

ATLAS: 's-werelds grootste microscoop

Frank Filthaut Radboud Universiteit Nijmegen / Nikhef

Inhoud:

- Op zoek naar het kleinste
- Deeltjes en interacties
- Uitdagingen voor de deeltjesfysica
- De Large Hadron Collider

Deel I: Op zoek naar het kleinste

Fysica of metafysica?

Demokritos, ca. 460-370 BC: materie is opgebouwd uit atomen die zich "in de leegte" bevinden

- $'\alpha \tau o \mu o \varsigma = ondeelbaar$
- Leibniz, 1646-1716:
 "monaden": ook ondeelbaar, maar zonder interacties
- Dalton, 1766-1844:

materie is opgebouwd uit atomen die in chemische reacties niet veranderen

Indrukwekkende intellectuele prestaties!

- maar zeker niet zonder competitie (andere ideeën)
- onmogelijk om zonder experiment tot eenduidige conclusies to komen

Fysica of metafysica?

Demokritos, ca. 460-370 BC: materie is opgebouwd uit atomen die zich "in de leegte" bevinden

- $'\alpha \tau o \mu o \varsigma = ondeelbaar$
- Leibniz, 1646-1716:
 "monaden": ook ondeelbaar, maar zonder interacties
- Dalton, 1766-1844:

materie is opgebouwd uit atomen die in chemische reacties niet veranderen

Indrukwekkende intellectuele prestaties!

- maar zeker niet zonder competitie (andere ideeën)
- onmogelijk om zonder experiment tot eenduidige conclusies to komen

De eerste microscoop

- Antoni van Leeuwenhoek, 1632-1723:
 - uitvinding van de microscoop
- ontdekking eerste bacterieën ("kleine beestjes"), 0.5 - 500 μm

E. coli (typisch ~ I μ m)

Minimaal zichtbare afmetingen ~ λ (gelimiteerd door diffractie)

- limiet bij gebruik van zichtbaar licht: 0.5 μm
- verbetering tot ~ IÅ mogelijk met Scanning Tunneling Microscopy, Atomic Force Microscopy (bestuderen van oppervlaktelagen)

Verstrooiing van deeltjes

- Idee: "kijk" met deeltjes ipv. "normaal" licht
- Geiger, Marsden, 1909 (werkend voor Rutherford): verstrooiing α-deeltjes (⁴He-kernen) aan een goudfolie

6

Rutherford-verstrooiing (vervolg)

Meting van verdeling van verstrooiingshoeken geeft precieze informatie over ladingsverdeling!

$$\frac{d\sigma}{d\Omega} \propto F(\vec{q}) \frac{1}{\sin^4(\theta/2)}$$
$$F(\vec{q}) = \int d^3 x \rho(\vec{x}) e^{-i\vec{q}\cdot\vec{x}}, \quad \vec{q} = \vec{k}_{uit} - \vec{k}_{in}$$

- Verstrooiing mogelijk met verschillende soorten deeltjes
 - α-deeltjes/elektronen "voelen" de electromagnetische (en voor αdeeltjes de sterke) wisselwerking
 test (voornamelijk) de elektrische ladingsverdeling
 - neutronen (Chadwick, 1932) voelen alleen de sterke wisselwerking
 test de verdeling van kernmaterie

Rutherford-verstrooiing (vervolg)werkzame doorsnede meet
interactiewaarschijnlijkheid,
gecorrigeerd voor deeltjesfluxMeting van verdeling van
verstrooiingshoeken
geeft precieze informatie
over ladingsverdeling! $\vec{d\sigma} \propto F(\vec{q}) \frac{1}{\sin^4(\theta/2)}$ $F(\vec{q}) = \int d^3 x \rho(\vec{x}) e^{-i\vec{q}\cdot\vec{x}}, \quad \vec{q} = \vec{k}_{uit} - \vec{k}_{in}$

- Verstrooiing mogelijk met verschillende soorten deeltjes
- α-deeltjes/elektronen "voelen" de electromagnetische (en voor αdeeltjes de sterke) wisselwerking
 test (voornamelijk) de elektrische ladingsverdeling
- neutronen (Chadwick, 1932) voelen alleen de sterke wisselwerking
 test de verdeling van kernmaterie

- Verstrooiing mogelijk met verschillende soorten deeltjes
- α-deeltjes/elektronen "voelen" de electromagnetische (en voor αdeeltjes de sterke) wisselwerking
 test (voornamelijk) de elektrische ladingsverdeling
- neutronen (Chadwick, 1932) voelen alleen de sterke wisselwerking
 test de verdeling van kernmaterie

Rutherford-verstrooiing (vervolg)

Meting van verdeling van verstrooiingshoeken geeft precieze informatie over ladingsverdeling!

$$\frac{d\sigma}{d\Omega} \propto F(\vec{q}) \frac{1}{\sin^4(\theta/2)}$$

$$F(\vec{q}) = \int d^3 x \rho(\vec{x}) e^{-i\vec{q}\cdot\vec{x}}, \quad \vec{q} = \vec{k}_{uit} - \vec{k}_{in}$$

(in- en uitgaande)

- Verstrooiing mogelijk met verschillende soorten deeltjes
 - α-deeltjes/elektronen "voelen" de electromagnetische (en voor αdeeltjes de sterke) wisselwerking
 test (voornamelijk) de elektrische ladingsverdeling
 - neutronen (Chadwick, 1932) voelen alleen de sterke wisselwerking
 test de verdeling van kernmaterie

Structuur van het proton

- Met hogere bundelenergieën kunnen kleinere afstanden zichtbaar gemaakt worden (de Broglie-golflengte $\lambda = h/p$)
- Hofstadter, 1955: elastische elektron-proton verstrooiing bij hoge energieën (~ 200 MeV)

 $e^- + p \rightarrow e^- + p$

- het proton is geen puntdeeltje maar heeft eindige afmetingen, $r_{\rm P} \approx 0.7$ fm
- ook gedetailleerde studies van zwaardere kernen

Structuur van het proton (2)

Herhaling van Rutherford's α -deeltjes experiment: diepinelastische electron-proton verstrooiing $e^- + p \rightarrow e^- + X$

Friedman, Kendall, Taylor ('68): het proton (en het neutron) bevatten deeltjes zonder verdere substructuur! • quarks

Deel II: Deeltjes en interacties

Quantum-Electrodynamica

- Voortgekomen uit combineren Speciale Relativiteitstheorie en Quantummechanica interveldentheorie
- Dirac (1928): spin wordt integraal onderdeel van de bewegingsvergelijking (Dirac-vgl)

$$(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$$

- bonus: antideeltjes
- Anderson (1932): ontdekking e⁺ mbv kosmische straling

Quantum-Electrodynamica

- Voortgekomen uit combineren Speciale Relativiteitstheorie en Quantummechanica interveldentheorie
- Dirac (1928): spin wordt integraal onderdeel van de bewegingsvergelijking (Dirac-vgl)

$$(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$$

bonus: antideeltjes

Anderson (1932): ontdekking e⁺ mbv kosmische straling

kromming in homogeen B-veld: impulsmeting

energieverlies in lood-plaat

F16. 1. A 63 million volt positron $(H_{F}=2.1\times10^{\circ} \text{ gauss-cm})$ passing through a 6 mm lead plate and emerging as a 23 million volt positron $(H_{F}=7.5\times10^{\circ} \text{ gauss-cm})$. The length of this latter path is at least ten times greater than the possible length of a proton path of this curvature.

Quantum-Electrodynamica

• EM interactie dmv uitwisselen van fotonen

Grafische representatie: Feynman-diagrammen (intuïtieve manier van het berekenen van QM overgangsamplitudes)

 Bekend QM systeem: interactie van magnetisch dipoolmoment met homogeen magneetveld

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = \gamma \vec{S} \equiv g\left(\frac{q}{2m}\right) \vec{S}$$

- Zeemansplitsing van (atomaire) energieniveaus
- Spin-precessie round B-field, Larmor-frequentie $\omega = \Upsilon B$
- QED geeft een voorspelling voor g (i.t.t. "gewone" QM)!

 Storingstheorie (quantum-correcties): ontwikkeling in machten (t/m 5^e) van de fijn-structuur constante

$$\alpha \equiv \frac{e^2}{4\pi}$$

 Bekend QM systeem: interactie van magnetisch dipoolmoment met homogeen magneetveld

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = \gamma \vec{S} \equiv g\left(\frac{q}{2m}\right) \vec{S}$$

- Zeemansplitsing van (atomaire) energieniveaus
- Spin-precessie round B-field, Larmor-frequentie $\omega = \Upsilon B$
- QED geeft een voorspelling voor g (i.t.t. "gewone" QM)!
- In laagste orde, uit Dirac-vergelijking:
 g=2
- Storingstheorie (quantum-correcties): ontwikkeling in machten (t/m 5^e) van de fijn-structuur constante

$$\alpha \equiv \frac{e^2}{4\pi}$$

gedeelte van 5^e-orde bijdragen

 Bekend QM systeem: interactie van magnetisch dipoolmoment met homogeen magneetveld

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = \gamma \vec{S} \equiv g\left(rac{q}{2m}
ight) \vec{S}$$

Zeemansplitsing van (atomaire) energieniveaus

- Spin-precessie round B-field, Larmor-frequentie $\omega = \Upsilon B$
- QED geeft een voorspelling voor g (i.t.t. "gewone" QM)!

G. Gabrielse et al., 2008

Observeer een enkel electron gedurende meerdere maanden!

 Bekend QM systeem: interactie van magnetisch dipoolmoment met homogeen magneetveld

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = \gamma \vec{S} \equiv g\left(\frac{q}{2m}\right) \vec{S}$$

- Zeemansplitsing van (atomaire) energieniveaus
- Spin-precessie round B-field, Larmor-frequentie $\omega = \Upsilon B$
- QED geeft een voorspelling voor g (i.t.t. "gewone" QM)!

Vergelijking theorie en experiment:

 Bekend QM systeem: interactie van magnetisch dipoolmoment met homogeen magneetveld

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = \gamma \vec{S} \equiv g\left(\frac{q}{2m}\right) \vec{S}$$

Zeemansplitsing van (atomaire) energieniveaus

- Spin-precessie round B-field, Larmor-frequentie $\omega = \Upsilon B$
- QED geeft een voorspelling voor g (i.t.t. "gewone" QM)!

Vergelijking theorie en experiment: $g/2 = \begin{cases} 1.00115965218073(28) & (experiment) \\ 1.00115965218085(76) & (theorie) \end{cases}$ QED werkt!

Wat houdt atoomkernen bijeen?

- Sterke wisselwerking:
- sterk genoeg om Coulomb-afstoting te overwinnen
- maar alleen merkbaar op kleine afstand?

Wat houdt atoomkernen bijeen?

- Sterke wisselwerking:
- sterk genoeg om Coulomb-afstoting te overwinnen
- maar alleen merkbaar op kleine afstand?

Hadronen

groepentheorie: SU(3) symmetrie (goede benadering bij lage energie) mesonen: meest geproduceerd in botsingen bij hoge energie levensduur: bijna alle deeltjes leven kort (10⁻⁷s) tot zeer kort (10⁻²²s)

Hadronen

Meer dan alleen protonen en neutronen!

groepentheorie: SU(3) symmetrie (goede benadering bij lage energie) mesonen: meest geproduceerd in botsingen bij hoge energie levensduur: bijna alle deeltjes leven kort (10⁻⁷s) tot zeer kort (10⁻²²s)

Hadronen

groepentheorie: SU(3) symmetrie (goede benadering bij lage energie) mesonen: meest geproduceerd in botsingen bij hoge energie levensduur: bijna alle deeltjes leven kort (10⁻⁷s) tot zeer kort (10⁻²²s)

Intermezzo: technieken

Hoe deze kortlevende deeltjes te produceren / waar te nemen?

Intermezzo: technieken

Hoe deze kortlevende deeltjes te produceren / waar te nemen?

- in botsingen: converteer kinetische energie in massa
- in vervalsprocessen: reconstrueer massa van het vervallen deeltje

Intermezzo: technieken (2)

Sterke wisselwerking (2)

- Opbouw van hadronen uit quarks (en/of antiquarks): te begrijpen uit een nieuwe vrijheidsgraad (en interactie), kleur
- interactie tussen quarks dmv uitwisselen gluonen q –

• quark verandert van kleur in dit proces!

$$\alpha_s = \frac{g_s^2}{4\pi}$$

Effectieve koppelingsconstante: neemt correcties tgv storingstheorie mee

q_g

Sterke wisselwerking (2)

Sterke wisselwerking (2)

QCD bij hoge energie

Quarks en gluons manifesteren zichzelf as "vrije" deeltjes → jets

De zwakke wisselwerking

- Elke dag "zichtbaar"! Verantwoordelijk voor alle transmutaties
- Nieuwe deeltjes zichtbaar in kosmische straling fusie

De zwakke wisselwerking

- Elke dag "zichtbaar"! Verantwoordelijk voor alle transmutaties
- Nieuwe deeltjes zichtbaar in kosmische straling

De zwakke wisselwerking

- Elke dag "zichtbaar"! Verantwoordelijk voor alle transmutaties
- Nieuwe deeltjes zichtbaar in kosmische straling

emulsie (fotografische plaat): energieverlies van geladen deeltjes stop, verval

De zwakke wisselwerking is écht zwak!

- V-flux van de zon op aarde: ~ $6 \cdot 10^{14}$ m⁻² s⁻¹
- in een mensenleven zullen ten hoogste enkele v met je lichaam interageren!

Waarom zo zwak?

Botsingen tussen protonen worden gedomineerd door de sterke wisselwerking zoek naar leptonen (alleen EM en zwakke wisselwerking)

Waarom zo zwak?

• Uitwisselen van zware deeltjes!

Botsingen tussen protonen worden gedomineerd door de sterke wisselwerking "> zoek naar leptonen (alleen EM en zwakke wisselwerking)

Waarom zo zwak?

• Uitwisselen van zware deeltjes!

- W- en Z-bosonen zijn zwaar!
 - M_W = 80.398(25) GeV (~ Sr, Kr)
 - M_Z = 92.188(2) GeV (~ Ru)
- Ontdekt in p-p botsingen, $E_{CM} = 630 \text{ GeV}$

Botsingen tussen protonen worden gedomineerd door de sterke wisselwerking zoek naar leptonen (alleen EM en zwakke wisselwerking)

Deeltjes in het Standaardmodel

- Drie fermion-"generaties"
- doublet-structuur

- oplopende massa's
 - alleen l^e generatie algemeen aanwezig in materie
 - 2^e en 3^e generatie: geproduceerd in botsingen
- W-boson koppelt geladen
 leptonen aan V (en up- aan down-type quarks)

Enorme verschillen in massa! • $m_v < I eV$ • $m_t \approx I70 GeV$

Fermilab 95-759

Deel III: Uitdagingen voor de deeltjesfysica

Een gewichtig probleem

- QED, QCD: fotonen & gluonen zijn strikt massaloos
- Zwakke wisselwerking:
- massieve W- en Z-bosonen
- fermion-massa's: $m_{\ell} \neq m_{\nu_{\ell}}$ (idem voor quarks)

Een gewichtig probleem

- QED, QCD: fotonen & gluonen zijn strikt massaloos
- Zwakke wisselwerking:
- massieve W- en Z-bosonen
- fermion-massa's: $m_{\ell} \neq m_{\nu_{\ell}}$ (idem voor quarks)

En meer!

 het W-boson koppelt alleen aan linkshandige fermionen (rechtshandige anti-fermionen)

- links- en rechtshandige fermionen zijn eigenlijk verschillende deeltjes
- dit kan alleen als ze strikt massaloos zijn

Een gewichtig probleem

- QED, QCD: fotonen & gluonen zijn strikt massaloos
- Zwakke wisselwerking:
- massieve W- en Z-bosonen
- fermion-massa's: $m_{\ell} \neq m_{\nu_{\ell}}$ (idem voor quarks)

En meer!

 het W-boson koppelt alleen aan linkshandige fermionen (rechtshandige anti-fermionen)

- links- en rechtshandige fermionen zijn eigenlijk verschillende deeltjes
- dit kan alleen als ze strikt massaloos zijn

Oplossing: spontane symmetriebreking + Higgsmechanisme massa's voor alle fermionen + W- en Z-bosonen

Het Higgsmechanisme

Deeltjes krijgen "effectief" massa door interactie met het Higgsveld

Het Higgsmechanisme

Deeltjes krijgen "effectief" massa door interactie met het Higgsveld

Magnetische Analogieën

Spontane symmetriebreking

Magnetische Analogieën

Spontane symmetriebreking

Massieve fotonen

Meißner-effect: supergeleider stoot magnetische veldlijnen af

- massieve fotonen
- maar dit heeft een medium nodig (e⁻-paar condensaat)!
 In de deeltjesfysica is het "medium" het vacuum!

Kosmologie: het heelal

• Op grote schaal is het heelal isotroop en homogeen!

Kosmologie: het heelal

• Op grote schaal is het heelal isotroop en homogeen!

Kosmologie: het heelal

WMAP resultaten (7 jaar observaties)

- donkere materie: zware deeltjes, niet voorspeld door het Standaardmodel
- zonder EM, zwakke of sterke wisselwerking

- donkere materie: zware deeltjes, niet voorspeld door het Standaardmodel
- zonder EM, zwakke of sterke wisselwerking

- donkere materie: zware deeltjes, niet voorspeld door het Standaardmodel
 - zonder EM, zwakke of sterke wisselwerking

- donkere materie: zware deeltjes, niet voorspeld door het Standaardmodel
 - zonder EM, zwakke of sterke wisselwerking

- Een verdubbeling van het aantal elementaire deeltjes!
- voor ieder boson (fermion) in het Standaardmodel bestaat een fermion (boson) met dezelfde massa

 donkere materie: stabiel neutraal lichtste supersymmetrische deeltje

Supersymmetrie?

- Een verdubbeling van het aantal elementaire deeltjes!
- voor ieder boson (fermion) in het Standaardmodel bestaat een fermion (boson) met dezelfde massa

Gebroken symmetrie: vele realisaties

 donkere materie: stabiel neutraal lichtste supersymmetrische deeltje

Supersymmetrie?

- Een verdubbeling van het aantal elementaire deeltjes!
- voor ieder boson (fermion) in het Standaardmodel bestaat een fermion (boson) met dezelfde massa

 donkere materie: stabiel neutraal lichtste supersymmetrische deeltje

Gebroken symmetrie: vele realisaties

Extra dimensies?

Extra dimensies?

- Supersnaren, D-branes, M-theorie... typisch: 11 dimensies!
- I0⁵⁰⁰ manieren om 7 extra dimensies op te rollen
 - met verschillende fysica tot gevolg

Andere vragen

- Vindt er unificatie van wisselwerkingen plaats?
- cf. electriciteit/magnetisme, EM/zwakke wisselwerking
- Waar is de anti-materie in het heelal gebleven?
- bekende mechanismes niet adequaat
- Zijn neutrino's hun eigen antideeltjes?
- Waar komen hoog-energetische kosmische deeltjes vandaan?

Deel IV: De Large Hadron Collider

De LHC: principe

De LHC: principe

- De hoogste energie:
 protonen versneld
 tot Ebundel = 7 TeV
 (nu: 3.5 TeV...)
- v = 0.99999991 c
- De hoogste
 luminositeit
 (~ intensiteit)
- hoeveelheid data

Uitdaging I: dipoolmagneten

Uitdaging I: dipoolmagneten

Uitdaging I: dipoolmagneten

ieNieuweterchnologie! Er gaat wel eens iets fout...

- Uitdaging I: dipoolmagneten
- Uitdaging 2: bundelintensiteit
- energie LHC-bundels ~TGV
- verlies van 10⁻⁶ veroorzaakt quench, 10⁻³ vernielt magneten

Figure 4. Damage observed on the inside of the vacuum chamber, on the beam impact side. A groove approximately 110 cm long due to removed material was clearly visible, starting at about 30 cm from the entrance.

- Uitdaging I: dipoolmagneten
- Uitdaging 2: bundelintensiteit
 - energie LHC-bundels ~TGV
 - verlies van 10⁻⁶ veroorzaakt quench, 10⁻³ vernielt magneten

TD68.BTVDD.689339.B1 2010/03/24 03:23:34.600000

0

x [mm]

100

200

-200

-200

-100
De LHC: praktijk

- Uitdaging I: dipoolmagneten
- Uitdaging 2: bundelintensiteit
- energie LHC-bundels ~TGV
- verlies van 10⁻⁶ veroorzaakt quench, 10⁻³ vernielt magneten

Het Atlas-experiment

Het Atlas-experiment

Deeltjesdetectie

Deeltjesdetectie

- Behalve (in principe) afzonderlijk detecteerbare deeltjes:
 - neutrino's (schijnbare schending van impulsbehoud)
- hadron-jets (energieën gemeten in calorimeter /geladen deeltjes)
- T-leptonen (gecollimeerde "jets")

Calorimeters

Calorimeters

Muon-systeem

Muon-systeem

Muon-systeem

Experimentele condities

- Ontworpen voor luminositeit $10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $E_{CM} = 14 \text{ TeV}$
- 4 · 10⁷ bundelkruisingen / s
- Bij 10^{32} cm⁻²s⁻¹, E_{CM} = 7 TeV:
 - ~ 10⁷ interacties / s
 - ~ I W-boson / s
- ~ 10⁻² top-quarks / s
- ~ 10⁻⁴ Higgs-bosonen / s

Experimentele condities

- Ontworpen voor luminositeit $10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $E_{CM} = 14 \text{ TeV}$
 - 4 · 10⁷ bundelkruisingen / s
- Bij 10^{32} cm⁻²s⁻¹, E_{CM} = 7 TeV:
 - ~ 10⁷ interacties / s
 - ~ I W-boson / s
 - ~ 10⁻² top-quarks / s
 - ~ 10⁻⁴ Higgs-bosonen / s

Gemiddelde interactie (na datareductie): ~ I MB

- bewaar ~ 200 Hz
- vele interacties moeten
 "online" weggegooid worden

Trigger

Trigger-strategie

- Detectorgegevens zijn te complex om in een keer te beslissen welke interacties te bewaren
- Strategie: meerdere niveaus
 - gooi eerst duidelijke
 "rotzooi" weg
 - meer tijd om naar de moeilijke gevallen te kijken ²
- 40 MHz \rightarrow 100 kHz \rightarrow 1 kHz \rightarrow 200 Hz
- Digitalisatie en data-reductie na l^e-niveau trigger

Een beslissing iedere 25 ns

I e niveau:

patronen in calorimeters: e[±], γ, jets

Een beslissing iedere 25 ns

I e niveau:

- patronen in calorimeters: e[±], γ, jets
- grofmazige patronen in het muon-systeem

On-line data-reconstructie

- 2^e- en 3^e-niveau: "standaard" PCs!
- L2: 500
- L3: 1800

Verzamel informatie uit verschillende subsystemen is switches

Kosmische en aardse botsingen

• Na september 2008 heeft ATLAS niet stil gezeten...

Kosmische en aardse botsingen

Na september 2008 heeft ATLAS niet stil gezeten...

Kosmische en aardse botsingen

• Na september 2008 heeft ATLAS niet stil gezeten...

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

november 2009: E_{CM} = 900 GeV, gedetailleerde studies sporendetectoren

maart 2010: $E_{CM} = 7 \text{ TeV}$

- jets met hoge pT
- W-bosonen
- gedetailleerde calibraties
 We zijn écht begonnen!

maart 2010: $E_{CM} = 7 \text{ TeV}$

- jets met hoge pT
- W-bosonen
- gedetailleerde calibraties
 We zijn écht begonnen!

maart 2010: $E_{CM} = 7 \text{ TeV}$

- jets met hoge pT
- W-bosonen
- gedetailleerde calibraties
 We zijn écht begonnen!

maart 2010: $E_{CM} = 7 \text{ TeV}$

- jets met hoge pT
- W-bosonen
- gedetailleerde calibraties
 We zijn écht begonnen!

Planning:

- 2010 2011: E_{CM} = 7 TeV
- 2012: LHC-"upgrade"
- 2013 20xx: E_{CM} = 14 TeV

De toekomst

The ghost you're trying to reach is currently unavailable. Please leave a message after the beep.

De toekomst

- De eerste fysica-publicatie is de deur uit
- Op naar vele andere!

LHC sensitivity ($H \rightarrow WW$ mode