
Quantum Field Theory: Tutorial #3 Solutions

Solution 4:

The Hamilton operator is the integral over the Hamiltonian density operator, i.e.
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The orresponding ommutation relations are given by
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with all other ommutators vanishing trivially.
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and the above-given identi�ation for â

~p

and

^

b

~p

, the deomposition for �̂(~x) follows:

�̂(~x) = � i

Z

d

3

p

(2�)

3

r

!

~p

2

e

i~p�~x

�

^

b

~p

� â
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for use below
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â

y

~p

+ â

y

~p

â
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with the term proportional to the unit operator usually referred to as the \zero-point energy".

() Doing the same for the \harge" operator
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~p

+

^

b

y

�~p

)

�

= �

Z

d

3

p

(2�)

3

(â
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y

~p

â
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with the term proportional to the unit operator usually referred to as the \zero-point harge".

(d) Apparently we are dealing here with two types of partiles with mass m:
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y

~p

and â
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(e) By reversing the order of the quantum �elds in the de�nitions of
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H and
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Q, the order of reation and

annihilation operators is swapped in the �nal expressions. This gives rise to exatly the same expression

for

^

H, with the same ounting operators and the same zero-point energy. The ounting operators

ourring in

^

Q will also be una�eted. However, the zero-point harge will no longer be generated

by the b-terms (i.e. the antipartiles) but by the a-terms (i.e. the partiles) instead, resulting in an

opposite sign for the zero-point harge. Hene, the zero-point energy is a robust quantity and the

zero-point harge is not!

(f) As

i

~

r

^

�

y

(~x) = i

~

r

Z

d

3

p

(2�)

3

e

�i~p�~x

p

2!

~p

(â
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~q

j0i = 0 and h0jâ
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(g) A Lorentz transformation mixes time and spatial omponents of a ontravariant four-vetor
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(h) Normal ordering puts all reation operators in front of the annihilation operators, thereby removing

all zero-point ontributions from the observables. This means that the vauum indeed would have no

harge. At the same time it would imply that the vauum has no energy, whih seems to be in onit

with the experimental observation of the Casimir e�et. If we would instead apply Weyl-ordering, by

averaging over all possible orderings of the quantum �elds in the observables, then aording to part

(e) the zero-point harge would vanish (as required) but the zero-point energy would be una�eted.

To phrase it provoatively: \one the dust settles over the orret interpretation of the Casimir exper-

iment, the days of either normal ordering or Weyl-ordering ould be over".
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