Observation of an excess in the search for the Standard Model Higgs boson in the H →WW^(*)→IVIV decay mode with the ATLAS detector

Frank Filthaut (Radboud University, Nijmegen / Nikhef) on behalf of the ATLAS Collaboration

References:

- 2011 cut-based analysis: <u>arXiv:1206.0756</u> (subm. to PLB)
- 2012 cut-based analysis: <u>ATLAS-CONF-2012-098</u>
- Also part of the combination paper! <u>arXiv:1207.7214</u> (subm. to PLB)

SUSY2012 Peking University, Beijing, China

Motivation

Large Higgs boson production cross section combined with sizeable $WW^{(*)} \rightarrow I \vee I \vee I \vee$ branching fraction (ee/eµ/µµ + missing E_T signature) sensitive SM Higgs search channel over large M_H range (especially low M_H)

The challenges:

- many backgrounds (both irreducible and reducible)
- no clear mass peak due to 2 escaping V

figures from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

Strategy & Content

2011 result: observed 95% exclusion in range 133 GeV < $M_{\rm H}$ < 261 GeV

 no clear signal but worse limits than expected (127 GeV < M_H < 233 GeV)

2011 and 2012 data analyses nearly identical (apart from absence of same-flavour channels for 2012)

 but 2012 analysis was blinded (the blinding does not affect the control regions discussed later)

In the following, describe only the 2012 analysis

- selection
- background estimation
- results & systematics
- conclusion

Selection

Leptons & Missing ET

Two isolated, high-pT leptons (e, μ):

- p_T(I) > 25 GeV, p_T(2) > 15 GeV collected using single-lepton triggers (p_T ≥ 25 GeV)
- m(eµ) > 10 GeV

Significantly increased pile-up compared to 2011, resulting in degraded E_T(miss) resolution ■ use only e+µ final states

 2011 selection includes also ee and μμ final states (with additional criteria to suppress Z/γ* background)

 $Z \rightarrow \mu\mu$ candidate, 25 reconstructed primary vertices

Suppress $Z/\gamma^* \rightarrow \tau \tau$ backgrounds requiring significant missing transverse momentum

E_T(miss, rel) > 25 GeV

 $\Delta\phi\text{:}\,angle$ between $E_T(miss)$ vector and nearest object

computation uses jets and leptons

Jet Multiplicity Dependence

Different signal production mechanisms (gluon fusion,VBF, associated production) lead to different kinematic signatures and jet multiplicities carry out analysis in different jet bins

• jet counting: $p_T > 25$ GeV ($p_T > 30$ GeV for $|\eta| > 2.5$)

Multiplicity Dependent Selection

7

0-jet selection:

• p_T(II) > 30 GeV

I-jet selection:

- b-jet veto (multivariate b-tagging algorithm, 85% ε_b point)
- $\mathbf{p}_{T}^{\text{tot}} < 30 \text{ GeV}$ $p_{T}^{\text{tot}} = |\mathbf{p}_{T}^{\ell 1} + \mathbf{p}_{T}^{\ell 2} + \mathbf{p}_{T}^{j} + \mathbf{p}_{T}^{\text{miss}}|$
- |m(ττ)-mz| > 25 GeV (collinear approx.)

2-jet selection:

- I-jet selection criteria
 - pT(tot) modified to include all jets
- leading jets ("tag jets" for VBF):
 - ▲y(jj) > 3.8
 - m(jj) > 500 GeV
- no other jet with y between tag jets (Central Jet Veto)

Kinematic Selection

Kinematic selection exploits spin correlations in W-boson decays due to Higgs boson's (assumed!) spin-0 nature:

- m(II) < 50 GeV (m(II) < 80 GeV for the 2-jet analysis)
- $\Delta \phi(II) < I.8$

Kinematic Selection

Kinematic selection exploits spin correlations in W-boson decays due to Higgs boson's (assumed!) spin-0 nature:

- m(II) < 50 GeV (m(II) < 80 GeV for the 2-jet analysis)
- $\Delta \phi(II) < I.8$

distributions made after all cuts

Background Estimation

Backgrounds

Major backgrounds:

- 0-jet analysis:WW
- I-jet analysis:WW, top (essentially tt, Wt single-top)
- 2-jet analysis: top

Subleading backgrounds:W+jets,W+ γ ,W+Z/ γ^* ,Z/ γ^*

- but (apart from Z/ γ^*) having similar m_T shape as signal

Need substantial input from data!

- completely:W+jets
- normalisation:WW, top
- cross-check:W+ γ ,W+Z/ γ^* , Z/ γ^*

Evaluate W+jets (and validate W+γ / W+Z/γ*, Z/γ*+jets)

> Top bg (b-tagging)

> > WW bg

kinematics)

Signal extrapolations

W+Jets Background, Validation Region

W+jets background: semileptonic decay or light-flavour jet faking electron

- estimate scaled from sample with one lepton satisfying all ID/isolation criteria and one satisfying only relaxed criteria
- scale factor obtained from multijet sample, uncertainty ~ 40%

Validation carried out in region with same-sign leptons

 not dominated by a single background, but confirms our understanding of "fake" backgrounds: W+γ, W+Z/γ^{*}, W+jets, Z/γ^{*}+jets

after E_T (miss, rel) requirement

Top Background Normalisation

Normalise 1-jet, 2-jet top background from b-tagged control region

• without m_{\parallel} and $\Delta \phi_{\parallel}$ cuts (1-jet)

Top background in 0-jet analysis obtained from preselected sample scaled by probability not to observe any jet

scale factor obtained from a b-tagged control sample; uncertainty ~17%

2-jet plot: after b-tag (no VBF cuts)

WW Background Normalisation

Normalise 0-jet / 1-jet WW background in control sample:

remove Δφ(II) cut, require m(II) > 80 GeV (instead of m(II) < 50 GeV)
 0-jet data/MC normalisation factor: 1.06 ± 0.14 (stat. ⊕ syst.)
 I-jet data/MC normalisation factor: 0.99 ± 0.42 (stat. ⊕ syst.)

Top background is substantial, especially in the 1-jet analysis use normalisation from previous slide

Results & Systematics

Results

Final results will be obtained from binned likelihood fits to m_T distributions

- 5 (3) bins for 0-jet (1-jet) analysis; no binning in 2-jet analysis
- excess of events!

Results in Numbers

Consider $e\mu$ and μe final states separately because different backgrounds are expected

especially W+jets, W+γ, W+γ^{*}

Only statistical uncertainties shown!

Systematic Uncertainties

Significant uncertainties on Higgs signal:

- µ_R, µ_F varied up/down by factor of 2 independently central jet veto
- 0 jet / 1 jet / 2 jets: 17% / 36% / 4% ⊕ 7% at M_H=125 GeV
- PDF uncertainties: use PDF error sets + different PDFs
- modelling uncertainties: use alternative MC generators

Same approach for theoretical uncertainties on dominant backgrounds

- uncertainties can affect control regions differently than signal regions
 extrapolation uncertainties (small due to data-driven normalisation)
- scale variations, PDF uncertainties (independently for qq, qg, gg processes), modelling uncertainties (use alternative MC generators)

k-factor uncertainties for processes not normalised to data:

- W+γ: same scale uncertainty treatment as for signal, 11% (50%) for 0-jet (1-jet) channels
- W+Z/γ*: m(II) dependent, 25% 30%

Experimental systematics: jet energy scale, b-tagging, pile-up, E_T (miss, rel) modelling

evaluate predictions with sources of uncertainty varied

Systematic Uncertainties

Leading relative uncertainties on signal / total background

• after additional 0.75 $M_H < m_T < M_H$ cut	Source (0-jet)	Signal (%)	Bkg. (%)
 represents better the signal sensitivity in a cut-based context m_T shape uncertainties relevant in fit essentially due only to variations in background composition 	Inclusive ggF signal $\mu_{R,F}$ 1-jet incl. ggF signal $\mu_{R,F}$ Parton distribution functions Jet energy scale <i>WW</i> normalisation <i>WW</i> modelling and shape <i>W</i> +jets fake factor QCD scale acceptance	13 10 8 7 - - - 4	- 2 4 7 5 5 2
	Source (1-jet)	Signal (%)	Bkg. (%)
	1-jet incl. ggF signal $\mu_{R,F}$ WW normalisation	28	- 25
Event counts including	2-jet incl. ggF signal $\mu_{R,F}$	16	-
systematic uncertainties	D-tagging efficiency Parton distribution functions	- 7	10
	W+jets fake factor	0	5

 again including the additional m_T cut, and accounting for correlations between signal and control regions

	Signal	WW	$WZ/ZZ/W\gamma$	tĪ	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
0-jet	20 ± 4	101 ± 13	12 ± 3	8±2	$\textbf{3.4} \pm \textbf{1.5}$	1.9 ± 1.3	15 ± 7	142 ± 16	185
1-jet	5±2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2±1	26 ± 6	38
2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

Statistical Analysis

Use "standard" profile likelihood fit

- fits systematics nuisance parameters in addition to signal strength μ
- At $M_H = 125$ GeV, find a signal significance of 3.1σ ($p_0 = 8 \cdot 10^{-4}$)
- most significant at M_H = 120 GeV
 (p₀ = 6 · 10⁻⁴ → 3.2 σ)

At M_H = 126 GeV, fit μ = 1.9 ± 0.7

Combination with 2011 Results

Consistency Checks

Agreement with high-resolution $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow 4I$ analyses and with expectation from an injected $M_H = 125$ GeV signal

2D likelihood scan

Conclusion

Conclusion & Outlook

With 5.8 fb⁻¹ of $\sqrt{s} = 8 \text{ TeV}$ (2012) data and 4.7 fb⁻¹ of $\sqrt{s} = 7 \text{ TeV}$ (2011) data, we find an excess of data consistent with a M_H = 126 GeV signal

- p₀ = 3 · 10⁻³ (2.8 σ)
- expected: $p_0 = 0.01$ (2.3 σ)
- $\mu = 1.3 \pm 0.5$
- consistent with results from high-resolution search channels

There remains a lot to be done! $H \rightarrow WW$ analysis aims:

- establish signal in separate production channels (WH/ZH, VBF in addition to gluon fusion)
- determination of spin / CP properties

$2012 e\mu$ candidate

• $p_T(e) = 33 \text{ GeV}, p_T(\mu) = 29 \text{ GeV}, m_T = 94 \text{ GeV}$

Backup

MC

Signal (5 GeV steps, 110 GeV $< M_H < 200$ GeV):

- ggF, VBF: POWHEG+PYTHIA (CT10) ⇔ MC@NLO+HERWIG (CT10)
- WH, ZH: PYTHIA8 (CTEQ6LI)

Backgrounds:

- WW: MC@NLO+HERWIG (CTI0) ⇔ POWHEG+PYTHIA8 (CTEQ6LI)
- $gg \rightarrow WW: gg2WW + HERWIG (CTI0)$
- (W,) Z/ γ^* : ALPGEN+HERWIG (CTEQ6L1, reweighted to MRSTMCal)
- ZZ: POWHEG (CT10)
- Wγ:ALPGEN+HERWIG (CTEQ6LI)
- W+Z/ γ^{*} MadGraph+PYTHIA (CTEQ6LI)
- single top (s-channel,Wt): MC@NLO+HERWIG (CT10)
- single top (t-channel):AcerMC+PYTHIA8 (CTEQ6LI)
- ttbar: MC@NLO+HERWIG (CTI0)

Blind Analysis

Did not want to get biased by desire to exclude or see an excess, so carried out a blind analysis initially. Excluded events satisfying b-jet veto and subset of 2011 kinematic cuts exploiting spin correlations:

- 82.5 GeV < m_T < 140 GeV
- m_{ll} < 50 GeV
- Δφ_{II} < 1.8

Blinding does not affect control regions

Unblinding done after scrutiny of intermediate results with 4.2 fb⁻¹

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{p}_{\rm T}^{\rm miss}|^2}, \quad E_{\rm T}^{\ell\ell} = \sqrt{|\mathbf{p}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2}$$

Lepton Selection & Trigger

Triggers used: loosest unprescaled single-lepton triggers

- single electron: 24 GeV isolated e OR 60 GeV e w/o isolation requirement
- single muon: 24 GeV isolated μ OR 36 GeV μ w/o isolation requirement

Lepton isolation:

- electrons:
- $p_T(tracks, \Delta R < 0.3)/p_T < 0.12 (0.16)$ for $p_T < 25 \text{ GeV} (p_T > 25 \text{ GeV})$
- pile-up/UE corrected $E_T(CAL, \Delta R < 0.3)/p_T < 0.16$
- muons:
- $p_T(tracks, \Delta R < 0.3)/p_T < min(0.01*p_T 0.105, 0.15)$
- pile-up/UE corrected $E_T(CAL, \Delta R < 0.3)/p_T < min(0.014*p_T-0.15, 0.20)$

Impact parameter cuts

• $|d_0/\sigma(d_0)| < 3; |\Delta z \sin \theta| < 0.4 \text{ mm (e), I mm (}\mu)$

Collinear Approximation

Decompose E_T(miss) vector into components along visible leptons

Statistical Analysis

Binned likelihood function

- signal binned in m_T: 5 bins (0 jet), 3 bins (1 jet), no binning (2 jets)
- WW, top control regions accounted for as additional Poisson terms (not binned in m_T)

Systematic uncertainties accounted for using profiling

- one nuisance parameter θ_i for each (independent) source of uncertainty i
- parametrised dependence of expected event counts on θ_i
- gaussian constraint terms

$$\mathcal{L}(\mu,\vec{\theta}) = \left\{ \prod_{k=e\mu,\mu e} \prod_{j=0}^{2} \prod_{i=1}^{N_{\text{bins}}^{j}} \mathcal{P}(N_{ijk}|\mu s_{ijk} + \sum_{l}^{N_{\text{bg}}} b_{ijkl}) \right\} \times \left\{ \prod_{i=1}^{N_{\theta}} \mathcal{G}(\tilde{\theta}|\theta) \right\}$$

No (significant & important) m_T shape dependent uncertainties on individual backgrounds is shape variations caused by varying relative normalisations