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Quantell-Raumzeit aus
dem rNichtsct
Vakuum ist  n icht  leer,  sondern von Quantenf luktuat ionen erf i j t t t .  Das
muss auch f i . l r  d ie v ierdimensionale Raumzeit  gel ten -  und damit
f l i r  d ie Gravi tat ion.  Wie l<dnnten ihre rQuantena beschaffen sein?

Von Renate Lol l

ach den Quantenfeldtheorien
ist der Zustand gro8ter ol-ee-

reu, oder genauer gesagt, der

Zuxand geringster Energie -

auch Grundzustand genannt - eben nicht

eine unverinderliche Leere. Er ist

vielmehr von ouantenmechanischen Fluk-

tuationen des Vakuums geprdgt. Sie lu-

Bern sich durch Elementarteilchen, die an

beliebigen Raum- und Zeitpunkten spon-

tan aus dem Vakuum entstehen und wie-

der dorthin verschwinden. Solche Vor-

glnge spielen sich nur auf den winzigen

Gro8enskalen ab, die durch die beriihmte

Heisenbergtche Unschirferelation zuge-

standen werden.
Auf den uns durch Beschleunigerexpe-

rimente zugdnglichen Grol3enskalen do-

minieren diejenigen Krlfte zwischen den

beteiligten Elementarteilchen, die durch

ihre elektrische, starke und schwache La-

dung verursacht werden. Im Vergleich

dazu ist der Effekt der vierten und letz-

ten der uns bekannten elementaren

-Wechselwirkungen, der Gravitation, vol-

lig vernachldssigbar, weil die Massen der

Elementarteilchen viel zu gering sind.

Auf gro8eren Skalen dagegen - ein-

schlie8lich kosmischer Distanzen - spie-

len elektrische Krdfte keine Rolle mehr,

weil sich die Ladungen gegenseitig neu-

tralisieren. Die starke tiraft, die beispiels-

weise Atomkerne zusammenhiilt, hat oh-

nehin nur eine sehr kurze Reichweite,

ebenso die schwache \Techselwirkung, die

zum Beispiel gewisse radioaktive Zerfalls-

prozesse auskist. Folglich dominiert die

Gravitation auf gro8en Distanzen gegen-

iiber den anderen drei -Wechselwirkungen.
Diese spielen keine Rolle, wenn wir die

\Turfbahn eines Balls unter dem Einfluss

des Erdschwerefelds betrachten.

So kommt es, dass die Theorie der mi-

kroskopischen tVelt, die Quantenmecha-
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nik, und die der makroskopischen \felt,

die Allgemeine Relativititstheorie, sich

unter normalen Bedingungen nicht ge-

genseitig in die Quere kommen: Auf den

Grci8enskalen der einen Theorie sind die

Effekte der anderen vernachllssigbar.
Interessanterweise sagt die uns bekann-

te Physik voraus, dass die Gravitation auf

sehr kleinen Gro8enskalen wiederum eine

Rolle zu spielen beginnt. Diese liegen un-

terhalb der ftir die Elementarteilchenphy-

sik relevanten Skalen. Es ist iedoch keine

Rolle im Sinne von Einsteins Relativitits-

theorie, sondern in einer dariiber hinaus-

gehenden Form: Die Gesetze dieser Gra-

vitation miissten nicht den Regeln der

klassischen, sondern denen der Quanten-
physik Folgen. Diese Quantengravitations-
theorie, die wir in der Physik seit Jahr-
zehnten suchen, sollte also die Quanten-
fluktuationen des leeren Raums beschrei-

ben krinnen. Sie wtirde damit auch - in
tVeiterftihrung der Idee des quantenfeld-

theoretischen Vakuums - die dynamische

Struktur des ultimativen Grundzustands

von Materie und Raumzeit erfassen. Die-

ser Grundzustand wire dann sozusaqen

die Mutter aller Vakua.

Allgemeine Relativitdtstheorie
plus Quantentheorie gibt ...
Aus Gro8enordnungsabschitzungen er-

gibt sich, dass eine Quantengravitations-
theorie auf einer charakteristischen Ldn-

genskala von lediglich 10-35 Metern, der

so genannten Planck-Llnge, direkt rele-

vant ist. Physikalische Phinomene auf so

winzigen Abstlnden entziehen sich auf

absehbare Zeit jeglichem experimentel-

len Zrgriff: Ein Beschleuniger heutiger

Technologie miisste mindestens so gro8

wie unser Sonnensystem sein, um zur

Planck-Skala vorzudringen. \Vie konnen

wir trotzdem eine Vorhersage iiber sie

treffen? Und wer oder was bewegt sich

bei den Quantenfuktuationen des leeren

Raums? Immerhin kdnnen wir uns die-

sen Phinomenen mit Plausibilitltsbe-

trachtungen nfiern, indem wir sowohl

die Allgemeine Relativitltstheorie als

auch die Quantentheorie iiber ihre Giil-

tigkeitsbereiche hinaus erweitern.

Albert Einstein entwickelte die AJIge-

meine Relativitltstheorie in der revolu-

tionlren Einsicht, dass Raum 'tnd Zeit

nicht einfach strukturlose Kontinua sind.

Sie sind kein statischer und unverinder-

Iicher Aufbewahrungsort fiir Materie

mitsamt ihren \Wechselwirkungen, son-

dern stellen selbst dynamische Gro8en

dar. Vereinigt zu einer einzigen vierdi-

mensionalen Raumzeit konnen Raum

und Zeit sich kriimmen, sich bewegen

und mit jeder Art von Masse und Ener-

gie wechselwirken. Diese Kriimmung der

Raumzeit nehmen wir als Cravitations-

krdfte wahr. Solche Krdfte bestimmen

beispielsweise die Flugbahn eines Ge-

schosses im Gravitationsfeld der Erde

oder die Ablenkung eines Lichtstrahls

durch einen Stern wie die Sonne.

Die keinesfalls einfach zu beschrei-

benden Kriimmungseigenschaften eines

Stticks leerer Raumzeit bezeichnet man in

der Physik auch als Raumzeitgeometrie.

In ihr ist die Stlrke der Kriimmung eine

lokale Eigenschaft, das hei8t, sie hlngt

davon ab, an welchem Ort und welchem

Zeitpunkt der Raumzeit man sich befin-

det. An einem gegebenen Punkt besitzt

sie zusltzlich noch Richtungseigen-

schaften: Allgemein wird ein Lichtstrahl,

der sich von rechts nach links durch ei-

nen Punkt bewegt - je nach Einfluss der

Umgebung des betrachteten Stiicks

Raumzeit - anders abgelenkt werden als

eine! der den Punkt beispielsweise von

oben nach unten durchlauft.
Eine weitere frrndamentale Erkenntnis

der Physik des letzten Jahrhunderts be-

steht darin, dass alle bisher iiberpriiften

Naturgesetze die Form von Quantenna-
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turgesezen haben. Das bedeutet unter
anderem, dass man Ort und Bewegungs-
zustand eines physikalischen Objekts nie-
mals gleichzeitig mit beliebiger Genauig-
keit messen kann. Formuliert ist das in
der Heisenberg'schen Unschlrferelation.
Sind die Systeme gro8 und die Energien
niedrig genug, dann stellt die so genannre
klassische Ndherung, die alle Quantenei-
genschaften ignoriert, eine sehr genaue
Anndherung dar. Sie ist dann in der expe-
rimentellen Praxis von der ouantenme-
chanischen Beschreibung nicht unter-

\

scheidbar. In der Hochenergiephysik,
welche die nichtgravitativen \Wechselwir-

kungen auf sehr ldeinen Abstdnden be-
schreibt, ist dies jedoch nicht der Fall.

Ganz analog erwarten wir in der Phy-
sik, dass wir Gravitationswechselwir-
kungen ebenfalls durch Quantenbewe-
gungsgesetze beschreiben miissen. Da al-
lerdings die Schwerkraft die mit Abstand
schwlchste'Wechselwirkung ist, kcinnen
sich ihre Quanteneigenschaften erst auf
entsprechend kleinen Llngenskalen be-
merkbar machen - bei wesentlich kiirze-
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ren Abstdnden, als bisher in Experi-
menten auflosbar ist. Nach dieser allge-
mein akzeptierten Logik miisste im
Abstandsbereich der Planck-Linge der
leere Raum thnlichen Quantenfl uktuati-
onen unterliegen wie das vorhin be-
schriebene quantenfeldtheoretische Va-
kuum. Doch dieses Mal fluktuieren die
Gravitationsfreiheitsgrade selbst: Es sind
elementare Krr-immungsanregungen der
Raumzeit.

... Raumzeitschaum?
Bei den sehr viel grci8eren Skalen des
quantenfeldtheoretischen Vakuums
konnte die Raumzeit als feste Hinter-
grundstruktur betrachtet werden. Sie
dient also in der bisherigen Elementar-
teilchenphysik als feste oBiihneu. Aus der
Sicht der wesentlich ldeineren Planck-
Skala nimmt sie nun jedoch selbst am
dynamischen Geschehen teil. Wie in der

Quantenfeldtheorie miissten also gewisse
elementare Quanten der Gravitation
spontan erzeugt und vernichtet werden.
Doch welche Teilchen wiren das?

Die Antwort auf diese Frage ist uns
noch nicht bekannt. Sie ist eines der An-
Iiegen einer Theorie der Quantengravita-
tion. Es handelt sich nicht um die so ge-
nannten Gravitonen. Damit bezeichnet
man in der Physik gemeinhin teilchenar-
tige Anregungen eines schwachen Gravi-
tationsfeldes - allerdings aufeiner festen,
nicht gekriimmten Hintergrundraum-
zeit. Letzrere liefert eben gerade keine
zutreffende Beschreibung der sehr dyna-
mischen Situation auf der Planck-Skala.

Stattdessen benutzt die theoretische
Physik seit mehr als fnnfzig Jahren Be-
griffe wie Quantenschaum oder Raum-
zeitschaum, um den vorhergesagten,
stark quantenfluktuierenden Zustand
der Raumzeit zu umschreiben. Dabei
geht man davon aus, dass Raum und
Zeit so drastischen lokalen Kriimmungs-
fuktuationen unterworfen sind, dass sie
mit einer klassischen gekriimmten Geo-
metrie der Allgemeinen Relativitltstheo-
rie - etwa um einen Stern herum - abso-
lut nichts mehr gemein haben. Aller-
dings entspringen detailliertere Darstel-

M. C. Escher war vom Zusammenspiel ver-
schiedener Dimensionen fasziniert,  wie es
auch bei der Konstruktion einer Quanten-
raumzeit eine Rolle spielt .  Eschers >Kreis-
lauf< von 1938 i t tustr iert einen Ubergang
zwischen den Dimensionen zwei und drei.
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lungen der Struktur aufder Planck-Skala,

wonach die Raumzeit erwa L6cher ent-

wickelt, sich verknotet oder gar in win-

zige diskrete Stiicke zerfdllt, bislang im

\Tesentlichen der freien Forscherfantasie
(Bild S. 71 oben; siehe auch den vorste-

henden futikel).
Obwohl derartige qualitative Vorstel-

lungen schon sehr lange kursieren, hat es

sich bisher als lu8erst schwierig erwie-

sen, sie zu einer quantitativen Theorie

mit experimentell iiberpriifbaren Resul-

taten auszubauen. Seit der Mitte des vo-

rigen Jahrhunderts sind die Physiker auf

der Suche nach einer Quantisierung der

Einstein'schen Theorie. Zahlreiche Lo-

sungsansltze sind auf halbem \flege vor

uniiberwindbaren Hiirden stecken ge-

blieben. Dabei ist weiterhin unklar, ob es

sich nur um rein technische Schwierig-

keiten oder um Probleme prinzipieller

Natur handelt. Da die winzigen Skalen

auf absehbare Zeit technisch nicht zu-

giinglich sein werden, fehlen obendrein

relevante experimentelle Daten, die als

Leitfaden ftir die theoretische For-

schungsarbeit dienen konnten.

Tiotz der bisherigen Riickschliige gibt

es jedoch viel versprechende, neue L<i-

sungsstrategien zur Konstruktion einer

Theorie der Quantengravitation, insbe-

sondere die Methode der kausalen dyna-

mischen Tiiangulierungen, die ich im

Folgenden beschreiben werde. In sie flie-

Ben naturgeml8 auch Techniken und

Erkenntnisse anderer Ansltze ein, jedoch

mit dem grundlegenden Unterschied,

dass das Kausalitltsprinzip zentral be-

riicksichtigt wird. Allgemein verstehen

wir daruntet dass eine tilTirkung immer

ihrer Ursache folgen muss, nicht um-

kehrt, was eine Zeitrichtung vorgibt. Zu-

dem sollen gleiche Ursachen gleiche

Wirkungen haben. Dariiber hinaus muss

die zu konstruierende Raumzeit selbst

eine kausale Struktur haben. Erst in Be-

zug darauf konnen wir iiberhaupt nach

der Kausalitit eines physikalischen Pro-

zesses fragen, der sich in dieser Raumzeit

abspielt.

Feynmans
Pfadintegralmethode
Abgesehen vom Kausalititsprinzip gehen

nur sehr wenige weitere Annahmen in

diese Methode ein. In der Hauptsache ist

es das Quanteniiberlagerungsprinzip, das

sich im Rahmen der Quantentheorie
vielfach bewlhrt hat. Daftir werden keine

Symmetrieprinzipien wie beispielsweise

Supersymmetrien benotigt, die noch

nicht nachgewiesen sind, oder neue phy-

sikalische Objekte wie zum Beispiel ele-

mentare Strings oder Schleifen (siehe

auch in diesem Heft auf S. 58).
Eine weitere, sehr wichtige Eigen-

schaft der Methode ist ihre Berechenbar-

keit durch Computersimulationen. Diese

haben iiberzeugende Hinweise geliefert,

dass die aus kausalen dynamischen Tiian-

gulierungen erzeugte Quantenraumzeit
auf geniigend gro8en Skalen die er-

wiinschten klassischen Eigenschaften be-

sitzt. Auf der anderen Seite haben diese

Rechnungen konkrete Quanteneigen-
schaften der Raumzeit auf kleinsten Ska-

len zu Thge gefiordert.
Das Prinzip der Quanteniiberlagerung

hei8t auch Pfadintegralmethode und geht

auf fuchard Feynman (1918-1988) zu-

riick, den Tidger des Physiknobelpreises

von 1965. Diese universell einsetzbare

Methode zur Beschreibung der Quanten-
dynamik physikalischer Systeme trlgt

dem \Tahrscheinlichkeitscharakter der

Quantentheorie Rechnung. Dazu stellt

sie den Zustand eines physikalischen Sys-

tems als Uberlagerung (Integration oder

Addition) aller m6glichen Zustlnde dar,

die dieses System annehmen kann. Jeder
dieser ovirtuellenn Zustlnde trigt zu die-

ser Lrisung mit einer bestimmten, zahlen-

wertigen Gewichtung bei. Diese hingt

von den Eigenschaften ab, die das System

hitte, wenn es sich in dem zugehorigen

klassischen Zustand bePinde. Deshalb

sprechen wir bei den Pfadintegralen auch

von Uberlagerungen rklassischer, virtu-

ellern Zustlnde.
lWendet man dieses Uberlagerungs-

prinzip auf die Gravitationstheorie an, so

betrachtet man eine gewichtete Summe

aller Zustdnde eines unter dem Einfluss

der Schwerkraft wechselwirkenden Sys-

tems. Das konnten zum Beispiel zwei

massive Kcirper sein, die sich gegenseitig

anziehen.
Der Einfachheit halber werden wir das

Uberlagerungsprinzip auf ein Stiick leerer

Raumzeit anwenden - oder auf eine ge-

samte leere Raumzeit, also ein Univer-

sum. Letzteres lluft manchmal auch un-

ter der erwas hochfliegenden Bezeich-

nung einer ,Summe iiber Geschichtenu.

Bereits dieses einfachste aller denkbaren

Systeme kann mit sich selbst wechselwir-

ken und damit quantendynamische Ei-

genschaften besitzen, deren Beschreibung

keinesfalls trivial ist.

Im Prinzip ist es unproblematisch,

nach der Konstruktion des Modells der

leeren Raumzeit in einem nlchsten

Schritt auch Materiefelder zu beriicksich-

tigen.
Im Folgenden gebrauchen wir den Be-

griff der Raumzeit ftir einen klassischen,

virtuellen Zustand, und die Summe aller

dieser iiberlagerten Raumzeiten ergibt

dann die komplette Quantenraumzeit.
Die technische Schwierigkeit besteht nun

darin, die Menge aller moglichen, ver-

schiedenartig gekriimmten Raumzeiten

auf eine bestimmte 'Weise zu identifizie-

ren. Diese muss es uns ermdglichen, die

Summe iiber die zugehorigen 'Wahr-
scheinlichkeitsamplituden mathematisch

sinnvoll auszuftihren.
Da die Kriimmung der Raumzeit von

Punkt zu Punkt verschieden sein kann

und selbst ein nur endlich gro8es Stiick

Raumzeit unendlich viele Punkte enthdlt,

eibt es unendlich viele solcher Kriim-

In Ktirze
p'Vakuum ist  von Quantenf luktuat ionen erf i . j t t t .  Auch Raum und Zei t  setbst
konnten in drast ischen Raumzejtkr i immungen f luktuieren. Das geschieht vermut l ich
nahe der kteinsten Skata der heut igen Physik,  der Planck-Skala (Planck-Ldnge:1-0-35

Meter) .
$.  Die Gravi tat ion fotgt  geometr isch aus Raumzeitkr t jmmungen. Eine zutref fende
Beschreibung der Raumzeit f luktuat ionen sol t te zu der noch gesuchten Quantenthe-
orie der Gravitation fi ihren.
i:s' Eine vieI versprechende Losungsstrategie sind kausale dynamische Triangulie'
rungen. Sie bauen Raumzeiten aus vierdimensionaten Dreiecksbausteinen und ge-

ben ihnen dabei  e ine kausate Struktur.
s '  Die kausale Struktur der Raumzeit  is t  d ie Voraussetzung dafLir ,  dass die in ihr  ab-
[aufenden physikal ischen Prozesse dem Kausal i tdtspr inzip untert iegen.

70 SPEKTRUM DER WISSENSCHAFT'SPEZIAL 3/07: I5T DAS UNIVERSUM EIN C0MPUTER?



Mit etwas Fantasie bl ickt diese Quantengra-
vitationsforscherin auf die wild quantenfluk-

tuierende Geometrie der Raumzeit auf der
Planck-5kala.

mungskonfigurationen. Also miissen wir
uns die Frage stellen, ob und wie wir
diese sinnvoll ,abzdhlenn und aufaddieren
konnen.

Zur L<isung dieses Problems ftihren
wir zwischenzeitlich eine Hilfskonstruk-
tion ein. Mit ihr krinnen wir die Summe
iiber alle Raumzeiten als Grenzfall von
Summen iiber einfachere geometrische
Objekte darstellen. Diese Objekte ni-
hern ihrerseits gekriimmte Raumzeiten
an. An dieser Stelle kommen die eigent-
lichen Tiiangulierungen ins Spiel.

Raumzeiten aus Dreiecken,
kausal verklebt
Eine tiangulierung ist eine besondere
Art von Raumzeitgeometrie, die wir
durch das Aneinanderkleben von vierdi-
mensionalen Dreiecksbausteinen erhal-
ten. Per definitionem ist das Innere jedes

einzelnen Bausteins ungekriimmt. IGiim-
mung kann jedoch an den Stellen auftre-
ten, wo benachbarte Bausteine aneinan-
der sto8en. Das vereinfacht die Situation
im Vergleich zu einer allgemeinen ge-
kriimmten Raumzeit, die in jedem

Punkt gekriimmt sein kann.
Besonders anschaulich hsst sich das

am Beispiel einer Tliangulierung darstel-
len. Dabei bauen wir mit zweidimensio-
nalen, dreieckigen Bausteinen - also
Dreiecken im uns gelaufigen Sinn - die
Oberfdchen dreidimensionaler Kriroer
nach. Es ist sofort klar, dass die durch-
schnittliche Gro8e der Dreiecke be-
stimmt, wie gut eine solche Tiiangulie-
rung einen gewrihnlichen gekriimmten
zweidimensionalen Raum annihern
kann. Das zeigt das Bild rechts mit dem
Hasen: Je kleiner die Dreiecke sind und
je feinmaschiger so das Netz der Tiian-
gulierung wird, desto besser ist die Nii-
herung.

In der Praxis - und mit Hilfe eines
Computers - ftihren wir die Summe iiber

Geschichten so aus, dass wir zundchst
mit einer groben Anndherung beginnen.
In dieser besteht jede beitragende, ge-
kriimmte Raumzeit aus einer relativ klei-
nen Anzahl gro8er dreieckiger Bausteine
(Bild S. 72). Dann studieren wir syste-
matisch, wie sich die Summe im Grenz-
fall immer kleinerer und somit zahl-
reicherer Bausteine verhdlt. Dabei diirfen
die Dreiecksbausteine auf keinen Fall v<il-
lig beliebig aneinandergeklebt werden.
Dieser Prozess muss gewissen kausalen
Regeln gehorchen.

Diese Regeln sind dadurch motiviert,
dass unsere tatsdchlich existierende, ma-
kroskopische vierdimensionale Raumzeit
aus drei Raumrichtungen (rechts - links,
auf - ab, vor - zuriick) und einer Zeit-
richtung besteht. Raum und Zeit sind da-
bei ihrem \(esen nach verschieden. So
kann man in jeder der Raumrichungen
ohne Probleme vor- und wieder zuriick-
laufen. In der Zeir kann man sich hinge-
gen immer nur in Vorwlrtsrichtung - also
in die Zukunft - bewegen, aber nicht in
die Vergangenheit.

Zudem ist es wichtig, dass es in der
Raumzeit nach der Relativitltstheorie
eine grri8tmrigliche Geschwindigkeit
gibt, die Lichtgeschwindigkeit. Diese
Endlichkeit der Signalausbreitung impli-
ziert gewisse kausale Eigenschaften der
Raumzeit. So ist es beispielsweise un-
moglich, dass ein Ereignis an einen be-
stimmten Punkt in Raum und Zeit mit
einem Ereignis an einem anderen Punkt
in einem urslchlichen Zusammenhang
steht, falls die beiden zu weir voneinan-
der entfernt sind. Dann nlmlich ist ein
Lichtstrahl oder eine andere Art von Si-
gnal zu langsam, um den'Abstand zwi-
schen beiden Punkten in der verftigbaren
Zeit zl iiberbriicken.

Nun stellt sich die Frage, wie wir sol-
che kausalen Eigenschaften in die zu
summierenden triangulierten Raum-
zeiten einbauen. Grob gesagt ordnen wir

Zweidimensionale Triangulierungen ndhern
sich an gekriimmte Oberfliichen umso besser
an, je kleiner die Dreiecke sind.

jedem einzelnen Baustein einen Zeitpfeil
zu. Dann lassen wir nur solche Verkle-
bungen zu, in denen die Gesamtheit al-
ler Pfeile unisono in eine gemeinsame
fuchtung zeigt, nlmlich die der kausalen
Zukunft. Interessanterweise beziehen
bisher die allermeisten Ansitze zum gra-
vitationstheoretischen Pfadintegral der
Einfachheit halber keine kausalen Eigen-
schaften mit ein. In der Folge gibt es kei-
ne besonders ausgezeichnete Richtung
innerhalb der so konstruierten vierdi-
mensionalen oRaumzeitn. Die Zeitrich-
tung wird bei ihnen einfach als eine
vierte Raumrichtung behandelt - doch
die Lichtgeschwindigkeit, die der Signal-
ausbreitung Grenzen setzt und so an je-

dem Punkt der Entwicklung eine Rich-
tung in eine Zukunft vorgibt, geht nicht
grundsitzlich in die Konstruktion der
Raumzeit ein. Dies ist mit dem Begriff
der imagindren Zeit identisch, auf dem
beispielsweise Stephen Hawkings Arbei-
ten zur Quantengravitation basieren.

Zwei Dinge miissen wir bei unserer
Konstruktion noch hervorheben. Zum
Ersten ldsst sich die Uberlagerung aller
Raumzeiten nach Einftihrung der kausal
triangulierten oHilfsgeriiste< tatsdchlich
konkret auswerten. Zum Zweiten be-
inhaltet die Verwendung dieser Art von
Bausteinen keineswegs, dass die tatsdch-
lich existierende Raumzeit auf kleinen
Skalen aus kleinen dislreten Dreiecken
zusarnmengesetzt sein muss. Es handelt
sich um eine strikte Hilfskonstruktion.
Dabei sind wir letztendlich nur an dem
Grenzfall interessiert, in dem die Drei-
ecke - wie beim Beispiel des immer fei-
ner nachgeformten Hasen - vdllig weg-
geschrumpft sind. Die Forschung auf
diesem Gebiet geht auch davon aus, dass
das Endergebnis der Rechnung nicht von
der speziellen Form der Bausteine abhdn-
gen wird. Man k<innte also genauso gut
quadratische oder ftinfeckige Grund-
formen verwenden.

\flir haben nun einen Einblick darin,
wie wir konkret eine Summe iiber alle

VISUAL COMPUTING !A3,
/  MESILAB PAOLO CIGNON]
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Raumzeiten ausfiihren krinnen. Jetzr
miissen wir uns natiirlich fragen, zu wel-

chem Ergebnis wir dabei kommen.
Die Quantenraumzeit ergibt sich

durch die Uberlagerung aller Raumzeiten,

die virtuell moglich sind. In einem ma-
thematisch prizisen Sinn entsteht sie dso
aus deren ,Zusammenspielu. Sie muss be-
stimmte Eigenschaften besitzen, damit
wir sie als aussichtsreiche Kandidatin ftir

das ultimative Vakuum ansehen k6nnen.
Auf geniigend groBen Abstinden betrach-
tet muss sie wie eine Raumzeit aussehen,

die den Regeln der klassischen Allgemei-
nen Relativititstheorie gehorcht. Dies ist

die wohlbekannte Forderung, dass eine

Quantentheorie im klassischen Grenzfall,
also ohne Beriicksichtigung jeglicher

Quantenfluktuationen, wieder die zuge-

horige klassische Theorie zuriickliefern
muss. Von Letzterer wei8 man ja bereits,
dass sie die zugehcirigen physikalischen
Phinomene auf gro8en Skalen korrekt

beschreibt. Aber wie stellt man fest, wel-
che physikalischen Eigenschaften die aus
kausalen dynamischen Tiiangulierungen
erzeugte Quantenraumzeit hat?

U nerwartete Grenzwerteffekte
Dies ist ein schwieriges Unterfangen, da
die so modellierte Quantenraumzeit nur

in sehr unanschaulicher Form vorliegt,
namlich als eine Masse computergespei-
cherter Simulationsdaten. Um bestimmte
geometrische Eigenschaften zu untersu-
chen, miissen wir also geeignete ,Experi-

mente( an ihr durchfiihren. Diese Com-
puterexperimente miissen dem Vorgehen
bei einer realen physikalischen Versuchs-
anordnung mciglichst nahekommen. Sie
umfassen deshalb Messungen, die Lln-

gen und Abstlnde, Fldcheninhalte und
Volumina betreffen. Aus diesen Daten
lassen sich im Prinzip alle lGiimmungsei-

genschaften der Raumzeitgeometrie ab-
leiten. In der Praxis kann das iedoch be-

liebig kompliziert werden.
Zunlchst stellt sich aber heraus, dass

wir zuerst wesendich elementarere Eigen-

schaften der Quantenraumzeit messen

und iiberpriifen miissen. Plotzlich kon-
nen sich nemlich vermeintlich stabile.
ldassische Gro8en dndern! Das ist eine et-

was unerwartete Konsequenz der gro8en
Fluktuationen auf kleinen Skalen. die
Teil der Quantenformulierung ausma-

chen. Das ftir uns wichtigste Beispiel ei-
ner so verinderlichen Gr<i8e betrifft die

Dimension der Raumzeit. In dem uns
zugdnglichen Skalenbereich unserer \felt
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leben wir in einer Zeit- und drei Raum-

richtungen, die Einsteins Relativitltsthe-

orie prizise als untrennbare Teile einer

vierdimensionalen Raumzeit beschreibt.

Aus diesem Grund setzen wit kausale

dynamische Tiiangulierungen aus vierdi-

mensionalen Dreiecksbausteinen zusam-

men. Folglich ist auch jede einzelne

Raumzeit, die aus endlich vielen solcher

Dreiecke besteht, vierdimensional (Bild

S. 74). Tiotzdem kann die Quanten-
0berlagerung aller dieser Raumzeiten tat-

slchlich eine andere Dimension besitzen!

Genau das passiert in dem ftir uns rele-

vanten Grenzfall, bei dem wir die Quan-
tenraumzeit aus unendlich vielen Bau-

steinen zusammensetzen.

Damit wir eine anschauliche Vorstel-
lung dieses Phlnomens gewinnen, stel-
len wir uns den einfachsten Fall einer

groBen Anzahl zweidimensionaler Drei-

ecke vor. Diese verkleben wir zu einer
langen, diinnen zylindrischen Rohre.

Der Zylinderumfang soll dabei iiberall
zwei bis drei Dreieckskantenlingen ein-

schl ie8en. Nun verbauen wir immer
mehr Dreiecke, ohne dass wir die durch-

schnittliche Zahl der Bausteine im Zy-

linderumfang indern. Dabei soll auch

die Grri8e der einzelnen Dreiecke kons-

tant bleiben.

Je ofter wir diese Vorschrift durchfiih-
ren, desto linger wird unser Zylinder.
Nach unendlich vielen Schritten ist er

ein unendlich langer oFadenn geworden.
Weil der Zylinderumfang im Verhi.ltnis
zur Linge effektiv gegen Null schrumpft,
hat dieser Faden dann nur noch eine Di-
mension. Auch der umgekehrte Effekt

ist mriglich: Dabei okniillenn sich zwei-

dimensionale Tiiangulierungen so zu
,riumlicherenu Gebilden zusammen,

dass im Grenzfall ein hciherdimensio-

nales Objekt entsteht.
Aus konkreten Beispielen wei8 die

Forschung, dass bei einer solchen Di-

mensionsumwandlung sogar Dimensi-
onen auftreten konnen, die nicht ganz-
zahlig sind. Das sind zum Beispiel geo-
metrische Objekte der Dimension 3/2
(also 1,5). Damit unser Gedankenexperi-
ment mit dem Zylinder anschaulich

bleibt, haben wir nur zweidimensionale,

dreieckige Bausteine verwendet. Ganz
analoge Dimensionsumwandlungen kon-

nen jedoch genauso bei Bausteinen belie-

biger Dimension auftreten.

Diese Erkenntnis hat Folgen fiir unse-

re Konstruktion einer Theorie der Quan-
tengravitation aus mikroskopischen Drei-

In der Summe i iber Geschichten wird nicht

eine einzige Raumzeit,  sondern die Menge

aller miigl ichen Raumzeiten durch Triangu-

l ierungen angendhert.  Die Geometrie dieser
Raumzeiten ist,  wie in diesem zweidimensi-

onalen BeispieI angedeutet, auf sehr kleinen

Gri iRenskalen stark gekr[ immt.

ecksbausteinen der Dimension 4: Das da-
mit erzeugce Quantenuniversum muss
im Grenzfall unendlich vieler Bausteine

auf gro8en Skalen keinesfalls die ge-

wiinschten vier Dimensionen besitzen!
Thtslchlich ergaben sich bei den nicht-
kausalen Vorldufern der dynamisch trian-

gulierten Quantengravitation stets andere

Dimensionszahlen als vier. Diese Model-
le waren folglich auf malroskopischer
Ldngenskala eben nicht mit der klas-

sischen Relativitdtstheorie vereinbar. Aus

diesem Grund begannen wir mit unserer

Gruppe, nach einer verbesserten Quan-
tentheorie der Raumzeit zu suchen.

Nehmen wir an. dass wir unsere aus
Dreiecksbausteinen computererzeugte

Quantenraumzeit vorliegen haben. Nun

miissen wir >messen<, welche Dimension

dieses Modell auf allen relevanten Gro-

Benskalen hat, fiir die es jeweils gelten

soll. Aber wie misst man die Dimension
eines unbekannten geometrischen Ob-
jekts? Dafiir gibt es eine universell an-
wendbare Methode:'Wir betrachten, wie

sich etwas in dem untersuchten Raum

ausbreitet. Ein solcher Diffirsionsprozess
beschreibt ganz allgemein die Ausbrei-

tung von so verschiedenen Dingen wie
einem Tintentropfen in einem Glas lVas-

ser (Bild S. 73 oben) oder einer anste-

ckenden Krankheit in einer Bevcilkerung.

Uns interessiert dabei das Teilvolu-

men, das der Prozess im Laufe der Diffu-

sionszeit erfasst. Das wdre zum Beisoiel

beim Tintentropfen im \Tasserglas das

Anwachsen des Tintenwolkenvolumens
eine, zwei, drei und mehr Sekunden

nach Freisetzen des Tloofens. Die Ge-

schwindigkeit,  mit der das Ausbreitungs-

volumen wlchsr, erlaubt namlich Riick-

schliisse auf die effektive Dimension des

I
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Mediums oder Raums, in dem sich die-
ser Prozess abspielt.

Auf triangulierten Raumzeiten llsst
sich ein solcher Diffirsionsprozess ganz
einfach durchspielen. Dazu setzen wir ein
imaginlres ,Tintenteilchenn auf einen be-
liebig gewiihlten Dreieclabaustein. Dann
lassen wir den Diffusionsprozess in Zeit-
schritten anlaufen. Bei jedem Zeitschritt
htpft das Teilchen auf einen rein zuflllig
gewdhlten, direkt benachbarten Dreiecks-
baustein. Nach einer bestimmten Diffusi-
onszeit von zum Beispiel 100 Zeitschrit-
ten erhalten wir so eine Wahrscheinlich-
keitsverteilung ftir den Aufenthaltsort des
Gilchens in der Umgebung des Aus-
gangspunktes der Diffirsion. Ein Drei-
ecksbaustein ist als Ort umso wahrschein-
lichea je mehr Pfade der Llnge 100 zu
ihm ftihren, die das Gilchen qenommen

haben konnte.

Dimensionsmessung
durch Diffusion
Es ist anschaulich klar, dass diese W'ahr-
scheinlichkeit mit der Entfernung des
Bausteins vom Anfangspunkt abnimmt
und schlie8lich zu Null wird. Nun kcin-
nen wir auch plausibel verstehen, wie wir
iiber diese Diffusion auf die Dimension
des umgebenden Raums schlie8en kdn-
nen: Bei gegebener Entfernung zwischen
zwei Punkten hlngt nimlich die Zahl
der'W'ege, die zwischen ihnen mciglich
sind, von der Dimension ab.

Unser Computerexperiment zur Di-
mensionsmessung betrachtet die Eigen-
schaften eines solchen Diffusionsoro-

Die spektrale Dimension D(s) der Quanten-
raumzeit (rote Kurve) geht f i i r  wachsende
Diffusionszeit s von der Dimension 2 (t inks)

nach der Dimension 4 (nach rechts) l iber.
Zum Vergleich ist die spektrale Dimension
einer klassischen Raumzeit aufgetragen
(blau). Diese ist unabhdngig von der be-
trachteten Li ingenskala und hat immer den
Wert 4. Die Planck-Lfinge befindet sich am
linken Rand der Kurve, also bei extrem
kurzen Diffusionszeiten.

zesses. Es mittelt dabei iiber alle im
Raum mciglichen Anfangspunkte der
Diffusion und iiber alle triangulierten
Raumzeiten, die in der Summe iiber Ge-
schichten - also der Uberlagerung aller
moglichen Raumzeiten - auftreten. tVir

kdnnen die dabei benotigten Entfer-
nungen und Volumina bei gegebener
Diffusionszeit leicht messen. Aus ihnen
bestimmen wir die so genannte spektrale
Dimension der Quantenraumzeit.

Das Resultat fiir den Grenzfall un-
endlich kleiner Dreiecksbausteine ist
eine Kurve (Bild unten). Sie ist in mehr
als einer Hinsicht bemerkenswert. Of-
fensichtlich hdngt die spektrale Dimen-
sion D(s), die auf der vertikalen Achse
aufgetragen ist, davon ab, iiber welche
Zeitspannen der Diffirsion r (horizontale

Achse) wir den Prozess betrachten. Zu
kurzen Diffirsionszeiten und entspre-
chend kurzen Diffusionswegen des ,Test-

teilchensu hin sinkt die spektrale Dimen-
sion. Mit ansteigenden 'Wegen und
Zeiten wdchst sie dagegen.

Physikalisch interpretiert bedeutet
das: Setzen wir ein physikalisches Teil-
chen in unsere leere Quantenraumzeit
hinein, dann sinkt die von ihm ,geftihl-

te< Dimension mit der Grci8enskala. die
fiir dieses Teilchen charakteristisch ist.
Glbe es Teilchen der Grci8e Null, dann
wdre die Raumzeit fiir dieses Gilchen
exakt zweidimensional: Diese Situation
entspricht dem Ursprung der D(s)-Kurve
ganz links. !(i'lchst es dagegen in fuch-
tung makroskopischer Skalen, dann nl-
hert sich die spektrale Dimension der
Zahl vier - das entsprdche einer Verlin-
gerung der Kurve nach rechts ins Un-
endliche. Dieses Resultat entsoricht wie
erhofft der Vierdimensionaliter unserer
\7elt im Gro8en, wie sie Einsteins Rela-
tivitd.tstheorie beschreibt. \Vir haben da-
mit ein Indiz daftir, dass die iiber kausale
dynamische Tiiangulierungen konstru-
ierte Quantenraumzeit sich so klassisch
verhdlt, wie wir uns das wiinschen.

Nfiern wir uns dagegen im immer
Kleineren der Planck-Skala, so verliert
das klassische Bild seine Giiltigkeit. Die
spektrale Dimension sinkt signifikant
unter den \Vert vier - und ist im Allge-
meinen nicht einmal mehr eine ganze
Zahl! Klassische glatte Riume oder
Raumzeiten, wie sie die Allgemeine Re-
lativititstheorie beschreibt, konnen nie-
mals solch sonderbare Eigenschaften be-
sitzen. 'Wir haben es mit einer neuen Art
von oQuantenfaum( zu tun, dessen ge-

Die Ausbreitung eines Tintentropfens in ste-
hendem Wasser ist ein Beispiet eines Diffu-
sionsprozesses. Die Geschwindigkeit der
Ausbreitung erlaubt Ri ickschl i . isse auf die
Dimension des Mediums.

ffifi::.Eigenschaften 
derzeit erforscht

Nicht ganzzahlige spektrale Dimensi-
onen sind vor allem von fraktalen Geo-
metrien bekannt. Ein Beisoiel daftir ist
die ber0hmte Sierpiiski-Fliche. Sie ent-
steht durch unendliches Unterteilen und
tVegschneiden von dreieckigen Teilflii-
chen aus einem ebenen Dreieck. Ihre
spektrale Dimension betrigt ungePihr
1,6, liegt also zwischen der Eindimensio-
nalitit einer Linie und der Zweidimensi-
onalitit des urspriinglichen Dreiecks.
Eine charakteristische Eigenschaft von
Fraktalen ist ihre Selbstfinlichkeit: Ein
ldeines Teilstiick eines Fraktals sieht un-
ter einem Vergrci8erungsglas betrachtet
genauso wie das urspriingliche Fraktal
aus. Dasselbe gilt fiir ein vergr68ertes
Teilstiick eines Gilstiicks, und so weiter
ad infinitum. Das Bild des Sierpihski-
Dreiecks illustriert das.

Die Eigenschaften unserer dynamisch
erzeugten Quantenraumzeit deuten nach
bisherigen Untersuchungen darauf hin,
dass sie tatslchlich fraktale. selbstfinliche
Eigenschaften besitzt. Dazu missen aller-
dings die Abstdnde klein sein, also in der
Ndhe der Planck-Skala und darunter lie-
gen. Diese Selbstahnlichkeit wiirde ele-
gant die Frage danach beantworten, was
sich unterhalb der Planck-Linge abspielt.
Die Raumzeit wiirde demnach nicht aus
fundamentalen, dislxeten rQuantenn be-
stehen, wie das andere Ansdtze wie zum
Beispiel die Schleifen-Quanren gravitation
voraussetzen. Stattdessen erhalten wir
hier das Bild einer Raumzeit, die auch im
Kleinsten kontinuierlich bleibt. Aller-
dings ,passiertu unterhalb der Planck-
Linge nichrs mehr: Dort sieht die Quan-

;
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Das mit Hi l fe kausaler dynamischer Triangu-

l ierungen erzeugte Quantenuniversum. Hier

ist tedigt ich seine Form auf groRen Skalen,
also das Volumen des rdumlichen Univer-
sums in Abhiingigkeit von der Zeit (senk-

rechte Achse) dargestellt.

tenraumzeit auf allen Skalen immer

gleich aus.
Auf GroBenskalen oberhalb der

Planck-Llnge endet jedoch diese Selbst-
?ihnlichkeit. Das hei8t. dass dort im

Prinzip Kriimmungsstrukturen auftreten

krinnen, die von der Skala abhlngen. Da

es sich bei unserer Quantengeometrie
um den absoluten Grund- oder Vaku-

umzustand der Raumzeit handelt, erwar-

ten wir jedoch nicht allzu viele orts- oder
zeitabhdngige Strukturen.

Eine Ausnahme bildet die grri8tmog-
liche Langenskala des Systems, also die

Gesamtausdehnung des untersuchten

Stiicks Raumzeit.'W'enn wir die compu-
tererzeugte Raumzeit auf diesen Skalen
vermessen, stellen wir fest, dass sie die

geometrische Form einer bestimmten
kosmologischen Raumzeit besitzt. Dabei
handelt es sich um eine wohlbekannte
L6sung der Gleichungen der Allgemei-
nen Relativitltstheorie: Sie beschreibt

das leere lJniversum auf gro8en Distan-
zen und in Gegenwart einer kosmolo-

gischen Konstanten, die das heutige

Standardmodell der Kosmologie mit ei-
ner speziellen Art dunkler Energie

gleichsetzt, die sich mit der Zeit nicht

verindert.
Dies ist ein weireres Indiz dfir, dass

unsere mit Hilfe von kausalen dyna-
mischen Tiiangulierungen konstruierte
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Theorie der Quantengravitation korrekt

den Grenzfall der klassischen, makrosko-

pischen \7elt beschreibt. Allerdings stel-
len alle hier diskutierten Indizien noch

keinen endgiiltigen Beweis dfir dar, dass
diese Theorie die physikalisch richtige ist.

Lassen wir noch einmal die wesent-
lichen Merkmale unserer Konstruktion

Revue passieren. \Wir haben anfangs fest-

gestellt, dass ein Verstlndnis der leeren

Raumzeit auf allerkleinsten Abstinden.

der Mutter aller Vakua, einer breiteren

theoretischen Grundlage in Form einer
Theorie der Quantengravitation bedarf.

Diese Theorie muss auf gr68eren Skalen

nahtlos an bereits bekannte und erprob-

te physikalische Theorien anschlieBen.

Tiotz intensiver Bemiihungen der letzten

Jahrzehnte, unter anderem aus dem
Blickwinkel der Stringtheorie, gibt es
eine solche Theorie bisher nicht.

Das kdnnte zu dem Schluss verleiten,

dass vrillig neue physikalische Gr<i8en

und Ordnungsprinzipien auf der Planck-

Skala ,erratenn werden miissen. Da diese

Skala auf absehbare Zeit experimentell
unzuginglich bleiben wird, birgt das die

Gefahr der Beliebigkeit. Eine Alternative

hierzu bietet die Methode der kausalen

dynamischen Tiiangulierungen. Sie hat

es nicht ncitig, neuartige physikalische
Gr68en zu raten oder bestehende physi-
kalische Prinzipien der Quantentheorie
und Reladvitdtstheorie zu modifizieren.

Sie ftihrt sie lediglich aufkorrekte \7eise

in einem Rahmen zusammen, der gro8e

Fluktuationen der Raumzeitgeometrie

auf kleinen Skalen zuhsst.

Die Zukunft
des Quantenuniversums
Die Methode der kausalen dynamischen
Thiangulierungen besticht durch ihre kon-

zeotionelle Einfachheit. Sie kommt mit

sehr wenigen grundlegenden Prinzipien

und Strukturen aus. Zum anderen ldsst

sie sich sehr gut auf dem Computer um-

setzen. So k<innen vom theoretisch for-

mulierten Modell tatsdchlich konkrete

Ergebnisse abgeleitet werden, wie wir am

Beispiel der Berechnung der spektralen

Dimension gesehen haben. Damit lassen

sich hoffentlich neue physikalische Phi-

nomene vorhersagen, die aus Quantenei-
genschaften der Raumzeit ableitbar sind.

Die bisher erzielten Ergebnisse sind

viel versprechend. Doch es bedarf noch

viel Forschungsarbeit, bevor wir mit ei-

niger Sicherheit sagen krinnen, dass wir

die richtige Theorie der Quantengravita-

tion gefunden haben. Per Computer
k6nnen wir >Experimente( machen, in-

dem wir zum Beispiel Testteilchen in die

bislang leere Quantenraumzeit platzieren
und die sich ergebenden 'W'echselwir-

kungen analysieren. \(erden diese in un-

ser heutiges physikalisches'W'eltbild pas-

sen? Natiirlich interessiert uns auch eine

konkretere Beschreibung des rQuanten-

schaumsu der Raumzeit auf der Planck-

Skala. Gibt es kleinste Bausteine der

Raumzeit, also so etwas wie ihre
nAtomeu? Zu den iiberaus interessanten
Fragen geh6rt auch, ob und wie der

Raumzeitschaum zur Dunklen Energie

der Raumzeit beitrlgt.
An dem hier vorgestellten Losungsver-

such fasziniert die Thtsache, dass sich aus

einer minimalen Zahl konventioneller

Ztttaten - vor allem der Prinzipien der

Quanteniiberlagerung und der Kausalitlt
- eine sehr reiche Quantenstruktur mit

unerwarteten Eigenschaften ableiten ldsst.

lVir haben konkrete Anhaltspunkte da-

ftir, dass die so konstruierte Quanten-
raumzeit die klassischen Eigenschaften

auf grol3en Skalen reproduziert, wie sie

ftir die Konsistenz einer Theorie der

Quantengravitation unerldsslich sind.

Kausale dynamische Tiiangulierungen

stellen eine orobate Methode zur Auswer-

tung der beiiichtigt.n osumme iiber Ge-

schichtenn dar, die sicher noch viele an-

dere Uberraschungen ftir uns bereithdlt.{
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