves) moving to the left or right with speed $v_{p}=a \sqrt{k_{s} / m}$.
f.) In mechanics one has the Hamiltonian $H(p, q)=p \dot{q}-L$ with the momentum $p=\frac{\partial L}{\partial \dot{q}}$, in field theory the Hamiltonian density $\mathcal{H}=\pi \dot{\phi}-\mathcal{L}$ with the momentum field $\pi=\partial \mathcal{L} / \partial \dot{\phi}$.
Here one has $\pi(x, t)=m \dot{\phi}(x, t)$ and therefore

$$
\mathcal{H}\left(\phi, \pi, \partial_{x} \phi\right)=m \dot{\phi}^{2}-\frac{1}{2} m \dot{\phi}^{2}+\frac{1}{2} k_{s} a^{2}\left(\partial_{x} \phi\right)^{2}=\frac{\pi^{2}}{2 m}+\frac{1}{2} m v_{p}^{2}\left(\partial_{x} \phi\right)^{2}
$$

Solution 2:

The action of electrodynamics is given by $S=\int d^{4} x \mathcal{L}=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)$ with the anti-symmetric rank-2 tensor (field strength tensor) $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. Note that this tensor (and thus the action) depends only on the derivative of the gauge field and not on the gauge field directly, i.e., $\partial \mathcal{L} / \partial A_{\mu}=0$. Furthermore, $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ is the derivative w.r.t. the contravariant coordinate vector x^{μ} and is (in flat space-time) a covariant vector. It has the properties $\partial_{0}=\partial / \partial t$ and $\partial_{i}=\partial / \partial x^{i}=\nabla^{i}$ for $i=1,2,3$.

The Euler-Lagrange equation reads therefore

$$
\partial_{\alpha} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} A_{\beta}\right)}-\frac{\partial \mathcal{L}}{\partial A_{\beta}}=\partial_{\alpha} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} A_{\beta}\right)}=0
$$

First we note

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} A_{\beta}\right)} & =-\frac{1}{4}\left(\frac{\partial}{\partial\left(\partial_{\alpha} A_{\beta}\right)}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\right) F^{\mu \nu}-\frac{1}{4} F_{\mu \nu}\left(\frac{\partial}{\partial\left(\partial_{\alpha} A_{\beta}\right)}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\right) \\
& =-\frac{1}{4}\left(\delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}-\delta_{\nu}^{\alpha} \delta_{\mu}^{\beta}\right) F^{\mu \nu}-\frac{1}{4} F_{\mu \nu}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\nu \alpha} g^{\mu \beta}\right) \\
& =-\frac{1}{4}\left(F^{\alpha \beta}-F^{\beta \alpha}\right)-\frac{1}{4}\left(F^{\alpha \beta}-F^{\beta \alpha}\right)=-F^{\alpha \beta} \tag{1}
\end{align*}
$$

where $F^{\alpha \beta}=-F^{\beta \alpha}$ has been used. This then leads to

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha \beta}=0 \tag{2}
\end{equation*}
$$

This equation is a four-vector equation. To decompose it into temporal and spatial components we note first that

$$
\left(F^{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -E^{1} & -E^{2} & -E^{3} \\
E^{1} & 0 & -B^{3} & B^{2} \\
E^{2} & B^{3} & 0 & -B^{1} \\
E^{3} & -B^{2} & B^{1} & 0
\end{array}\right)
$$

i.e., we have $F^{00}=0, F^{0 i}=-E^{i}, F^{i j}=-\epsilon^{i j k} B^{k}$. Now we set in eq. (2) $\beta=0$ to obtain Gauß' law:

$$
0=\partial_{\alpha} F^{\alpha 0}=\partial_{i} F^{i 0}=\partial_{i} E^{i}=\vec{\nabla} \cdot \vec{E}
$$

where $i=1,2,3$ has been summed over. Setting now in eq. (2) $\beta=j=1,2,3$ gives

$$
0=-\partial_{\alpha} F^{\alpha j}=-\partial_{0} F^{0 j}-\partial_{i} F^{i j}=\partial_{0} E^{j}+\partial_{i} \epsilon^{i j k} B^{k}=\frac{\partial E^{j}}{\partial t}-(\vec{\nabla} \times \vec{B})^{j}
$$

The Maxwell equations $\vec{\nabla} \cdot \vec{B}=0$ and $\partial \vec{B} / \partial t+\vec{\nabla} \times \vec{E}=\overrightarrow{0}$ can be derived directly from the definitions and the antisymmetry of $\epsilon^{i j k}$:

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{B}=\partial_{k} B^{k}=-\frac{1}{2} \partial_{k} \epsilon^{i j k} F^{i j}=\frac{1}{2} \epsilon^{i j k}\left(\partial^{k} \partial^{i} A^{j}-\partial^{k} \partial^{j} A^{i}\right)=0 \\
\frac{\partial B^{k}}{\partial t}+(\vec{\nabla} \times \vec{E})^{k}=-\frac{1}{2} \epsilon^{i j k} \partial^{0} F^{i j}-\epsilon^{i j k} \partial_{i} F^{0 j}=\epsilon^{i j k}\left(\frac{1}{2} \partial^{0} \partial^{j} A^{i}+\frac{1}{2} \partial^{0} \partial^{i} A^{j}-\partial^{i} \partial^{j} A^{0}\right)=0
\end{gathered}
$$

Alternatively this can be written as

$$
\partial_{\alpha} \tilde{F}^{\alpha \beta} \equiv \partial_{\alpha} \frac{1}{2} \epsilon^{\alpha \beta \mu \nu} F_{\mu \nu}=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu}\left(\partial_{\alpha} \partial_{\mu} A_{\nu}-\partial_{\alpha} \partial_{\nu} A_{\mu}\right)=0
$$

in terms of the totally antisymmetric tensor $\epsilon^{\alpha \beta \mu \nu}$, whose non-zero components are given by $+1 /-1$ for $(\alpha \beta \mu \nu)$ being an even/odd permutation of (0123). The tensor $\tilde{F}^{\alpha \beta}$ is called the dual field strength tensor.

