
Quantum Field Theory: Tutorial #5 Solutions

Solution 5:

Free complex Klein-Gordon field: L = (∂µφ
?)(∂µφ)−m2φ?φ.

(a) Where are the poles of the Feynman propagator?

Note that ε has to be understood as ε→ 0+:

DF (x− y) =

∫
d4p

(2π)4

ie−ip·(x−y)

p2 −m2 + iε

=

∫
d4p

(2π)4

ie−ip·(x−y)(
p0 −

√
~p 2 +m2 − iε

)(
p0 +

√
~p 2 +m2 − iε

) ,
where√
~p 2+m2 − iε =

√
~p 2+m2 − iε

2
√
~p 2+m2

+ O(ε2) = ω~p −
iε

2ω~p
+ O(ε2) ≡ ω~p −iδ+O(δ2) .

With ε → 0+ also δ = ε
2ω~p
→ 0+, and the poles in the complex p0-plane coincide with the

prescription on page 26 of the lecture notes, which yields the Feynman propagator after the

integration is performed.

(b) The field operator φ̂(x) contains the operators â~p and b̂†~p : φ̂(x) = · · · â~p + · · · b̂†~p such that

〈0|T
(
φ̂(x)φ̂(y)

)
|0〉 = 〈0| . . . â~p â~q + . . . â~p b̂

†
~q + . . . b̂†~p â~q + . . . b̂†~p b̂

†
~q |0〉 .

The first, third and fourth terms vanish directly by either acting with â~p to the right or with

b̂†~p to the left on the vacuum. In the second term one has first to commute the operators,

which does not give any extra term since [â~p , b̂
†
~p ] = 0. The fact that this amplitude vanishes

can also be understood physics-wise. First an antiparticle is being created out of the vacuum

at spacetime point y (or x), whereas subsequently a particle is being annihilated at spacetime

point x (or y). Obviously this cannot correspond to the propagation of an actual (anti)particle.

For 〈0|T
(
φ̂†(x)φ̂†(y)

)
|0〉 the same arguments apply, the only difference being the appearence

of the operators â†~p and b̂~p . This just interchanges the role of particles and antiparticles.

(c) Using that
[
Ĥ, â~p

]
e−ip·x = −ω~p â~p e−ip·x = − i∂0

(
â~p e

−ip·x) and
[
Ĥ, â†~p

]
eip·x = ω~p â

†
~p e

ip·x =

− i∂0

(
â†~p e

ip·x) , we can write an infinitesimal time translation of φ̂(x) as being generated by Ĥ:

φ̂(x) + ∆t ∂0φ̂(x) = φ̂(x) + i∆t
[
Ĥ, φ̂(x)

]
≈ eiĤ∆t φ̂(x) e−iĤ∆t (∆t ∈ IR infinitesimal) .

Solution 6:

Consider the time-ordered exponential of the operator Â(t) for τ ≤ t :

Ê(t, τ) = 1̂ +

∫ t

τ
dt1 Â(t1) +

∫ t

τ
dt1 Â(t1)

∫ t1

τ
dt2 Â(t2) + . . .

Page 1 of 2



Quantum Field Theory: Tutorial #5 Solutions

(a) Ê(t, τ) satisfies the boundary condition Ê(τ, τ) = 1̂ because
∫ τ
τ dt1Â(t1) = 0 (zero integration

measure). As ∂
∂t

∫ t
τ dt1Â(t1) = Â(t) (differentiating the upper limit of an integral gives the

integrand evaluated at the upper limit), Ê(t, τ) fulfills the linear differential equation

∂

∂t
Ê(t, τ) = 0+ Â(t)+ Â(t)

∫ t

τ
dt2 Â(t2)+ Â(t)

∫ t

τ
dt2 Â(t2)

∫ t2

τ
dt3 Â(t3) + . . . = Â(t)Ê(t, τ) .

(b) To Prove: Ê(t, τ) =

∞∑
n=0

1

n!

∫ t

τ
dt1 . . .

∫ t

τ
dtn T

(
Â(t1) . . . Â(tn)

)
.

The decisive step in the proof:

∂
∂t

∫ t
τ dt1 . . .

∫ t
τ dtn T

(
Â(t1) . . . Â(tn)

)
leads to n terms, such that the ith term has i− 1 terms

to the left and n − i terms to the right of the operator Â(t). Now, t is the latest time, and

the time ordering operator implies that the operator Â(t) has to be pulled to the leftmost

position. The above derivative results in nÂ(t)
∫ t
τ dt1 . . .

∫ t
τ dtn−1 T

(
Â(t1) . . . Â(tn−1)

)
and

therefore one has

∂

∂t

∞∑
n=0

1

n!

∫ t

τ
dt1 . . .

∫ t

τ
dtn T

(
Â(t1) . . . Â(tn)

)

= Â(t)
∞∑
n=1

1

(n− 1)!

∫ t

τ
dt1 . . .

∫ t

τ
dtn−1 T

(
Â(t1) . . . Â(tn−1)

)

= Â(t)
∞∑
n=0

1

n!

∫ t

τ
dt1 . . .

∫ t

τ
dtn T

(
Â(t1) . . . Â(tn)

)
.

We have just seen that the time-ordered operator

∞∑
n=0

1

n!

∫ t

τ
dt1 . . .

∫ t

τ
dtn T

(
Â(t1) . . . Â(tn)

)
satisfies the same linear differential equation as Ê(t, τ). Since this time-ordered operator also

satisfies the same boundary condition as Ê(t, τ), i.e. yielding 1̂ at t = τ , it must indeed be

identical to Ê(t, τ).

(c) If the operators Â(t) commute for all times (the operators are then like ordinary numbers)

the T -ordering is clearly not needed, because all orderings are then equivalent:

Ê(t, τ) =

∞∑
n=0

1

n!

(∫ t

τ
dt′Â(t′)

)n
.

One obtains then the usual exponential function

Ê(t, τ) = e
∫ t
τ dt

′Â(t′) ,

with the calculational rules as known from basic calculus.
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