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Theory & previous searches



Higgs mechanism basics
Motivation: hooked on the gauge principle!

QED is a spectacular success: (g-2)e, (g-e)μ

But a priori the gauge principle is incompatible with massive W, Z

Required: a mechanism to break the EW symmetry spontaneously
Lagrangian maintains full EW symmetry; the ground state does not

Achieved through the introduction of the (complex scalar) Higgs field

Generation of fermion masses through Yukawa couplings

Phenomenology depends only on (unknown) MH
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Early Higgs boson phenomenology
A priori any mass is possible...

Ellis, Gaillard, Nanopoulos (1976):
decays to e+e-, γγ, μ+μ-, π+π-,
K+K-, cc

Gaemers, Hoogeveen (1984):
Higgs production at hadron 
colliders (and decaying to bb, tt(!))

Haber, Schwartz, Snyder (1987):
Higgs production in B decays
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LEP Higgs boson search
Searches at LEP dominated by ZH associated production (“Higgs-
strahlung”). Clean!

LEP 1: profit from large Z production
cross section, look for decay to
on-shell Higgs boson + off-shell Z decay

exclude MH ≲ 30 GeV (1990), ≲ 63 GeV (1995)

LEP 2: look for decay of off-shell Z boson
to on-shell Higgs boson + on-shell Z boson

exclude MH ≲ 114.4 GeV
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A wealth of electroweak results
Many precision tests of EW structure carried out (LEP, SLD, Tevatron)

good internal consistency fitting to pseudo-observables
(MZ, MH, ∆α(5,had)(MZ2), αs(MZ2), mt, mb, mc)

Constraints on MH dominated
by MW, mt measurements
➠ prefer low MH!
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Higgs hunting at the LHC
(and a few words on the Tevatron)



Production & decay at hadron colliders

Same processes at the Tevatron as at the LHC, but
much reduced gluon fusion + VBF cross sections
sizeable cross section for associated production
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Experimental conditions

The main issue is not the presence of 
a signal but the backgrounds!

interactions at hadron colliders
dominated by strong interaction

when searching for Higgs boson 
production, need to suppress 
backgrounds by ~ 1010

Need to look for striking signatures 
setting the Higgs boson apart from
the (much) more ubiquitous 
backgrounds

look for (relatively) rare production /
decay modes

need high luminosity
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The LHC & ATLAS: success stories!

LHC expectations for 2011 exceeded
by a factor 5

even if at √s = 7 TeV

2012 integrated luminosity by end
June exceeded that at end of 2011

and yet more to come..

Experiments coping very well with
increased pile-up
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Higgs Boson discovery channels
Many possible production and decay modes! Here, focus on channels relevant 
in the most “interesting” mass range:

H → WW(*) → lνlν: relatively large
event rate but cannot reconstruct
mass of event candidates due to
escaping neutrinos
rely on shapes of kinematic variables
also substantial backgrounds
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Higgs Boson discovery channels
Many possible production and decay modes! Here, focus on channels relevant 
in the most “interesting” mass range:

H → WW(*) → lνlν: relatively large
event rate but cannot reconstruct
mass of event candidates due to
escaping neutrinos
rely on shapes of kinematic variables
also substantial backgrounds

H → ZZ(*) → l+l- l’+l’-: precise mass
reconstruction, very rare but
very pure
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Higgs Boson discovery channels
Many possible production and decay modes! Here, focus on channels relevant 
in the most “interesting” mass range:

H → WW(*) → lνlν: relatively large
event rate but cannot reconstruct
mass of event candidates due to
escaping neutrinos
rely on shapes of kinematic variables
also substantial backgrounds

H → ZZ(*) → l+l- l’+l’-: precise mass
reconstruction, very rare but
very pure

H → γγ: precise mass reconstruction,
modest rate but large background
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Chronology of a discovery
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Chronology of a discovery

... and corroborated (scooped?) by (less conclusive)Tevatron results
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We aren’t done yet!



What did we discover?
Discovered a new particle with MH ≈ 126 GeV

boson: decay to ZZ, WW, γγ
spin ≠ 1: Landau-Yang theorem would forbid decay to γγ
even if there could be a conspiracy: > 1 new particle

But we have only just scratched the surface! Questions to be addressed:
does it have the expected quantum numbers JPC = 0++?
is it a fundamental or a composite particle?
is it alone or part of a more extended
Higgs sector?

Solid answer to the above requires
continued searches for BSM physics

but studying the Higgs will help

Are we done with electroweak physics?

in the presence of dark matter with a
likely particle nature: no!

14



Quantum numbers
Most sensitivity to different JCP in case of (parity-violating) decays of Higgs 
decay products: H → WW,  ZZ

ongoing efforts, but JCP = 0++ assumption used in event selections
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Mass
In the MSSM, Mh ≈ MZ |cos2β| + radiative corrections

significant dependence on SUSY breaking scenario

rule out multiple SUSY breaking mechanisms, more exotic scenarios being 
considered

e.g. split SUSY: heavy scalars, m(fermions) ~ MZ; heavy SUSY

The mass relations change when going beyond the MSSM...
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 Coupling strengths
Information available thus far from Higgs boson searches:

inclusive signal strengths for H → bb, H → WW, H → γγ:  LHC,  Tevatron
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ATLAS 2011 - 2012

Information available thus far from Higgs boson searches:

inclusive signal strengths for H → bb, H → WW, H → γγ:  LHC,  Tevatron

H → ZZ, H → ττ inclusive signal strength:  ATLAS, CMS

VBF+VH exclusive signal strength measurement: ATLAS
VBF,  VH both rely on VVH couplings
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H → γγ and implications for models
A lot of attention for somewhat large strength parameter observed in
the H → γγ channel

loops in both production and decay
➠ sensitive to new physics!

MSSM, general 2HDM, ...

Assuming this persists: need to find out whether the deviation from SM 
predictions is in production or decay (or both!)

general: starting to focus more on measurement of exclusive production 
processes (gluon fusion, VBF, WH, ZH, ttH) in addition to decay modes

will help test various aspects:
custodial symmetry (couplings to W ↔ Z)

couplings to up-type (t) versus down-type (b) quarks

...
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Prospects
Existing analyses will continue! Projections made for LHC high-luminosity 
phase

even under extreme LHC pile-up conditions (μ ~ 140), expect continued 
improvements

but measurements at a linear collider will be far better

determining couplings to ~10% relative accuracy will allow incisive tests of 
models
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Higgs self-coupling:
very difficult topic for the LHC

(simple) studies: may achieve ~ 3σ signal in HH →bbγγ
not sufficient by itself: also other diagrams contribute

again the much cleaner environment at a linear collider will allow for more 
incisive tests

19

H
H

H



Prospects
Existing analyses will continue! Projections made for LHC high-luminosity 
phase

even under extreme LHC pile-up conditions (μ ~ 140), expect continued 
improvements

but measurements at a linear collider will be far better

determining couplings to ~10% relative accuracy will allow incisive tests of 
models

Higgs self-coupling:
very difficult topic for the LHC

(simple) studies: may achieve ~ 3σ signal in HH →bbγγ
not sufficient by itself: also other diagrams contribute

again the much cleaner environment at a linear collider will allow for more 
incisive tests

Don’t hold your breath...
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Conclusion & outlook
The LHC and its experiments have been a big success, with the most 
important discovery in ~ 30 years

The search (for new physics) must go on!

But unless / until we find direct evidence for BSM physics, the Higgs boson 
is our best portal to new physics

even the mere observation has had profound consequences for our 
understanding of particle physics (e.g., exclude Higgs-less models...)!
determining better its properties will allow us to learn (yet) more
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The Higgs portal era is starting!



Thank you!
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ATLAS H → ZZ* → μ+μ-μ+μ- and H →γγ candidates
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