Solution 5:

Free complex Klein-Gordon field: $\mathcal{L}=\left(\partial_{\mu} \phi^{\star}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\star} \phi$.
(a) Where are the poles of the Feynman propagator? Note that ϵ has to be understood as $\epsilon \rightarrow 0^{+}$:

$$
\begin{aligned}
D_{F}(x-y) & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \epsilon} \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\mathbf{x}}{\left(p_{0}-\sqrt{\vec{p}^{2}+m^{2}-i \epsilon}\right)\left(p_{0}+\sqrt{\vec{p}^{2}+m^{2}-i \epsilon}\right)}
\end{aligned}
$$

where
$\sqrt{\vec{p}^{2}+m^{2}-i \epsilon}=\sqrt{\vec{p}^{2}+m^{2}}-\frac{i \epsilon}{2 \sqrt{\vec{p}^{2}+m^{2}}}+\mathcal{O}\left(\epsilon^{2}\right)=\omega_{\vec{p}}-\frac{i \epsilon}{2 \omega_{\vec{p}}}+\mathcal{O}\left(\epsilon^{2}\right) \equiv \omega_{\vec{p}}-i \delta+\mathcal{O}\left(\delta^{2}\right)$.
With $\epsilon \rightarrow 0^{+}$also $\delta=\frac{\epsilon}{2 \omega_{\vec{p}}} \rightarrow 0^{+}$, and the poles in the complex p_{0}-plane coincide with the prescription on page 26 of the lecture notes, which yields the Feynman propagator after the integration is performed.
(b) The field operator $\hat{\phi}(x)$ contains the operators $\hat{a}_{\vec{p}}$ and $\hat{b}_{\vec{p}}^{\dagger}: \hat{\phi}(x)=\cdots \hat{a}_{\vec{p}}+\cdots \hat{b}_{\vec{p}}^{\dagger}$ such that

$$
\langle 0| T(\hat{\phi}(x) \hat{\phi}(y))|0\rangle=\langle 0| \ldots \hat{a}_{\vec{p}} \hat{a}_{\vec{q}}+\ldots \hat{a}_{\vec{p}} \hat{b}_{\vec{q}}^{\dagger}+\ldots \hat{b}_{\vec{p}}^{\dagger} \hat{a}_{\vec{q}}+\ldots \hat{b}_{\vec{p}}^{\dagger} \hat{b}_{\vec{q}}^{\dagger}|0\rangle
$$

The first, third and fourth terms vanish directly by either acting with $\hat{a}_{\vec{p}}$ to the right or with $\hat{b}_{\vec{p}}^{\dagger}$ to the left on the vacuum. In the second term one has first to commute the operators, which does not give any extra term since $\left[\hat{a}_{\vec{p}}, \hat{b}_{\vec{p}}^{\dagger}\right]=0$. The fact that this amplitude vanishes can also be understood physics-wise. First an antiparticle is being created out of the vacuum at spacetime point y (or x), whereas subsequently a particle is being annihilated at spacetime point x (or y). Obviously this cannot correspond to the propagation of an actual (anti)particle. For $\langle 0| T\left(\hat{\phi}^{\dagger}(x) \hat{\phi}^{\dagger}(y)\right)|0\rangle$ the same arguments apply, the only difference being the appearence of the operators $\hat{a}_{\vec{p}}^{\dagger}$ and $\hat{b}_{\vec{p}}$. This just interchanges the role of particles and antiparticles.
(c) Using that $\left[\hat{H}, \hat{a}_{\vec{p}}\right] e^{-i p \cdot x}=-\omega_{\vec{p}} \hat{a}_{\vec{p}} e^{-i p \cdot x}=-i \partial_{0}\left(\hat{a}_{\vec{p}} e^{-i p \cdot x}\right)$ and $\left[\hat{H}, \hat{a}_{\vec{p}}^{\dagger}\right] e^{i p \cdot x}=\omega_{\vec{p}} \hat{a}_{\vec{p}}^{\dagger} e^{i p \cdot x}=$ $-i \partial_{0}\left(\hat{a}_{\vec{p}}^{\dagger} e^{i p \cdot x}\right)$, we can write an infinitesimal time translation of $\hat{\phi}(x)$ as being generated by \hat{H} : $\hat{\phi}(x)+\Delta t \partial_{0} \hat{\phi}(x)=\hat{\phi}(x)+i \Delta t[\hat{H}, \hat{\phi}(x)] \approx e^{i \hat{H} \Delta t} \hat{\phi}(x) e^{-i \hat{H} \Delta t} \quad(\Delta t \in \mathbb{R}$ infinitesimal $)$.

Solution 6:

Consider the time-ordered exponential of the operator $\hat{A}(t)$ for $\tau \leq t$:

$$
\hat{E}(t, \tau)=\hat{1}+\int_{\tau}^{t} d t_{1} \hat{A}\left(t_{1}\right)+\int_{\tau}^{t} d t_{1} \hat{A}\left(t_{1}\right) \int_{\tau}^{t_{1}} d t_{2} \hat{A}\left(t_{2}\right)+\ldots
$$

(a) $\hat{E}(t, \tau)$ satisfies the boundary condition $\hat{E}(\tau, \tau)=\hat{1}$ because $\int_{\tau}^{\tau} d t_{1} \hat{A}\left(t_{1}\right)=0$ (zero integration measure). As $\frac{\partial}{\partial t} \int_{\tau}^{t} d t_{1} \hat{A}\left(t_{1}\right)=\hat{A}(t)$ (differentiating the upper limit of an integral gives the integrand evaluated at the upper limit), $\hat{E}(t, \tau)$ fulfills the linear differential equation

$$
\frac{\partial}{\partial t} \hat{E}(t, \tau)=0+\hat{A}(t)+\hat{A}(t) \int_{\tau}^{t} d t_{2} \hat{A}\left(t_{2}\right)+\hat{A}(t) \int_{\tau}^{t} d t_{2} \hat{A}\left(t_{2}\right) \int_{\tau}^{t_{2}} d t_{3} \hat{A}\left(t_{3}\right)+\ldots=\hat{A}(t) \hat{E}(t, \tau)
$$

(b) To Prove: $\hat{E}(t, \tau)=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n}\right)\right)$.

The decisive step in the proof:
$\frac{\partial}{\partial t} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n}\right)\right)$ leads to n terms, such that the i th term has $i-1$ terms to the left and $n-i$ terms to the right of the operator $\hat{A}(t)$. Now, t is the latest time, and the time ordering operator implies that the operator $\hat{A}(t)$ has to be pulled to the leftmost position. The above derivative results in $n \hat{A}(t) \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n-1} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n-1}\right)\right)$ and therefore one has

$$
\begin{aligned}
& \frac{\partial}{\partial t} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n}\right)\right) \\
& =\hat{A}(t) \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n-1} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n-1}\right)\right) \\
& =\hat{A}(t) \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n}\right)\right) .
\end{aligned}
$$

We have just seen that the time-ordered operator

$$
\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\tau}^{t} d t_{1} \ldots \int_{\tau}^{t} d t_{n} T\left(\hat{A}\left(t_{1}\right) \ldots \hat{A}\left(t_{n}\right)\right)
$$

satisfies the same linear differential equation as $\hat{E}(t, \tau)$. Since this time-ordered operator also satisfies the same boundary condition as $\hat{E}(t, \tau)$, i.e. yielding $\hat{1}$ at $t=\tau$, it must indeed be identical to $\hat{E}(t, \tau)$.
(c) If the operators $\hat{A}(t)$ commute for all times (the operators are then like ordinary numbers) the T-ordering is clearly not needed, because all orderings are then equivalent:

$$
\hat{E}(t, \tau)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\int_{\tau}^{t} d t^{\prime} \hat{A}\left(t^{\prime}\right)\right)^{n} .
$$

One obtains then the usual exponential function

$$
\hat{E}(t, \tau)=e^{\int_{\tau}^{t} d t^{\prime} \hat{A}\left(t^{\prime}\right)}
$$

with the calculational rules as known from basic calculus.

