Quantum Field Theory: Tutorial #1 Solutions

Solution 1:

a.) L =T -V with (i) kinetic term T = ZT]:] ! 2mqﬁQ( ), as the kinetic energy of all point particles simply
adds up, and (ii) elastic term V = Zn 1 2 ks(¢pni1 — ¢n)?, as the potential energy of all springs add
up and |¢,+1 — ¢, is identical to the elongation/compression of the spring, i.e., the deviation from

the equilibrium length.
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c.) a becomes so small that Z 1, L N 4z, Thus
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Employing the Taylor expansion ¢(z =+ a,t) = ¢(z,t) + a¢/(z,t) + 2a?¢” (x,t) + ... one gets
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L _/0 dal, L= 2mq§ (x,t) 2ksa (¢ (z,1))”.

The Taylor expansion is also used for the equation of motion (e.0.m.):

0 m\/Eqb(z, t) =+ ks\/a(2¢(xv t) - ¢(x —-a, t) - ¢(z +a, t))

Va (i) 4 Ku(2000.) = ,0) + a0/ (0,1) = 520" (2,1) = 0l ) b (a.1) ~ 506 (5,0)

— Va(milet) - k(@)

In terms of 9y = 9/0t and 9,, = 9/« this becomes:

1 5 1 9 2 2 ksa® 2
£(¢7 8t¢7 8Z¢) = §m (6t¢) - §ksa (a$¢) and m (at - m az) ¢($,t> =0.

d.) In the Euler-Lagrange equation at% + Op 55~ 0.5) a ) % = 0 the last term vanishes, the first two terms
give directly

moZp(x,t) — ksa’02¢(x,t) = 0.

e.) The solutions are of the form ¢4 (z +vpt) + ¢— (z — vpt), i.e. phonons (sound waves) moving to the left
or right with speed v, = a\/ks/m.

f.) In mechanics one has the Hamiltonian H(p, q) = p¢ — L with the momentum p = —., in field theory

the Hamiltonian density # = 7¢ — £ with the momentum field = = 9L / d¢.
Here one has 7(z,t) = m¢(x,t) and therefore
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H(6,5,0:6) = md? — amd? + ko200 = T+ 2ma? (9:0)°
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Quantum Field Theory: Tutorial #1 Solutions

Solution 2:

The action of electrodynamics is given by S = [ dz L = S/ d'z (—%F k' “”) with the anti-symmetric rank-2
tensor (field strength tensor) F,, = 0,A, —0,A,. Note that this tensor (and thus the action) depends
only on the derivative of the gauge field and not on the gauge field directly, i.e., 9L/9dA, = 0. Furthermore,
O = 6% is the derivative w.r.t. the contravariant coordinate vector z# and is (in flat space-time) a covariant
vector. It has the properties 9y = 9/0t and 0; = 9/9x* = V* for i =1,2,3.
The Euler-Lagrange equation reads therefore
oL oL oL

O gondy) ~ 0A; B Ay

First we note
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= (P FP) L (PO ) = R, )

where F®P = —FB® has been used. This then leads to
DaFP =0. (2)

This equation is a four-vector equation. To decompose it into temporal and spatial components we note

first that
0 —-FE' —FE? _—EB

E! 0 -B® B2
E? B3 0 -B' |’
E3 —-B? B! 0

(o) =

i.e., we have F0 =0, F% = — B! [/ = —¢i7* BF_ Now we set in eq. (2) 8 = 0 to obtain Gauf}’ law:
0=09,F°=9,F°=9,F' =V -E,
where i = 1,2, 3 has been summed over. Setting now in eq. (2) 8 =j = 1,2, 3 gives

o
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0= *8aFaj == —80F0j - &F” == 80Ej + &-eijkBk ==

The Maxwell equations V - B =0 and 0B /Ot + V x E =0 can be derived
directly from the definitions and the antisymmetry of e“%:

V-B=B" = féake””“F”’ = %eij’“(akaw' — 9P A) =0,

- -, 1 .. . . . . 1 . 1 o .
-5 T (Vx E)t = —§ew’€80FU — kg, 0 = ik (58083141 + 5aoaw — 8’83140) =0.

Alternatively this can be written as

_ 1 1
OaF*? = Doz e Fy = S e (900, Ay = 0ayAu) = 0,

in terms of the totally antisymmetric tensor ¢*?*¥  whose non-zero components are given by +1/ — 1 for
(aBuv) being an even/odd permutation of (0123). The tensor F'*? is called the dual field strength tensor.
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