
Quantum Field Theory: Tutorial #2 Solutions

Solution 2 (ont'd):

The improved eletromagneti energy-momentum tensor reads:
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whih is indeed symmetri under �$ �. Therefore, summing over repeated indies we get
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for the energy density arried by the eletromagneti �eld, and
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for the momentum density (whih is also known as the Poynting vetor).

Solution 3:
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(a) The equations of motion for �
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Quantum Field Theory: Tutorial #2 Solutions

() The Hamiltonian is the integral over the Hamiltonian density, i.e. H =
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Sine the Lagrangian density L is given by
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onsisting of kineti terms, elasti terms and rest mass terms.

(d) Now we introdue the vetor (doublet) notation
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the Lagrangian is invariant:
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Keeping a lose eye on the order of the vetors, the orresponding Noether urrent is given by
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using the �rst-order variations
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(e) Under the ontinuous global SU(2) transformation
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for k = 1; 2; 3 )

the Lagrangian is also invariant, whih an be shown by an analogous alulation as above. Here the

hermitian Pauli matries �
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are the generators of SU(2). With

(�

~

�)

k

= i�

k

~

� and (�

~

�

y

)

k

= �i

~

�

y

�

k

;

the orresponding three onserved Noether urrents and harges read
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