Drift chambers

(First studies: T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969
First operation drift chamber: A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373)

Measure arrival time of electrons at sense wire relative to a time t_0.

$x = \int v_D(t) dt$

What happens during the drift towards the anode wire?

- Diffusion?
- Drift velocity?
Drift and diffusion in gases

No external fields:
Electrons and ions will lose their energy due to collisions with the gas atoms → thermalization

\[\varepsilon = \frac{3}{2} kT \approx 40 \text{ meV} \]

Undergoing multiple collisions, an originally localized ensemble of charges will diffuse

\[
\frac{dN}{N} = \frac{1}{\sqrt{4\pi D t}} e^{-\left(x^2/4D t\right)} dx
\]

\[\sigma_x(t) = \sqrt{2Dt} \quad \text{or} \quad D = \frac{\sigma_x^2(t)}{2t} \]

External electric field:
“stop and go” traffic due to scattering from gas atoms → drift

\[\bar{v}_D = \mu \bar{E} \quad \mu = \frac{e \tau}{m} \quad \text{(mobility)} \]
in the equilibrium ...

\[\frac{x}{v_D \tau} \lambda_\varepsilon \varepsilon = eEx \]

\(\lambda_\varepsilon \): fractional energy loss / collision

\(\tau = \frac{1}{N \sigma v} \): instantaneous velocity

\[v_D^2 = \frac{eE}{mN\sigma} \sqrt{\frac{\lambda}{2}} \]

\(\sigma = \sigma(\varepsilon) \)!

\(\lambda = \lambda(\varepsilon) \)!

Typical electron drift velocity: 5 cm/μs

Ion drift velocities: ca. 1000 times smaller

In the presence of electric and magnetic fields, drift and diffusion are driven by $\vec{E} \times \vec{B}$ effects.

Look at 2 special cases:

Special case: $\vec{E} \perp \vec{B}$

\[
\tan \alpha_L = \omega \tau
\]

α_L: Lorentz angle

$\omega = \frac{e \vec{B}}{m}$

cyclotron frequency

Special case: $\vec{E} \parallel \vec{B}$

The longitudinal diffusion (along B-field) is unchanged. In the transverse projection the electrons are forced on circle segments with the radius v_T/ω. The transverse diffusion coefficient appears reduced

\[
D_T(B) = \frac{D_0}{1 + \omega^2 \tau^2}
\]

Very useful... see later!
Some planar drift chamber designs

Optimize geometry \rightarrow constant E-field
Choose drift gases with little dependence $v_D(E)$
\rightarrow linear space - time relation $r(t)$

\begin{itemize}
 \item The spatial resolution is not limited by the cell size
 \item less wires, less electronics,
 less support structure than in MWPC.
\end{itemize}

Drift chambers

Resolution determined by
- diffusion,
- path fluctuations,
- electronics
- primary ionization statistics

Various geometries of cylindrical drift chambers

(N. Filatova et al., NIM 143 (1977) 17)
Drift chambers

Straw tubes: Thin cylindrical cathode, 1 anode wire

Example: DELPHI Inner detector
5 layers with 192 tubes each
tube Ø 0.9 cm, 2 m long,
wall thickness 30 μm (Al coated polyester)
wire Ø 40 μm
Intrinsic resolution ca. 50 μm

Jet chambers: Optimized for maximum number of measurements in radial direction

Example: OPAL Jet chamber
Ø=3.7 m, L=4 m, 24 sectors à
159 sense wires (±100 μm staggered). 3 cm < \(l_{\text{drift}} \) < 25 cm

Resolve left/right ambiguities
Drift Chambers

Time Projection Chamber \rightarrow full 3-D track reconstruction

- x-y from wires and segmented cathode of MWPC
- z from drift time
- in addition dE/dx information

PEP-4 TPC

Diffusion significantly reduced by B-field.

Requires precise knowledge of v_D \rightarrow
LASER calibration + p,T corrections

Drift over long distances \rightarrow very good gas quality required

Space charge problem from positive ions, drifting back to midwall \rightarrow gating

ALEPH TPC

(Contributed by W. Atwood et. al., NIM A 306 (1991) 446)

\[\sigma_{R\phi} = 173 \ \mu m \]
\[\sigma_z = 740 \ \mu m \]
(isolated leptons)

\[\Delta V_g = 150 \ V \]
Faster and more precision? \(\rightarrow\) smaller structures

\[\text{Microstrip gas chambers} \quad (A. Oed, NIM A 263 (1988) 352)\]

Geometry and typical dimensions (former CMS standard)

Gold strips + Cr underlayer

Field geometry

Gas: Ar-DME, Ne-DME (1:2), Lorentz angle 14° at 4T

Gain \(\leq 10^4\)

Passivation: non-conductive protection of cathode edges

Resolution: \(\approx 30\, \ldots 40 \, \mu m\)

Aging: Seems to be under control.

10 years LHC operation \(\approx 100 \, \text{mC/cm}\)
Micro gap chambers

2-dimensional readout with MGC (Bellazini)

F. Angelini, NIM A 335 (1993) 69

INFN Pisa
GEM: The Gas Electron Multiplier

(R. Bouclier et al., NIM A 396 (1997) 50)

Micro photo of a GEM foil
Micro gaseous detectors

- Single GEM + readout pads
 - Single GEM 1
 - Single GEM 2

- Double GEM + readout pads
 - Double GEM 1
 - Double GEM 2

- GEM 1
- GEM 2

- DRIFT
- INDUCTION
- TRANSFER

- Same gain at lower voltage
- Less discharges

Effective Gain vs. ΔV_{geom} (V)

- GEM 140/80 Argon-\(\text{CO}_2\) 70-30
 - $E_r = 1.6$ kV cm\(^{-1}\)
 - $E_i \sim 5$ kV cm\(^{-1}\)
 - Same gain at lower voltage
 - Less discharges
Micro gaseous detectors (backup)

- **Micro Gap Wire Chamber**

 (E. Christophel et al., NIM A 398 (1997) 195)

 - Gold cathode on ceramic substrate
 - 5 µm wire on 40 µm wide polyimide strips
 - Gain > 10^5 (prototype 2.6 x 2.6 cm²)

- **MICROMEGAS**

 (G. Charpak et al., CERN-LHC/97-08)

 - Gas: Ar-DME (≈80:20)
 - High rate capability (10^9 / (mm².s), prototype in test beam)
Solid state detectors have a long tradition for energy measurements (Si, Ge, Ge(Li)).

Here we are interested in their use as precision trackers!

Some characteristic numbers for silicon

- Band gap: $E_g = 1.12$ V.
- $E(\text{e}^-\text{hole pair}) = 3.6$ eV, (≈ 30 eV for gas detectors).
- High specific density (2.33 g/cm3) $\rightarrow \Delta E/\text{track length}$ for M.I.P.’s: 390 eV/μm ≈ 108 e-h/μm (average)
- High mobility: $\mu_e = 1450$ cm2/Vs, $\mu_h = 450$ cm2/Vs
- Detector production by microelectronic techniques \rightarrow small dimensions \rightarrow fast charge collection (<10 ns).
- Rigidity of silicon allows thin self supporting structures.
 - Typical thickness 300 μm $\rightarrow \approx 3.2 \cdot 10^4$ e-h (average)
- But: No charge multiplication mechanism!
How to obtain a signal?

In a pure intrinsic (undoped) material the electron density n and hole density p are equal. $n = p = n_i$

For Silicon: $n_i \approx 1.45 \cdot 10^{10}$ cm$^{-3}$

In this volume we have $4.5 \cdot 10^8$ free charge carriers, but only $3.2 \cdot 10^4$ e-h pairs produced by a M.I.P.

→ Reduce number of free charge carriers, i.e. deplete the detector

Most detectors make use of reverse biased p-n junctions
Silicon detectors

Doping

n-type: Add elements from Vth group, donors, e.g. As. Electrons are the majority carriers.

p-type: Add elements from IIIrd group, acceptors, e.g. B. Holes are the majority carriers.

<table>
<thead>
<tr>
<th>doping concentration</th>
<th>detector grade</th>
<th>electronics grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12} cm^{-3} (n) - 10^{15} cm^{-3} (p^+)</td>
<td>10^{17(18)} cm^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

| resistivity | ≈ 5 kΩ·cm | ≈ 1 Ω·cm |

pn junction

There must be a single Fermi level!
Deformation of band structure → potential difference.
Silicon detectors

- Application of a reverse bias voltage (about 100V) → the thin depletion zone gets extended over the full junction → fully depleted detector.
- Energy deposition in the depleted zone, due to traversing charged particles or photons (X-rays), creates free e⁻-hole pairs.
- Under the influence of the E-field, the electrons drift towards the n-side, the holes towards the p-side → detectable current.

(A. Peisert, Instrumentation In High Energy Physics, World Scientific)
Spatial information by segmenting the p doped layer → *single sided microstrip detector*.

Schematically:

- Silicon detectors
- Spatial information by segmenting the p doped layer
- Single sided microstrip detector
- Readout capacitances: ca. 50-150 μm
- SiO₂ passivation
- Schematic diagram showing silicon layers, SiO₂, Al, and electrical connections
- n⁺ silicon defines end of depletion zone + good ohmic contact
- V > 0
- ALICE: Single sided microstrip prototype

(A. Peisert, Instrumentation in High Energy Physics, World Scientific)
Segmenting also the n doped layer → **Double sided microstrip detector**.

But:

Positive charges in SiO₂ attract e⁻ in n⁻ layer. Short circuits between n⁺ strips.

Two solutions:

- Add p⁺ doped blocking strips
- Add Aluminum layer on top of SiO₂
 Negative biased MOS (metal oxide semiconductor) structure repelling e⁻
Silicon pixel detectors

- Segment silicon to diode matrix
- also readout electronic with same geometry
- connection by bump bonding techniques

Flip-chip technique

- Requires sophisticated readout architecture
- First experiment WA94 (1991), WA97
- OMEGA 3 / LHC1 chip (2048 pixels, 50x500 \(\mu \text{m}^2 \)) (CERN ECP/96-03)
- Pixel detectors will be used also in LHC experiments (ATLAS, ALICE, CMS)
The DELPHI micro vertex detector (since 1996)

- Inner Layer
 - $R=92$ mm
 - $\theta>21^\circ$
 - $50 \mu m \, R_\phi$
 - $50-100 \mu m \, z$

- Outer Layer
 - $R=106$ mm
 - $\theta>23^\circ$
 - $50 \mu m \, R_\phi$
 - $44-176 \mu m \, z$

- Closer Layer
 - $R=66$ mm
 - $\theta>24^\circ$
 - $50 \mu m \, R_\phi$
 - $50-150 \mu m \, z$

2 Ministrip Layers
- $10^\circ<\theta<18^\circ$

Pixel I
- $12^\circ<\theta<21^\circ$
- $50 \mu m \, R_\phi$
- $330 \times 330 \mu m^2$

Pixel II
- $1033 \, mm, \, 10^\circ<\theta<170^\circ$
- $50 \mu m \, R_\phi$
- $10^\circ<\theta<21^\circ$

- Total dissipated power 400 W
 → water cooling system

- Hit resolution in barrel part $\approx 10 \mu m$
- Impact parameter resolution (r_ϕ)

$$28 \mu m + 71 \left(\frac{p \sin \frac{3}{7} \theta}{3} \right)$$

- Readout channels
 - ca. 174 k strips, 1.2 M pixels
 - Total readout time: 1.6 ms
◆ Silicon drift chamber

(First proposed by E. Gatti and P. Rehak, NIM 255 (1984) 608)

Silicon detectors (backup)

principle:

Define graded potentials on p⁺ implants.
Measure arrival time at n⁺ strip

Segmentation of n⁺ strip into pads → 2-D readout

CERES (NA45):
doublet of 3” radial Si drift chambers

Intrinsic resolution:
σ_R ≈ 20 μm, σ_φ ≈ 2 mrad

The whole charge is collected at one small collecting electrode. Small capacity (100 fF) → low noise.
Monolithic integration of detector and electronics

Motivation:
- reduce strip or pixel dimensions
- avoid connection problems (bonding)
- improve performance (capacity, noise)
- reduce number of components

But silicon quality is very different for detectors and electronics!

2 possibilities:
1) build special electronics components on detector wafers

2) grow detector grade silicon on electronics wafers

MIMOSA concept

J.D. Berst et al.
LEPSI -99-15

Y. Gormuskin et al.,
VCI 2001
submitted to NIM A
Radiation damage in silicon sensors

A major issue for LHC detectors!

Some definitions
- fluence: $\Phi = N/A$ [cm$^{-2}$]
- dose: $D = E/m$ [Gy = J/kg]

However: Specification of absorbed dose / fluence is not sufficient. Damage depends both on particle type (e, π, n, γ..) and energy!
Many effects and parameters involved (not all well understood)!

Damage caused by
Non Ionising Energy Loss

Bulk effects: Lattice damage, vacancies and interstitials.

Surface effects: Oxide trap charges, interface traps.
NIEL hypothesis (not fully valid!):

damage \propto \text{energy deposition in displacing collisions}

\[\Phi_{eq}^{n,1\text{MeV}} = \int \frac{D(E) dE}{D(E_{n=1\text{MeV}})} \]

Main radiation induced macroscopic changes:

1. Increase of sensor leakage current
2. Change of depletion voltage. Very problematic.

How to cope with the radiation damage?

Possible strategies:

- Geometrical: build sensors such that they stand high depletion voltage \(500\text{V}\)
- Environmental: keep sensors at low temperature \((\approx -10^\circ\text{C})\). → Slower reverse annealing. Lower leakage current.
More advanced methods

- **Defect engineering.**
 Introduce specific impurities in silicon, to influence defect formation. Example Oxygen.
 Diffusion Float Zone Oxyenated (DOFZ) silicon used in ATLAS pixel detector. Gain a factor 3.

- **Cool detectors to cryogenic temperatures**
 (optimum around 130 k)
 “zero” leakage current, good charge collection (70%) for heavily irradiated detectors \((1 \cdot 10^{15} \text{ n/cm}^2)\). “Lazarus effect”

- **New materials**
 Diamond. Grown by Chemical Vapor Deposition. Very large bandgap \((\approx 6 \text{ eV})\). No doping required and depletion required! Material is still rather expensive. Still more R&D required.

- **New detector concepts**
 “3D detectors” → “horizontal” biasing faster charge collection but difficult fabrication process