
Chapter 2

QED: Quantum Electrodynamics

2.1 Negative-Energy States: Antiparticles

2.1.1 Setting the Stage: Non-Relativistic Quantum Mechanics
In non-relativistic Quantum Mechanics, it was seen that (in the “standard” position representa-
tion) essentially everything can be derived by the substitution

E ! i
∂
∂ t

(2.1)

~p ! �i~— (2.2)

(remember that we have set h̄ = 1). This substitution directly converts the classical Hamiltonian

H =
~p2

2m
+V (~x)

into the Schrödinger equation

i
∂
∂ t

y(~x) =

 
�

~—2

2m
+V (x)

!
y(~x)

acting on the wave function y(~x).
Once we have found a wave function y(~x) satisfying the Schrödinger equation, we can also

take the complex conjugate expression:

�i
∂
∂ t

y⇤(~x) =

 
�

~—2

2m
+V (x)

!
y⇤(~x)

We then multiply the original Schrödinger equation by y⇤(~x), and its conjugate by y(~x). Sub-
tracting the two yields

i
✓

y⇤(~x)
∂
∂ t

y(~x)+y(~x)
∂
∂ t

y⇤
◆

= � 1
2m

⇣
y⇤(~x)~—2y(~x)�y(~x)~—2y⇤(~x)

⌘
.
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It is easily seen that this can be written alternatively as

i
∂
∂ t

|y(~x)|2 = � 1
2m

~— ·
⇣

y⇤(~x)~—y(~x)�y(~x)~—y⇤(~x)
⌘

.

Thus, this leads us to the continuity equation

∂
∂ t

r(~x)+~— ·~j(~x) = 0,

with

r(~x) = |y(~x)|2 and

~j(~x) =
�i
2m

⇣
y⇤(~x)~—y(~x)�y(~x)~—y⇤(~x)

⌘

The quantity r(~x) occurring in this equation is positive definite, making the interpretation of
|y(~x)|2 as the probability density of finding a particle at the position~x a proper one.

2.1.2 Translation to the Relativistic Case
The approach in the case of relativistic Quantum Mechanics is exactly the same; however, this
time it must be applied to the “Hamiltonian” of special relativity. Restricting ourselves to free
particles, V (x) = 0, the basic classical equation is then

pµ pµ = m2 or E2 = ~p2 +m2. (2.3)

When we again make the substitutions of Eqn. 2.2, and make the resulting equation act on a wave
function f(x) (this notation combines the spatial and temporal dependence), the result is

✓
∂ 2

∂ t2 �~—2 +m2
◆

f(x) = 0,

or, in explicitly covariant form:

(∂µ∂ µ +m2)f(x) ⌘ ( +m2)f(x) = 0. (2.4)

This is the Klein-Gordon equation.
Unsurprisingly, for our case of free particles, this equation is easily solved to yield plane

waves just like in the non-relativistic case:

f(x) = Ne�ip · x = Ne�i(Et �~p ·~x), (2.5)

with N an a priori arbitrary normalization constant, and the four-momentum components E and
~p satisfying our original classical Eqn. 2.3.

But here we are in trouble! For the solution to Eqn. 2.3 is

E = ±
p

~p2 +m2.
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While the solution with the + sign gives us a “standard” picture, the solution with the � sign
cannot be ignored. As a consequence, the system has no ground state (it is unbounded from
below), and hence no meaningful physical interpretation seems possible.

To make things worse, also the continuity equation becomes problematic. As in the non-
relativistic case, it is obtained by taking also the complex conjugate of the Klein-Gordon equation
and multiplying it with f(x), and combining it with the original equation multiplied with f⇤(x).
However, due to the fact that the Klein-Gordon equation involves a second order rather than a
first order time derivative, this time we have to subtract the two. The result is

∂
∂ t

✓
i(f⇤(x)

∂f(x)
∂ t

�f(x)
∂f⇤(x)

∂ t
)

◆
+~— ·

⇣
�i(f⇤(x)~—f(x)�f(x)~—f⇤(x))

⌘
= 0,

which can again be considered as a continuity equation, but with

r(x) = i(f⇤(x)
∂f(x)

∂ t
�f(x)

∂f⇤(x)
∂ t

),

~j(x) = �i(f⇤(x)~—f(x)�f(x)~—f⇤(x)). (2.6)

This can again be cast into explicitly Lorentz-covariant form:

∂µ jµ(x) = 0, with jµ(x) = i(f⇤(x)∂ µf(x)�f(x)∂ µf⇤(x)). (2.7)

When we now substitute the free-particle solution of Eqn. 2.5 in Eqn. 2.6, we find that

jµ(x) = 2pµ |N|2. (2.8)

In particular, we have r(x) = 2E|N|2. So in the case of a negative-energy solution, we also find
that r(x) becomes negative, i.e., it can no longer be interpreted as a probability density.

Finally, there is another problem with negative-energy solutions. Consider some localized
spatial wavefunction at some time t. It is then straightforward to determine its Fourier spectrum,
and in general it will be seen that this will contain both positive- and negative-energy compo-
nents, which will have opposite time evolutions. Constructing the norm of the wavefunction
would then contain oscillating terms; the corresponding “zitterbewegung” is not observed in
reality. (This issue is discussed in more detail in Section 2-2-2 of Ref. [1].)

2.1.3 Field-theoretical Interpretation
A proper interpretation can only be given in the context of Quantum Field Theory. In that con-
text, f is a field rather than a wave function, and its plane-wave expansion leads to particle
creation operators for the positive energies combined with antiparticle annihilation operators for
the negative energies:

f(x) =
Z d3 p

(2p)3
1

2E~p

⇣
a(~p)e�ip · x +b†(~p)eip · x

⌘
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The case of a real-valued classical field (we will discuss classical fields in a bit more detail in
Section 2.1.4) then translates into a hermitian quantum field, i.e., with b(~p) = a(~p). So in terms of
plane-wave solutions, the action of the field is either to create a particle with four-momentum pµ

or to annihilate one with four-momentum pµ (where it can be shown, although doing so is outside
the scope of this course, that the positive-energy solution is associated with the annihilation of
a particle, while the negative-energy solution is associated with the creation of a particle). Note
that the four-momentum here is in both cases the physical (positive-energy) four-momentum.

However, here we have to watch the other desired properties of this field. Consider the
case of a field representing a charged particle like the electron. The action of the field must be
to change the charge by the same one unit, irrespective of whether creation or annihilation is
concerned (motivating this requirement further would bring us too far in the realm of Quantum
Field Theory; a construction can e.g. be found in the book by Peskin and Schroeder [2]). This
means that in this case, the equality b(~p) = a(~p) cannot hold anymore (and hence also that f
cannot be a hermitian field). This can be achieved by making b†(p) represent the creation of
an anti-particle with four-momentum pµ ; we should therefore expect the existence of a particle
much like the electron, but with opposite properties such of its charge. This particle is called the
positron.

Of course, one would hope for experimental evidence of the existence of the positron. It was
first observed in 1932, in a cloud chamber exposed to cosmic rays (see Fig. 2.1). Its discovery
earned Anderson [3] the 1936 Nobel Prize. (The discovery followed the prediction of the positron
by Dirac by only a year. Dirac used a different interpretation of negative-energy states, though,
which is not appropriate for the description of bosons.)

So what about the continuity equation, and the fact that there doesn’t appear to be a conserved
quantity (i.e., one occurring in a continuity equation) that can be associated with a probability
density? The fact of the matter is that the (conserved) probability density is a concept that is
useful in non-relativistic quantum mechanics (non-conservation would correspond to the creation
or disappearance of particles). However, in a relativistic context, it is perfectly acceptable for
(anti-)particles to be created or annihilated (and the operator nature of quantum fields allows to
describe such processes). So it doesn’t make sense to ask for a conserved probability density.

2.1.4 Principle of Least Action and Euler-Lagrange Equations; Noether
Theorem

Accepting that we need a field-theoretical interpretation (per Sect. 2.1.3), we can now also use
a different starting point for our computations than the Klein-Gordon equation. Going back to a
classical single-particle system of a single degree of freedom q(t), we can express the action S
as S =

R t1
t0 dtL(q, q̇), where L represents the Lagrangian. Demanding that S be stationary under

arbitrary but small changes of q(t) at each t results in the requirement

dS =
Z t1

t0
dt
✓

∂L
∂q

dq+
∂L
∂ q̇

d q̇
◆

= 0.
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Figure 2.1: Photograph made of a positron bent in a magnetic field and traversing (and losing
energy in) a Pb plate. The positron hypothesis follows from (1) the sign of the curvature, indi-
cating a positively charged particle; and (2) the track length after having traversed the plate and
before being stopped, indicating a particle much lighter than a proton.

Interchanging the order of the time derivative and the d operation and carrying out an integration
by parts then results in the condition

Z t1

t0
dt
✓

∂L
∂q

� d
dt

✓
∂L
∂ q̇

◆◆
dq = 0.

If this equality is to hold for arbitrary dq(t), then we immediately arrive at the Euler-Lagrange
equation

∂L
∂q

� d
dt

✓
∂L
∂ q̇

◆
= 0.

In a field-theoretical setting, things work in much the same way. The essential difference is that
the Lagrangian L is obtained as the spatial integral of the Lagrange density L (f(x),∂µf(x)),
where ∂µf ⌘ ∂

∂ ( ∂f
∂xµ )

refers to the time as well as spatial derivatives of f . The action therefore
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becomes a four-dimensional integral – convenient since this allows us to express it in a covariant
form. The arbitrary changes are then in the field f(x), and the principle of least action becomes

dS =
Z

d4x
✓

∂L

∂f
df(x)+

∂L

∂ (∂µf)
d∂µf(x)

◆
= 0. (2.9)

The same manipulations as for the above single degree of freedom then lead to the Euler-
Lagrange equation for the field:

∂L

∂f
�∂µ(

∂L

∂µf
) = 0. (2.10)

We will make use of this equation, as well as of properties of the Lagrange density, later in
this and in other chapters. Note that in these lecture notes we will follow the common particle
physicists’ sloppiness and simply call L the Lagrangian. For now, suffice it to say that the
Klein-Gordon equation can be recovered from the following choice of Lagrangian:

L =
1
2

∂µf∂ µf � 1
2

m2f 2. (2.11)

The Noether theorem is related to so-called internal symmetries, which we will cover later
in more detail, but which for now we can illustrate using the relativistic wavefunction f of
Section 2.1.2, which we subsequently concluded should really be treated as a quantum field. In
the wavefunction picture, Quantum Mechanics dictates that the physics should not depend on
any complex phase of f . Now in the field theoretical context, it is quite well possible to posit a
real scalar field; however as an alternative we can posit a complex scalar field f , and still make
the assumption that the physics described by the Langrangian indeed does not depend on the
phase of f . This is arguably the simplest example of an internal symmetry.

Under an infinitesimal phase change, which we will describe more generally as a group
transformation (see Appendix B for more details), we can then write the transformation of the
field f as

f ! f 0 = f + iaT f ,

where a is the infinitesimal phase change, and T is the generator of the group transformation. In
the case of phase changes, we know the transformation properties:

f ! f 0 = eiaf = f + iaf , (2.12)

so we simply have T = 1. We now require again that the action be invariant under this transfor-
mation, so we obtain the condition

dS = i
Z

d4x
✓

∂L

∂f
aT f +

∂L

∂ (∂µf)
∂µ(aT f)

◆

= i
Z

d4x
✓

∂µ

✓
∂L

∂ (∂µf)

◆
aT f +

∂L

∂ (∂µf)
∂µ(aT f)

◆

= i
Z

d4x∂µ

✓
∂L

∂ (∂µf)
aT f

◆
= 0.
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Requiring that this equality hold for any a and integration boundaries, we find that

∂µ jµ = 0, with jµ = i
✓

∂L

∂ (∂µf)
T f
◆

.

This is the essence of the Noether theorem: every symmetry brings with it a conserved quantity.

2.2 Perturbation Theory and Electromagnetic Interactions

2.2.1 Perturbation Theory
A theory describing only free particles is not terribly exciting. . . therefore, let us see how inter-
actions can be incorporated. The aim here is not to be entirely rigourous, but rather to provide
a heuristic introduction to the computation of scattering amplitudes that can be understood as a
reasonably straightforward extension of (time-dependent) non-relativistic perturbation theory.

Suppose that the Hamiltonian of a system is described by

H = H0 +V (~x, t)

and that the system corresponding to the unperturbed Hamiltonian H0 can be solved exactly,

H0fn = Enfn with
Z

d3xf⇤
n (~x)fm(~x) = dnm.

(Here we are assuming that the system leads to a set of discrete eigenstates. That limitation does
not affect the following argument.) We now want to know the time evolution of a system that at
a time t is in the state y(~x). To this end, we decompose y in terms of the eigenfunctions of the
unperturbed Hamiltonian:

y(~x, t) = Â
n

an(t)fn(~x)e�iEnt .

Applying the Schrödinger equation then yields

i
∂y(~x, t)

∂ t
= Â

n
fn(~x)e�iEnt

✓
Enan(t)+

dan(t)
dt

◆

= (H0 +V (~x, t))y = Â
n

(H0 +V (~x, t))an(t)fn(~x)e�iEnt

= Â
n

(En +V (~x, t))an(t)fn(~x)e�iEnt

) iÂ
n

dan(t)
dt

fn(~x)e�iEnt = Â
n

V (~x, t)an(t)fn(~x)e�iEnt . (2.13)

Now assume that the interaction V (~x, t) is switched off for large times T ! •, so that the de-
composition into eigenstates of the unperturbed system is the “proper” thing to do for such large
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times. Multiplying Eqn. 2.13 by f⇤
f (~x)e

iE f t and integrating the result over all space then yields

da f (t)
dt

= �iÂ
n

an(t)e�i(En �E f )t ·Vf n(t), with

Vf n(t) =
Z

d3xf⇤
f (~x)V (~x, t)fn(~x)

This is just the well-known Dyson series from non-relativistic Quantum Mechanics.
Also the solution of this integro-differential equation proceeds in the same way as in non-

relativstic Quantum Mechanics. In addition, suppose that before the interaction is switched on
the system is in an eigenstate of the unperturbed Hamiltonian, i.e., an(�T ) = dni. Order by order,
we have

a f (t) = d f i

+ (�i)
Z t

�T
dt 0Vf i(t 0)e�i(Ei �E f )t 0

+ (�i)2 Â
n

Z t

�T
dt 0Vf n(t 0)e�i(En �E f )t 0

·
Z t 0

�T
dt 00Vni(t 00)e�i(Ei �En)t 00

+ . . .

At this point, we formulate the above equation in a more covariant form by setting

fn(x) ⌘ fn(~x)e�iEnt .

Retaining only the lowest-order (nontrivial) transition, we then obtain

a f (t) = �i
Z t

�T
dt 0
Z

d3x
⇣

f f (~x)e�iE f t
⌘⇤

V (~x, t 0)
⇣

fi(~x)e�iEit
⌘

= �i
Z t

�T
dt 0
Z

d3xf⇤
f (x)V (x)fi(x).

Finally, considering this quantity far after the interaction, at t = T , and letting T ! •, this leads
to the transition amplitude

Tf i = �i
Z

d4xf⇤
f (x)V (x)fi(x). (2.14)
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2.2.2 Covariant Formulation of Classical Electrodynamics
Before proceeding to the implementation in Eqn. 2.14, it is useful to pay some attention to the
covariant formulation of classical electrodynamics. The starting point is the Maxwell equations:

~— ·~E = r (Gauss), (2.15)

~—⇥~B� ∂~E
∂ t

= ~j (Ampère), (2.16)

~— ·~B = 0 (Gauss), (2.17)

~—⇥~E +
∂~B
∂ t

= 0 (Faraday). (2.18)

Eqn. 2.17 indicates that ~B can be written as

~B = ~—⇥~A,

where ~A is called the vector potential. Combining this with Eqn. 2.18, it follows that ~E can be
written as

~E = �~—F� ∂~A
∂ t

,

with F the scalar potential. With this notation, it then follows that Eqn. 2.16 can be written as

~—⇥~B� ∂~E
∂ t

=
⇣
�~—2~A+~— · (~— ·~A)

⌘
+~—∂F

∂ t
+

∂ 2~A
∂ t2

= ~A+~—(~— ·~A+
∂F
∂ t

) = ~j.

Finally, we have
~— ·~E = �~—2F� ∂

∂ t

⇣
~— ·~A

⌘
= r.

When we add and subtract here a term ∂ 2F
∂ t2 , this last equation can be rewritten as

F� ∂
∂ t

✓
~— ·~A+

∂F
∂ t

◆
= r.

The two rewritten inhomogeneous equations now have a very similar form; defining

Aµ = (F,~A) and jµ = (r,~j)

allows us to finally put the inhomogeneous equations into a manifestly covariant form:

Aµ �∂ µ(∂nAn) = jµ ,

which can also be written as

∂µFµn = jn , with Fµn ⌘ ∂µAn �∂nAµ . (2.19)
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The quantity Fµn is called the electromagnetic field tensor, and it turns out that its elements are
just ~E and ~B.

(Of course, putting these equations into a nicely covariant-looking form does not guarantee
the right -known- behaviour of ~E and ~B under Lorentz transformations. But that can be verified
explicitly and turns out to be in good order.)

Even this nice formula can be simplified further. The field tensor Fµn encodes the physical
information. Therefore, a change in Aµ

Aµ ! A0µ = Aµ +∂ µ c, (2.20)

with c an arbitrary function, does not affect the physics. This is the gauge freedom of electro-
magnetism.

As a consequence, we can choose c such that ∂nAn = 0: this is called the Lorentz condition.
So finally

Aµ = jµ . (2.21)

This choice for Aµ is also called the Lorentz gauge. It is to be emphasised again that the choice
of gauge does not affect the physics of the system (and other choices are indeed used, such as
the Coulomb gauge, in which ~— ·~A = 0).

A last ingredient that will be extremely useful in the following is the fact that the interaction
of particles with an electromagnetic field can be described simply by the minimal substitution1:

pµ ! pµ + eAµ . (2.22)

The usefulness of this substitution is that we can use it instead of a “proper” field theoretical
treatment of gauge symmetries: the so-called covariant derivative corresponding to the U(1)
symmetry group relevant for this treatment of QED yields precisely the same result.

2.2.3 The covariant derivative, and implications of U(1) symmetry
As discussed in the exercises, the use of the minimal substitution allows for a derivation of the
Lorentz force in classical electrodynamics. If we are to extend this validity to the realm of
(non-relativistic) quantum mechanics, this results in a Schrödinger equation

✓
1

2m
(�i~—�q~A)2 +qV

◆
y(~x, t) = i

∂y(~x, t)
∂ t

(2.23)

(where we have replaced �e in the minimal substitution with the more general charge q). How-
ever, the requirement that the gauge transformation of Eqn. 2.20 should not affect the physics
(i.e., should leave the form of eqn. 2.23 invariant) now has a nontrivial consequence. For it
can be shown that this invariance is only achieved if simultaneously with Eqn. 2.20, also the
wavefunction transforms:

y(~x, t) ! y 0(~x, t) = e�iqc(~x,t)y(~x, t). (2.24)
1The derivation of this property is lengthy and we will not venture into it here. More details can be found e.g. in

Jackson [4], Chapter 12. Also one of the exercises offers a partial justification.
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Although the above is done in the framework of non-relativistic quantum mechanics, exactly
the same conclusion (Eqn. 2.24) holds in the relativistic case. In conclusion, we end up with a
space- and time-dependent phase transformation of the wavefunction, which does not affect any
physics. In group theoretical terms, the U(1) symmetry group can be identified exactly with all
possible phase transformations – hence the statement that QED implements a U(1) symmetry.

But having drawn this conclusion, matters can in fact be turned around: let us suppose that
we require that Eqn. 2.24 does not affect any physics. Then it can be shown that the quantum
mechanical analogue of Eqn. 2.22,

i∂µ ! iDµ ⌘ i∂µ �qAµ , (2.25)

precisely achieves this. The quantity Dµ is called the covariant derivative.
Note that this phase change looks a lot like the one encountered in Eqn. 2.12. An essential

difference is that rather than merely requiring invariance under global phase changes, we now
impose this requirement even for local (i.e., space and time dependent) phase changes. Another
important difference, although we will not prove it here, is that we now require not merely the
action to be invariant under the transformation, but also the Lagrangian itself!

Of course, all of the above hinges on the known properties of QED. However, it turns out that
the gauge principle (starting here with the assumed phase transformation property of the wave-
function – or field – and constructing the appropriate covariant derivative, which then ultimately
describes the interaction of charged particles with the electromagnetic field) is very powerful.
The same principle will be used later to describe the strong and weak interactions.

Finally, note that while Eqn. 2.20 does not depend on the charge q of the fermion involved,
the covariant derivative and the phase transformation so. This means that we can use the same
principle (and with the same electromagnetic field!) for particles of different charge. In group
theoretical terms, this means that different representations of the underlying phase symmetry are
possible. This is a fact that will be exploited later on.

2.2.4 Transition Amplitudes
We now have all the required ingredients in hand to proceed further. In the Klein-Gordon equa-
tion, we make the minimal substitution of Eqn. 2.22; the resulting equation can be recast as

( +m2)y = �V y, (2.26)

with the “potential” V given by

V y = �ie(∂µAµ +Aµ∂µ)y � e2A2y

(note the operator character of the derivative: it acts on y as well as on A). We will neglect the
last term in this equation, on account of the fact that e is small. Retaining only the first two terms,
we then have

Tf i = �i
Z

d4xf⇤
f (x)V (x)fi(x)

= i
Z

d4xf⇤
f (x)(ie)(A

µ∂µ +∂µAµ)fi(x).
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The last term is amenable to integration by parts, and neglecting the resulting surface integral the
result becomes

Tf i = �i
Z

d4x jµ
f i(x)Aµ(x) with jµ

f i(x) = �ie
�
f⇤

f (x)∂ µfi(x)� (∂ µf⇤
f (x))fi(x)

�
. (2.27)

Note that the quantity jµ
f i(x) looks almost exactly like the quantity jµ(x) in Eqn. 2.7. There

is however a difference in that jµ
f i(x) involves two different wavefunctions, those of both the

initial and final states. The proper interpretation of jµ
f i(x) is that of the current involved in the

interaction of a microscopic particle. This is relevant in that the absorption or emission of a
photon (we’ll see later that this picture is appropriate) may affect the particle noticeably.

Eqn. 2.27 is appropriate for the description of the interaction of a particle with a general
electromagnetic field. However, this is not the situation typically of interest in particle physics.
Rather, our interest is in scattering particles off each other, i.e., in electromagnetic fields caused
by other particles: the field satisfies

Aµ = jµ(2)
f i (2.28)

relating it to the current of the other particle (which we will also assume to be an electron).
We will also restrict the further discussion to plane-wave initial and final states (as appropriate

for our discussion of scattering experiments where long before and after the scattering process,
the participating particles can be considered as free particles). In this case, the current jµ(2)

f i takes
on the simple form

jµ(2)
f i (x) = �e|N|2

⇣
p(2)

i + p(2)
f

⌘µ
e�i(p(2)

i � p(2)
f ) · x

,

and it is not hard to see that Eqn. 2.28 is satisfied by

Aµ(x) = �
jµ(2)

f i (x)

q2 with qµ = (p(2)
i � p(2)

f )µ . (2.29)

Therefore, the final transition amplitude is given by

Tf i = �i
Z

d4x jµ(1)
f i (x)

�gµn
q2 jn(2)

f i (x)

= |N|4
Z

d4xe�i(p(1)
i � p(1)

f + p(2)
i � p(2)

f ) · x

·
⇣

ie(p(1)
i + p(1)

f )µ
⌘
·
�igµn

q2 ·
⇣

ie(p(2)
i + p(2)

f )n
⌘

(2.30)

= |N|4(2p)4d 4(p(1)
i + p(2)

i � p(1)
f � p(2)

f ) ·
⇣

ie(p(1)
i + p(1)

f )µ
⌘
·
�igµn

q2 ·
⇣

ie(p(2)
i + p(2)

f )n
⌘

.

A few remarks are in order at this point:
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1. For clarity, a label (1) has been attached to the current representing particle 1 (the particle
that is scattered by the potential caused by particle 2). However, Eqn. 2.31 is clearly
symmetric in the treatment of the two particles under consideration. This is in fact to be
expected! For in our -now microscopic- setup, we are scattering two electrons off each
other, and there really isn’t any physics reason to treat them differently.

2. The factor (2p)4d 4(. . .) arises from the integration over all of spacetime of the plane-wave
exponents. Its effect is to impose conservation of four-momentum, as desirable for these
scatterings. In fact, this is not at all particular to the process we are considering here, but
is instead related to the assumption of asymptotically free states.

3. Implicit in Eqn. 2.31 is the assumption that the normalization N is independent of the
momentum. This is in fact correct, but we will not bother with such normalization issues.

Therefore, in general we will be simplifying the discussion of the transition amplitude to that of
the so-called matrix element, generically denoted by M . Their relation is defined by

Tf i = �i(2p)4d 4(p(1)
i + p(2)

i �Â
j

p j)NM , (2.31)

where the sum is over all particles in the final state, and N takes care of the above normalization.
In this case, M is given by

� iM =
⇣

ie(p(1)
i + p(1)

f )µ
⌘
·
�igµn

q2 ·
⇣

ie(p(2)
i + p(2)

f )n
⌘

. (2.32)

Limitation

The thing that makes the above derivation heuristic is Eqn. 2.26, in which a “potential”
term is added to the equation of motion for a free particle (and not to the free particle Hamil-
tonian). Clearly this is not a proper thing to do. Fortunately, it turns out that in a proper
quantum field-theoretical context, we can use the actual Hamiltonian for a complex scalar
field (which we lack the formalism to construct explicitly), and it can be shown that the
expression for the transition amplitude is correct.

2.2.5 Feynman Diagrams and Feynman Rules
The transition amplitude of Eqn. 2.31 is our way to Feynman diagrams. Apart from the delta
function and normalization factors, it contains three ingredients:

• two terms originating from the currents involving the two particles (and which are called
the couplings);

• and one term that represents the electromagnetic field, as per Eqn. 2.29.
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In addition, that same equation shows us that the four-momentum qµ occurring in the term corre-
sponding to the electromagnetic field corresponds precisely to the difference between the initial-
and final-state particles, or in other words, their momentum transfer. This leads us to a very
simple picture, especially given that we are aware of the particle nature of the photon: in this
process, a photon is exchanged between the two electrons, absorbing four-momentum from one
electron and transferring it to the other. The �gµn/q2 term is called the photon propagator.

This picture can in fact be translated easily to a graphical equivalent, as shown in Fig. 2.2,
called the Feynman diagram corresponding to this amplitude. In it, the exchanged photon is
clearly recognizable, as is its coupling to the electrons. The corresponding Feynman rules (given
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Figure 2.2: Graphical representation of the matrix element of Eqn. 2.32.

without proof – that is rather a topic for a course on Quantum Field Theory) then tell us how to
go back from the diagram to the matrix element:

1. Each Feynman diagram consists of external and internal lines (in Fig. 2.2, the electron
and photon lines, respectively) and of vertices, which are associated with the couplings of
particles to each other.

2. Each vertex involves a factor

(2p)4d 4(Â
i

ki) ·
�
ie(pi + p f )

µ�

where the delta function expresses four-momentum conservation at each vertex (all the ki
are taken to be incoming; this is a generic feature of all Feynman diagrams) and in the
coupling e(pi + p f )

µ the electron four-momenta “follow the arrows”, as in Fig. 2.2.

3. Each internal photon (i.e., each photon propagator) is represented by a “wavy” line and
corresponds to a term Z d4q

(2p)4
�igµn

q2 ,

where qµ is the photon’s four-momentum (meaning that each internal four-momentum is
integrated over).

4. The result contains a factor (2p)4 times a delta function expressing overall four-momentum
conservation. This factor is discarded (but of course is to be kept in mind when doing actual
computations); the result is equal to �iM .
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5. The complete matrix element for a given process (i.e., for given -completely specified-
initial and final states) in general corresponds to multiple Feynman diagrams, the individ-
ual matrix elements of which have to be summed. (In fact, to obtain the complete matrix
element all possible Feynman diagrams need to be summed. This is a consequence of the
Dyson series: we have restricted ourselves to the computation of the first term in perturba-
tion theory, and ideally we would like to compute higher-order terms as well.)

It may be noted that the photon’s four-momentum qµ does not in general satisfy q2 = 0. On
the one hand this is good (as otherwise the transition amplitude would diverge), but on the other
hand the question is how this relates to the masslessness of the photon!

The resolution of this issue rests on the fact that the interaction (i.e., the exchange of the pho-
ton) takes place on very short timescales. On such timescales, the Heisenberg uncertainty prin-
ciple dictates that a photon of (squared) “mass” q2 may exist for an amount of time ⇠ 1/

p
|q2|.

Such photons are called virtual (since they cannot propagate over macroscopic distances) or off-
shell. In fact we will also encounter many examples of other off-shell particles being exchanged
in interactions.

On a more practical note, while the process under consideration here is the elastic scatter-
ing of two particles, we could have equally well chosen to consider the scattering of a particle
and an anti-particle instead (e.g., electron-positron scattering). Now recall that in the Feynman-
Stückelberg approach, anti-particles are (loosely speaking) considered as particles moving back-
ward in time, and are associated with the negative-energy solutions. In Feynman diagrams, this
difference between particles and anti-particles is expressed by reversing the direction of the ar-
rows; so for anti-particles the direction of the arrows is always opposite the physical propagation
in time. As a corollary, the conservation of (electrical) current implies that the arrows in a single
“current line” (the external and internal lines featuring electrons and/or positrons) must always
be in the same direction along the line.

Returning now to our computation of electron-electron scattering, it is not too hard to realize
that the above Feynman rules give rise to another diagram, even at the lowest order in pertur-
bation theory. Both of them are shown in Fig. 2.3. The second diagram arises because we are
dealing with indistinguishable particles (this is why it is not immediately obvious that we did not
find it straight from our original treatment of this process, in which we started out not making
any assumptions as to the nature of the “other” particle). This process is called Møller scattering.

2.3 The Dirac Equation

2.3.1 Dirac’s Attempt
As mentioned in Sect. 2.1, in a quantum mechanical setting there are two problems with the
Klein-Gordon equation (perceived problems, as they are addressed by a proper field-theoretic
treatment):

1. it involves a second order time derivative, giving rise to negative-energy states and a system
that has no ground state;
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Figure 2.3: Diagrams contributing (in lowest order) to the Møller scattering process
e� + e� ! e� + e�.

2. and these same negative-energy states lead to a continuity equation that is not amenable to
a probability interpretation.

Even if in the context of field theory there is no direct problem, Dirac’s attempt to address
the above “issues” by constructing an equivalent equation that only involves a first order time
derivative has proven to be of great importance, as it leads us to a proper description of spin-1/2
particles (the discussion above has not mentioned spin at all, but of course we know that electrons
are spin-1/2 particles).

The Dirac equation for free spin-1/2 particles (like the Schrödinger equation, in the position
representation) is

(i∂µgµ �m)y(x) = 0, (2.33)

with the quantities gµ satisfying the anticommutation relation

{gµ ,gn}⌘ gµgn + gngµ = 2gµn . (2.34)

Clearly this equation cannot be satisfied by ordinary numbers, and therefore a (four-dimensional)
matrix representation is used. Multiple conventions are possible, but the one most often used (the
Björken and Drell convention) is

g0 =

✓
0

0 �

◆
, g i =

✓
0 s i

�s i 0

◆
, (2.35)

where the s i represent the Pauli matrices (so also the right-hand side of Eqn. 2.34 formally
needs to be multiplied by the 4⇥4 unit matrix ). Also y(x) cannot be a “simple” scalar-valued
wavefunction anymore; instead it becomes a column vector of dimension four, called a bi-spinor.

(That the Dirac equation is sufficient can be seen by multiplying it from the left by (i∂ngn +
m). This simply yields the Klein-Gordon equation, so we have proven that it is a sufficient
condition for the Dirac equation to be satisfied.)

Clearly, given that we are again considering free particles here, it is to be expected that the
solutions to the Dirac equation are plane waves. Now in particular, let us consider those plane-
wave solutions corresponding to a particle at rest. Given the 2⇥ 2 block form of the gamma

26



matrices, write

y =

✓
yA
yB

◆
.

In this case, the Dirac equation can be rewritten as

(i
∂
∂ t

�m)yA = 0,

(�i
∂
∂ t

�m)yB = 0.

Clearly the solution yA ⇠ e�imt corresponds to a “normal” positive-energy solution; however,
yB ⇠ e+imt again corresponds to a negative-energy solution. By now, however, aware of the
antiparticle interpretation of E < 0 states, we proceed undeterred.

Like in the case of the Klein-Gordon equation, we take the hermitian conjugate of the Dirac
equation. The result is

�i∂µy†(x)gµ† �my†(x) = 0.

We manipulate this by noting, from Eqn. 2.35, that g0† = g0 and g i† = �g i (since the Pauli
matrices are hermitian). Using Eqn. 2.34, this can be written concisely as gµ† = g0gµg0. So we
have

�i∂µy†(x)g0gµg0 �my†(x) = 0.

Next, we multiply the whole equation by -g0 from the right; the result is

i∂µy(x)gµ +my(x) = 0, with y(x) ⌘ y†(x)g0.

With this conjugate equation in hand, we proceed to construct again a continuity equation.
This is easily done by multiplying Eqn. 2.33 by y(x) from the left, the conjugate equation by
y(x) from the right, and summing the result. This yields

i∂µ(y(x)gµy(x)) = 0.

Considering in particular the time component, we therefore find that we have

y(x)g0y(x) = y†(x)y(x),

So we have found a solution where a probability interpretation makes sense! However, again
because of the antiparticle interpretation we will not make further attempts in this direction, but
instead consider this as a conserved electric current:

jµ = �ey(x)gµy(x). (2.36)
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2.3.2 Spin-1/2 Particles
The virtue of the Dirac equation is that it allows for a description of spin-1/2 particles. This
is perhaps to be expected already simply from the presence of the gamma matrices containing
Pauli matrices (which also in non-relativistic Quantum Mechanics are associated with the spin
operators for spin-1/2 particles). However, it can also be seen in more detail from considering
the general Dirac equation, and again writing it in its 2⇥2 block form,

y(x) =

✓
uA
uB

◆
e�ip · x,

i.e., splitting off the plane-wave piece from the spinors uA and uB (at this stage we haven’t yet
specified whether the solution involves positive or negative energies). For nonzero momenta, we
obtain coupled equations for the spinors:

(~s ·~p)uB = (E �m)uA,

(~s ·~p)uA = (E +m)uB. (2.37)

Restricting ourselves to the positive-energy solution, we can now choose two independent solu-
tions for uA:

u(1)
A = c(1) =

✓
1
0

◆
, u(2)

A = c(2) =

✓
0
1

◆
.

The second equation in Eqn. 2.37 then yields

uB
(1,2) =

(~s ·~p)

E +m
u(1,2)

A .

Similarly, in the case of negative-energy solutions, we choose two independent solutions for uB,
u(1,2)

B = c(1,2), and find (from the first equation in Eqn. 2.37):

uA
(1,2) =

�(~s ·~p)

�E +m
u(1,2)

B .

The minus sign has been carried over to the four-momentum components here. The reason is
that in this case, the physical four-momentum contains an extra minus sign relative to the four-
momentum occurring in Eqn. 2.37. (Note that we might as well have started with the independent
solutions for uB in the case of positive-energy solutions, and vice versa. The important point is
that in the non-relativistic limit, for positive-energy solutions, uA � uB, while for negative-energy
solutions, uB � uA.)

Summarizing, y represents four independent degrees of freedom, two for E > 0 and two for
E < 0. These two are of course nothing but the two solutions corresponding to different spin
states. When doing practical calculations, the four solutions are typically written as

u(1,2)(p) = N

 
c(1,2)

(~s ·~p)
E+m c(1,2)

!
, u(3,4)(p) = N

 
�(~s ·~p)
�E+m c(1,2)

c(1,2)

!
.

In addition, the negative-energy bi-spinors are usually written in terms of the physical four-
momentum, leading to

v(1)(p) ⌘ u(4)(�p) and v(2)(p) ⌘�u(3)(�p).
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2.3.3 Perturbation Theory
The step from free to interacting spin-1/2 particles is made in exactly the same fashion as in the
case of spin-0 particles: by means of the minimal substitution (see Sect. 2.2.2). In that case, the
Dirac equation is modified to

(i∂µgµ �m)y(x) = (i
∂
∂ t

g0 + i~— ·~g �m)y(x) = �eAµgµy(x). (2.38)

The reason for separating the time and spatial components is that we can use this equation to
construct explicitly a Hamiltonian suited for spin-1/2 particles. To do so, multiply (from the left)
by g0; we then have

i
∂
∂ t

y(x) = (�i~— · g0~g + g0m)y(x)� eAµg0gµy(x),

the right-hand side of which nicely has the form H = H0 +V , so that we can identify the term
�eAµg0gµ with a perturbing potential V . Inserting this in Eqn. 2.14, we obtain

Tf i = �i
Z

d4xy†
f (x)(�eAµg0gµ)yi(x)

= �i
Z

d4x jµ
f i(x)Aµ(x), with jµ

f i(x) = �ey f (x)gµyi(x).

Also here, we restrict ourselves to plane-wave states, and assume that the electromagnetic field
is generated by another particle. This implies that we can again insert Eqn. 2.29 – this time of
course with a current that is appropriate for spin-1/2 particles. From here, it is not hard to see
that also the rest of the computation of the transition amplitude proceeds as for scalar particles.

2.3.4 Feynman Rules for Spin-1/2 Particles
Without further ado, we quote here the Feynman rules appropriate for the computation of matrix
elements in QED:

1. The basic “building blocks” of Feynman diagrams are again propagators and vertices.

2. Each photon propagator again corresponds to a factor
Z d4q

(2p)4
�igµn

q2 .

3. Each fermion propagator corresponds to a factor
Z d4q

(2p)4
i( /q+m)

q2 �m2 .

Note that we have introduced here the notation /a ⌘ aµgµ for any aµ .
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4. Each vertex corresponds to a factor

(2p)4d 4(Â
i

ki) · iegµ ,

where all four-momenta are again taken to be towards the vertex.

5. External lines now need to be dealt with more precisely, as the fermions can be labeled
by their spins, and we also allow for external photon lines corresponding to specific spin
states:

incoming fermion: u outgoing fermion: ū
incoming antifermion: v̄ outgoing antifermion: v
incoming photon: eµ outgoing photon: eµ⇤

6. All appropriate Feynman diagrams should again be summed. A small refinement compared
to the case of “scalar QED”, however, is that when combining matrix elements that differ
only in the exhange of two identical fermions, a relative minus sign must be added. (This
is because wavefunctions must be fully antisymmetric under exchange of any two identical
fermions.)

7. The overall (2p)4d 4(. . .) is again discarded, and the result is again �iM .

They are shown here mostly for completeness, as we will not attempt to perform complete cal-
culations of Feynman diagrams; nevertheless, it is important to be aware of the differences with
the “scalar QED” case.

Polarization states of spin-1 bosons

The polarization vectors eµ mentioned in the above merit some further discussion. Let
us first discuss the case of massive spin-1 bosons. In this case, one can transform to the
particle’s rest frame, so that the polarization vectors from a non-relativistic treatment are
appropriate:

~e1 =

0

@
1
0
0

1

A , ~e2 =

0

@
0
1
0

1

A , ~e3 =

0

@
0
0
1

1

A

for plane polarization states, and (taking the z axis as our quantisation axis)

~el=1 =
�1p

2

0

@
1
i
0

1

A , ~el=�1 =
1p
2

0

@
1
�i
0

1

A , ~el=0 =

0

@
0
0
1

1

A

for circularly polarized states. These polarization states are orthonormal:

~e⇤
l ·~el 0 = dll 0 .
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Next, we promote these polarization vectors to proper four-vectors and require that they
remain orthonormal:

e(p;l ) · p = 0,

e⇤(p;l ) · e(p;l 0) = �dll 0 .

For a boost e.g. along the z axis, the transverse polarization states (l = ±1) do not change
under this transformation. However, the l = 0 (“longitudinal”) polarization state does
change. From the orthonormality conditions it is not hard to see that for a momentum
pµ = (E,0,0, p), a vector

eµ(p;l = 0) =
1
m

(p,0,0,E)

is required, where m is the particle mass. (Note: it is far from obvious to see how the
polarization vectors transform under general Lorentz transformations! Suffice it to say that
a proper covariant expression can be found, in the form of the so-called Pauli-Lubanski
vector.) A final useful property of these polarization vectors is

Â
l

eµ(p;l )en⇤(p;l ) = �gµn + pµ pn/m2.

(This can either be verified explicitly, or by realising that the result cannot depend anymore
on any specific polarization vector, and hence only terms proportional to gµn and pµ pn

remain. The orthonormality conditions can then be used to determine the corresponding
coefficients.)

Let us now consider the case of massless spin-1 bosons. As discussed in Sect. 2.2.2,
the QED gauge freedom allows for transformations Aµ ! Aµ � ∂µ c , with c an arbitrary
function. Specialising to plane waves

Aµ µ eµe�iq · x,

these gauge transformations amount to changes of the polarization vectors

eµ ! e 0µ = eµ +aqµ .

(Note that this does not violate the orthogonality condition e · q = 0: after all, for on-shell
massless particles we have q2 = 0.) This means that we can in fact choose c such that e0 = 0.
Given the Lorentz condition, this implies~e ·~q = 0. So only the transverse polarization states
survive (but of course this is well known from classical electrodynamics!).

2.4 The Electron’s Magnetic Moment
As a final application of our manipulations involving spin-1/2 particles, consider the interaction
of an electron with an external magnetic field. The non-relativistic quantum mechanical treat-
ment of this phenomenon is to posit an interaction term ~µ ·~B in the total Hamiltonian, leading
to the Zeeman splitting in the presence of a (weak) static magnetic field. In this term, ~µ is the
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electron’s magnetic moment. It is typically expressed in terms of the Bohr magneton µB ⌘ e/2m
as

~µ = gµB~S,

where ~S is the electron’s spin vector. For electrons in a quantum mechanical treatment, we have
~S = 1

2~s , ~s denoting the Pauli matrices as usual. In summary, we find a term in the Hamiltonian
equal to

1
2

gµB~s ·~B. (2.39)

The issue is that in a “simple” quantum mechanical context, the Landé factor g cannot be com-
puted from first principles. The following calculation shows that QED does provide a prediction
for g – and a correct one at that!

We start again from the Dirac equation with the interaction with an electromagnetic field
added through the minimal substitution, as in Eqn. 2.38. Writing in 2⇥ 2 block form, we have
(cf. Eqn. 2.37)

~s · (~p+ e~A)uB = (E + eA0 �m)uA,

~s · (~p+ e~A)uA = (E + eA0 +m)uB.

Combining these equations yields
⇣
~s · (~p+ e~A)

⌘2
uA = ((E + eA0)2 �m2)uA.

Next, we simplify the left-hand side of this equation, but keeping in mind the operator character
of ~p! This yields

⇣
~s · (~p+ e~A)

⌘2
= s is j �pi p j + e2AiA j + e(piA j +Ai p j)

�

= (di j + ie i jks k)
�

pi p j + e2AiA j + e(piA j +Ai p j)
�

= pi pi + e2AiAi + e(piAi +Ai pi)+ ie(piA j +Ai p j)e i jks k

= (~p+ e~A)2 + e(~—⇥~A) ·~s
= (~p+ e~A)2 + e~s ·~B.

Here, repeated indices are to be summed over (from 1 to 3). Clearly, this square almost trivially
reduces to the first term on the one-but-last line. It is precisely the operator nature of ~p, piA j =
A j pi � i∂ iA j, which leads to the nontrivial additional term.

Next, we consider the right-hand side of the equation for uA, in the non-relativistic limit. This
implies that the kinetic energy and A0 are small compared to m, so

((E + eA0)2 �m2) = ((m+(E + eA0 �m))2 �m2) ⇡ 2m(E + eA0 �m).

With that approximation and dividing by 2m, we obtain

(E �m)uA =

 
(~p+ e~A)2

2m
� eA0 +

e
2m

~s ·~B
!

uA. (2.40)
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The last term clearly corresponds to the interaction of a magnetic moment with an external mag-
netic field, with g = 2 (by comparison with Eqn. 2.39).

So is the equation g = 2 exact? Not quite, in fact. The static external magnetic field is
“merely” one form of an electromagnetic field, and as such the interaction that is of important
at the diagrammatic level is that of an electron with the photon, i.e., a diagram consisting es-
sentially only of the eeg vertex (this is possible kinematically since the external magnetic field
represents virtual rather than real photons). But higher-order perturbative corrections, exempli-
fied in Fig. 2.4, need to be applied.

!

Figure 2.4: Fundamental vertex and “vertex correction” diagram describing the interaction of
electrons with electromagnetic fields.

In fact, the electron’s anomalous magnetic moment ae ⌘ (ge �2)/2 has been computed very
accurately:

ae =
1
2

⇣a
p

⌘
�0.328478965

⇣a
p

⌘2
+1.1761

⇣a
p

⌘3
+ . . .

It is one of the great achievements of QED that the measured and predicted values of ae agree
with each other, within exceedingly small uncertainties of several parts in 109.
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