Testing the waters for the DUNE experiment

Frank Filthaut (Radboud University and Nikhef, Nijmegen, NL) for the DUNE Collaboration

- ProtoDUNE aims
- Construction & timeline
- Operational experience
- Space charge effects
- Energy calibration

ProtoDUNE motivation

DUNE Far Detector module size requires "proper" validation

- full-scale validation of single-phase technology made possible by modular construction

Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

SPSC 351, May 2015

ProtoDUNE: programme

Validation of the production technology using "full-scale" prototypes

- two 7×7×6 m³ cryostats (active volume) at CERN
 - at surface bg from cosmic rays
 - this presentation: single phase
 - dual phase → next talk

Demonstrate long-term operational stability

Measurements with beam

- towards demonstrating calibration
- 0.5 7 GeV particle beams (e, π , p, K)
- beam time limited by availability of CERN accelerator complex
 - August November 2018

ProtoDUNE: detector construction

Example: anode plane arrays

- other elements: field cage, cathode plane

960(X)+800(U)+800(V) wires/APA

ProtoDUNE-SP construction

ProtoDUNE-SP construction

ProtoDUNE-SP construction

LAr purity

High purity (especially absence of O2) is essential for long electron

drift times ($t_{max} \approx 2.3 \text{ ms}$)

- 1/τ ~ O₂ contamination, need ≤ ppb — achieved!

Adamowski et al., 2014

miniature TPC,

$$Q_{\rm a}/Q_{\rm c}=e^{-t/ au}$$

(e- liberated from photocathode after Xe flash)

essential means to provide quick feedback upon issues:

- saturation of O₂ filter during Ar filling
- pump stoppages

non-uniformities; saturation effects

 real value of τ likely higher

Measurement programme

Plan: beam momenta from 500 MeV/c to 7 GeV/c; $3 \cdot 10^5 \, \pi^+$, $10^5 \, p$

for each setting

- achieved, with 300 MeV/c (e+ only) beam to spare!

- > 4M triggers in total
- nominal trigger rate 25 Hz, limited by TPC bandwidth (raw data ~ 430 Gb/s) and storage
- composition estimated using beam instrumentation
 - Cherenkov & TOF counters

An average ProtoDUNE beam event

On average, ~ 70 cosmic-ray muons within 3 ms readout window

Signal/Noise ratio

Tiny (unamplified) signals seen by wires

- minimise cable lengths important front-end electronics immersed in LAr
- extensive campaign to avoid ground loops
- Signal measured on cosmic-ray muons: maximum of raw waveform
- Noise obtained from σ of Gaussian fit to each wire's pedestal distribution
- Only tracks ~ perpendicular to wire planes used

Space charge effects

Adverse effect of high cosmic-ray muon flux: low Ar ion drift velocity

(~8 µm/ms) ion cloud

- E field modification
 - affects drift velocity
 apparent
 displacements (up to ~ 30 cm!) and
 changes to length scales
- electron-Ar recombination
- affected by LAr recirculation

Needs measurement in data

Space charge effects

Measure through-going cosmic-ray μ piercing cathode or crossing

anode plane (providing t₀) and exiting one of the other faces (top/bottom/upstream/downstream)

- apparent offsets at faces
 - ex.: offset map at upstream face

- interpolate to inside of TPC volume
 - data/MC correction factor in combination with detailed model from simulation

Response equalisation

Faster (even if more ad-hoc) way to arrive at an energy calibration

(collection plane)

response: ΔQ/Δs

 using through-going μ: piercing cathode (providing t₀) and traversing the full TPC (no Bragg peak from stopping muons)

- within 25° from drift direction or within 20° from the collection plane wire direction
- correct to $\Delta Q/\Delta s$ near anode

~ 10% effect: compatible with apparent length scale changes due to SCE

Energy calibration

Next, carry out calibration using stopping particles: energy loss given by Bethe-Bloch, Landau-Vavilov

- residual range: distance until endpoint
 - stopping muons: identify "clean" endpoint (e.g. no Michel electron)
 - otherwise selection as for response equalisation

$$\frac{dE}{ds} = \frac{\exp\left(\frac{dQ}{ds} \frac{W_{\text{ion}}\beta'}{\rho |\vec{E}|C}\right) - \alpha}{\beta'/\rho |\vec{E}|}$$

C: calibration constant obtained from fit to data

 other parameters from detector settings or measured independently

Energy calibration

Same analysis can be carried out using beam µ, p

- to from beam instrumentation

beam µ: good agreement with results from stopping cosmics

beam p: good agreement between data & MC for calibrated d*E*/d*s* in MIP range

Conclusions

ProtoDUNE: full-scale test of DUNE technolog. Crucial step towards full DUNE, with its own challenges (cosmics!)

- great opportunity to learn about physics & technology relevant for DUNE
- main goals achieved!
- now working towards more detailed understanding of detector and first publication!
 - more to follow: π+-Ar cross section, energy scale of electromagnetic & hadronic showers
- more beam data to be taken after present LHC shutdown!
 - improved front-end electronics & photon detection system

Backup

Beam triggers

Recorded and expected triggers (from simulation)

- also yields expected composition

Momentum (GeV/c)	Total Triggers Recorded (K)	Total Triggers Expected (K)	I E Y Nected Pi	_	Expected Electron Trig. (K)	Expected Kaon Trig. (K)
0.3	269	242	0	0	242	0
0.5	340	299	1.5	1.5	296	0
1	1089	1064	382	420	262	0
2	728	639	333	128	173	5
3	568	519	284	107	113	15
6	702	689	394	70	197	28
7	477	472	299	51	98	24
All momenta	4173	3924	1693.5	777.5	1381	72

Modified-Box formula

$$\left(\frac{dE}{dx}\right)_{calibrated} = \frac{\exp\left(\frac{(\frac{dQ}{dx})_{calibrated}}{C} \frac{\beta'W_{ion}}{\rho\mathscr{E}}\right) - \alpha}{\frac{\beta'}{\rho\mathscr{E}}}$$

where, C=Calibration constant, to be determined, which converts dQ/dx from ADC/cm

to number of electrons/cm

 ϵ =0.5kV/cm is the protoDUNE electric field

 $\underline{W}_{ion} = 23.6 \times 10^{-6} \text{ MeV/electron (work function of argon)}$

 $\rho = 1.38 \text{ g/cm}$ 3 (liquid argon density at a pressure 18.0 psia)

 $\alpha = 0.93$

 $\beta' = 0.212 (kV/cm)(g/cm2)/MeV$

where, the last two parameters were measured by ArgoNeuT experiment at 0.481kV/cm.

