The "soft SUSY breaking" MSSM R-parity conserving Lagrangian:

$$\begin{split} -\mathcal{L}_{soft} &= m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 - B\mu \epsilon_{ij} (H_1^i H_2^j + \text{h.c.}) + \tilde{M}_Q^2 (\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \\ &+ \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2 (\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \\ &+ \frac{1}{2} \Big[M_3 \overline{\tilde{g}} \tilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{\tilde{b}} \tilde{b} \Big] + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \Big[\frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \\ &+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.} \Big] \quad . \end{split}$$

$$\tilde{Q} = \begin{pmatrix} \tilde{u}_L \\ \tilde{d}_L \end{pmatrix} \qquad \qquad \tilde{L} = \begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}$$

$$\begin{aligned} -\mathcal{L}_{soft} &= m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 - B\mu \epsilon_{ij} (H_1^i H_2^j + \text{h.c.}) + \tilde{M}_Q^2 (\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \\ &+ \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2 (\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \\ &+ \underbrace{M_3 \overline{\tilde{g}} \widetilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{\tilde{b}} \widetilde{b}}_{ij} \underbrace{g}_{\sqrt{2} M_W} \epsilon_{ij} \left[\frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \right] \\ &+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q} \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.} \right] . \end{aligned}$$
Gaugino' s and their masses M₃, M₂, M₁

$$\begin{aligned} -\mathcal{L}_{soft} &= m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 - B\mu\epsilon_{ij}(H_1^i H_2^j + \text{h.c.}) + \tilde{M}_Q^2(\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \\ &+ M_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2(\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \\ &+ \frac{1}{2} \Big[M_3 \overline{\tilde{g}} \tilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{b} \tilde{b} \Big] + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \Big[\frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \\ &+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.} \Big] \quad . \end{aligned}$$
Squarks and sleptons, and their mass terms

$$\begin{split} -\mathcal{L}_{soft} &= \underbrace{m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 - B\mu\epsilon_{ij}(H_1^i H_2^j + \text{h.c.})}_{A_u^2} \tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \\ &+ \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + M_d^2 d_R^* d_R + M_L^2 (\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \\ &+ \frac{1}{2} \Big[M_3 \overline{\tilde{g}} \tilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{\tilde{b}} \tilde{b} \Big] + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \Big[\frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \\ &+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.} \Big] \quad . \end{split}$$

Higgs sector: 2 complex doublets (1 for u-type, 1 for d-type)

Both have different expectation values: v_1 and v_2 . $v_1^2 + v_2^2 = 246$ GeV, but ratio is a free parameter: tan $\beta = v_2/v_1$

Higgs bosons get mass from m_{i} and from μ B: bilinear interaction

In SUSY GUTs, parameters unify at 10¹⁶ GeV:

→Common scalar mass m₀ (all squarks and sleptons)
 →Common gaugino mass m_{1/2} (all gauginos)
 →Common trilinear coupling parameter A₀ (Yukawa)

And then only parameters left: $\tan \beta$ and $\operatorname{sign}(\mu)$

→ Constrained MSSM: 4 parameters plus a sign (CMSSM, or MSUGRA)

(Variations on this theme (since case for m_0 not so strong):

- non-universal Higgs mass models
- m₀ >> m_{1/2}: "split supersymmetry")

Fixing parameters at 10¹⁶ GeV, the renormalization group equations will tell you exactly all masses at LHC!

Often shown: $m_{1/2} - m_0$ plane

(for given A_0 , tan β)

Not every combination is allowed!

Electroweak observables: top vs W mass

Figure 14. The diagrams contributing to $B_s \rightarrow \mu\mu$ decay in the SM and in the MSSM.

SUSY can have effects on low-energy precision observables

SM prediction: $Br(B_s \rightarrow \mu\mu) = (3.65 \pm 0.23) \times 10^{-9}$ Measurement: $Br(B_s \rightarrow \mu\mu) = (3.0 \pm 0.7) \times 10^{-9}$ ATLAS plots on next slides are taken from JHEP 1510 (2015) 134

Take general SUSY Lagrangian, set all parameters with anomalous CP violation and FCNC to zero ("Miminal Flavour Violation")

Leaves 19 free parameters (mostly masses squarks, sleptons, gauginos)

Randomly select sets of values for these 19 parameters, calculate mass spectra, branching ratios, cross sections, DM etc.

Only allow models with $\Omega h^2 < 0.12$, no large invisible Z width, no large deviation in ρ parameter, 124 < $m_h < 128$ GeV.

300000 models are left, giving impression of what SUSY could look like.

Then we also look at the question: did ATLAS already rule out this model?

Muon magnetic moment:

 $\vec{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$

Anomalous part:

g-2 experiment at Brookhaven:

 $a_{\mu} = \frac{g_{\mu} - 2}{2}$

Experiment: $a = 11\ 659\ 208.0\ (6.3)\ x\ 10^{-10}$

Standard Model theory: $a = 11\ 659\ 178.8\ (5.8)\ x\ 10^{-10}$

 $\Delta a = 29.2$ (8.6) x 10⁻¹⁰ = 3.4 sigma

$$10^{10} \\ 10^{$$

This is a very difficult calculation: many radiative loops

- Options: mistake in calculation
 - experiment wrong
 - other particles in loop (SUSY) ?
 - $(\Delta a(susy) = 13 \times 10^{-10} \times (100 \text{ GeV/M}_{susy})^2 \times \tan \beta)$

Figure 16. The diagrams contributing to a_{μ} in the SM and in the MSSM.

g-2 in mSUGRA

Figure 13. The diagrams contributing to $b \rightarrow s\gamma$ decay in the SM and in the MSSM.

SM theory prediction: $Br(b \rightarrow s\gamma) = (2.98 \pm 0.26) \times 10^{-4}$

Measurement: $(3.43 \pm 0.27) \times 10^{-4}$

pMSSM: **B**-like LSP

 $m(\tilde{\chi}_1^0)$ [GeV]

pMSSM: **B**-like LSP

ATLAS plots in next slides taken from JHEP 1609 (2016) 175

Idea similar to previous paper, but focussed on DM:

Only 5 free parameters related to gauginos and Higgs (assume squarks and sleptons very heavy)
Only consider limited set of ATLAS searches for gauginos
Not a random scan, but make a proper likelihood fit including electroweak data from LEP, Ωh², b→sγ, B_s→µµ,m_h,XENON limits on direct dark matter detection

Then we look at feasible DM solutions, and effects of ATLAS searches

Lep Sleptons

SUSY production

 The SUSY partners have the same coupling constants as the SM particles. QCD production cross sections, if available, are the largest.

	Strong	EM	Weak
Squark	Х	Х	Х
Gluino	Х	-	-
Chargino	-	Х	Х
Neutralino	-	-	Х
Slepton	-	Х	Х
Sneutrino	-	-	Х

SUSY production - 2

 In a hadron machine Squarks and gluinos produced via strong processes → large cross-section if kinematically allowed

 Charginos, neutralinos, sleptons produced via electroweak processes → much smaller rate

 In e+e- democratic production of everything, but smaller cross section. Good for sleptons and weak gauginos.

Figure 9.2: Feynman diagrams for gluino and squark production at hadron colliders from gluon-gluon and gluon-quark fusion.

The cross section for $gg \rightarrow qq$ at LHC is HUGE

But the cross section for gg $\rightarrow qq$ is OF THE SAME ORDER OF MAGNITUDE

(if $m_q = m_q^{\sim}$)

(same order only because of spin factors, etc)

SUSY at LHC dominated by squark and gluino production. Other particles produced in decays.

Sparticle decays:

 $m_{eff} = sum p_T jets + leptons + missing E_T$

"missing E_T significance"

No signal observed \rightarrow exclusion in mSUGRA plane m₀ vs m_{1/2}

Simplified model for gluino production and decay:

Simplified model for squark production and decay:

Dedicated analyses for top squarks

neutralino exclusion in the ATLAS pMSSM analysis

Example of SUSY model not yet ruled out

Special final states

R-hadrons, R-parity violation, compressed spectra

Some dark matter candidate particles

Mediator Mass [TeV]

ATLAS-CONF-2017-040

DM Mass [TeV]

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

Extra dimensions

Gauge bosons

Ū

Heavy quarks LQ DM

Excited

Other

tatus: July 2017					$\int \mathcal{L} dt = ($	3.2 – 37.0) fb ⁻¹	\sqrt{s} = 8, 13 TeV
Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit		Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\gamma$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	1 - 4j - 2j $\ge 2j$ $\ge 3j$ - 1J $\ge 2b, \ge 3j$	Yes – – – Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mp 7.75 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV KK mass 1.75 TeV KK mass 1.6 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} V' \to WV \to qqqq \mbox{ model} \\ \operatorname{HVT} V' \to WH/ZH \mbox{ model} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $1 e, \mu$ $B 0 e, \mu$ multi-chann $1 e, \mu$ $0 e, \mu$	- 2 b ≥ 1 b, ≥ 1J/2 - 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	_ 2j Yes Yes _ Yes _	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
Cl qqqq Cl ℓℓqq Cl uutt	− 2 e,μ 2(SS)/≥3 e,	2 j ,µ ≥1 b, ≥1 j	– – Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η _{LL} 40.1 TeV η _{LL} C _{RR} = 1	1703.09217 ATLAS-CONF-2017-027 1504.04605
Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV _{XX} EFT (Dirac DM)	M) 0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4 j $\leq 1 j$ $1 J, \leq 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.5 TeV m _{med} 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<400~{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<480~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
$\begin{array}{c} VLQ\ TT \to Ht + X\\ VLQ\ TT \to Zt + X\\ VLQ\ TT \to Wb + X\\ VLQ\ BB \to Hb + X\\ VLQ\ BB \to Zb + X\\ VLQ\ BB \to Wt + X\\ VLQ\ QQ \to WqWq \end{array}$	0 or 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 2/≥3 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i>	$\begin{array}{l} z \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ J/2 \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J/2 \\ \geq 4 \ j \end{array}$	i Yes i Yes 2j Yes i Yes - 2j Yes Yes	13.2 36.1 20.3 20.3 36.1 20.3	T mass1.2 TeVT mass1.16 TeVT mass1.35 TeVB mass700 GeVB mass790 GeVB mass1.25 TeVQ mass690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV (* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ $2,3,4 e, \mu$ (S $3 e, \mu, \tau$ $1 e, \mu$ - - $\sqrt{s} = 8 \text{ TeV}$	2 j S) - 1 b - - √s = 13	- - Yes - - -	20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1 1	$m(W_{\mathcal{R}}) = 2.4 \text{ TeV, no mixing}$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2 0 Masse scale ITeV	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017 $\sqrt{s} = 7, 8, 13 \text{ TeV}$									
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,$	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \bar{q} \bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q} \bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{x} \bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} (\ell \ell) \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} (\ell \ell) \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \mathcal{W} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g} \bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{0$	$\begin{matrix} 0 \\ mono-jet \\ 0 \\ 0 \\ ee, \mu\mu \\ 3 e, \mu \\ 0 \\ 1-2 \tau + 0-1 \ell \\ 2 \gamma \\ \gamma \\ 0 \end{matrix}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	\$\vec{q}\$ \$\vec{q}\$ \$\vec{q}\$ \$\vec{g}\$ \$\vec{g}\$	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 Te 2.05 TeV	$\begin{split} &m(\tilde{k}_{1}^{0}){<}200~GeV,m(1^{st}~gen.~\bar{\mathfrak{q}}){=}m(2^{nd}~gen.~\bar{\mathfrak{q}}) \\ &m(\tilde{q}){-}m(\tilde{k}_{1}^{0}){<}5~GeV \\ &m(\tilde{k}_{1}^{0}){<}200~GeV, \\ &m(\tilde{k}_{1}^{0}){<}200~GeV, \\ &m(\tilde{k}_{1}^{0}){=}0~GeV \\ &m(\tilde{k}_{1}^{0}){=}0~GeV \\ &m(\tilde{k}_{1}^{0}){=}0~GeV \\ &m(\tilde{k}_{1}^{0}){=}0~GeV \\ &m(\tilde{k}_{1}^{0}){=}1700~GeV, \\ &cr(NLSP){<}0.1~mm \\ &m(\tilde{k}_{1}^{0}){=}1700~GeV, \\ &cr(NLSP){<}0.1~mm, \\ &m(\tilde{G}){>}1.8 \times 10^{-4}~eV, \\ &m(\tilde{g}){=}{=}\mathrm{m}(\tilde{g}){=}1.5~TeV \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
3 rd gen. ẽ med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_1^0 \end{array} $	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1	ğ ğ	1.92 TeV 1.97 TeV	$m(ilde{k}_1^0) \! < \! 600 { m GeV} \ m(ilde{k}_1^0) \! < \! 200 { m GeV}$	1711.01901 1711.01901
3 rd gen. squarks direct production	$ \begin{split} \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{k}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{k}_1^0 \\ \bar{t}_1 \bar{b}_1, \bar{b}_1 \to t \bar{k}_1^\pm \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{k}_1^0 \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to C \bar{t}_1^0 \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to C \bar{t}_1^0 \\ \bar{t}_1 \bar{t}_1 (natural GMSB) \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b D-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 9.7/13.3 10.3/36.1 36.1 20.3 36.1 36.1 36.1	Š1 950 GeV Š1 275-700 GeV Ž1 117-170 GeV 200-720 GeV Ž1 90-198 GeV 0.195-1.0 TeV Ž1 90-430 GeV 150-600 GeV Ž1 150-600 GeV Ž Ž2 290-790 GeV Ž 320-880 GeV 320-880 GeV 320-880 GeV		$\begin{split} & m(\tilde{x}_{1}^{0}) < 420 GeV \\ & m(\tilde{x}_{1}^{0}) < 200 GeV, m(\tilde{x}_{1}^{\pm}) = m(\tilde{x}_{1}^{0}) + 100 GeV \\ & m(\tilde{x}_{1}^{\pm}) = 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) = 55 GeV \\ & m(\tilde{x}_{1}^{0}) = 1 GeV \\ & m(\tilde{x}_{1}^{0}) = 1 GeV \\ & m(\tilde{x}_{1}^{0}) = 1 GeV \\ & m(\tilde{x}_{1}^{0}) = 0 GeV \\ & m(\tilde{x}_{1}^{0}) = 0 GeV \\ & m(\tilde{x}_{1}^{0}) = 0 GeV \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{array}{l} \overline{\ell}_{L,R}\overline{\ell}_{L,R}, \overline{\ell} \rightarrow \ell \overline{\chi}_{1}^{0} \\ \overline{\chi}_{1}^{+}\overline{\chi}_{1}^{-}, \overline{\chi}_{1}^{+} \rightarrow \overline{\ell} \nu(\ell \overline{\nu}) \\ \overline{\chi}_{1}^{+}\overline{\chi}_{1}^{-}, \overline{\chi}_{2}^{0}, \overline{\chi}_{1}^{+} \rightarrow \overline{\tau} \nu(\tau \overline{\nu}), \overline{\chi}_{2}^{0} \rightarrow \overline{\tau} \tau(\nu \overline{\nu}) \\ \overline{\chi}_{1}^{+}\overline{\chi}_{2}^{0} \rightarrow \overline{\ell}_{L} \nu \overline{\ell}_{L} \ell(\overline{\nu}\nu), \ell \overline{\nu} \overline{\ell}_{L} \ell(\overline{\nu}\nu) \\ \overline{\chi}_{1}^{+}\overline{\chi}_{2}^{0} \rightarrow W \overline{\chi}_{1}^{0} h \overline{\chi}_{1}^{0}, h \rightarrow b \overline{b} / W W / \tau \tau / \gamma \gamma \\ \overline{\chi}_{2}^{0} \overline{\chi}_{3}^{-}, \overline{\chi}_{2}^{0} \rightarrow \overline{\ell}_{R} \ell \\ GGM (bino NLSP) weak prod., \overline{\chi}_{1}^{0} \rightarrow \gamma \\ GGM (bino NLSP) weak prod., \overline{\chi}_{1}^{0} \rightarrow \gamma \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ q \tilde{G} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TeV $m(\tilde{x}_1^{\pm})=m(\tilde{x}_2^{0})$	$\begin{split} & m(\tilde{x}_{1}^{0}) \!\!=\!\! 0 \\ & m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, m(\tilde{e}, \tilde{v}) \!\!=\!\! 0.5(m(\tilde{x}_{1}^{+}) \!\!+\! m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, m(\tilde{e}, \tilde{v}) \!\!=\!\! 0.5(m(\tilde{x}_{1}^{+}) \!\!+\! m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, m(\tilde{e}, \tilde{v}) \!\!=\!\! 0.5(m(\tilde{x}_{1}^{+}) \!\!+\! m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{1}^{+}) \!\!=\!\! m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, \tilde{e} \text{ decoupled} \\ & m(\tilde{x}_{1}^{+}) \!\!=\!\! m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, \tilde{e} \text{ decoupled} \\ & m(\tilde{x}_{3}^{0}), m(\tilde{x}_{1}^{0}) \!\!=\!\! 0, m(\tilde{e}, \tilde{v}) \!\!=\!\! 0.5(m(\tilde{x}_{2}^{0}) \!\!+\!\!m(\tilde{x}_{1}^{0})) \\ & e^{r<1} nm \\ & cr<1 nm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	$\begin{array}{l} \label{eq:constraints} \begin{split} & \text{Direct}\tilde{\chi}_1^{\dagger}\tilde{\chi}_1^-\text{prod., long-lived}\tilde{\chi}_1^{\pm}\\ & \text{Direct}\tilde{\chi}_1^{\dagger}\tilde{\chi}_1^-\text{prod., long-lived}\tilde{\chi}_1^{\pm}\\ & \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ & \text{Stable}\tilde{g}\text{R-hadron}\\ & \text{Metastable}\tilde{g}\text{R-hadron}\\ & \text{Metastable}\tilde{g}\text{R-hadron}\\ & \text{Metastable}\tilde{g}\text{R-hadron}\\ & \text{GMSB},\tilde{\chi}_1^0\rightarrow \tilde{r}(\tilde{e},\tilde{\mu})+\tau(e,\mu)\\ & \text{GMSB},\tilde{\chi}_1^0\rightarrow eev/e\mu v/\mu\mu v \end{split}$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu_{0}$	1 jet - 1-5 jets - - - - - μ -	Yes Yes - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.58 TeV 1.57 TeV 2.37	$\begin{split} & m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) - 160 \; MeV, \; \tau(\tilde{\chi}_1^+) = 0.2 \; ns \\ & m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) - 160 \; MeV, \; \tau(\tilde{\chi}_1^+) < 15 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; \tau > 10 \; ns \\ & TeV \tau(\tilde{g}) = 0.17 \; ns, \; m(\tilde{\chi}_1^0) = \; 100 \; GeV \\ & 10 < tan/s < 50 \\ & 10 < tan/s < 50 \\ & 1 < c \tau(\tilde{\chi}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 < c \tau(\tilde{\chi}_1^0) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV		$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 b - - 5 large-R j - 10 jets/0-4 2 jets + 2 b 2 b	- Yes Yes ets - 4 <i>b</i> - 4 <i>b</i> - <i>b</i> -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	\bar{v}_r $\bar{a}.\bar{s}$ $\bar{a}.\bar{s}$ 1.14 \bar{x}_1^+ 450 GeV \bar{s}	1.9 TeV 1.45 TeV TeV 1.875 TeV 2.1 Te 1.65 TeV 4-1.45 TeV	$\begin{split} \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ m(\bar{a})=m(\bar{a}), c\tau_{LSP}<1 \ mm \\ m(\tilde{k}_1^0)>400 \ GeV, \lambda_{12k}\neq 0 \ (k=1,2) \\ m(\tilde{k}_1^0)>0.2\times m(\tilde{k}_1^{-1}), \lambda_{133}\neq 0 \\ m(\tilde{k}_1^0)=1075 \ GeV \\ \hline & m(\tilde{k}_1^0)=1 \ TeV, \lambda_{112}\neq 0 \\ m(\tilde{k}_1)=1 \ TeV, \lambda_{323}\neq 0 \\ \\ & BR(\tilde{t}_1\rightarrow be/\mu)>20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]									

ATLAS Preliminary

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.