
Quantum Field Theory 2: exer
ises for week 3

Exer
ise 5: propagator for a massive gauge boson

The Pro
a theory des
ribes free, massive gauge bosons. It gives the following Lagrangian
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is the �eld tensor for the real gauge �eld A

�

(x). We

ignore for the moment the gauge invarian
e problems that massive gauge �elds have.

(a) Derive the following equation of motion for the lagrangian:
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whi
h 
ontains a � �A term alongside a Klein-Gordon term.

(b) Contra
t the free index in this equation of motion with a derivative �, i.e. 
onsider
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= 0, and show that this leads to the Lorenz 
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(
) What does the fa
t that the Lorenz 
ondition holds imply for the equation of motion

and its solutions A

�

(x)?

(d) Consider the plane-wave expansion of the 
orresponding quantum-�eld solution:
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with �

�

�

(p) the polarization ve
tor belonging to the parti
les in the Pro
a theory with

on-shell momentum 4-ve
tor p

�

and polarization quantum number �. The operators

â

y

(~p; �) and â(~p; �) are the bosoni
 
reation and annihilation operators belonging to

these free-parti
le modes. Use this plane-wave expansion to argue that p

�

�

�

�

(p) = 0.

Now that we have a bit of a mathemati
al understanding of the theory, let us try to �nd

the mathemati
al formulation of the propagator in this theory. This obje
t should en
ode

the 
reation of a parti
le/antiparti
le at one spa
etime point (\sour
e") and its subsequent

destru
tion at another (\sink"). The probability for this to happen 
an be expressed as
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where j0i represents the va
uum state and T (: : :) orders the arguments a

ording to their

time 
omponent (time ordering). If we were to substitute the plane-wave expansion (2) into

this expression, we would end up with a sum over the polarizations, whi
h we will 
all R
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Let us try to see what we 
an already dedu
e from this polarization sum alone.

(e) Argue that the generi
 result for the sum in equation (4) should be
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where 


1

and 
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are s
alar fa
tors. What is the mass dimension of 
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and 
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? Explain

why we 
an simplify this equation to R
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In order to �nd the full expression for the propagator, we noti
e that equation (5) is given

in momentum spa
e. Sin
e the propagator des
ribes the motion of a parti
le, there is

a 
on
eptual link between the propagator and the equation of motion. The equation of

motion you derived earlier is however given in position spa
e.

(f) Transform the di�erential operator D

��

Pro


of the Pro
a theory to its momentum-spa
e


ounterpart D

��

Pro


(p). Note that this momentum 
orresponds to a generi
 Fourier

transform and is therefore in general not on-shell.

Sin
e we know that the tensorial stru
ture of the propagator is fully given by the polarization

sum of equation (5), we know that the full propagator 
an be written as
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(g) Determine the values for 


3

and 


4

if we would demand that
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whi
h de�nes the propagator to be the inverse of the equation of motion. What does

this imply for the expression for the full propagator?

(h) Inspe
t the momentum dependen
e of your massive gauge boson propagator and rea-

son why its high-momentum behaviour might pose a problem in theories where the

intera
tions are being mediated by su
h a massive gauge boson.

(i) In 
ase you have some time left, you 
an substantiate on this by repla
ing the Maxwell

part of the QED Lagrangian by the Pro
a Lagrangian and subsequently perform a

standard naive power 
ounting analysis (
f. pages 87 and 88 of the QFT le
ture notes)

to �gure out whether this so-
alled \massive QED" is renormalizable or not.

In this 
ourse we will en
ounter di�erent types of propagators. They all share that they


an be 
al
ulated via the approa
h you took here: inverting the equation of motion. Any

propagator 
an be 
al
ulated in this way! If you would do this rigorously, you'd �nd that

the denominator will always be the same (for all stable parti
les), be
ause it essentially

originates from the Klein-Gordon theory (or, to speak in more physi
al terms, from the

energy-momentum relation). The only thing that 
hanges every time is the numerator,

whi
h des
ribes the polarization sum.

In addition, you have seen a �rst glimpse of the problems that o

ur when using a gauge

theory that is based on a massive gauge �eld!
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