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1 The Klein-Gordon �eld

The �rst four le
tures 
over Chapter 2 of the textbook by Peskin & S
hroeder. The rel-

evant 
onventions are listed on pages xix{xxi in the book, involving the use of so-
alled

natural units (~ = 
 = �

0

= �

0

= 1) by absorbing these 
onstants in the relevant �elds and

quantities. As a result, a single s
ale remains: mass. Please familiarize yourself with these


onventions and treat Chapter 1 as reading material, as re
ommended by the authors.

Throughout this reader you will en
ounter 
ir
led numbers. These numbers mat
h the

markers listed in the 
ourse's storyline ( https://www.hef.ru.nl/~wimb/QFT_story.pdf ).

1.1 Arguments in favour of Quantum Field Theory

From parti
le{wave duality we know that the properties of e.g. ele
trons and photons are

similar: both obje
ts give rise to di�ra
tion phenomena and 
arry a parti
le-like pun
h.

Histori
ally ele
tromagnetism was �rst per
eived as a �eld theory and its parti
le inter-

pretation (photons) was observed later through the photo-ele
tri
 e�e
t. The other way

around, ele
trons were �rst per
eived as elementary parti
les and the �eld aspe
ts emerged

only on
e relativisti
 energies were 
onsidered.

1 Question: what is more fundamental, the �elds (with parti
les being derived

quantities resulting from quantization) or the parti
les (with the �elds being

derived quantities resulting from 
olle
tive many-parti
le behaviour)?

There are four observations that support the former point of view.

1. Classi
al physi
s : as supported by experiment there should be no \a
tion at a dis-

tan
e", i.e. there should be no for
es that are felt everywhere instantaneously. As

a result, the instantaneous laws of Newton and Coulomb had to be repla
ed by the

lo
al laws of nature of Einstein and Maxwell, based on �eld theories! . . . However,

stri
tly speaking a lo
ally de�ned parti
le approa
h is still possible.

2. Relativisti
 quantum me
hani
s: as supported by any high-energy 
ollision exper-

iment a relativisti
 one-parti
le quantum theory is not feasible. The number of

parti
les is not 
onserved, i.e. parti
les are not indestru
tible. This di�ers strongly

from non-relativisti
 quantum me
hani
s as formulated by S
hr�odinger, where mas-

sive parti
les are around forever and 
an thus be per
eived as fundamental. Photons

are massless and are therefore always to be treated relativisti
ally, so we have no

photon 
onservation.

Let's re
all what happened when we were trying to 
onstru
t a relativisti
 quantum me-


hani
al theory for a free parti
le in 
at (Minkowskian) spa
etime. The ingredients for the


onstru
tion were:
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� A wave equation that keeps its form under Lorentz-transformations, as required by

the relativity prin
iple.

� A 
orre
t quantum me
hani
al probability interpretation.

� The relativisti
 relation E =

p

~p

2

+m

2

should be built in, in order to ensure that

parti
le{wave duality is properly in
orporated.

The following problems were en
ountered:

� Negative-energy solutions, leading to an energy spe
trum that is unbounded from

below. Dira
 solved this for fermioni
 theories by demanding that the sea of negative-

energy states (Dira
 sea) is o

upied. Unwanted transitions are then forbidden pro-

vided that the ex
lusion prin
iple applies, whi
h is the 
ase for fermions. However,

that means that the resulting one-parti
le theory has in fa
t an in�nite number of

parti
les.

� At energies of the order of the parti
le mass, extra parti
les 
an be liberated from the

Dira
 sea. In Dira
's theory this is 
alled parti
le{hole 
reation, whi
h 
orresponds

to parti
le{antiparti
le pair 
reation in quantum �eld theory.

In order to see at what length s
ales the breakdown of one-parti
le quantum me
hani
s

o

urs we use the old units for a moment and 
onsider a parti
le with mass m in a box with

size L. A

ording to Heisenberg's un
ertainty relation the momentum of the parti
le then

has an un
ertainty �p = O(~=L). This in turn leads to an un
ertainty in the relativisti


energy E =

p

p

2




2

+m

2




4

� p
 of roughly 
�p = O(~
=L). If this energy un
ertainty

ex
eeds the energy threshold 2m


2

then pair 
reation may o

ur. This happens at length

s
ales L � O(�




), with �




= ~=(m
) the Compton wavelength. At these length s
ales

we 
annot say anymore that we are dealing with a single parti
le, sin
e it is a

ompanied

by a swarm of parti
le{antiparti
le pairs, and a des
ription with an unspe
i�ed number

of parti
les is required! Note that the Compton wavelength is smaller than the de Broglie

wavelength �

b

= h=p, whi
h is the length s
ale where the wave-like nature of parti
les

be
omes apparent.

1 The Compton wavelength is the length s
ale where even the 
on
ept of a

single point-like parti
le breaks down.

So, if we were to use a parti
le approa
h that is de�ned lo
ally, it 
annot be a single-parti
le

approa
h sin
e multi-parti
le obje
ts will unavoidably feature.

3. Many-parti
le quantum me
hani
s: the parti
le interpretation of a quantum me
han-

i
al theory 
an 
hange radi
ally in a di�erent physi
al environment (
f. parti
les be-


oming waves in low-temperature super
uid

4

He, 
oherent states in a driven os
illator

system, . . . ). That means that the nature of parti
les 
an 
hange!
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4. The observation that all parti
les of the same type and in the same physi
al setting

are always the same everywhere . This hints at a des
ription of physi
s that spans

all of spa
e and time.

1.2 Lagrangian and Hamiltonian formalism (§ 2.2 in the book)

2a In order to set up quantum �eld theory we �rst 
onsider 
lassi
al �eld

theory in the Lagrangian and Hamiltonian formalism. The philosophy behind

this is that wave equations 
an be viewed as equations of motion for the wave

fun
tions, i.e. the �elds. This is best formulated in terms of Lagrangians for


ontinuous systems. Su
h Lagrangians are parti
ularly suitable for dis
ussing

symmetries, the 
ornerstones of relativisti
 quantum �eld theory.

Classi
al Lagrangian formalism: for a �nite number of degrees of freedom the La-

grangian is given by

L

�

fq

j

(t)g; f _q

j

(t) = dq

j

(t)=dtg; t

�

= T � V ;

where q

j

are generalized 
oordinates, T is the kineti
 energy and V the potential energy.

Hamilton's variation prin
iple: 
lassi
al solutions to the equations of motion (
lassi
al

paths) are obtained by �nding the extrema of the a
tion S =

R

t

2

t

1

dt L under syn
hronous

variations of the paths while keeping the endpoints �xed.

Variation around the 
lassi
al path

for a free parti
le

t

q

t

1

q(t

1

)

t

2

q(t

2

)

q(t)

q


l

(t)

The 
ondition for a stationary a
tion reads

ÆS = Æ

�

Z

t

2

t

1

dt L

�

= 0 for q

j

(t)! q

j

(t) + Æq

j

(t) su
h that Æq

j

(t

1

) = Æq

j

(t

2

) = 0 :

From this it follows that

X

j

Z

t

2

t

1

dt

�

�L

�q

j

Æq

j

+

�L

� _q

j

Æ _q

j

�

=

X

j

�

�L

� _q

j

Æq

j

�

t= t

2

t= t

1

+

X

j

Z

t

2

t

1

dt

�

�L

�q

j

�

d

dt

�L

� _q

j

�

Æq

j

= 0 :
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This has to be true for all Æq

j

, so from this the Lagrange equations follow:

8

j

d

dt

�

�L

� _q

j

�

=

�L

�q

j

:

These are the equations of motion for a system without boundary 
onditions.

y

x

(x

j

; y

j

)

�!

y

x

y(x)

Figure 1: A 
lassi
al, non-relativisti
 example of a 
ontinuous system.

Now we swit
h from a dis
rete set of parti
les to a �eld. A �eld is a dynami
al system with

a 
ontinuous, in�nite number of degrees of freedom, i.e. at least one degree of freedom for

ea
h point in spa
e. An example is given by the string in �gure 1, in whi
h 
ase gradients

in x will enter V as elasti
 energy (see also Ex. 1). In the �eld-theory 
ase the dis
rete

set of generalized 
oordinates fq

j

(t)g is repla
ed by a 
ontinuous generalized 
oordinate

�(x), where x is a spa
etime four-ve
tor. In this way we treat ~x and t on equal footing,

as required for a relativisti
 approa
h. The Lagrangian L

�

fq

j

g; f _q

j

g; t

�

is repla
ed by a

Lagrangian density L(�(x); �

�

�), whi
h depends on the generalized 
ooordinate �(x) and

the 
orresponding four-velo
ity �

�

�(x). The fa
t that the derivates with respe
t to time

and spa
e should be 
ombined into a four-velo
ity �

�

�(x) is needed for a proper relativis-

ti
 treatment, as we will see later on. In pra
ti
e we only work with Lagrangian densities,

so we usually refer to L in a sloppy way as `the Lagrangian'.

Now that we have a Lagrangian, we need to formulate Hamilton's variation prin
iple for


ontinuous systems:

ÆS = Æ

�

Z

t

2

t

1

dt

Z

d~x L(�; �

�

�)

�

� Æ

�

Z

x

2

x

1

d

4

x L(�; �

�

�)

�

= 0

for �(x)! �(x) + Æ�(x) su
h that Æ�(x)

j~x j!1

����! 0 and 8

~x

Æ�(t

1

; ~x ) = Æ�(t

2

; ~x ) = 0 :

This means that the system evolves between two �eld 
on�gurations that are kept �xed at

the temporal and spatial boundaries of the four-dimensional integration region. The latter

requirement follows from the fa
t that we will 
onsider systems with �nite properties only.
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From this variation prin
iple it follows that

ÆS =

Z

x

2

x

1

d

4

x

�

�L

��

Æ� +

�L

�(�

�

�)

Æ(�

�

�)

�

=

Z

x

2

x

1

d

4

x �

�

�

�L

�(�

�

�)

Æ�

�

+

Z

x

2

x

1

d

4

x

�

�L

��

� �

�

�

�L

�(�

�

�)

��

Æ� = 0

for all allowed variations Æ�. A

ording to Gauss' divergen
e theorem, the �rst integral in

the �nal expression vanishes sin
e it gives rise to an integral over the boundary of the four-

dimensional integration region. The �nal result is the so-
alled Euler{Lagrange equation

for a stationary a
tion:

�

�

�

�L

�(�

�

�)

�

=

�L

��

:

We get the same equation for ea
h extra �eld o

uring in L.

An immediate 
onsequen
e of the variation prin
iple is that the equation of motion (Euler{

Lagrange equation) does not 
hange if we add a �-dependent four-divergen
e to the La-

grangian: L ! L + �

�

G

�

. The reason is that this extra term adds a boundary 
ontri-

bution to S. Su
h a boundary 
ontribution remains una�e
ted by a �eld variation with

�xed boundaries. Note that we have not 
onsidered the possibility of having terms in the

Lagrangian that 
ouple �(t; ~x ) to �(t; ~y ). This follows from the lo
ality requirement that

we have to impose on viable quantum �eld theories. As a result, only �(x) and �

�

�(x)

o

ur.

Just like the Lagrangian, the Hamiltonian H in the dis
rete 
ase be
omes an integral of

the Hamiltonian density H in the 
ontinuous 
ase:

H

�

fq

j

g; fp

j

g

�

�

X

j

p

j

_q

j

� L �!

Z

d~x H(�;

~

r�; �) �

Z

d~x

�

�

��

�t

� L

�

;

with the 
onjugate momenta for both 
ases de�ned as

p

j

�

�L

� _q

j

�! � �

�L

�(��=�t)

:

Note the preferred treatment of t with respe
t to ~x in the de�nition of H : ��=�t o

urs

in the de�nition of � . That means that t and ~x are not treated on equal footing in the

Hamiltonian formalism, making the Hamiltonian formalism less suitable for dealing with

relativisti
 �eld theories than the Lagrangian formalism. We will need to knowH, though,

for performing the quantization of the 
lassi
al theory.

Example: 
onsider the following Lagrangian 
ontaining a set of �elds labeled by a 2 N

L

�

f�

a

g; f�

�

�

a

g

�

=

1

2

_

�

2

a

�

1

2

(

~

r�

a

)

2

�

1

2

m

2

�

2

a

=

1

2

(�

�

�

a

)(�

�

�

a

)�

1

2

m

2

�

2

a

:
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A summation 
onvention is implied here, so �

2

a

=

P

a

�

2

a

. Note that a

ording to the

standard 
onvention in the book �

�

�

a

= (�

0

�

a

;

~

r�

a

) and �

�

�

a

= (�

0

�

a

;�

~

r�

a

). Using

Einstein's standard summation 
onvention for repeated Minkowski indi
es, the Euler{

Lagrange equations then read

�

�

(�

�

�

a

) +m

2

�

a

= (�

2

0

�

~

r

2

+m

2

)�

a

� (� +m

2

)�

a

= 0 ;

i.e. all �elds �

a

satisfy the familiar Klein-Gordon equation. The 
onjugate momenta and

the Hamiltonian density are given by

�

a

=

�L

�

_

�

a

=

_

�

a

and H =

_

�

a

�

a

� L =

1

2

�

2

a

+

1

2

(

~

r�

a

)

2

+

1

2

m

2

�

2

a

:

The �rst (kineti
) term in the Hamiltonian density 
orresponds to the energy 
ost of \mov-

ing" in time, the se
ond (elasti
) term to the energy 
ost of \shearing" in spa
e, and the

third (mass) term is the energy 
ost of having the �eld around at all. Note that in deriving

this Hamiltonian we sum over all �elds in the term

_

�

a

�

a

. This makes sense, sin
e all �elds

�

a

are independent.

2b Question: apart from being lo
al, what requirements do we have to impose

on the Lagrangian density of a relativisti
 quantum �eld theory?

Relativity prin
iple: the guiding prin
iple will be the relativity prin
iple, whi
h states

that in ea
h inertial frame the physi
s should be the same. One option is to use a pas-

sive transformation to go from one inertial frame to the other. In that 
ase we have

to �nd a relativisti
 wave equation that keeps its form under Lorentz transformations:

Df(x) = 0 ) D

0

f

0

(x

0

) = 0, where D is a di�erential operator and f a �eld. The

prime indi
ates Lorentz-transformed obje
ts. Alternatively, we 
an physi
ally transform

all �elds and demand the relativisti
 wave equation to be invariant. This is 
alled an a
tive

transformation. To phrase it di�erently, if a �eld satis�es the equation of motion, then the

same should hold for the Lorentz-transformed �eld:

Df(x) = 0 ) Df

0

(x) = 0 :

This is automati
ally guaranteed if the asso
iated Lagrangian density L is a Lorentz s
alar

�eld, sin
e the a
tion S will in that 
ase be Lorentz invariant and therefore an extremum

of the a
tion will indeed yield another extremum upon Lorentz transformation. Similar

arguments hold for 
onstant translations x

0

= x + x

0

, where x

0

is a 
onstant four-ve
tor.

Proof: in order to prove that the a
tion is Lorentz invariant if L is a Lorentz s
alar

�eld, we �rst give the oÆ
ial de�nition of a Lorentz s
alar �eld. Consider to this end the

Lorentz transformation x

�

! x

0�

= �

�

�

x

�

, with � a 
ontinuous Lorentz transformation

tensor (des
ribing rotations and boosts). Then �(x) 2 R is 
alled a Lorentz s
alar �eld

6



if it transforms as �(x) ! �

0

(x) = �(�

�1

x) under the Lorentz transformation, i.e. the

transformed �eld evaluated at the transformed spa
etime point gives the same value as

the original �eld in the spa
etime point prior to the Lorentz transformation. The Ja
obian

of this transformation is 1, sin
e det � = 1 for a 
ontinuous Lorentz transformation.

Therefore, for a Lorentz s
alar Lagrangian density L

L(x)

s
alar

����! L

0

(x) = L(�

�1

x) � L(y) )

S =

Z

d

4

x L(x) ! S

0

=

Z

d

4

x L

0

(x) =

Z

d

4

x L(y)

x=�y ;Ja
obian=1

==============

Z

d

4

y L(y) = S :

Note, though, that the endpoints t

1

and t

2

of the temporal integration interval will 
hange

under boosts.

1.2.1 Noether's theorem for 
ontinuous symmetries

3 As a next ingredient for setting up quantum �eld theory we will try to iden-

tify 
onserved 
urrents and \
harges" that are present in the theory. These


onserved 
harges are instrumental in quantizing the theory and �nding its par-

ti
le interpretation.

Consider a �eld �(x) that satis�es the Euler{Lagrange equation of L(�; �

�

�) and apply

the in�nitesimal 
ontinuous transformation

�(x)! �

0

(x) = �(x) + ���(x) ; with � independent of x and in�nitesimal :

We speak of a symmetry under this transformation if L(x) 
hanges by a four-divergen
e:

L(x)! L(x) + ��

�

G

�

(x), sin
e that implies that the equation of motion is left invariant

(
f. the remark on page 5). In that 
ase

��

�

G

�

= ��L = �

�

�L

��

�� +

�L

�(�

�

�)

�(�

�

�)

�

= � �

�

�

�L

�(�

�

�)

��

�

+ �

�

�L

��

� �

�

�

�L

�(�

�

�)

�

�

�� :

The se
ond term is zero if �(x) is a solution to the Euler{Lagrange equation. In that 
ase

we are left with

�

�

�

�L

�(�

�

�)

���G

�

�

� �

�

j

�

= 0 ;

i.e. j

�

is a 
onserved 
urrent when expressed in terms of solutions to the Euler{Lagrange

equations. This is trivially extended to 
ases with more �elds and automati
ally leads to

Noether's theorem: for ea
h 
ontinuous symmetry there is a 
onserved 
urrent.
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This theorem has two important 
onsequen
es:

� The \
harge" Q(t) =

R

d~x j

0

(x) is 
onserved globally if

~

j(x) vanishes suÆ
iently

fast for j~xj ! 1. Proof: if

~

j(x) vanishes suÆ
iently fast for j~xj ! 1 we have

dQ(t)

dt

=

Z

d~x

�j

0

�t

�

�

j

�

=0

====== �

Z

d~x

~

r �

~

j

Gauss

====== �

Z

d~s �

~

j = 0 :

� More importantly this 
harge 
onservation also holds lo
ally!

Proof: following the previous 
ase

d

dt

Q

V

(t) �

d

dt

Z

V

d~x j

0

(x) = �

Z

V

d~x

~

r �

~

j

Gauss

===== �

Z

S(V )

d~s �

~

j :

In other words: any 
harge leaving the 
losed volume V must be a

ounted for by

an expli
it 
ow of the 
urrent

~

j through the surfa
e S(V ) of V .

Translation symmetry: from imposing the relativity prin
iple we know that L(x) should

be a Lorentz s
alar, so under an in�nitesimal translation

x

�

! x

0�

= x

�

� �

�

where �

�

is a 
onstant in�nitesimal four-ve
tor

we have

L(x) ! L

0

(x) = L(

inverse

z }| {

x+ � ) � L(x) + �

�

�

�

L(x) = L(x) + �

�

�

�

�

g

��

L(x)

�

:

The last term is a total four-divergen
e, so relativisti
 �eld theories have translation sym-

metry with

�

G

�

(x)

�

�

= g

��

L(x) for all four independent translations labeled by �. Now

suppose that L depends on an arbitrary 
olle
tion of �elds f

a

(x) that transform as

f

a

(x) ! f

a

(x+ �) � f

a

(x) + �

�

�

�

f

a

(x) � f

a

(x) + �

�

�

�f

a

(x)

�

�

;

whi
h is valid for all 
omponents of viable quantum �elds. For f

a

(x) satisfying the Euler{

Lagrange equations, this results in four 
onserved 
urrents:

T

��

�

�

�L

�(�

�

f

a

)

�

�

�

f

a

� g

��

L (� = 0; � � � ; 3) ;

and hen
e four 
onserved 
harges:

Z

d~x T

00

=

Z

d~x

�

�L

�

_

f

a

_

f

a

� L

�

=

Z

d~x

h

�

a

_

f

a

� L

i

=

Z

d~x H = H ;

Z

d~x T

0j

= �

Z

d~x

�

�L

�

_

f

a

r

j

f

a

� 0

�

= �

Z

d~x �

a

r

j

f

a

� P

j

:

Summation over a is again implied. The quantity T

��

is 
alled the stress-energy tensor or

energy-momentum tensor, H is the physi
al energy 
arried by the �elds f

a

, and P

j

is the

j

th


omponent of the physi
al momentum 
arried by the �elds f

a

. We will see later that

what we just did does not just hold for s
alar �elds, but also for any 
omponent of a ve
tor,

spinor, ... �eld.
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3a The �eld energy H will play a 
ru
ial role in the quantization of free �eld

theories, sin
e it will feature in the quantum me
hani
al requirement of having

an energy spe
trum that is bounded from below. On top of that it determines

the quantum me
hani
al time evolution. The �eld momentum will help us in

determining the parti
le interpretation of free quantum �eld theories.

Intermezzo 1: the energy-momentum tensor in 
osmology

In general relativity a 
urved-spa
etime version of the energy-momentum tensor �

��

fea-

tures, whi
h is symmetri
 under the inter
hange of � and � . In the modi�ed Einstein

equation in
luding 
osmologi
al 
onstant:

R

��

�

1

2

g

��

R + �g

��

= � 8�G�

��

(G = Newton's 
onstant) ;

this symmetrized energy-momentum tensor des
ribes matter and energy in the universe,

whereas the Ri

i tensor R

��

, s
alar 
urvature R = g

��

R

��

and 
osmologi
al 
onstant �

des
ribe the \stru
ture" of spa
etime for an empty spa
e (i.e. for the va
uum).

The 
at-spa
etime version of the energy-momentum tensor T

��

that we have just derived

is in general not guaranteed to be symmetri
 under the inter
hange of � and � . However,

this 
an be arranged by adding an appropriate extra term �

�

K

���

with K

���

= �K

���

su
h that �

��

= T

��

+ �

�

K

���

= �

��

and �

�

�

��

= �

�

T

��

+ �

�

�

�

K

���

= �

�

�

�

K

���

= 0.

For an expli
it example, see Ex. 2.1 in the textbook by Peskin & S
hroeder.

By bringing the 
osmologi
al-
onstant term to the right-hand side of the modi�ed Einstein

equation, it 
an be viewed as representing the energy-momentum tensor of empty spa
e

itself (taking into a

ount su
h e�e
ts as va
uum energy and va
uum pressure). Su
h a


osmologi
al-
onstant term therefore 
onstitutes the va
uum 
ontribution to the 
urvature.

In view of its proportionality to the metri
 tensor, the 
osmologi
al-
onstant term is the

same for all inertial observers in the 
at-spa
etime 
ase, whi
h is 
ompatible with the

notion that in that 
ase the va
uum should not have a preferred frame. So, the presen
e

of a 
osmologi
al-
onstant term does not 
on
i
t with any �rst-prin
iple requirements!

For a positive 
osmologi
al 
onstant (�> 0) the energy density of the va
uum

is positive and the asso
iated pressure is negative, resulting in an a

elerated

expansion of empty spa
e as seems to be supported by experiment (see next

page). Su
h a va
uum energy is usually referred to as dark energy. We will

see shortly that �eld quantization 
an a
tually provide a sour
e of dark energy.

The reason why the pressure is negative follows from the simple fa
t that energy is released

if the volume of spa
e expands, whereas a positive \pressure on spa
e" would require work

to be exerted during the expansion. For a positive 
osmologi
al 
onstant the va
uum

represents an unlimited energy reservoir, whi
h is tapped when the universe in
ates.
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A

elerated expansion of the universe

If all of the energy in the universe would be in the form of matter, radiation and grav-

itational waves, the rate of expansion of the universe would de
rease 
ontinuously after

the Big Bang due to gravity. However, if empty spa
e itself would also 
arry a positive

energy density, whi
h 
ould be viewed as \the energy 
ost of having spa
e", then this is

not ne
essarily true anymore. Su
h a dark-energy density would have a repelling e�e
t.

Moreover, if this density would be 
onstant it would not be a�e
ted by the expansion of

the universe, whereas the density of matter de
reases as the universe expands. This would

imply that the universe 
ould undergo a transition from being matter/radiation dominated

at early stages to being dark-energy dominated at later stages, resulting in a rea

eleration

of the universe from a 
ertain moment onwards. Pre
isely this s
enario seems to be borne

out by experiment (see the �gure below and the le
ture 
ourse \Gravity and the Cosmos").

Saul Perlmutter, Brian S
hmidt, Adam Riess (2011 Nobel Prize in Physi
s)

The expansion rate of the universe at di�erent times 
an be inferred from the redshift of

far away obje
ts, provided that we 
an determine in a reliable way how mu
h distan
e

the light has travelled before rea
hing us. To this end supernova 1a explosions are used

as standard 
andles. Sin
e these explosions produ
e as mu
h light as an entire galaxy

at peak luminosity, they 
an be used as bea
ons to look into the distant past. Another


ru
ial feature of supernova 1a explosions is that they have a well-de�ned me
hanism:

a white dwarf a

retes matter from a 
ompanion star until it rea
hes a 
riti
al mass at

whi
h a runaway 
arbon fusion is triggered that sets o� the explosion. These supernova 1a

explosions produ
e a distin
tive luminosity spe
trum, whi
h makes them identi�able. The

distan
e travelled by the light then follows from the observed peak luminosity, by 
omparing

it to the known peak luminosity at the time of emission.

10



Symmetry under rotations and boosts (
ontinuous Lorentz transformations):

under an in�nitesimal 
ontinuous Lorentz transformation

x

�

! x

0�

= �

�

�

x

�

� x

�

+ !

�

�

x

�

;

where !

��

= �!

��

2 R is an in�nitesimal tensor with six independent 
omponents. The

Lagrangian is a Lorentz s
alar, so

L(x) ! L(�

�1

x) � L(x� !x) � L(x)� !

�

�

x

�

�

�

L(x)

!

�

�

=0

===== L(x)� !

�

�

�

�

x

�

L(x) = L(x)� !

��

�

�

�

g

��

x

�

L(x)

�

!

��

=�!

��

======== L(x)�

1

2

!

��

�

�

�

[g

��

x

�

�g

��

x

�

℄L(x)

�

:

Sin
e L(x) 
hanges by a total four-divergen
e, relativisti
 �eld theories have a symmetry

under 
ontinuous Lorentz transformations with

�

G

�

(x)

�

��

= � [g

��

x

�

�g

��

x

�

℄L(x) for all

six independent 
omponents of !

��

.

Now 
onsider a Lagrangian for a s
alar �eld �(x). Su
h a �eld transforms as

�(x) ! �

0

(x) = �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) � �(x) +

1

2

!

��

�

��(x)

�

��

:

This results in six 
onserved 
urrents, one for ea
h independent 
omponent of !

��

:

J

���

(x) =

�

�L

�(�

�

�)

�

[x

�

�

�

�x

�

�

�

℄�(x) + [g

��

x

�

�g

��

x

�

℄L(x) = T

��

(x)x

�

� T

��

(x)x

�

;

and hen
e six 
onserved \
harges":

� Rotations (�; � = i; j ): J

k

�

1

2

�

ijk

R

d~x

�

T

0j

(x)x

i

�T

0i

(x)x

j

�

, with summation over

the spatial indi
es i and j implied. This is the k

th


omponent of the physi
al angular

momentum 
arried by the �eld �(x).

� Boosts (�; � = 0; i): K

i

�

R

d~x

�

T

0i

(x)x

0

� T

00

(x)x

i

�

= x

0

P

i

�

R

d~x x

i

T

00

(x).

Conservation of these three \
harges" implies that

d

dt

�

x

0

P

i

�

R

d~x x

i

T

00

(x)

�

=

P

i

�

d

dt

R

d~x x

i

T

00

(x) = 0. Sin
e

R

d~x T

00

(x) = H, this equation 
an be interpreted

as saying that the \
entre-of-energy" of the �eld travels at 
onstant velo
ity, in

analogy with the movement of the 
entre-of-mass of a free 
lassi
al system.

3a The angular momentum of a �eld depends on the type of �eld and will thus

be useful after quantization. It will help us to determine the intrinsi
 spin of

the parti
les des
ribed by the free quantum �eld theory that 
orresponds to a

given wave equation. As a result of the relativity prin
iple, ea
h type of wave

equation will give rise to a spe
i�
 parti
le spin.
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Abelian internal symmetry (\global U(1) gauge symmetry"): an internal sym-

metry involves a transformation of the �elds that a
ts in the same way at every spa
etime

point, whereas abelian implies multiplying all �elds by a 
onstant phase fa
tor. Consider

a 
omplex s
alar �eld �(x) that satis�es the Euler{Lagrange equations of the Lagrangian

L(�; �

�

; �

�

�; �

�

�

�

) = (�

�

�)(�

�

�

�

)�m

2

��

�

:

This Lagrangian is invariant under the 
ontinuous transformation �! e

i�

� ; �

�

! e

�i�

�

�

,

where � 2 R is a 
onstant. This implies that under the in�nitesimal version of this

transformation, i.e.

� ! �+ �(i�) � �+ ��� and �

�

! �

�

+ �(�i�

�

) � �

�

+ ���

�

;

we get �L = 0 ) G

�

= 0. As a result the 
urrent

j

�

= i��

�

�

�

� i�

�

�

�

� = i

�

(�

�

�

�

)�� �

�

�

�

�

�

is 
onserved. For an extended example of a gauge symmetry see Ex. 3.

3b We will see later that the 
onserved 
harge arising from 
urrents of this type

have the interpretation of ele
tri
 
harge or parti
le number. The asso
iated

U(1) gauge symmetry will feature prominently in a symmetry-based des
ription

of ele
tromagneti
 intera
tions.

Symmetries versus unobservable quantities: the above-given symmetries are in fa
t

all related to quantities that are fundamentally unobservable.

3 The abelian internal symmetry is linked to the unobservability of the absolute

phase of a QM wave fun
tion. Translation and rotation symmetry are the

result of the unobservability of the absolute position and dire
tion in spa
etime.

Symmetry under boosts is related to the unobservability of the absolute velo
ity

of a 
hosen referen
e frame.

1.3 The free Klein-Gordon theory (real 
ase, § 2.3 in the book)

We start our tour of the relativisti
 quantum-�eld-theory world with the simplest example:

the quantum �eld theory for real s
alar �elds that satisfy the free Klein-Gordon (KG)

equation. The 
lassi
al Lagrangian for a real s
alar �eld �(x) that satis�es the free KG

equation is given by

L =

1

2

(�

�

�)(�

�

�)�

1

2

m

2

�

2

Euler-Lagrange

=========) (� +m

2

)�(x) = 0 ; � =

�L

�

_

�

=

_

� :

The 
orresponding time-independent Hamiltonian reads (
f. page 6)

H =

Z

d~x

h

1

2

�

2

+

1

2

(

~

r�)

2

+

1

2

m

2

�

2

i

:
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4a Question: how should we quantize su
h a 
lassi
al �eld theory?

1) Canoni
al quantization: in prin
iple we 
ould approa
h this in the same way as in the


ase of the quantization of Newtonian me
hani
s: the dynami
al 
oordinates and asso
iated


onjugate momenta be
ome operators that satisfy 
anoni
al 
ommutation relations. In the

S
hr�odinger pi
ture this reads

� Dis
rete quantum me
hani
s:

�

q̂

j

; p̂

k

�

= iÆ

jk

^

1 ;

�

q̂

j

; q̂

k

�

=

�

p̂

j

; p̂

k

�

= 0 .

� Continuous quantum �eld theories:

�

^

�

j

(~x ); �̂

k

(~y )

�

= iÆ

jk

Æ(~x� ~y )

^

1 ,

�

^

�

j

(~x );

^

�

k

(~y )

�

=

�

�̂

j

(~x ); �̂

k

(~y )

�

= 0 .

Subsequently, the fully 
ovariant (time-dependent) versions of these 
ommutation relations


an be obtained by swit
hing to the Heisenberg pi
ture. This type of quantization pro
e-

dure is 
alled 
anoni
al quantization.

2) Quantizing an in�nite number of linear harmoni
 os
illators: in a general quan-

tum �eld theory the spe
trum of

^

H is hard to �nd, sin
e it involves an in�nite number of

degrees of freedom that in general do not evolve independently. However, in the 
ase of free

theories ea
h degree of freedom does evolve independently. The reason behind this is that

the 
orresponding equations of motion are linear wave equations, with all quantum �elds

as well as their individual 
omponents satisfying the KG equation. This latter requirement

is needed in order to implement parti
le-wave duality in the right way by giving rise to

the 
orre
t relation between energy and momentum for the free parti
les des
ribed by the

theory. Consider now su
h a �eld 
omponent f(~x; t) 2 R with (� +m

2

)f(~x; t) = 0. In

order to de
ouple the degrees of freedom we use the momentum representation (Fourier

de
omposition)

f(~x; t) �

Z

d~p

(2�)

3

e

i~p�~x

g(~p; t) ;

so that the KG equation 
hanges into

�

�

2

�t

2

+ (~p

2

+m

2

)

�

g(~p; t) = 0

for ea
h Fourier-mode ~p. This means that g(~p; t) solves the equation of motion of a har-

moni
 os
illator vibrating at a frequen
y !

~p

�

p

~p

2

+m

2

. The most general solution to

the KG equation will therefore be a linear superposition of simple harmoni
 os
illators, ea
h

with a di�erent amplitude and frequen
y. So, in order to quantize f(~x; t), one simply has to

quantize the in�nite number of os
illators in terms of raising (
reation) and lowering (anni-

hilation) operators. The asso
iated harmoni
 energy quanta are interpreted as parti
les.
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Next it will be proven that both pro
edures are a
tually equivalent.

Comparing both pro
edures: let's �rst re
all how the quantization of a linear harmoni


os
illator goes. Consider to this end the 
orresponding Hamilton operator

^

H =

p̂

2

2m

+

1

2

m!

2

x̂

2

�

1

2

^

P

2

+

1

2

!

2

^

Q

2

with

�

^

Q;

^

P

�

= i

^

1 ;

using

^

P = p̂=

p

m and

^

Q = x̂

p

m . Next we introdu
e a lowering operator â and raising

operator â

y

a

ording to

^

Q �

â+ â

y

p

2!

;

^

P � � i!

â� â

y

p

2!

:

From this the fundamental bosoni
 
ommutation relation

�

â; â

y

�

=

^

1 follows and

^

H =

1

2

! (â

y

â+ ââ

y

) = ! (â

y

â+

1

2

^

1) � ! (n̂+

1

2

^

1) ;

where n̂ = â

y

â 
an be interpreted as a 
ounting operator. Using

�

^

H; â

y

�

= !â

y

, the energy

eigenvalues E

n

and eigenfun
tions jni of this Hamilton operator 
an be obtained:

E

n

= (n+

1

2

)! ; jni �

(â

y

)

n

p

n!

j0i (n = 0; 1; � � �) :

Based on this we use the following ansatz for the quantized KG �eld and its 
onjugate

momentum in terms of a 
ontinuous set of os
illator modes labeled by ~p :

^

�(~x ) =

Z

d~p

(2�)

3

â

~p

+ â

y

�~p

p

2!

~p

e

i~p�~x

=

Z

d~p

(2�)

3

1

p

2!

~p

�

â

~p

e

i~p�~x

+ â

y

~p

e

�i~p�~x

�

=

^

�

y

(~x ) ;

�̂(~x ) = � i

Z

d~p

(2�)

3

!

~p

â

~p

� â

y

�~p

p

2!

~p

e

i~p�~x

= � i

Z

d~p

(2�)

3

r

!

~p

2

�

â

~p

e

i~p�~x

� â

y

~p

e

�i~p�~x

�

= �̂

y

(~x ) ;

with

�

â

~p

; â

y

~p

0

�

= (2�)

3

Æ(~p� ~p

0

)

^

1 and all other 
ommutators 0.

Let's now see whether we have su

eeded in properly quantizing and de
oupling the free

real KG theory. From the fundamental bosoni
 
ommutation relations for 
reation and

annihilation operators it follows that

�

^

�(~x ); �̂(~y )

�

= �

i

2

Z

d~p d~p

0

(2�)

6

r

!

~p

0

!

~p

e

i(~p�~x+~p

0

�~y )

�

â

~p

+ â

y

�~p

; â

~p

0

� â

y

�~p

0

�

=

i

(2�)

3

^

1

Z

d~p e

i~p�(~x�~y )

= iÆ(~x� ~y )

^

1 ;

in agreement with 
anoni
al quantization.
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Energy spe
trum and zero-point energy: the Hamilton operator of the free real KG

theory now reads

^

H =

Z

d~x

�

1

2

�̂

2

+

1

2

(

~

r

^

�)

2

+

1

2

m

2

^

�

2

�

=

Z

d~x

Z

d~pd~p

0

(2�)

6

e

i~x�(~p+~p

0

)

4

p

!

~p

!

~p

0

h

� !

~p

!

~p

0

(â

~p

� â

y

�~p

)(â

~p

0

� â

y

�~p

0

)

+ (m

2

� ~p � ~p

0

)(â

~p

+ â

y

�~p

)(â

~p

0

+ â

y

�~p

0

)

i

~x integral

=======

Z

d~p

(2�)

3

1

2

!

~p

(â

~p

â

y

~p

+ â

y

�~p

â

�~p

)

~p!� ~p in 2nd term

=============

Z

d~p

(2�)

3

!

~p

â

y

~p

â

~p

+

Z

d~p

(2�)

3

1

2

!

~p

(2�)

3

Æ(

~

0 )

^

1 ;

whi
h is indeed ni
ely de
oupled and properly time-independent. The last term in the �nal

expression is 
alled the zero-point energy. It is a 
onsequen
e of the un
ertainty prin
iple

and represents the ground-state energy in the absen
e of any os
illator quanta.

4b
Question: have we obtained an energy spe
trum that is bounded from below?

From the de
oupled form of the Hamilton operator of the free real KG theory we 
an read

o� that

� the energy spe
trum is indeed bounded from below by the zero-point energy;

� only positive-energy quanta feature in the Hamilton operator;

� the zero-point energy is in�nite:

{ We have (2�)

3

Æ(

~

0 ) =

R

d~x e

i~x�~p

�

�

�

~p=

~

0

= lim

L!1

L

R

�L

d~x e

i~x�~p

�

�

�

~p=

~

0

= lim

L!1

L

R

�L

d~x = V.

This is an in�nity originating from the fa
t that spa
e is in�nite. Su
h a long-

distan
e in�nity is often referred to as an infra-red (IR) divergen
e, sin
e it is

related to ~p =

~

0 .

{ The zero-point energy density

Z

d~p

(2�)

3

1

2

!

~p

is still in�nite, originating from the

j~p j ! 1 limit of the integrand. This type of in�nity is 
alled ultra-violet (UV)

divergen
e, being related to short distan
es/high frequen
ies. It is the 
onse-

quen
e of our unrealisti
 assumption that the theory is valid up to arbitrarily

high energies. As we will see later, the ~p-integral should be 
ut o� at a value

where the theory breaks down or a more fan
y te
hnique should be used to

quantify the UV in�nity if we do not want to introdu
e a new energy s
ale.
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4d The zero-point energy is inessential for the parti
le interpretation, but it

is measurable in bounded sytems through the Casimir e�e
t (as is explained in

the ba
helor 
ourse \Kwantumme
hani
a 3") and it has expli
it 
osmologi
al

impli
ations in view of the fa
t that it 
ontributes to the 
osmologi
al 
onstant.

About 68% of the energy density in the universe bears the 
hara
teristi
s of a 
osmologi
al


onstant with energy s
ale 10

�3

eV, whi
h is surprisingly small. With the Plan
k mass

M

pl

= O(10

28

eV) being the natural s
ale of gravity, where ordinary quantum �eld theory

most likely breaks down, we would expe
t the energy s
ale belonging to the 
osmologi
al


onstant to be O(M

pl

) if it has a gravitational origin. One of the big questions in present-

day high-energy physi
s therefore reads \Why is the 
osmologi
al 
onstant so small?".

The art of 
overing up: normal ordering.

In most textbooks all issues related to properties of the va
uum of the theory are simply


ir
umvented by removing va
uum energies, 
harges, et
. .

1

This is done by applying

normal ordering, i.e. bringing all 
reation operators to the front:

â

y

â ! N(â

y

â) = â

y

â ; ââ

y

! N(ââ

y

) = â

y

â ) N(

^

H) =

Z

d~p

(2�)

3

!

~p

â

y

~p

â

~p

:

After quantization the momentum 
arried by the KG �eld (
f. page 8) be
omes

^

~

P = �

Z

d~x �̂(~x )

~

r

^

�(~x ) =

Z

d~p

(2�)

3

i

2

(�i~p )(â

~p

� â

y

�~p

)(â

�~p

+ â

y

~p

)

= �

1

2

Z

d~p

(2�)

3

~p (â

y

�~p

â

�~p

� â

~p

â

y

~p

+ â

y

�~p

â

y

~p

� â

~p

â

�~p

) =

Z

d~p

(2�)

3

~p â

y

~p

â

~p

;

where in the last step we have taken ~p ! �~p in the �rst term and we have used that

~p â

~p

â

�~p

; ~p â

y

�~p

â

y

~p

and ~p (2�)

3

Æ(

~

0 ) are all odd under ~p ! �~p whereas the integration

is even. This time there is no zero-point 
ontribution and as su
h there is no need for

normal ordering, whi
h is 
onsistent with the fa
t that quantum 
u
tuations should have

no preferred dire
tion.

Parti
le interpretation of the free real KG theory:

4d In the next step we determine the parti
le interpretation of the theory,

mostly by simply reading it o� from N(

^

H) and

^

~

P .

� Va
uum (ground state): j0i su
h that h0j0i = 1 and â

~p

j0i = 0 for all ~p. Then

N(

^

H)j0i = 0 and

^

~

P j0i =

~

0, i.e. the va
uum \has" energy E = 0 and momentum

~

P =

~

0.

1

The ta
it assumption here is that some underlying (high-s
ale) physi
s takes 
are of this

16



� Ex
ited states: obtained as (
onstant) � â

y

~p

â

y

~q

� � � j0i. Then E = !

~p

+ !

~q

+ � � � and

~

P = ~p+ ~q + � � � , whi
h follows from

�

^

H; â

y

~p

�

= !

~p

â

y

~p

and

�

^

~

P; â

y

~p

�

= ~p â

y

~p

.

{ For higher ex
itations â

y

~p

is repla
ed by (â

y

~p

)

n

=

p

n! .

{ The ex
itations are interpreted as parti
les.

{ In view of the bosoni
 
ommutation relations for the asso
iated 
reation and

annihilation operators these parti
les are bosons.

{ In fa
t the parti
les are spin-0 bosons. This follows from

�

^

J

k

; â

y

~

0

�

= 0 for

k = 1; 2; 3. Bearing in mind that a zero-momentum parti
le does not give rise

to an orbital angular momentum, this indeed implies that the parti
les in the

real KG theory also 
arry no intrinsi
 angular momentum.

Proof: the quantized version of the angular momentum derived on page 11 yields

�

^

J

k

; â

y

~

0

�

=

�

�

ijk

Z

d~x �̂(~x )r

i

^

�(~x )x

j

; â

y

~

0

�

=

1

2

�

ijk

Z

d~x x

j

Z

d~pd~p

0

(2�)

6

p

i

r

!

~p

0

!

~p

e

i~x�(~p+~p

0

)

�

(â

~p

0

� â

y

�~p

0

)(â

~p

+ â

y

�~p

); â

y

~

0

�

=

1

2

�

ijk

Z

d~x x

j

Z

d~pd~p

0

(2�)

3

p

i

r

!

~p

0

!

~p

e

i~x�(~p+~p

0

)

�

Æ(~p

0

)[â

~p

+ â

y

�~p

℄ + Æ(~p )[â

~p

0

� â

y

�~p

0

℄

�

:

The se
ond term in the last expression vanishes trivially. The �rst term vanishes

as well sin
e i 6= j and 
onsequently the x

i

integral will be proportional to Æ(p

i

).

{ An example of su
h a parti
le is the �

0

pion.

Normalization of states and 
ompleteness relation: note that we did not spe
ify

yet what normalization fa
tor to use in the de�nition of the 1-parti
le states. Unlike what

is done in non-relativisti
 quantum me
hani
s, where the normalization fa
tor is usually

taken to be 1, we will use a relativisti
ally motivated normalization of the 1-parti
le states:

j~p i �

p

2!

~p

â

y

~p

j0i ) h~p j~q i = 2

p

!

~p

!

~q

h0jâ

~p

â

y

~q

j0i = 2

p

!

~p

!

~q

h0j

�

â

~p

; â

y

~q

�

j0i

= 2!

~p

(2�)

3

Æ(~p� ~q ) :

The latter expression is invariant under 
ontinuous Lorentz transformations.

Proof: in order to prove this statement we �rst derive the important integration identity

Z

d~p

(2�)

3

1

2!

~p

=

Z

d

4

p

(2�)

3

Æ(p

2

�m

2

)�(p

0

) (Lorentz invariant integration measure ) ; (1)

with � the Heaviside step fun
tion. We get this identity by using that

Æ

�

h(x)

�

=

X

j

Æ(x� x

j

)

jh

0

(x

j

)j

for h(x

j

) = 0 and h

0

(x

j

) 6= 0 ;
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whi
h leads to

Æ(p

2

�m

2

) = Æ

�

p

2

0

� [~p

2

+m

2

℄

�

= Æ(p

2

0

� !

2

~p

) =

Æ(p

0

� !

~p

)

2!

~p

+

Æ(p

0

+ !

~p

)

2!

~p

:

Sin
e p

0


annot 
hange sign for p

2

> 0, the right-hand-side of equation (1) only 
ontains

Lorentz invariant obje
ts. As a result, the expression on the left-hand-side is Lorentz

invariant as well and the same goes for h~p j~q i, sin
e

Z

d~p

(2�)

3

h~p j~q i

2!

~p

=

Z

d~p Æ(~p� ~q ) = 1:

The 1-parti
le 
ompleteness relation is then given by

Z

d~p

(2�)

3

1

2!

~p

j~p ih~p j =

^

1

�

�

�

1-parti
le subspa
e

sin
e

8

~q

Z

d~p

(2�)

3

1

2!

~p

j~p ih~p j~q i =

Z

d~p

(2�)

3

2!

~p

(2�)

3

Æ(~p� ~q )

2!

~p

j~p i = j~q i :

Finally we may ask the question what state is a
tually 
reated by

^

�(~x ) =

^

�

y

(~x ). Letting

this operator a
t on the va
uum one obtains

^

�(~x )j0i =

Z

d~p

(2�)

3

e

i~p�~x

p

2!

~p

(â

~p

+ â

y

�~p

)j0i

~p! �~p

======

Z

d~p

(2�)

3

e

�i~p�~x

2!

~p

j~p i :

From this it 
an be 
on
luded that a parti
le is 
reated \at position ~x ", sin
e

h~q j

^

�(~x )j0i =

Z

d~p

(2�)

3

e

�i~p�~x

2!

~p

h~q j~p i = e

�i~q�~x

is indeed identi
al to h~q j~x i in non-relativisti
 quantum me
hani
s.

Point to ponder: you might wonder now whether this 
ontradi
ts the earlier statement

that there is no lo
al single-parti
le 
on
ept in Quantum Field Theory. To 
he
k this we


onsider the overlap between two su
h position states:

h0j

^

�(~x )

^

�(~y )j0i / e

�mj~x�~y j

for large enough j~x�~y j ;

as determined on page 27 of the textbook by Peskin & S
hroeder. In the non-relativisti


limit, whi
h e�e
tively 
orresponds to the limit m ! 1, the overlap vanishes for ~x 6= ~y

and

^

�(~x )j0i makes sense as a lo
al parti
le state at position ~x . For �nite masses, though,

^

�(~x )j0i is always an extended obje
t with the Compton wavelength �




= 1=m governing

its e�e
tive range. This length s
ale represents the inherent minimum un
ertainty on the

parti
le's position, just as we predi
ted earlier. This also tells us that in Quantum Field

Theory a truly lo
al measurement of a single parti
le at position ~x a
tually does not exist!
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1.4 Swit
hing on the time dependen
e (§ 2.4 in the book)

4
 Next we add the time dependen
e by swit
hing to the Heisenberg pi
ture,

whi
h makes all operators time dependent a

ording to

^

O !

^

O(t) � e

i

^

Ht

^

Oe

�i

^

Ht

as expe
ted from the fa
t that

^

H is the generator of time translations. This

implies that the 
anoni
al (equal-time) 
ommutation relations have the same

form as in the S
hr�odinger pi
ture:

�

^

�(~x; t); �̂(~y; t)

�

= iÆ(~x � ~y )

^

1 , with all

other 
ommutators being 0.

Short derivation of

^

�(x) =

^

�(~x; t): we have

�

^

H; â

~p

�

= �!

~p

â

~p

)

^

Hâ

~p

= â

~p

(

^

H�!

~p

)

and

^

H

n

â

~p

= â

~p

(

^

H�!

~p

)

n

. That means that e

i

^

Ht

â

~p

e

�i

^

Ht

= â

~p

e

i(

^

H�!

~p

)t

e

�i

^

Ht

= â

~p

e

�i!

~p

t

and e

i

^

Ht

â

y

~p

e

�i

^

Ht

= â

y

~p

e

i!

~p

t

. Applied to

^

�(x) this yields:

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+ â

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

and �̂(x) =

�

�t

^

�(x) ;

where the �rst term 
orresponds to the positive frequen
y modes and the se
ond term

to the negative frequen
y modes. This re
e
ts parti
le-wave duality, with ea
h frequen
y

mode 
orresponding to the 
reation/annihilation of fundamental quanta of the theory.

Analogously:

�

^

~

P; â

~p

�

= � ~p â

~p

) e

�i

^

~

P �~x

â

~p

e

i

^

~

P �~x

= â

~p

e

i~p�~x

:

Combining both identities yields

^

�(x)

[

^

H;

^

~

P ℄ = 0

======= e

i(

^

Ht�

^

~

P �~x )

^

�(0)e

�i(

^

Ht�

^

~

P �~x )

= e

i

^

P �x

^

�(0)e

�i

^

P �x

:

This re
e
ts the fa
t that the quantized 
onserved Noether 
harges are the generators of

the 
orresponding 
ontinuous transformations, whi
h in this 
ase implies that

^

P

�

is the

generator of spa
etime translations.

Next we invoke the following relativisti
 requirement.

4
 Causality: a measurement performed at one spa
etime point y 
an only

a�e
t a measurement at another spa
etime point x whose separation from the

�rst point is timelike or lightlike, i.e. (x� y)

2

� 0.

This latter requirement means that in su
h 
ases a parti
le 
an physi
ally travel the 
or-

responding spatial distan
e within the 
orresponding time period, sin
e (x � y)

2

� 0


orresponds to a spa
etime separation inside or on the light
one j~x� ~y j = jx

0

� y

0

j. In

the 
oordinate representation any observable involving s
alar parti
les 
an be written in

terms of KG �elds. So, if

�

^

�(x);

^

�(y)

�

= 0 for (x � y)

2

< 0, then the measurements do

not in
uen
e ea
h other for spa
elike separations (i.e. outside the light
one) and 
ausality

is preserved.
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For the real KG �eld we �nd

�

^

�(x);

^

�(y)

�

=

Z

d~p d~q

(2�)

6

1

2

p

!

~p

!

~q

�

â

~p

e

�ip�x

+ â

y

~p

e

ip�x

; â

~q

e

�iq�y

+ â

y

~q

e

iq�y

�

�

�

�

p

0

=!

~p

; q

0

=!

~q

=

Z

d~p

(2�)

3

1

2!

~p

�

e

�ip�(x�y)

� e

ip�(x�y)

�

^

1

�

�

�

p

0

=!

~p

� D(x� y)

^

1�D(y � x)

^

1 :

The fun
tion D(x) has the following properties:

1. In the previous expression ea
h of the terms on the left-hand-side of the se
ond line

is Lorentz invariant a

ording to equation (1). As a result, the fun
tion D(x) is

Lorentz invariant as well and hen
e D(x) = D(�x) � D(x

0

).

2. D(x) = D(�x) if x

0

= 0. This follows dire
tly by taking ~p! � ~p in the integration.

Bearing in mind that for (x � y)

2

< 0 there exists a Lorentz transformation � su
h that

x

0

0

� y

0

0

= 0, we 
an derive from these two properties that

0

property 2

======= D(x

0

� y

0

)�D(y

0

� x

0

) = D

�

�(x� y)

�

�D

�

�(y � x)

�

property 1

======= D(x� y)�D(y � x) if (x� y)

2

< 0 :

This automati
ally implies that 
ausality is preserved in the real KG theory be
ause prop-

agation from y to x, given by h0j

^

�(x)

^

�(y)j0i = D(x� y), is indistinguishable from propa-

gation from x to y , given by h0j

^

�(y)

^

�(x)j0i = D(y�x), if (x�y)

2

< 0. This sounds weird,

but in the spa
elike regime we 
annot think of propagation as parti
le movement. There

is no Lorentz invariant way to order events, sin
e if we have in one frame that x

0

� y

0

> 0

a Lorentz transformation 
an yield another frame where x

0

� y

0

< 0.

4

In fa
t, quantizing using 
anoni
al quantization 
onditions was already suÆ
ient

for properly implementing 
ausality. In spite of its non-
ovariant form, there is no

preferred treatment of time by quantizing in the 
anoni
al way!

Proof: the proof of this statement exploits the fa
t that

�

^

�(x);

^

�(y)

�

is Lorentz invariant,

as well as the fa
t that for (x� y)

2

< 0 there exists a Lorentz transformation � su
h that

x

0

0

� y

0

0

= 0. Then we 
an readily obtain the 
ausality requirement

�

^

�(x);

^

�(y)

�

Lor. inv.

=======

�

^

�(~x

0

; t

0

);

^

�(~y

0

; t

0

)

�

= e

i

^

Ht

0

�

^

�(~x

0

);

^

�(~y

0

)

�

e

�i

^

Ht

0

= 0

for (x� y)

2

< 0 as a dire
t 
onsequen
e of 
anoni
al quantization.
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1.5 Quantization of the free 
omplex Klein-Gordon theory

The Lagrangian for a 
omplex s
alar �eld �(x) satisfying the free KG equation is given by

L = (�

�

�)(�

�

�

�

)�m

2

��

�

;

whi
h 
ontains twi
e as many degrees of freedom as the Lagrangian of the real KG theory.

This 
an be seen expli
itly by writing � = (�

1

+ i�

2

)=

p

2 with �

1;2

2 R (see Ex. 4). Then

the Lagrangian be
omes

L =

1

2

(�

�

�

1

)(�

�

�

1

) �

1

2

m

2

�

2

1

+

1

2

(�

�

�

2

)(�

�

�

2

) �

1

2

m

2

�

2

2

:

Now we 
an either treat �

1;2

or �; �

�

as independent degrees of freedom. The quantization

goes exa
tly as before, with

1

p

2

(â

1; ~p

+ iâ

2; ~p

) � â

~p

and

1

p

2

(â

y

1; ~p

+ iâ

y

2; ~p

) �

^

b

y

~p

6= â

y

~p

. Hen
e:

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+

^

b

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

;

where the �rst term 
orresponds to parti
les and the se
ond to so-
alled antiparti
les. The

asso
iated 
ommutators are given by:

�

â

~p

; â

y

~q

�

=

�

^

b

~p

;

^

b

y

~q

�

= (2�)

3

Æ(~p� ~q )

^

1; with all other 
ommutators being 0 :

From these 
ommutation relations we 
an derive that 
ausality is 
onserved in the 
omplex

Klein-Gordon theory as well:

�

^

�(x);

^

�(y)

�

=

�

^

�

y

(x);

^

�

y

(y)

�

= 0 ;

�

^

�(x);

^

�

y

(y)

�

= D(x� y)

^

1�D(y � x)

^

1

see before

======= 0 if (x� y)

2

< 0 :

Note that D(x�y) originates from parti
le propagation, whereas D(y�x) originates from

antiparti
le propagation. This brings us to the following important 
on
lusion:

4
 the 
orre
t 
ausal stru
ture of the 
omplex Klein-Gordon theory hinges on

the 
ombined treatment of parti
les and antiparti
les, sin
e parti
le propagation

from y to x, h0j

^

�(x)

^

�

y

(y)j0i = D(x� y), is indistinguishable from antiparti
le

propagation from x to y, h0j

^

�

y

(y)

^

�(x)j0i = D(y � x), if (x� y)

2

< 0.

Parti
le interpretation: as before we 
an derive the parti
le interpretation by looking

at the energy, momentum and \
harge" operators (see Ex. 4 for a 
riti
al dis
ussion). After

quantization these operators read:

^

H =

Z

d~p

(2�)

3

!

~p

(â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) + zero-point energy ;

^

~

P =

Z

d~p

(2�)

3

~p (â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) ;

^

Q =

Z

d~p

(2�)

3

(� â

y

~p

â

~p

+

^

b

y

~p

^

b

~p

) = �

^

N

parti
les

+

^

N

antiparti
les

:
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The zero-point term for the 
harge operator has to vanish to guarantee Lorentz-invariant

va
uum properties (see Ex. 4), so normal ordering is a physi
al requirement in that 
ase!

This 
harge operator is the generator of U(1) phase transformations:

�

^

Q;

^

�(x)

�

=

^

�(x) ) e

i�

^

Q

^

�(x) e

�i�

^

Q

= e

i�

^

�(x) for � 2

IR


onstant :

Sin
e the aforementioned 
onserved quantities only 
ontain number operators after quan-

tization, we have

�

^

H;

^

~

P

�

=

�

^

H;

^

Q

�

=

�

^

H;

^

N

parti
les

�

=

�

^

H;

^

N

antiparti
les

�

= 0 :

4d In free KG theories (in fa
t in all free theories) energy, momentum, number

of parti
les and number of antiparti
les are all 
onserved. In intera
ting theories

the number of parti
les and the number of antiparti
les are no longer separately


onserved, but their di�eren
e quite often is.

Now we 
an read o� the parti
le interpretation of the 
omplex KG theory: it resembles

the one for the real KG theory, with the di�eren
e being that for every parti
le state there

should now also be an antiparti
le state with opposite \
harge" quantum numbers and the

same 4-momentum quantum numbers. An example of su
h a s
alar parti
le{antiparti
le


ombination is given by the �

�

pions. The 
ase

^

� =

^

�

y

is spe
ial in the sense that parti
le

and antiparti
le states 
oin
ide, so all \
harges" should be 0.

Lorentz transformations and

^

�(x): as before

^

�(x) = e

i

^

P �x

^

�(0)e

�i

^

P �x

, but what about

Lorentz transformations? We know that j~p i =

p

2!

~p

â

y

~p

j0i and that a similar expres-

sion holds for antiparti
le states, so we 
an use this to de�ne the unitary operator that

implements (a
tive) Lorentz transformations in the Hilbert spa
e of quantum states:

j

�!

�pi �

^

U(�)j~p i )

q

2!

�!

�p

â

y

�!

�p

j0i =

p

2!

~p

^

U(�) â

y

~p

j0i

^

U(�)j0i�j0i

========

p

2!

~p

^

U(�) â

y

~p

^

U

�1

(�)j0i

) de�ne:

^

U(�) â

y

~p

^

U

�1

(�) =

s

!

�!

�p

!

~p

â

y

�!

�p

;

with a similar expression for

^

b

y

~p

. As a result:

^

U(�)

^

�(x)

^

U

�1

(�) =

Z

d~p

(2�)

3

1

2!

~p

q

2!

�!

�p

(â

�!

�p

e

�ip�x

+

^

b

y

�!

�p

e

ip�x

)

p

0

=�p

====

Z

d~p

0

(2�)

3

1

2!

~p

0

p

2!

~p

0

(â

~p

0

e

�ip

0

��x

+

^

b

y

~p

0

e

ip

0

��x

) =

^

�(�x) ;

where the se
ond line is obtained by using that

R

d~p=(2!

~p

) and e

�ip�x

are all Lorentz

invariant. This implies that the transformed �eld 
reates/destroys antiparti
les/parti
les

at the spa
etime point �x.
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1.6 Inversion of the Klein-Gordon equation (§ 2.4 in the book)

4e For 
ertain physi
al appli
ations it is important to know the inverse of

the KG equation, for instan
e for deriving s
attering amplitudes or for solving

systems that involve a KG �eld being 
oupled to a 
lassi
al sour
e.

Sin
e a solution to (� + m

2

)�

0

(x) = 0 exists, the inversion of the di�erential operator

(�+m

2

) does not exist formally, so it has to be de�ned. On
e we have de�ned this inverse

(� +m

2

)

�1

properly an appropriate solution to the equation (� +m

2

)� = j is given by

� = (� +m

2

)

�1

j + �

0

, given that � = �

0

in the absen
e of the sour
e j.

Green's fun
tion: let's try to �nd the so-
alled Green's fun
tion G(x� y), whi
h is the

inverse KG operator (�+m

2

)

�1

written in 
oordinate spa
e. By 
onvention this Green's

fun
tion is required to satisfy (�

x

+m

2

)G(x�y) � �iÆ

(4)

(x�y) = �iÆ(x

0

�y

0

)Æ(~x�~y ),

where the right-hand-side represents (up to the 
onventional fa
tor �i) the unit operator

in 
oordinate spa
e. In momentum spa
e this be
omes

G(x� y) �

Z

d

4

p

(2�)

4

~

G(p) e

�ip�(x�y)

and Æ

4

(x� y) =

Z

d

4

p

(2�)

4

e

�ip�(x�y)

;

so that

(�p

2

+m

2

)

~

G(p) = �i )

~

G(p) =

i

p

2

�m

2

:

The problem with de�ning the inverse of the KG operator is apparent now: it resides in

the fa
t that p

2

�m

2

= p

2

0

� (~p

2

+m

2

) = p

2

0

�!

2

~p

= 0 for the physi
al (anti)parti
les of the

KG theory. In these so-
alled on-mass-shell (or short: on-shell) situations with p

2

= m

2

the Fourier 
oeÆ
ient of the Green's fun
tion blows up, thereby leading to an ill-de�ned

Fourier integral. That brings us to the key question that we have to address if we want to

de�ne a proper Green's fun
tion:

how should we go around the poles of (p

2

� m

2

)

�1

= (p

0

� !

~p

)

�1

(p

0

+ !

~p

)

�1

while performing the Fourier integral?

There are several options for this, re
e
ting the fa
t that the Green's fun
tion 
annot be

de�ned uniquely. We mention here two useful possible de�nitions.

1) The retarded Green's fun
tion: for taking into a

ount in
uen
es that lie in the

past it is useful to shift the poles into the lower-half of the 
omplex plane by an in�nitesimal

amount �i� (see �gure 2), where the in�nitesimal 
onstant � 2 R

+

should be taken to 0

at the end of the 
al
ulation.
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Figure 2: Complex poles and 
losed integration 
ontours for the retarded Green's fun
tion.

Using the 
omplex integration 
ontours as indi
ated in �gure 2, the Fourier integration

yields

D

R

(x� y) = �(x

0

� y

0

)(�2�i)

Z

d~p

(2�)

4

(

ie

�ip�(x�y)

2!

~p

�

�

�

�

p

0

=!

~p

+

ie

�ip�(x�y)

�2!

~p

�

�

�

�

p

0

=�!

~p

)

~p! � ~p in 2nd term

================ �(x

0

� y

0

)

Z

d~p

(2�)

3

1

2!

~p

�

e

�ip�(x�y)

� e

ip�(x�y)

�

�

�

p

0

=!

~p

;

whi
h means that

D

R

(x� y) = �(x

0

� y

0

)

�

D(x� y)�D(y � x)

�

= �(x

0

� y

0

)h0j

�

^

�(x);

^

�

y

(y)

�

j0i :

Appli
ation: 
onsider a real KG �eld 
oupled to an external 
lassi
al sour
e j(x) that is

swit
hed on during a �nite time interval. Then

(� +m

2

)

^

�(x) = j(x) 2 R ;

whi
h would 
orrespond to an extra term + j(x)�(x) in the Lagrangian (resembling a

for
ed os
illator). Before j(x) is turned on we have

^

�(x) =

^

�

0

(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(â

~p

e

�ip�x

+ â

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

;

with �

0

(x) a solution to the free KG equation (� +m

2

)�

0

(x) = 0. After j(x) is turned
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on we have

^

�(x) =

^

�

0

(x) + i

Z

d

4

y D

R

(x� y)j(y)

=

^

�

0

(x) + i

Z

d

4

y

Z

d~p

(2�)

3

j(y)

2!

~p

�(x

0

� y

0

)

�

e

�ip�(x�y)

� e

ip�(x�y)

�

�

�

�

p

0

=!

~p

:

If x

0

is smaller than the swit
h-on time of j then �(x

0

� y

0

)j(y) = 0 and only

^

�

0

(x)

remains, in agreement with the initial 
ondition we started out with. If x

0

is larger than

the swit
h-o� time of j, then �(x

0

� y

0

)j(y) = j(y). Using that

R

d

4

y e

ip�y

j(y) �

~

j(p)

and

R

d

4

y e

�ip�y

j(y)

j2R

====

~

j

�

(p) we �nd in that 
ase that

^

�(x) =

Z

d~p

(2�)

3

1

p

2!

~p

(

�

â

~p

+ i

~

j(p)

p

2!

~p

�

e

�ip�x

+

�

â

y

~p

� i

~

j

�

(p)

p

2!

~p

�

e

ip�x

)

�

�

�

�

�

p

0

=!

~p

�

Z

d~p

(2�)

3

1

p

2!

~p

(�̂

~p

e

�ip�x

+ �̂

y

~p

e

ip�x

)

�

�

�

p

0

=!

~p

and

N(

^

H) =

Z

d~p

(2�)

3

!

~p

�̂

y

~p

�̂

~p

;

with N denoting normal ordering. The operator �̂

~p

is a quasi-parti
le annihilation oper-

ator, satisfying

�̂

~p

j0i = i

~

j(p)

p

2!

~p

j0i � �

~p

j0i :

So, the free-parti
le va
uum state j0i is now a quasi-parti
le 
oherent state. Its energy has


hanged by an amount

�E

0

= h0jN(

^

H)j0i =

Z

d~p

(2�)

3

1

2

j

~

j(p)j

2

;


orresponding to h0j

R

d~p

(2�)

3

�̂

y

~p

�̂

~p

j0i =

R

d~p

(2�)

3

j�

~p

j

2

=

R

d~p

(2�)

3

j

~

j(p)j

2

=2

!

~p

quasi-parti
les.

The parti
le interpretation has 
hanged as a result of the in
uen
e of the ex-

ternal sour
e! This example shows that parti
les and quasi-parti
les are derived

quantities and that the retarded Green's fun
tions are handy tools for dealing

with external in
uen
es that are swit
hed on during a �nite amount of time.

2) Feynman propagator: an alternative way of shifting the poles is given in �gure 3. As

will be worked out in Ex. 5, this pole 
on�guration is equivalent with repla
ing (p

2

�m

2

)

�1

by (p

2

�m

2

+ i�)

�1

, where again the in�nitesimal 
onstant � 2 R

+

should be taken to 0

at the end of the 
al
ulation.
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Figure 3: Complex poles and 
losed integration 
ontours for the Feynman propagator.

Using the 
omplex integration 
ontours as indi
ated in �gure 3, the Fourier integration

yields

D

F

(x� y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

� 2�i

Z

d~p

(2�)

4

ie

�ip�(x�y)

2!

~p

�

�

�

�

p

0

=!

~p

if x

0

> y

0

+2�i

Z

d~p

(2�)

4

ie

�ip�(x�y)

�2!

~p

�

�

�

�

p

0

=�!

~p

if x

0

< y

0

;

whi
h means that

D

F

(x� y) = �(x

0

� y

0

)D(x� y) + �(y

0

� x

0

)D(y � x)

= �(x

0

� y

0

)h0j

^

�(x)

^

�

y

(y)j0i + �(y

0

� x

0

)h0j

^

�

y

(y)

^

�(x)j0i

� h0jT (

^

�(x)

^

�

y

(y))j0i :

This is the de�nition of time ordering: the operator at the latest time is put in front. The

Feynman propagator D

F

(x� y) is the time-ordered propagation amplitude.

4e

The time-ordered propagation amplitude (Feynman propagator) will feature

prominently in the derivation of s
attering amplitudes in perturbation theory!
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2 Intera
ting s
alar �elds and Feynman diagrams

The next eight le
tures 
over large parts of Chapters 4 and 7 as well as a few aspe
ts of

Chapter 10 of Peskin & S
hroeder.

5 The task that we set ourselves is to investigate the 
onsequen
es of adding

intera
tions that 
ouple di�erent Fourier modes and, as su
h, the asso
iated

parti
les. This will be quite a bit more 
ompli
ated than the free theories that

we have en
ountered in the previous 
hapter, where the relevant quantities were

diagonal (i.e. de
oupled) in the momentum representation and parti
le num-

bers were 
onserved expli
itly. Even worse, up to now nobody has been able to

solve general intera
ting �eld theories. Therefore we will fo
us on weakly 
ou-

pled �eld theories, whi
h 
an be investigated by means of perturbation theory.

Causality di
tates us to add lo
al terms only, i.e.

^

L

int

(x) and not

^

L

int

(x; y). In order

to investigate what is meant by \weak intera
tions", the following intera
ting real s
alar

theory is 
onsidered:

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

+ L

int

with L

int

= �

X

n�3

�

n

n!

�

n

(� 2 R) ;

where �

n

2 R is 
alled a 
oupling 
onstant. Note that L

int

= �H

int

, sin
e it 
ontains

no derivatives. The 
orresponding Euler-Lagrange equation is not a simple linear (wave)

equation anymore:

�

�

(�

�

�) + m

2

� +

X

n�3

�

n

(n�1)!

�

n�1

= 0 ) (� +m

2

)� = �

X

n�3

�

n

(n�1)!

�

n�1

:

Sin
e �

�

= �

0

� is una�e
ted by the intera
tion, the quantum me
hani
al basis

�

^

�(~x ); �̂

�

(~y )

�

= iÆ(~x� ~y )

^

1 and all other 
ommutators being 0

is the same as in the free KG 
ase. Hen
e,

^

�(~x ) and �̂

�

(~x ) 
an be given the same Fourier-

de
omposed form as before (
f. page 14). However, sin
e the non-linear

^

�

n�1

term 
ontains

for example (â

y

)

n�1

, the number of parti
les is not 
onserved anymore as a result of the

intera
tion. Consequently, also the parti
le interpretation, whi
h 
an be obtained from the

Hamilton operator, will be di�erent.

2.1 When are intera
tion terms small? (§ 4.1 in the book)

5a To answer this question we have to perform a dimensional analysis: the

a
tion S =

R

d

4

xL is dimensionless, so L must have dimension (mass)

4

, or

short \dimension 4". The shorthand notation for this is [L℄ = 4.
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Kineti
 term: the kineti
 term has the form (�

�

�)(�

�

�). Sin
e [�

�

℄ = 1, that means

that [�℄ = 1, whi
h is 
onsistent with the dimension of the mass term / m

2

�

2

.

Intera
tion terms: sin
e [�

n

℄ = n, the 
oupling 
onstants have a dimension [�

n

℄ = 4�n.

So, �

n

is not dimensionless, ex
ept when n = 4. Three 
ases 
an be distinguished:

1. Coupling 
onstants with positive mass dimension. Take �

3

as an example. Using

the dimension of the �eld, we 
an see that [�

3

℄ = +1. In a pro
ess at energy s
ale E

the 
oupling 
onstant �

3

will enter in the dimensionless 
ombination �

3

=E. The �

3

intera
tion 
an therefore be 
onsidered weak at high energies (E��

3

) and strong at

small energies (E��

3

). For the latter reason su
h intera
tions are 
alled relevant.

2. Dimensionless 
oupling 
onstants. For our real s
alar theory, the only dimensionless


oupling 
onstant is �

4

sin
e [�

4

℄ = 0. The �

4

intera
tion 
an be 
onsidered weak if

the 
oupling 
onstant is small (�

4

�1). Su
h intera
tions are 
alled marginal, sin
e

they are equally important at all energy s
ales.

3. Coupling 
onstants with negative mass dimension. For the 
oupling 
onstants with

n � 5 we have [�

n�5

℄ = 4 � n < 0. In a pro
ess at energy s
ale E the 
oupling


onstants �

n�5

will enter in the dimensionless 
ombinations �

n

E

n�4

. The �

n�5

inter-

a
tions 
an therefore be 
onsidered weak at low energies and strong at high energies.

Be
ause of this suppressed in
uen
e on low-energy physi
s, su
h intera
tions are


alled irrelevant. Su
h intera
tions have their origin in underlying physi
s that takes

pla
e at higher energy s
ales.

5a Compli
ation: it is impossible to avoid high energies in quantum �eld

theory, be
ause of the o

urren
e of integrals over all momenta at higher orders

in perturbation theory. We have in fa
t already en
ountered an example of this

in § 1.3 while dis
ussing the zero-point energy and its in�nities.

2.2 Renormalizable versus non-renormalizable theories

Renormalizable theories: a renormalizable theory has the marked property that it is

not sensitive to our la
k of knowledge about high-s
ale physi
s. It therefore

� keeps its predi
tive power at all energy s
ales in spite of the o

urren
e of high-

energy e�e
ts in the quantum 
orre
tions;

� 
an be used to make pre
ise theoreti
al predi
tions that 
an be 
onfronted with

experiment;

� does not involve 
oupling 
onstants with negative mass dimension.
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Guided by our quest for the ultimate \theory of everything", the prevalent view in high-

energy physi
s used to be that any sensible theory that des
ribes nature should be renormal-

izable. However, this requirement is based on the unrealisti
 assumption that any theory

that attempts to des
ribe aspe
ts of nature has to be valid up to arbitrarily large energies. It

is mu
h more likely that at some energy s
ale new physi
s will ki
k in, 
ausing the original

theory to be in
omplete.

Non-renormalizable theories

5b In situations where our present theoreti
al knowledge proves insuÆ
ient or

where we prefer to des
ribe the physi
s up to a minimum length s
ale, another


lass of theories is parti
ularly useful. These mostly non-renormalizable theories

are obtained by parametrizing our ignoran
e (s
enario 1 dis
ussed below) or by

\integrating out" known/anti
ipated physi
s at small length s
ales (s
enario 2

dis
ussed below).

Non-renormalizable theories, s
enario 1: unknown new physi
s.

Suppose that we are starting to observe experimental deviations from our favourite model of

the world, 
aused by some unknown high-s
ale physi
s. If we only have a

ess to this high-

s
ale physi
s through low-energy data (see the Fermi-model example below), we sometimes

have to 
ontent ourselves with an in
omplete model that des
ribes the physi
s as seen

through blurry glasses. In that 
ase we only know the physi
s up to a 
ertain energy s
ale �

(i.e. down to a length s
ale 1=�) with higher energy s
ales (i.e. smaller length s
ales) being

integrated out. This will in general result in a non-renormalizable e�e
tive theory that

des
ribes nature up to the energy s
ale � and a Lagrangian that will parametrize our la
k

of knowledge about the physi
s that takes pla
e at higher energy s
ales. Su
h e�e
tive

theories

� have limited predi
tive power, sin
e the physi
s at high energy s
ales E�� is not

des
ribed properly;

� 
an 
ontain intera
tions with 
oupling 
onstants of negative mass dimension, whi
h

would formally lead to un
ontrolled UV in�nities at higher orders in perturbation

theory as a result of integrals over all momenta (if we would assume the theory to

be 
orre
t at all energy s
ales, . . . whi
h would be in
orre
t);

� 
an nevertheless be used to make reliable predi
tions at O(�) energies provided that

the unknown high-s
ale physi
s resides at an energy s
ale �

NP

� �;

� may reveal at whi
h energy s
ale the unknown high-s
ale physi
s must emerge.
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Non-renormalizable theories, s
enario 2: known/anti
ipated new physi
s.

The moment we (think to) know the underlying physi
s model that is responsible for the

observed low-energy phenomena, we 
an expli
itly integrate out the high-energy degrees

of freedom from the model. This results in the same type of e�e
tive Lagrangian, but this

time the underlying physi
s model has left its �ngerprints on the 
oupling 
onstants. For

instan
e, if the energy/mass s
ale of the underlying physi
s resides at �

NP

, then this s
ale

will a
t as a natural s
aling fa
tor in the 
ouplings. This pro
edure of expli
itly linking

the 
oupling 
onstants of the e�e
tive theory to the parameters of the underlying physi
s

model is 
alled mat
hing.

6

�

�=M

high-energy theory

L(�) + L

0

(� ;�)

��M

low-energy e�e
tive theory

L(�) + L

int

(�)

�elds � ;�

mass m;M

�eld �

mass m�M

mat
hing

Figure 4: S
hemati
 display of a low-energy e�e
tive theory 
ontaining a light �eld � with

mass m, originating from a high-energy theory that also in
ludes a heavy �eld � with

mass M .

Example: the Fermi-model of weak intera
tions. This probably sounds rather ab-

stra
t, so let's have a 
loser look at the above-given statements by 
onsidering an expli
it

example. The so-
alled Fermi-model of weak intera
tions has in fa
t started out along the

lines just des
ribed. In this example the role of �

NP

is played by the mass M

W

of the W

boson. As will be explained in 
ourses 
overing the Standard Model, de
ay pro
esses like

�

�

! �

�

e

�

��

e

(muon de
ay) pro
eed through the ex
hange of a W boson with a mass of

about 80 GeV between the parti
les. The asso
iated de
ay amplitude 
ontains a fa
tor

1=(p

2

� M

2

W

), originating from the propagator of the W -boson (
f. page 25), and two

fa
tors of g , 
orresponding to the 
oupling 
onstant of the weak intera
tions. However, at

the typi
al energy s
ale of the de
ay pro
ess, i.e. E = O(m

�

= 0:1GeV), the momentum


arried by the W boson is mu
h smaller than its mass M

W

. In that 
ase, the propagator

fa
tor is per
eived as having a 
onstant value:

g

2

p

2

�M

2

W

p

2

� M

2

W

����������! �

g

2

M

2

W

+ O(p

2

=M

4

W

) :
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In terms of a diagrammati
 representation of the physi
s that goes on in the de
ay pro
ess

(see later) this 
orresponds to

g

g

�

�

�

�

e

�

��

e

p

W

�

p

2

� M

2

W

����������!

G

F

�

�

�

�

e

�

��

e

On the basis of su
h \low-energy" de
ay pro
esses the existen
e of (e�e
tive) 4-parti
le

intera
tions was postulated (Fermi, 1932), with the 
orresponding dimensionful e�e
tive


oupling 
onstant (Fermi-
oupling) being small in view of the absorbed 1=M

2

W

suppres-

sion fa
tor. This explains the name \weak intera
tions", whi
h simply refers to the fa
t

that these intera
tions were per
eived as weak at low energies. At p

2

=O(M

2

W

) the weak-

intera
tion physi
s underlying the W -boson ex
hange will reveal itself and the weak inter-

a
tions will no longer be weak.

5b This is of 
ourse all hindsight, sin
e in 1932 the 
orre
t model for the weak

intera
tions did not exist yet. In fa
t, the above argument 
an be reversed. The

low-energy Fermi-
oupling was measured to be of O(10

�5

GeV

�2

) � O(�

�2

NP

),

whi
h 
orre
tly signals that the physi
s underlying the weak intera
tions must

reveal itself at an energy s
ale of O(100GeV).

Plan
k s
ale: applying the same reasoning to the even smaller gravitational 
onstant,

i.e. G = O(10

�38

GeV

�2

), we would predi
t that gravity be
omes strong at an energy s
ale

of O(10

19

GeV), whi
h is 
ommonly referred to as the Plan
k s
ale �

P

.

Generi
 properties of e�e
tive �eld theories: the philosophy behind e�e
tive �eld

theories is mostly a pragmati
 one. If you want to des
ribe 
ertain physi
al phenomena

quantitatively, it is an overkill to use a physi
s model that also gives details about experi-

mentally ina

essible phenomena (like strong gravitational e�e
ts). In that 
ase it is more

pra
ti
al to make use of a simpler, e�e
tive des
ription that 
aptures the most important

physi
s of the system without giving unne
essary detail. Additional (small) e�e
ts result-

ing from the more fundamental theory 
an be taken into a

ount by adding them as small

perturbations (like relativisti
 
orre
tions in non-relativisti
 quantum me
hani
s).

Consider for instan
e a fundamental theory with dimensionless 
oupling 
onstants that

des
ribes the world at O(�

NP

) energies. Assume, for argument's sake, that this theory


ontains a real s
alar �eld � that des
ribes light parti
les with mass m � �

NP

and an-

other real s
alar �eld � that des
ribes mu
h heavier parti
les with mass M = O(�

NP

).
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The laws of physi
s at E � �

NP

are best formulated in terms of the light s
alar �eld with

intera
tions that are produ
ed by the fundamental high-energy theory. After all, the heavy

parti
les 
annot be produ
ed dire
tly at these energies and therefore it is more pra
ti
al

to remove them from the des
ription (i.e. integrate them out). This results in an e�e
tive

Lagrangian as given before with e�e
tive 
ouplings �

n

= g

n

=�

n�4

NP

, where g

n

is a dimen-

sionless 
oupling 
onstant governed by the high-energy theory. So, the impa
t of the �

n�5

terms on physi
s at E � �

NP

is suppressed by fa
tors (E=�

NP

)

n�4

.

� The intera
tions that are most likely to a�e
t low-energy experiments are the renor-

malizable �

3

and �

4

terms. That is why at suÆ
iently low energies e�e
tive theories

only 
ontain renormalizable intera
tions.

� The other intera
tions are suppressed at low energies and 
an therefore either be

ignored or in
orporated as small perturbations. This aspe
t makes it possible to

in
lude formally non-renormalizable intera
tions in the theory without spoiling its

predi
tive power at low energies. At high energies this is not true anymore, but there

the full glory of the underlying high-energy theory should be taken into a

ount.

� Sin
e the impa
t of the �

n

terms is extremely small for larger n, it is in general very

tough to �gure out the entire high-energy theory from low-energy data alone!

Remark: the physi
s at di�erent length/energy s
ales 
an be related through the so-
alled

renormalization group (see later). In parti
ular in 
ondensed-matter physi
s this renor-

malization group is a powerful analyzing tool, sin
e di�erent 
ondensed-matter phenomena

are quite often governed by di�erent 
hara
teristi
 length s
ales. As we will see later, also

in high-energy physi
s the renormalization group will prove very handy. The main dif-

feren
e between the �eld-theoreti
al treatments of both bran
hes of physi
s resides in the

absen
e of a smallest length s
ale in high-energy physi
s, whereas the atomi
 s
ale provides

a natural 
uto� in 
ondensed-matter physi
s.

2.3 Perturbation theory (§ 4.2 in the book)

5
 Our ultimate aim is to 
al
ulate s
attering 
ross se
tions and de
ay rates,

from whi
h information 
an be obtained on the fundamental parti
les that exist

in nature and their mutual intera
tions. The following two models will be used

in the remainder of this 
hapter:

1. �

4

-theory: L =

1

2

(�

�

�)(�

�

�)�

1

2

m

2

�

2

�

�

4!

�

4

with � 2 R. This model 
ontains the

type of quarti
 intera
tion with dimensionless 
oupling 
onstant that also features in

the Higgs model.
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2. S
alar Yukawa theory: L = (�

�

 

�

)(�

�

 )+

1

2

(�

�

�)(�

�

�)�M

2

 

�

 �

1

2

m

2

�

2

� g 

�

 �

with � 2 R and  2 C . This is a toy model that resembles the Yukawa theory for

the intera
tion between fermions and s
alars, whi
h will be dis
ussed at a later stage.

Apart from spin aspe
ts these two theories di�er in the dimension of the 
oupling


onstant, being +1 for the s
alar Yukawa theory and 0 for the true Yukawa theory.

Non-relativisti
 quantum me
hani
s: in non-relativisti
 quantum me
hani
s s
attering re-

a
tions are 
hara
terized by

� asymptoti
 free (non-intera
ting) situations at t! �1, involving free parti
les in

beam, target and dete
tor (due to negligible wave-fun
tion overlap);

� a 
ollision stage around t = 0 when the 
olliding parti
les intera
t/vanish and new

parti
les may be produ
ed.

Quantum �eld theory: we would like to use the same reasoning in quantum �eld theory,

assuming the initial and �nal states of the rea
tion to be free-parti
le states. In that 
ase

the initial and �nal states of the rea
tion would be eigenstates of the Hamilton operator

of the free Klein-Gordon theory, whi
h are therefore also eigenstates of the parti
le and

antiparti
le number operator. In the end we will have to 
orre
t for two aspe
ts that are

not taken into a

ount properly in this way (see later):

� bound states may form;

� more importantly, a parti
le well-separated from the other parti
les in the rea
tion is

nevertheless not alone in quantum �eld theory, being surrounded by a 
loud of virtual

parti
les. It is not possible to swit
h o� intera
tions in quantum �eld theory, so we

have to 
orre
t for this later.

The Heisenberg pi
ture: let's ignore these issues for the moment and try to develop a


al
ulational toolbox based on the asymptoti
 free situations at t! �1. As mentioned

on page 27, we start out with the same quantum me
hani
al basis as in the free theory,

so the S
hr�odinger pi
ture �eld

^

�(~x ) 
an be given the same Fourier-de
omposed form as

before. The fa
t that we are dealing with an intera
ting theory manifests itself through the

time-independent Hamilton operator, whi
h is used in the Heisenberg pi
ture and whi
h

is needed for determining the parti
le interpretation:

^

H =

^

H

0

+

^

H

int

=

^

H

0

+

Z

d~x

^

H

int

(~x ) =

^

H

0

�

Z

d~x

^

L

int

(~x ) :

The intera
tion Hamiltonian H

int

is assumed to be weak 
ompared to the Hamiltonian

H

0

of the free theory. In the last step we have used that there are no derivatives in the

intera
tion, so H

int

= �L

int

. This leads to Heisenberg �elds

^

�(x) �

^

�(t; ~x ) = e

i

^

Ht

^

�(~x )e

�i

^

Ht

;
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where e

� i

^

Ht

introdu
es extra 
reation/annihilation operators as a result of the presen
e

of

^

H

int

and therefore 
hanges the parti
le 
ontent and interpretation of the 
reation and

annihilation operators. The ground state of the intera
ting theory will be denoted by j
i,

whi
h in general does not 
oin
ide with the va
uum state of the free theory (see the exam-

ple on page 25). For this state we have

^

Hj
i = E

0

j
i, with E

0

the lowest energy level.

The intera
tion pi
ture: the asymptoti
 free situation 
an be des
ribed by the free-

parti
le Hamilton operator

^

H

0

, so the 
orresponding time-dependent �elds are given by

^

�

I

(x) = e

i

^

H

0

t

^

�(~x )e

�i

^

H

0

t

and are 
alled intera
tion-pi
ture �elds. This is a
tually the situation we have en
ountered

in the previous 
hapter, i.e.

^

�

I

(x) =

^

�

free

(x). The 
reation and annihilation operators

have the same meaning as in the free theory, so the ground state is in this 
ase the stable

va
uum j0i of the free theory, with N(

^

H

0

)j0i = 0 after normal ordering.

Swit
hing between pi
tures: there is an operator that allows you to swit
h between

intera
tion pi
ture and Heisenberg pi
ture:

^

�(x) = e

i

^

Ht

^

�(~x )e

�i

^

Ht

= e

i

^

Ht

e

�i

^

H

0

t

^

�

I

(x)e

i

^

H

0

t

e

�i

^

Ht

�

^

U

�1

(t; 0)

^

�

I

(x)

^

U (t; 0) :

The operator

^

U(t; 0) satis�es the di�erential equation

i

�

�t

^

U(t; 0) = e

i

^

H

0

t

(

^

H�

^

H

0

)e

�i

^

Ht

= e

i

^

H

0

t

^

H

int

e

�i

^

H

0

t

e

i

^

H

0

t

e

�i

^

Ht

P:&S:

���

^

H

I

(t)

^

U(t; 0) ;

with boundary 
ondition

^

U(0; 0) =

^

1 and with

^

H

I

(t) only referring to the intera
tion

term (a

ording to the de�nition in the textbook of Peskin & S
hroeder).

6 This 
onstitutes a natural starting point for a perturbative expansion:

^

U(t � 0; 0) =

^

1 + (�i)

Z

t

0

dt

1

^

H

I

(t

1

)

^

U(t

1

; 0)

=

^

1 + (�i)

Z

t

0

dt

1

^

H

I

(t

1

) + (�i)

2

Z

t

0

dt

1

Z

t

1

0

dt

2

^

H

I

(t

1

)

^

H

I

(t

2

) + � � � ;

where the produ
t

^

H

I

(t

1

)

^

H

I

(t

2

) in the last term is ordered in time. In Ex. 6 it will be

derived that

^

U(t; 0) = T

�

e

� i

R

t

0

dt

0

^

H

I

(t

0

)

�

�

1

X

n=0

(�i)

n

n!

Z

t

0

dt

1

� � �

Z

t

0

dt

n

T

�

^

H

I

(t

1

) � � �

^

H

I

(t

n

)

�

;

whi
h 
an be trun
ated at the required perturbative order. Su
h an obje
t is 
alled a

time-ordered exponential. For now we will de�ne time ordering a

ording to

T

�

^

O

1

(t

1

)

^

O

2

(t

2

)

�

=

8

<

:

^

O

1

(t

1

)

^

O

2

(t

2

) t

1

> t

2

^

O

2

(t

2

)

^

O

1

(t

1

) t

2

> t

1

:
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Later on we will have to extend the de�nition of time ordering to fermioni
 operator �elds.

Sin
e

^

H

I

(t

0

) 
onsists of intera
tion-pi
ture �elds only, we have su

eeded in

rewriting

^

�(x) in terms of free �elds through

^

�(x) =

^

U

�1

(t; 0)

^

�

I

(x)

^

U(t; 0).

The de�nition of

^

U 
an be extended to arbitrary referen
e points:

^

U(t; t

1

) � e

i

^

H

0

t

e

�i

^

H(t�t

1

)

e

�i

^

H

0

t

1

=

^

U(t; 0)

^

U

�1

(t

1

; 0) :

This operator still satis�es the di�erential equation i

�

�t

^

U(t; t

1

) =

^

H

I

(t)

^

U(t; t

1

), but with

boundary 
ondition

^

U(t

1

; t

1

) =

^

1. The same pro
edure as before yields:

^

U(t; t

1

) = T

�

e

� i

R

t

t

1

dt

0

^

H

I

(t

0

)

�

(t � t

1

) :

This operator has the following properties that follow trivially from the above-given de�-

nition of

^

U(t; t

1

):

^

U(t

1

; t

2

)

^

U(t

2

; t

3

) =

^

U(t

1

; t

3

) and

^

U(t

1

; t

3

)

^

U

�1

(t

2

; t

3

) =

^

U(t

1

; t

2

) :

Note that we have not used that

^

H

0

and

^

H are hermitian, by sti
king to

^

U

�1

instead of writing

^

U

y

. So,

^

U(t; t

1

) 
an be generalized to non-hermitian

^

H

I

(t) or


omplex-valued time traje
tories, as is used in some of the textbooks on quantum

�eld theory in order to deal with the problem of swit
hing o� intera
tions.

2.4 Wi
k's theorem (§ 4.3 in the book)

The s
attering amplitude for going from a free-parti
le initial state jii to a free-parti
le

�nal state jfi now takes the form

lim

t

�

!�1

hf j

^

U(t

+

; t

�

)jii � hf j

^

S jii � hf j(

^

1 + i

^

T )jii :

In this expression the matrix hf j

^

S jii is 
alled the S-matrix (s
attering matrix), the unit

operator o

urring on the right-hand-side 
orresponds to the 
ase where no s
attering takes

pla
e, and

^

T is the transition operator that des
ribes a
tual s
attering.

6a Question: what should be done to 
al
ulate su
h an S-matrix element at

lowest order in perturbation theory?

The 
lumsy way of 
al
ulating S-matrix elements: let's 
onsider the s
alar Yukawa

theory, where

^

H

int

= g

R

d~x

^

 

y

(~x )

^

 (~x )

^

�(~x ). Remember that  is a 
omplex Klein-

Gordon �eld, i.e.

^

 

y

6=

^

 , whereas � is a real Klein-Gordon �eld, i.e.

^

�

y

=

^

�. Then we have:

lim

t

�

!�1

^

U(t

+

; t

�

) = T

�

e

� i

R

1

�1

dt

0

^

H

I

(t

0

)

�

=

^

1 � ig

Z

d

4

x

^

 

y

I

(x)

^

 

I

(x)

^

�

I

(x) + O(g

2

) :

35



Consider the following de
ay pro
ess within the s
alar Yukawa theory:

�(~p ) !  (~q

1

) +

�

 (~q

2

) ;

where �(~p ) denotes a �-parti
le with mass m and momentum ~p, whereas  (~q

1

) and

�

 (~q

2

) denote a  -parti
le and a  -antiparti
le with mass M and momenta ~q

1

and ~q

2

respe
tively. The ingredients for the 
al
ulation are:

jii =

p

2!

~p

â

y

~p

j0i ;

hf j =

p

2!

~q

1

2!

~q

2

h0j 
̂

~q

2

^

b

~q

1

;

^

�

I

(x) =

Z

d

~

k

(2�)

3

1

p

2!

~

k

�

â

~

k

e

�ik�x

+ â

y

~

k

e

ik�x

�

�

�

�

�

k

0

=!

~

k

=

p

~

k

2

+m

2

;

^

 

I

(x) =

Z

d

~

k

1

(2�)

3

1

p

2!

~

k

1

�

^

b

~

k

1

e

�ik

1

�x

+ 
̂

y

~

k

1

e

ik

1

�x

�

�

�

�

�

k

1

0

=!

~

k

1

=

p

~

k

2

1

+M

2

;

^

 

y

I

(x) =

Z

d

~

k

2

(2�)

3

1

p

2!

~

k

2

�


̂

~

k

2

e

�ik

2

�x

+

^

b

y

~

k

2

e

ik

2

�x

�

�

�

�

�

k

2

0

=!

~

k

2

=

p

~

k

2

2

+M

2

:

Using that hf jii = 0 we get

hf j

^

S jii =

p

8!

~p

!

~q

1

!

~q

2

h0j
̂

~q

2

^

b

~q

1

�

�ig

Z

d

4

x

^

 

y

I

(x)

^

 

I

(x)

^

�

I

(x)

�

â

y

~p

j0i :

Sin
e the â-,

^

b- and 
̂-operators mutually 
ommute, the â

y

~

k

term in

^

�

I


an be 
ommuted

to the left and will annihilate the va
uum. Similarly

^

b

~

k

1

in

^

 

I

and 
̂

~

k

2

in

^

 

y

I


an be


ommuted to the right and will annihilate the va
uum there, bearing in mind that the

va
uum expe
tation value of an operator that involves an odd number of 
̂-operators

vanishes trivially. In other words, only the â

~

k

term in

^

�

I

, the 
̂

y

~

k

1

term in

^

 

I

and the

^

b

y

~

k

2

term in

^

 

y

I

will 
ontribute:

hf j

^

S jii = �ig

Z

d

4

x

ZZZ

d

~

kd

~

k

1

d

~

k

2

(2�)

9

�

!

~p

!

~q

1

!

~q

2

!

~

k

!

~

k

1

!

~

k

2

�

1

2

e

i(k

1

+k

2

�k)�x

h0j
̂

~q

2

^

b

~q

1

�

^

b

y

~

k

2


̂

y

~

k

1

â

~

k

�

â

y

~p

j0i :

We know that

â

~

k

â

y

~p

j0i =

�

â

~

k

; â

y

~p

�

j0i = (2�)

3

Æ(

~

k � ~p )j0i ;

and similarly that

h0j

^

b

~q

1

^

b

y

~

k

2

= h0j(2�)

3

Æ(

~

k

2

� ~q

1

) and h0j 
̂

~q

2


̂

y

~

k

1

= h0j(2�)

3

Æ(

~

k

1

� ~q

2

) :

This leads to the following result for the lowest-order de
ay amplitude:

hf j

^

S jii = � ig

Z

d

4

x e

i(q

2

+q

1

�p)�x

h0j0i = � ig (2�)

4

Æ

(4)

(q

1

+ q

2

� p) ;
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with g the strength of the intera
tion that is responsible for the de
ay. The Æ-fun
tion

ensures that energy and momentum are 
onserved in the de
ay. In the referen
e frame

of the de
aying parti
le we have: p = (m;

~

0) ) ~q

1

+ ~q

2

=

~

0 ; !

~q

1

+ !

~q

2

= m with

!

~q

j

=

p

~q

j

2

+M

2

�M for j = 1; 2. So, the de
ay is only possible if m � 2M .

The smart way of 
al
ulating S-matrix elements:

6b the tri
k will be to bring all 
reation operators to the left and all annihilation

operators to the right, with the va
uum state doing the rest. In other words,

in order to 
al
ulate S-matrix elements we need a way to rewrite time-ordered

�elds in normal-ordered form . . . as will be provided by Wi
k's theorem!

Step 1: 
onsider a real Klein-Gordon �eld

^

�

I

(x) =

Z

d~p

(2�)

3

e

�ip�x

p

2!

~p

â

~p

+

Z

d~p

(2�)

3

e

ip�x

p

2!

~p

â

y

~p

�

^

�

+

I

(x) +

^

�

�

I

(x) ;

where the �rst term 
orresponds to the positive-frequen
y part and the se
ond term to the

negative-frequen
y part. The

^

�

+

I

and

^

�

�

I

�elds have the following useful property:

^

�

+

I

(x)j0i = 0 and h0j

^

�

�

I

(x) = 0 :

Sin
e

^

�

+

I

only 
ontains annihilation operators, the �elds

^

�

+

I

(x) and

^

�

+

I

(y) 
ommute.

Similarly,

^

�

�

I

only 
ontains 
reation operators, so the �elds

^

�

�

I

(x) and

^

�

�

I

(y) 
ommute

as well. As a result

x

0

> y

0

: T

�

^

�

I

(x)

^

�

I

(y)

�

=

�

^

�

+

I

(x) +

^

�

�

I

(x)

��

^

�

+

I

(y) +

^

�

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+

�

^

�

+

I

(x);

^

�

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+ D(x� y)

^

1 ;

x

0

< y

0

: T

�

^

�

I

(x)

^

�

I

(y)

�

=

�

^

�

+

I

(y) +

^

�

�

I

(y)

��

^

�

+

I

(x) +

^

�

�

I

(x)

�

= N

�

^

�

I

(y)

^

�

I

(x)

�

+

�

^

�

+

I

(y);

^

�

�

I

(x)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+ D(y � x)

^

1 :

Now we de�ne a so-
alled 
ontra
tion:

^

�

I

(x)

^

�

I

(y) =

^

�

I

(x)

^

�

I

(y) �

8

>

<

>

:

�

^

�

+

I

(x);

^

�

�

I

(y)

�

= D(x� y)

^

1 if x

0

>y

0

�

^

�

+

I

(y);

^

�

�

I

(x)

�

= D(y � x)

^

1 if x

0

< y

0

= D

F

(x�y)

^

1 ;

with D

F

(x � y) the Feynman propagator of the free Klein-Gordon theory. With this

de�nition, the time-ordered expression 
an be rewritten as

T

�

^

�

I

(x)

^

�

I

(y)

�

= N

�

^

�

I

(x)

^

�

I

(y)

�

+

^

�

I

(x)

^

�

I

(y) :

As a 
onsequen
e of normal ordering we get, as expe
ted, that

h0jT

�

^

�

I

(x)

^

�

I

(y)

�

j0i = 0 + D

F

(x� y) :
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Step 2, Wi
k's theorem: let's for the moment skip the annoying subs
ript I and use

the shorthand notation

^

�

j

�

^

�

I

(x

j

) for j = 1; � � � ; n.

Wi
k's theorem then states: T (

^

�

1

� � �

^

�

n

) = N(

^

�

1

� � �

^

�

n

+ all possible 
ontra
tions) :

For example:

T (

^

�

1

^

�

2

^

�

3

^

�

4

) =N

�

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

+

^

�

1

^

�

2

^

�

3

^

�

4

�

;

with N(

^

�

1

^

�

2

^

�

3

^

�

4

) � D

F

(x

1

� x

3

)N(

^

�

2

^

�

4

).

The de
omposition stated in Wi
k's theorem has the following important 
onsequen
e:

leftover (un
ontra
ted) normal-ordered terms vanish upon taking the va
uum

expe
tation value!

For example:

h0jT (

^

�

1

^

�

2

^

�

3

^

�

4

)j0i = D

F

(x

1

� x

2

)D

F

(x

3

� x

4

) + D

F

(x

1

� x

3

)D

F

(x

2

� x

4

)

+ D

F

(x

1

� x

4

)D

F

(x

2

� x

3

) :

6b Feynman propagators thus play a 
entral role in the resulting expressions.

Proof of Wi
k's theorem: assume that the theorem is 
orre
t for all n � m�1, knowing

that it is okay for n = 1; 2. For 
onvenien
e we take x

0

1

� x

0

2

� � � � � x

0

m

, bearing in mind

that the order of the s
alar �elds is irrelevant for time ordering and normal ordering. Then

T (

^

�

1

� � �

^

�

m

) =

^

�

1

^

�

2

� � �

^

�

m

=

^

�

1

T (

^

�

2

� � �

^

�

m

)

by assumption

===========

^

�

1

N(

^

�

2

� � �

^

�

m

+ all possible 
ontra
tions of

^

�

2

� � �

^

�

m

)

= (

^

�

+

1

+

^

�

�

1

)N(� � � ) =

^

�

+

1

N(� � � ) + N(

^

�

�

1

� � � ) ;

where in the last step we have used that

^

�

�

1


ontains 
reation operators only and therefore

already is in the right position. In 
ontrast,

^

�

+

1


ontains annihilation operators only and

should be pla
ed after all other �elds. To get it in normal-ordered form, we need to


ommute it past all other �elds:

^

�

+

1

N(� � � ) = N(� � � )

^

�

+

1

+ 
orre
tions for all un
ontra
ted

^

�

�

j>1

:
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For instan
e:

^

�

+

1

N(

^

�

2

� � �

^

�

m

) = N

�

[

^

�

+

1

;

^

�

�

2

℄

^

�

3

� � �

^

�

m

+

^

�

2

[

^

�

+

1

;

^

�

�

3

℄

^

�

4

� � �

^

�

m

+ � � �

+

^

�

2

� � �

^

�

m�1

[

^

�

+

1

;

^

�

�

m

℄

�

+ N(

^

�

2

� � �

^

�

m

)

^

�

+

1

x

0

1

�x

0

j>1

======= N(

^

�

+

1

^

�

2

� � �

^

�

m

+

^

�

1

^

�

2

^

�

3

� � �

^

�

m

+

^

�

1

^

�

2

^

�

3

^

�

4

� � �

^

�

m

+ � � � ) ;

where we have used that N(

^

�

2

� � �

^

�

m

)

^

�

+

1

= N(

^

�

+

1

^

�

2

� � �

^

�

m

). Consequently

^

�

1

N(

^

�

2

� � �

^

�

m

) = N(

^

�

1

^

�

2

� � �

^

�

m

+ all single 
ontra
tions of

^

�

1

with another

^

�

j

) :

The other (
ontra
ted) terms 
an be worked out in an analogous way, 
ompleting the

indu
tive proof of Wi
k's theorem.

2.4.1 Green's fun
tions: Heisenberg vs intera
tion pi
ture (§ 4.2 in the book)

Before setting up a diagrammati
 notation based on Wi
k's theorem, we �rst introdu
e the

fundamental quantum me
hani
al obje
ts to whi
h this theorem should be applied. To this

end we 
onsider n-point 
orrelation fun
tions (Green's fun
tions) in the full intera
ting

s
alar �

4

-theory:

G

(n)

(x

1

; � � � ; x

n

) �

h
jT

�

^

�(x

1

) � � �

^

�(x

n

)

�

j
i

h
j
i

:

Here

^

�(x

1

); � � � ;

^

�(x

n

) are Heisenberg �elds in the intera
ting theory and j
i is the ground

state of the intera
ting theory, whi
h satis�es

^

H j
i = E

0

j
i and h
j
i = 1 :

These Green's fun
tions play an important role in the derivation of s
attering amplitudes

and are interesting obje
ts in their own right, for instan
e for studying density pertur-

bations. Without loss of generality we 
an take x

0

1

= t

1

� x

0

2

= t

2

� � � � � x

0

n

= t

n

,

so that

h
jT

�

^

�(x

1

) � � �

^

�(x

n

)

�

j
i = h
j

^

�(x

1

) � � �

^

�(x

n

)j
i

p. 34

==== h
j

^

U

�1

(t

1

; 0)

^

�

I

(x

1

)

^

U(t

1

;t

2

)

z }| {

^

U(t

1

; 0)

^

U

�1

(t

2

; 0) � � �

^

U(t

n�1

;t

n

)

z }| {

^

U(t

n�1

; 0)

^

U

�1

(t

n

; 0)

^

�

I

(x

n

)

^

U(t

n

; 0)j
i :

Proje
ting on the free-parti
le va
uum: for an arbitrary state j i it will prove handy

to 
onsider

h j

^

U(0; t

�

)j0i

^

H

0

j0i�0

====== h je

i

^

Ht

�

j0i


ompleteness relation for

^

H

====================

X

n

h je

i

^

Ht

�

jnihnj0i

= e

iE

0

t

�

h j
ih
j0i +

X

n 6=


e

iE

n

t

�

h jnihnj0i
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and subsequently take the limit t

�

! �1. The \summation" over the ex
ited states

fjni 6= j
ig is just a shorthand notation, in fa
t it will involve an integration over energy

(see later). Provided that there is a �nite energy gap between the ground state j
i and

the ex
ited states jn 6=
i, as is for instan
e the 
ase for massive ex
itations, we 
an employ

the Riemann{Lebesgue lemma. This lemma states that

lim

�!�1

Z

v

1

v

0

dv f(v) e

i�v

= 0

for any integrable fun
tion f and any 
ompa
t or non-
ompa
t interval [v

0

; v

1

℄. Using this

lemma one �nds for an arbitrary state j i the identity

lim

t

�

!�1

e

�iE

0

t

�

h j

^

U(0; t

�

)j0i

h
j0i

= h j
i + lim

t

�

!�1

X

n 6=


e

i(E

n

�E

0

)t

�

h jnihnj0i

h
j0i

= h j
i :

Similarly we 
an derive the identity

lim

t

+

!+1

e

iE

0

t

+

h0j

^

U(t

+

; 0)j i

h0j
i

= h
j i :

This pro
edure 
losely resembles Fermi's Golden Rule for time-dependent perturbation

theory. By supplying j0i with the right frequen
y fa
tor and waiting long enough, only

the j
i 
omponent of j0i survives as a result of destru
tive phase interferen
e.

Note: on pages 86 and 87 of the textbook by Peskin & S
hroeder the same

identities are obtained by tilting the time axis a

ording to t ! t(1� i�) with

� 2 R in�nitesimal. This pro
edure is 
losely related to the i� pres
ription for

obtaining the Feynman propagator in § 1.6.

Inserting these identities in the numerator and denominator of the Green's fun
tions yields

h
jT

�

^

�(x

1

) � � �

^

�(x

n

)

�

j
i

= lim

t

�

!�1

e

iE

0

(t

+

�t

�

)

h0j

^

U(t

+

;t

1

)

z }| {

^

U(t

+

; 0)

^

U

�1

(t

1

; 0)

^

�

I

(x

1

)

^

U(t

1

; t

2

) � � �

^

U(t

n�1

; t

n

)

^

�

I

(x

n

)

^

U(t

n

;t

�

)

z }| {

^

U(t

n

; 0)

^

U(0; t

�

) j0i

h0j
ih
j0i

= lim

t

�

!�1

e

iE

0

(t

+

�t

�

)

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

)

^

U(t

+

; t

�

)

�

j0i

jh
j0ij

2

� e

iE

0

T

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

)

^

S

�

j0i

jh
j0ij

2

and

h
j
i = lim

t

�

!�1

e

iE

0

(t

+

�t

�

)

h0j

^

U(t

+

; 0)

^

U(0; t

�

)j0i

h0j
ih
j0i

� e

iE

0

T

h0j

^

Sj0i

jh
j0ij

2

;

resulting in the following 
ombined expression for the n-point Green's fun
tion:

G

(n)

(x

1

; � � � ; x

n

) =

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

)

^

S

�

j0i

h0j

^

S j0i

:
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6
 A Green's fun
tion in the intera
ting theory 
an be expressed in terms of

time-ordered va
uum expe
tation values of free intera
tion pi
ture �elds and the

time-evolution S-operator, whi
h too 
an be fully expressed in free �elds.

Please also note that sin
e h
j
i = 1, it follows that h0j

^

Sj0i / e

�iE

0

T

. This implies that

the va
uum expe
tation value of the S-operator h0j

^

Sj0i is related to the phase di�eren
e


aused by the di�eren
e in ground-state zero-point energies of the intera
ting theory and

the free theory, the latter of whi
h was de�ned to be 0 in the dis
ussion above.

2.5 Diagrammati
 notation: Feynman diagrams (§ 4.4 in the book)

In order to study the impli
ations of Wi
k's theorem we will fo
us here on the intera
ting

s
alar �

4

-theory, with the s
alar Yukawa theory being worked out in the exer
ises.

6d For 
al
ulating amplitudes it will prove handy to introdu
e a diagrammati


notation, 
alled Feynman diagrams, for time-ordered va
uum expe
tation val-

ues of intera
tion-pi
ture �elds.

Propagator : we start with a diagrammati
 notation for 
ontra
tions

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

�

j0i =

^

�

I

(x

1

)

^

�

I

(x

2

) = D

F

(x

1

� x

2

) �

x

1

x

2

;

where the solid line represents the 
ontra
tion (propagator) and the dots at the end of

the line represent the so-
alled external points in position spa
e. From this it follows, for

example, that

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

4

)

�

j0i =

x

1

x

2

x

3

x

4

+

x

1

x

2

x

3

x

4

+

x

1

x

2

x

4

x

3

:

In order to deal with the Green's fun
tions introdu
ed in the previous se
tion, we will need

more 
ompli
ated va
uum expe
tation values of the form

lim

t

�

!�1

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

) e

� i

R

t

+

t

�

dt

^

H

I

(t)

�

j0i ;

so let's further develop the diagrammati
 notation. We again start with the 
ase n = 2:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i

Taylor

===== h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

h

^

1� i

Z

d

4

x

^

H

I

(x) + � � �

i

�

j0i:

We 
an now 
al
ulate this quantity up to the required perturbative order.
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Lowest order:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

�

j0i = D

F

(x

1

� x

2

) =

x

1

x

2

:

First order in �:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

)

h

� i

Z

d

4

x

�

4!

^

�

4

I

(x)

i

�

j0i

Wi
k

===== 3

�

� i�

4!

�

Z

d

4

x h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j0i

+ 12

�

� i�

4!

�

Z

d

4

x h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j0i

= �

i�

8

D

F

(x

1

� x

2

)

Z

d

4

x D

2

F

(x� x) �

i�

2

Z

d

4

x D

F

(x

1

� x)D

F

(x

2

� x)D

F

(x� x)

=

x

1

x

2

x

+

x

1

x

2

x

:

Vertex : the spa
etime point x that is integrated over is 
alled an internal point or vertex.

To su
h a vertex we assign the analyti
 expression �i�

R

d

4

x, whi
h is the amplitude for

emission and/or absorption of parti
les at the spa
etime point x, summed over all points

where this 
an o

ur. Also noti
e that we en
ounter for the �rst time pie
es of diagram

that involve 
losed loops.

An example of a higher-order term involving three powers in �:

P

1

3!

�

� i�

4!

�

3

h0j

^

�

I

(x

1

)

^

�

I

(x

2

)

Z

d

4

x

^

�

I

^

�

I

^

�

I

^

�

I

Z

d

4

y

^

�

I

^

�

I

^

�

I

^

�

I

Z

d

4

z

^

�

I

^

�

I

^

�

I

^

�

I

j0i

=

i�

3

8

Z

d

4

x

Z

d

4

y

Z

d

4

z D

F

(x

1

�x)D

F

(x�x)D

F

(x�y)D

F

(x

2

�y)D

2

F

(y�z)D

F

(z�z)

=

x

1

x

2

x y

z

:

Here

R

d

4

x

^

�

I

^

�

I

^

�

I

^

�

I

is a shorthand notation for

R

d

4

x

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x). The fa
-

tor

1

3!

�

�i�

4!

�

3

follows dire
tly from the expansion of e

� i

R

d

4

x

^

H

I

(x)

, whereas the fa
tor P

represents the number of times the 
ontra
tions 
an be permuted without 
hanging the


ontribution. This permutation fa
tor is a produ
t of the following terms:
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� 3! from permuting x; y and z ;

� 4� 3 from the x 
ontra
tions;

� 4� 3 from the y 
ontra
tions;

� 4� 3 from the z 
ontra
tions.

From the O(�) and O(�

3

) examples we see that the fa
tor 1=n! is 
an
elled by the n!

permutation fa
tor from inter
hanging verti
es, and that the fa
tors 1=4! are largely 
om-

pensated by the number of ways the 
ontra
tions 
an be pla
ed into

^

�

I

^

�

I

^

�

I

^

�

I

.

Symmetry fa
tor : we end up with a leftover fa
tor 1=S , with S the symmetry fa
tor that

represents the number of ways in whi
h diagram 
omponents 
an be inter
hanged su
h that

exa
tly the same diagram is obtained.

Examples:

x

1

x

2

S = 2

S = 2

3

= 8

x

1

x

2

S = 3! = 6

x

1

x

2

S = 2� 3! = 12

.

6d

The expression h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i 
an now be represented by the

sum of all possible Feynman diagrams with two external points, where a Feynman

diagram is a 
olle
tion (drawing) of propagators, verti
es and external points. The

rules for asso
iating analyti
 expressions with spe
i�
 pie
es of diagrams are 
alled

the Feynman rules of the s
alar �

4

-theory (see below). The natural representation

for these Green's fun
tion Feynman rules is position spa
e in view of the external

spa
etime points. Given a spe
i�
 diagram, the 
omplete analyti
 expression is ob-

tained by multiplying the analyti
 expressions for the spe
i�
 pie
es of the diagram.

Green's fun
tion Feynman rules for the s
alar �

4

-theory in position spa
e:

1. For ea
h propagator

x

1

x

2

insert D

F

(x

1

� x

2

).

2. For ea
h vertex

x

insert (�i�)

R

d

4

x.

3. For ea
h external point

x

insert 1.

4. Divide by the symmetry fa
tor.

Swit
hing to momentum spa
e: in § 2.6 it will prove more 
onvenient to work in

momentum spa
e, rather than position spa
e. First we 
onsider the Feynman propagator:

D

F

(x

1

� x

2

) =

Z

d

4

p

(2�)

4

i

p

2

�m

2

+ i�

e

�ip�(x

1

�x

2

)

=

x

1

x

2

p

;
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where the sign (dire
tion) of p is arbitrary sin
e D

F

(x

1

� x

2

) = D

F

(x

2

� x

1

) for a s
alar

�eld. In other words, we 
an assign a to-be-integrated four-momentum p and 
omplex

fa
tor i=(p

2

�m

2

+ i�) to ea
h propagator, indi
ating the dire
tion of the momentum 
ow

by an arrow. This arrow has no deeper meaning than that in �

4

-theory, but in the s
alar

Yukawa theory it will be needed to distinguish parti
les from antiparti
les. Using this

momentum-
ow 
onvention a vertex 
orresponds to the following Fourier integral:

p

1

p

2

p

3

p

4

!

Z

d

4

z e

�i(p

1

+p

2

+p

3

�p

4

)�z

= (2�)

4

Æ

(4)

(p

1

+ p

2

+ p

3

� p

4

) :

On the left-hand-side of this equation the integral follows from the position-spa
e Feynman

rule for the vertex and the exponential fa
tor is 
aused by the momentum-spa
e expressions

for the Feynman propagators.

6d In momentum spa
e we hen
e obtain four-dimensional Æ-fun
tions that

represent energy-momentum 
onservation at ea
h vertex. Ea
h Æ-fun
tion re-

moves one of the Feynman-propagator integrals by �xing the 
orresponding mo-

mentum, 
ausing many of the propagators to be o�-shell (i.e. not on-shell).

We'll 
ome ba
k to the impa
t of these Æ-fun
tions in the 
ontext of § 2.6.

Translation of the Feynman rules to momentum spa
e (relevant for § 2.6):

1. For ea
h propagator

p

insert i=(p

2

�m

2

+ i�).

2. For ea
h vertex insert �i�.

3. For ea
h external point

p

x

insert e

�ip�x

.

4. Impose momentum 
onservation at ea
h vertex by �xing one of the momenta.

5. Integrate over ea
h undetermined momentum p

j

:

R

d

4

p

j

(2�)

4

.

6. Divide by the symmetry fa
tor.

Va
uum bubbles: the pie
es of diagram that are dis
onne
ted from the external points

are 
alled va
uum bubbles. For example:

Z

d

4

x

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

Z

d

4

y

^

�

I

(y)

^

�

I

(y)

^

�

I

(y)

^

�

I

(y) =

p

3

p

1

p

2

p

4

:

The 
orresponding diagram will give rise to two energy-momentum Æ-fun
tions

(2�)

4

Æ

(4)

(p

1

+ p

2

)(2�)

4

Æ

(4)

(p

1

+ p

2

) :
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Upon inserting the �rst Æ-fun
tion, the last Æ-fun
tion will yield Æ

(4)

(0). This represents

the in�nite spa
etime volume fa
tor that originates from the fa
t that this va
uum bubble


an o

ur at any spa
etime point! We have in fa
t already en
ountered an example of su
h

an IR divergen
e in § 1.3 while dis
ussing the in�nities of the zero-point energy. Let's now

label the possible va
uum bubbles by

V

j

2

(

V

1

;

V

2

;

V

3

;

V

4

; � � �

)

;

then the following identity holds:

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i = e

P

j

V

j

 

x

1

x

2

+

x

1

x

2

x

+

x

1

x

2

x y

+ � � �

!

: (2)

The part between parantheses on the right-hand-side is the sum of all 
onne
ted diagrams,

i.e. 
ontinuous drawings that 
onne
t external points, whereas the exponential fa
tor in

front is the va
uum-bubble 
ontribution. This va
uum-bubble 
ontribution involves no

external points and is therefore given by

e

P

j

V

j

= h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i = h0j

^

Sj0i :

Note: in the �

4

-theory ea
h vertex has an even number of lines 
oming together. So,

x

1

and x

2

must be 
onne
ted to ea
h other. The reason for this is that internal lines of

a diagram 
onne
t two verti
es and therefore 
ount as two lines that are atta
hed to a

vertex. As su
h, a 
onne
ted pie
e of diagram involves an even number of external lines

and points.

Proof of identity (2): 
onsider a diagram with n

j

va
uum bubbles of type V

j

and one


onne
ted pie
e without va
uum bubbles, like

x

1

x

2


onne
ted pie
e

n

1

= 1

n

3

= 2

:

From the Feynman rules it follows that

analyti
 expression diagram = (analyti
 expression 
onne
ted pie
e)�

�

Y

j

1

n

j

!

(V

j

)

n

j

�

;
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where the symmetry fa
tor 
omes from inter
hanging the n

j


opies of V

j

. Hen
e we �nd

h0jT

�

^

�

I

(x

1

)

^

�

I

(x

2

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i = sum of all diagrams

=

X

all possible


onne
ted pie
es

X

all fn

j

g

(analyti
 expression 
onne
ted pie
e) �

�

Y

j

1

n

j

!

(V

j

)

n

j

�

= (sum of all 
onne
ted diagrams) �

X

all fn

j

g

�

Y

j

1

n

j

!

(V

j

)

n

j

�

= (sum of all 
onne
ted diagrams) � h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i :

The only thing left to prove is that the last fa
tor is indeed equal to e

P

j

V

j

:

e

P

j

V

j

=

Y

j

e

V

j

=

Y

j

�

X

n

j

1

n

j

!

(V

j

)

n

j

�

=

�

X

n

1

1

n

1

!

(V

1

)

n

1

��

X

n

2

1

n

2

!

(V

2

)

n

2

�

� � �

=

X

all fn

j

g

�

Y

j

1

n

j

!

(V

j

)

n

j

�

:

We 
an generalize the above-given separation between 
onne
ted diagrams and va
uum

bubbles to

h0jT

�

^

�

I

(x

1

) � � �

^

�

I

(x

n

) e

� i

R

d

4

x

^

H

I

(x)

�

j0i

= h0jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j0i � (sum of all 
onne
ted diagrams with n external points) :

This means that the va
uum bubbles vanish in the de�nition of the Green's fun
tion (see

page 40), leaving behind 
onne
ted diagrams only.

For 4; 6; � � � external points su
h 
onne
ted diagrams 
ontain diagrams like

x

3

x

1

x

4

x

2

that do not have all external points 
onne
ted to ea
h other.

Remark: as mentioned on page 41 the sum of all va
uum bubbles

P

j

V

j

= log

�

h0j

^

Sj0i

�

=

�iE

0

T is a
tually related to the di�eren
e in the ground-state zero-point energies of the

intera
ting theory and the free theory, with the latter being de�ned to be 0. Bearing in

mind that V

j


ontains an in�nite spa
etime fa
tor (2�)

4

Æ

(4)

(0) = V T , the energy density

of the ground state of the intera
ting theory reads

E

0

V

= �

X

j

Im(V

j

)

V T

= �

Im

�

P

j

V

j

�

(2�)

4

Æ

(4)

(0)

:

The long-distan
e in�nity from the in�nite extent of spa
etime has been removed in this

way, leaving behind the UV in�nity that re
e
ts our ignoran
e about the physi
s governing

the ultra-high-energy regime.
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2.6 S
attering amplitudes (§ 4.6 in the book)

7 At this point you might wonder what su
h time-ordered va
uum expe
ta-

tion values of intera
tion-pi
ture �elds have to do with amplitudes for de
ay

pro
esses or s
attering rea
tions.

In order to 
al
ulate s
attering 
ross se
tions and de
ay rates we will have to work out

plane-wave amplitudes of the form

out

h~p

1

~p

2

� � � j

~

k

A

~

k

B

i

in

. Here j

~

k

A

~

k

B

i

in

is the so-
alled

\in-state". In the 
ase of s
attering this is a 2-parti
le momentum state that is 
onstru
ted

in the far past, also referred to as \the initial state". Similarly

out

h~p

1

~p

2

� � � j is the so-
alled

\out-state", whi
h represents the �nal state parti
les in the far future, i.e. the parti
les

that will end up in the dete
tors of the experiment.

7 Sin
e the dete
tors are in general not able to resolve positions at the level of

the de Broglie wavelengths of the parti
les, it is 
orre
t to work with plane-wave

states rather than wave pa
kets in order to des
ribe the 
ollision.

The states

out

h~p

1

~p

2

� � � j and j

~

k

A

~

k

B

i

in

are plane-wave states in the Heisenberg pi
ture.

Normally states are time-independent in the Heisenberg pi
ture. However, the in and out

states that we use here are de�ned as eigenstates of momentum operators that do depend

on time. As su
h, the in-state 
ontains the time stamp t = t

�

! �1 and the out-state

t = t

+

! +1. By evolving these states to the eigenstates at t = 0, one unique set of

Heisenberg-pi
ture plane-wave states is obtained:

out

h~p

1

~p

2

� � � j

~

k

A

~

k

B

i

in

� h~p

1

~p

2

� � � j

^

S j

~

k

A

~

k

B

i � h~p

1

~p

2

� � � j

�

^

1 + i

^

T

�

j

~

k

A

~

k

B

i :

Be
ause of the in�nite time interval and the way we normalize the states h~p

1

~p

2

� � � j and

j

~

k

A

~

k

B

i, these matrix elements are Lorentz invariant. As was mentioned earlier, the matrix

element h~p

1

~p

2

� � � j

^

S j

~

k

A

~

k

B

i is 
alled the S-matrix element and is naturally split into two

parts: a part 
ontaining

^

1, whi
h 
orresponds to the 
ase where no s
attering takes pla
e,

and a part 
ontaining the transition operator

^

T , whi
h des
ribes a
tual s
attering. So, the

latter part 
ontains all the interesting physi
s.

The matrix element: the next step is to pull out the anti
ipated energy-momentum


onservation fa
tor a

ording to

h~p

1

~p

2

� � � ji

^

T j

~

k

A

~

k

B

i � (2�)

4

Æ

(4)

�

k

A

+ k

B

� [p

1

+ p

2

+ � � � ℄

�

iM(k

A

; k

B

! p

1

; p

2

; � � � )

� (2�)

4

Æ

(4)

�

P

i

k

i

�

P

f

p

f

�

iM(fk

i

g ! fp

f

g) ;

where M is 
alled the invariant matrix element (or short: matrix element).

2

All four-

momenta o

urring in this expression are on-shell, i.e. p

2

=m

2

with m the physi
al mass

2

Warning: in some textbooks the fa
tor of i is absorbed into the de�nition of M
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of the parti
le. Therefore it suÆ
es to know the three-momenta of the parti
les and the

rea
tion state they belong to (i.e. initial or �nal state) in order to obtain the 
omplete

four-momenta. By means of this split-up the intera
tion details (\dynami
s") are sepa-

rated from the momentum details (\kinemati
s").

Rewriting things in free-parti
le language (without proof, for now): as will be

shown later, the plane-wave states in the intera
ting theory 
an be expressed in terms of

free-parti
le plane-wave states

0

h~p

1

~p

2

� � � j and j

~

k

A

~

k

B

i

0

, resulting in

h~p

1

~p

2

� � � ji

^

T j

~

k

A

~

k

B

i = lim

t

�

!�1

�

0

h~p

1

~p

2

� � � jT

�

e

� i

R

t

+

t

�

dt

^

H

I

(t)

�

j

~

k

A

~

k

B

i

0

�

fully 
onne
ted

and amputated

� fa
tor

=

�

0

h~p

1

~p

2

� � � jT

�

e

� i

R

d

4

x

^

H

I

(x)

�

j

~

k

A

~

k

B

i

0

�

fully 
onne
ted

and amputated

� fa
tor ;

where the (not yet spe
i�ed) fa
tor 
omes in at loop level. In this way everything has been

translated into free-parti
le language, but some of the ingredients still need to be spe
i�ed.

7 The a
tual proof of the above statement will be postponed until § 2.9, sin
e

we will need to know a bit more about the properties of loop 
orre
tions for that

purpose. This proof will be based on the type of time-ordered va
uum expe
tation

values of intera
tion-pi
ture �elds that we have en
ountered previously.

In order to get a feeling for the essential ingredients of that proof we will 
onsider an expli
it

example. Let's have a look at the meaning of \fully 
onne
ted" and \amputated" by 
on-

sidering the S-matrix element belonging to the 2 ! 2 pro
ess �(k

A

)�(k

B

) ! �(p

1

)�(p

2

)

in the s
alar �

4

-theory.

The O(�

0

) term:

0

h~p

1

~p

2

j

~

k

A

~

k

B

i

0

= 4

p

!

~p

1

!

~p

2

!

~

k

A

!

~

k

B

h0jâ

~p

1

â

~p

2

â

y

~

k

A

â

y

~

k

B

j0i

= 4!

~

k

A

!

~

k

B

(2�)

6

h

Æ(~p

1

�

~

k

A

)Æ(~p

2

�

~

k

B

) + A$ B

i

diagrammati
ally

=============

1 2

A B

+

1 2

B A

:

This O(�

0

) term is part of the

^

1 term in

^

S =

^

1 + i

^

T , so it does not 
ontribute to the

matrix element M.

Arrow of time, Peskin & S
hroeder style : the external lines without external points in-

di
ate the in
oming parti
les, whi
h are pla
ed at the bottom of the diagram in the notation
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of Peskin & S
hroeder, and outgoing parti
les, whi
h are pla
ed at the top of the diagram.

In many textbooks these diagrams will be turned by 90

Æ

with in
oming parti
les on the

left and outgoing ones on the right, i.e. in that 
ase the time-axis points from left to right

rather than from bottom to top.

The O(�) term:

0

h~p

1

~p

2

jT

�

� i

Z

d

4

x

�

4!

^

�

4

I

(x)

�

j

~

k

A

~

k

B

i

0

Wi
k

=====

�

� i�

4!

�

0

h~p

1

~p

2

j

Z

d

4

x N

�

^

�

4

I

(x)

�

j

~

k

A

~

k

B

i

0

+

�

� i�

4!

�

0

h~p

1

~p

2

j

Z

d

4

x N

�

6

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x) + 3

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

�

j

~

k

A

~

k

B

i

0

:

This time terms that are not fully 
ontra
ted do not vanish automati
ally:

^

�

+

I

(x)j

~

ki

0

=

Z

d~p

(2�)

3

1

p

2!

~p

â

~p

e

�ip�x

p

2!

~

k

â

y

~

k

j0i = e

�ik�x

j0i :

It is now useful to extend the 
ontra
tion de�nition with

^

�

I

(x)j

~

ki

0

�

^

�

+

I

(x)j

~

k i

0

= e

�ik�x

j0i and

0

h~pj

^

�

I

(x) �

0

h~pj

^

�

�

I

(x) = h0je

ip�x

:

This means that we need additional Feynman rules for 
ontra
tions of �eld operators with

external states:

q

x

= e

�iq�x

and

q

x

= e

iq�x

;

where e

�iq�x

is the amplitude for �nding a parti
le with four-momentum q at the vertex

position x. Diagrammati
ally the O(�) terms then 
onsist of the following 
ontributions:

� A term with all

^

�

I

's 
ontra
ted with ea
h other:

�

i�

8

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

=

x

1 2

A B

+

x

1 2

B A

This is a part of the

^

1 term in

^

S =

^

1 + i

^

T , so it does not 
ontribute to the matrix

element M.

� Terms where some

^

�

I

's are 
ontra
ted with ea
h other and some with the external

states:

�

i�

2

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

+ three similar terms

=

x

A

1

B

2

+

x

A

2

B

1

+

x

B

1

A

2

+

x

B

2

A

1

:
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These terms 
ontribute only if there are as many â as â

y

operators left, so one �eld

should be 
ontra
ted with an in
oming parti
le state and one with an outgoing parti-


le state. Again this is part of the

^

1 term in

^

S =

^

1+ i

^

T , sin
e the integration

R

d

4

x

yields a momentum-
onserving Æ-fun
tion at ea
h vertex. Again no 
ontribution to

the matrix element M is obtained.

� A term where all

^

�

I

's are 
ontra
ted with the external states:

� i�

Z

d

4

x

0

h~p

1

~p

2

j

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)

^

�

I

(x)j

~

k

A

~

k

B

i

0

=

x

1

A

2

B

= � i�

Z

d

4

x e

�i(k

A

+k

B

�p

1

�p

2

)�x

= � i�(2�)

4

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

) :

This term gives rise to a �� 
ontribution to the matrix element M!

Fully 
onne
ted diagrams: the dis
ussion above re
e
ts the following general prin
iple.

7a Only fully 
onne
ted diagrams, in whi
h all lines are 
onne
ted to ea
h

other, 
ontribute to the T -matrix and hen
e to the matrix element M.

At lowest non-vanishing order we �nd M(k

A

; k

B

! p

1

; p

2

) = �� in the s
alar �

4

-theory,

whi
h 
an be obtained dire
tly from the momentum-spa
e intera
tion vertex = � i�.

In
luding higher-order terms, while keeping the external lines 
onne
ted:

h~p

1

~p

2

ji

^

T j

~

k

A

~

k

B

i =

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+

1

B

2

A

+ � � �

+

1

A

2

B

+ � � �

+

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+ � � �

The three sets of diagrams that o

ur on the separate lines of this expression are now

dis
ussed individually.

Set 1: these diagrams 
ontribute to M. Beyond leading order diagrams o

ur that involve
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the 
reation and annihilation of additional \virtual" parti
les. Su
h higher-order 
ontri-

butions are 
alled loop 
orre
tions.

Set 2: these diagrams involve dis
onne
ted va
uum bubbles, whi
h will again exponentiate

to an overall phase fa
tor that is irrelevant for physi
al observables! These graphs take

into a

ount the energy shift between the ground state of the free theory and the ground

state of the intera
ting theory with respe
t to whi
h s
attering takes pla
e. So, indeed

only fully 
onne
ted diagrams matter!

Set 3: su
h diagrams give rise to 
ontributions of the form

x

y

p

1

p

2

k

A

k

B

k

0

l

=

1

2

Z

d

4

k

0

(2�)

4

i

k

02

�m

2

+ i�

Z

d

4

l

(2�)

4

i

l

2

�m

2

+ i�

�

� (� i�)(2�)

4

Æ

(4)

(k

A

+ k

0

� p

1

� p

2

)(� i�)(2�)

4

Æ

(4)

(k

B

� k

0

)

=

1

2

(� i�)

2

(2�)

4

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

)

i

k

2

B

�m

2

+ i�

Z

d

4

l

(2�)

4

i

l

2

�m

2

+ i�

:

This 
ontribution 
ontains two propagators, D

F

(x�y) and D

F

(y�y), and two Æ-fun
tions

from the integrals over x and y . It blows up, sin
e external parti
les are on-shell,

i.e. k

2

B

= m

2

. In fa
t, the diagrams

+ + + + � � �

represent the evolution of j~p i

0

in the free theory into j~p i in the intera
ting theory, whi
h


auses the 
omplex poles of the propagator to shift away from the free-parti
le positions at

p

2

= m

2

. As we will see later, this evolution will give rise to overall proportionality fa
tors

in the T -matrix. All this re
e
ts the fa
t that a parti
le is never truly free in quantum

�eld theory, being surrounded by a 
loud of virtual parti
les. In quantum �eld theory it is

simply not possible to swit
h o� intera
tions.

The amputation pro
edure: in order to deal with 
ontributions of the latter type, the

following pro
edure is used.

7b Starting at the tip of ea
h external leg, �nd the last point at whi
h the

diagram 
an be 
ut by removing a single propagator in su
h a way that this

separates the leg from the rest of the diagram. The amputation pro
edure tells

us to 
ut the diagram at those points.
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Contributions to the T -matrix are then obtained as

(2�)

4

Æ

(4)

�

k

A

+k

B

�

P

f

p

f

�

iM

�

k

A

; k

B

! fp

f

g

�

= sum of all fully 
onne
ted amputated

Feynman diagrams in position spa
e, multiplied by appropriate proportionality fa
tors

at loop level.

The missing details 
on
erning the amputation pro
edure will be dis
ussed after we have

seen some properties of loop 
orre
tions.

Position-spa
e Feynman rules for matrix elements in the s
alar �

4

-theory:

1. For ea
h propagator

x

1

x

2

insert D

F

(x

1

� x

2

).

2. For ea
h vertex

x

insert (�i�)

R

d

4

x.

3. For ea
h external line

x

q

insert e

�iq�x

.

4. Divide by the symmetry fa
tor.

Formulated in momentum spa
e: in order to deal with plane-wave states it is more

natural to swit
h from position spa
e to momentum spa
e. As explained before, in mo-

mentum spa
e ea
h intera
tion vertex gives rise to an energy-momentum Æ-fun
tion. As

we have seen in the example dis
ussed above, one of these Æ-fun
tions is the overall energy-

momentum Æ-fun
tion of the T -matrix. Therefore, in momentum spa
e one dire
tly obtains

the matrix element as

7


iM

�

k

A

; k

B

! fp

f

g

�

= sum of all fully 
onne
ted amputated Feynman diagrams

in momentum spa
e, multiplied by appropriate proportionality fa
tors at loop level.

Momentum-spa
e Feynman rules for matrix elements in the s
alar �

4

-theory:

1. For ea
h propagator

q

insert

i

q

2

�m

2

+ i�

.

2. For ea
h vertex insert �i�.

3. For ea
h external line

q

insert 1.

4. Impose momentum 
onservation at ea
h vertex by �xing one of the momenta.

5. Integrate over ea
h undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

6. Divide by the symmetry fa
tor.
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Let's have a 
loser look at the impa
t of Æ-fun
tions in matrix elements.

� The matrix elements deal with plane-wave amplitudes and are therefore best obtained

by employing the momentum-spa
e Feynman rules of the 
onsidered theory.

� The external momenta of a given matrix element are known, being �xed by the

plane-wave initial and �nal states of the 
onsidered amplitude.

� Ea
h internal line (propagator) featuring in the matrix element has a momentum

that is a priori unknown, giving rise to a momentum integral

R

d

4

q=(2�)

4

.

� However, in momentum spa
e ea
h vertex featuring in the matrix element gives rise

to an energy-momentum Æ-fun
tion multiplied by (2�)

4

. This Æ-fun
tion will impose

energy-momentum 
onservation at that vertex. In almost all 
ases it will remove a

momentum integral

R

d

4

q=(2�)

4

belonging to one of the propagators that is 
onne
ted

to that vertex by 
ausing the 
orresponding momentum to be �xed in terms of the

other momenta that enter the vertex.

� One of the Æ-fun
tions originating from the verti
es will not �x an internal propagator

momentum. Instead it will give rise to the energy-momentum Æ-fun
tion for the

momenta of the external parti
les that is expe
ted for the T -matrix, as 
an be seen

in the previous examples. This external-state Æ-fun
tion is removed when extra
ting

the matrix element from the T -matrix.

� As su
h, no Æ-fun
tions show up expli
itly in the momentum-spa
e matrix elements.

They manifest themselves impli
itly by the fa
t that all momenta in the Feynman

diagrams are subje
t to energy-momentum 
onservation at ea
h vertex.

� This pro
edure may leave some of the internal momenta of a Feynman diagram un-

determined, i.e. not �xed by the external momenta. The number of independent

momenta of this type determines the loop order of the Feynman diagram 
onsid-

ered and determines the number of loop-momentum integrals that still have to be

performed.

� Ea
h internal propagator momentum is potentially undetermined, but that number

is redu
ed by the number of vertex Æ-fun
tions with the ex
eption of one Æ-fun
tion

that solely pertains to the external momenta and does not 
onstrain an internal

momentum.

In the end no Æ-fun
tions show up in the momentum-spa
e matrix elements, but they

will prove 
ru
ial in determining the loop order and high-energy behaviour of Feynman

diagrams. This topi
 will be 
overed in § 2.10.

53



Momentum-spa
e Feynman rules for the s
alar Yukawa theory: for 
ompleteness

we also list here the Feynman rules for the s
alar Yukawa theory as derived in the exer
ises.

1. For ea
h �-propagator

q

insert

i

q

2

�m

2

+ i�

.

For ea
h  -propagator

q

insert

i

q

2

�M

2

+ i�

.

2. For ea
h vertex insert �ig .

3. For ea
h external �-line

q

insert 1.

For ea
h in
oming  -line

k

insert 1, originating from

^

 .

For ea
h in
oming

�

 -line

k

insert 1, originating from

^

 

y

.

For ea
h outgoing  -line

p

insert 1, originating from

^

 

y

.

For ea
h outgoing

�

 -line

p

insert 1, originating from

^

 .

4. Impose momentum 
onservation at ea
h vertex by �xing one of the momenta.

5. Integrate over ea
h undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

The following observations 
an be made. First of all, in 
ontrast to the s
alar �

4

-theory no

symmetry fa
tors are needed in the s
alar Yukawa theory, sin
e all �elds in the intera
tion

are di�erent. Se
ondly, whereas the arrows on the dashed �-lines have no spe
ial meaning,

this is not true for the arrows on the solid lines, whi
h 
orrespond to the

^

 and

^

 

y

�elds.

This arrow is needed for distinguishing parti
les ( ) from antiparti
les (

�

 ).

7d

Drawing 
onvention: draw arrows on the  -lines and the

�

 -lines. These

arrows represent the dire
tion of parti
le-number 
ow: parti
les 
ow along the

arrow, antiparti
les 
ow against it. In this 
onvention

^

 
orresponds to an

arrow 
owing into a vertex, whereas

^

 

y


orresponds to an arrow 
owing out

of a vertex. Sin
e every intera
tion vertex features both

^

 and

^

 

y

, the arrows

link up to form a 
ontinuous 
ow.

2.7 Non-relativisti
 limit: for
es between parti
les

7e We are now in the position to address our �rst major question: how do

for
es 
ome about in quantum �eld theory?
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To answer this question we 
ompare the lowest-order relativisti
 matrix element for the

rea
tion �(k

A

)�(k

B

)! �(p

1

)�(p

2

), i.e.

iM =

p

1

p

2

k

A

k

B

= � i� ;

to the non-relativisti
 amplitude for elasti
 potential s
attering in Born approximation.

Sin
e the matrix element is Lorentz invariant, we are free to 
hoose the 
enter-of-mass

(CM) frame. In this frame

~

k

A

= �

~

k

B

�

~

k and ~p

1

= � ~p

2

� ~p with j

~

k j = j~p j for elasti


s
attering. The non-relativisti
 limit amounts to j

~

k j ; j~p j � m, from whi
h it follows that

!

~

k

= !

~p

� m +O(

~

k

2

=m). For s
attering from states with momenta �

~

k into states with

momenta � ~p the 
omparison then reads:

NR

h~p jV (

^

~r )j

~

k i

NR

=

Z

d~r V (~r ) e

i(

~

k�~p )�~r

�

Z

d~r V (~r ) e

i

~

��~r

� �

M

�

k

A

; k

B

! p

1

; p

2

�

=2

(2m)

2

;

where the fa
tor 1=2 multiplying the matrix element originates from having identi
al parti-


les in the rea
tion. Furthermore, it has been used that the relativisti
 and non-relativisti


momentum states are related a

ording to

j~p i

0

=

p

2!

~p

j~p i

NR

�

p

2m j~p i

NR

;

resulting in a relative fa
tor (2m)

2

. By inverse Fourier transformation one obtains

V (~r ) �

Z

d

~

�

(2�)

3

�

�M

8m

2

�

e

�i

~

��~r

M=��

======

�

8m

2

Æ(~r )

for the intera
tion potential.

7e The s
alar �

4

-theory involves a so-
alled 
onta
t intera
tion / Æ(~r ),

whi
h refers to the fa
t that the parti
les intera
t in one spa
etime point at lowest order.

We 
an repeat this for  (k

A

) (k

B

)!  (p

1

) (p

2

) s
attering in the s
alar Yukawa theory.

In that 
ase all external on-shell parti
les have mass M and the lowest-order matrix ele-

ment reads (see Ex. 9):

iM =

p

1

p

2

k

A

k

B

+

p

2

p

1

k

A

k

B

� iM

1

+ iM

2

= � ig

2

�

1

(k

A

� p

1

)

2

�m

2

+ i�

+

1

(k

A

� p

2

)

2

�m

2

+ i�

�

NR

� ig

2

�

1

(

~

k � ~p )

2

+m

2

+

1

(

~

k + ~p )

2

+m

2

�

;
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using CM momenta and k

0

A

� p

0

1

=

p

~

k

2

+M

2

�

p

~p

2

+M

2

� (

~

k

2

� ~p

2

)=(2M). The +i�

terms have been dropped as a result of the fa
t that the energy 
omponents are suppressed.

Note that there are two 
ontributions this time, originating from inter
hanging the �nal-

state parti
les (i.e. ~p! �~p ). Using spheri
al 
oordinates for the inverse Fourier transform

with polar axis along ~r it now follows that

V (~r ) = �

1

4M

2

Z

d

~

�

(2�)

3

M

1

e

�i

~

��~r

��j

~

�j

===== � (g=2M)

2

1

Z

�1

d 
os �

(2�)

2

1

Z

0

d�

�

2

e

�i�r 
os �

�

2

+m

2

= �

(g=2M)

2

4�

2

ir

1

Z

0

d� �

e

i�r

� e

�i�r

�

2

+m

2

= �

(g=2M)

2

4�

2

ir

1

Z

�1

d�

�e

i�r

(� + im)(�� im)

= �

(g=2M)

2

4�

2

ir

Z

C

d�

�e

i�r

(� + im)(�� im)

= �

(g=2M)

2

4�r

e

�mr

;

where the integration 
ontour C is given in �gure 5.

Re�

Im�

C

in�nite semi 
ir
le

*

*

+ im

� im

Figure 5: Closed integration 
ontour for the determination of the Yukawa potential.

7e The s
alar Yukawa theory involves an attra
tive Yukawa intera
tion be-

tween the  -parti
les, whi
h dies o� exponentially at 1=m distan
es. This

length s
ale (range) is in fa
t the Compton wavelength of the ex
hanged virtual

�-parti
les, whi
h mediate the intera
tion.

These virtual parti
les are short-lived o�-shell parti
les, i.e. p

2

6= m

2

. In fa
t, they are too

short-lived for their energy to be measured a

urately. Hen
e the name virtual parti
les.

Over 1=m distan
es the energy 
an 
u
tuate by O(m), whi
h is suÆ
ient to 
reate the

�-parti
les. Over larger distan
es the energy 
an 
u
tuate less, resulting in the exponen-

tial de
rease of the for
e. If the virtual parti
les are massless (like the photon) then the
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Yukawa intera
tion has an in�nite range and 
hanges into the familiar Coulomb potential

/ 1=r , whi
h is not de
reasing exponentially.

The true Yukawa theory for the intera
tion between fermions and s
alars was used to de-

s
ribe the intera
tions between nu
leons. In that 
ase the mediating parti
le is a pion.

It has a mass of about 140MeV and therefore an asso
iated 
hara
teristi
 length s
ale of

roughly 1.4 fm, whi
h agrees ni
ely with the e�e
tive range of the nu
lear for
es.

For
es in quantum �eld theory: the for
es between parti
les are 
aused (mediated)

by the ex
hange of virtual parti
les! Intera
tions 
aused by spin-0 for
e 
arriers (su
h

as the Yukawa intera
tions) are universally attra
tive, just like intera
tions due to the

ex
hange of spin-2 parti
les (su
h as gravity). The ex
hange of spin-1 parti
les 
an result

in both attra
tive and repulsive intera
tions, as we know from ele
tromagnetism.

The relevant details of this statement are worked out in Ex. 10 and 11. The impli
ations


an be seen all around us. Gravity is attra
tive and gives rise to stru
ture formation

in the universe. The for
e that holds together nu
leons inside a nu
leus is mediated

by the spin-0 pion, giving rise to a strong nu
lear for
e that is attra
tive and of fem-

tometer range. This nu
lear binding for
e over
omes the repulsive ele
tromagneti
 for
e

between the like-
harged protons. The proton repulsion in
uen
es the nu
lear binding-

energy properties of heavy nu
lei, leading to the observed neutron over proton ratio and

nu
lear instability of heavy elements as well as the possibility of nu
lear �ssion. The fa
t

that the ele
tromagneti
 for
e 
an be both repulsive and attra
tive is responsible for the

multi-fa
eted properties of atoms and the 
hemistry among mole
ules. This involves the

intri
ate (quantum-me
hani
al) interplay between attra
tive for
es that bind ele
trons to

nu
lei and the repulsive for
es among the ele
trons and among the nu
lei.

Intermezzo 2: 
ux laws for for
es with massless mediators

The previous dis
ussion basi
ally tells us that the intera
tion potential between parti
les

results from the inverse Fourier transform of the for
e 
arrier's propagator. For massless

for
e 
arriers su
h as photons (ele
tromagnetism) and gravitons (gravity) this immediately

implies a 
onstant 
ux law for the 
orresponding for
e (Gauss' law):

�

Z

S(V )

d~s �

~

F (r) =

Z

S(V )

d~s �

~

5

V (r)

m=0

==== �C

Z

S(V )

d~s �

~

5

Z

d

~

�

(2�)

3

e

�i

~

� �~r

�

2

Gauss

===== �C

Z

V

d~r

~

5

�

~

5

Z

d

~

�

(2�)

3

e

�i

~

��~r

�

2

= C

Z

V

d~r

Z

d

~

�

(2�)

3

e

�i

~

��~r

= C

Z

V

d~r Æ(~r ) = C ;

for a sphere V 
entered around the origin ~r=

~

0 of the intera
tion (CM) and with surfa
e
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S(V ). Sin
e d~s �

~

F (r) is 
onstant on S(V ), we obtain for n spatial dimensions that

V

(n)

(r) = �

C

(n� 2)S

n

(1)

1

r

n�2

)

~

F

(n)

(r) = �

C

S

n

(1)

~r

r

n

= �

C

S

n

(1)

~e

r

r

n�1

for the 
orresponding intera
tion potential and for
e, with S

n

(1) the surfa
e area of the

unit sphere in n dimensions. For n = 3 we obtain V

(3)

(r) = �C=(4�r), whi
h indeed


oin
ides with a massless Yukawa potential with (g=2M)

2

= C . The power law for the

for
e simply re
e
ts that at 
onstant for
e 
ux the for
e lines spread (dilute) more rapidly

in higher-dimensional spa
es.

Appli
ation: gravity in 
ompa
t extra spatial dimensions

An idea to redu
e the s
ale hierar
hy between the Standard Model and the energy s
ale at

whi
h gravity be
omes strong (Plan
k s
ale) is to assume that the graviton 
an propagate

in 
ompa
t extra spatial dimensions of size R . A

ording to the previous dis
ussion this


auses gravity to be
ome stronger at r < R distan
es due to the di�erent power law:

F

grav

(r < R) =

�m

1

m

2

(�

n

r)

n�1

retrieving

����������!

Newton

F

grav

(r � R) =

�m

1

m

2

�

n�1

n

R

n�3

r

2

�

�m

1

m

2

(�

P

r)

2

;

where the Plan
k s
ale 
an be expressed in terms of Newton's 
ontstant as �

P

= 1=

p

G .

\our world"

Figure 6: As an illustrative example 
onsider an in�nite 
ylindri
al shell (tube) with small

radius R. At r < R distan
es (blue region) the for
e lines (red) spread more rapidly as a

result of the wrapped extra dimension of size R. At r > R distan
es the spreading of the

for
e lines in the extra dimension will start to saturate and for r� R the 1-dimensional


ase (representing \our world") is approa
hed asymptoti
ally (yellow 
ir
le).

The fundamental Plan
k s
ale in n spatial dimensions then be
omes

�

n

=

�

�

2

P

=R

n�3

�

1=(n�1)

= �

P

=

�

�

P

R

�

(n�3)=(n�1)

:

By making �

P

R = R=10

�35

m suÆ
iently large, whi
h is usually referred to as models with

\large extra dimensions", the e�e
tive Plan
k s
ale 
an be lowered from O(10

19

GeV) to
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O(TeV). For n� 3 = 2; � � � ; 6 extra dimensions we 
an a
hieve this by setting the size of

the 
ompa
t extra dimensions to R = 10

�3

m; � � � ; 10

�14

m. This would imply that in those

s
enarios gravity would be
ome strong at the O(10

�19

m) length s
ales probed at the LHC,

giving rise to the produ
tion of mi
ros
opi
 bla
k holes. Alternatively, the idea of extra

dimensions 
an be tested by performing dedi
ated submillimeter gravity experiments.

2.8 Translation into probabilities (§ 4.5 in the book)

8 At this point we know how to 
al
ulate amplitudes for de
ay pro
esses and

s
attering rea
tions by means of Feynman diagrams and Feynman rules. In the

next step we derive the probabilisti
 interpretation belonging to these amplitudes.

2.8.1 De
ay widths

Consider an initial state 
onsisting of a single parti
le in the momentum state j

~

k

A

i, de-


aying into a �nal state 
onsisting of n parti
les in the momentum state j~p

1

� � � ~p

n

i. The

probability density for this de
ay to o

ur is given by

jh~p

1

� � � ~p

n

j

^

S j

~

k

A

ij

2

h

~

k

A

j

~

k

A

ih~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i

;

with

h

~

k

A

j

~

k

A

i = 2E

~

k

A

(2�)

3

Æ(

~

0 )

p. 15

==== 2E

~

k

A

V and h~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i =

n

Y

j=1

(2E

~p

j

V ) :

This is also valid for identi
al parti
les in the �nal state. Finding a set of parti
les with

the required momenta e�e
tively identi�es the parti
les. Sin
e the initial and �nal states

are di�erent in a de
ay pro
ess, the S-matrix element is in fa
t equivalent with the 
or-

responding T -matrix element. In the rest frame of the de
aying parti
le

~

k

A

=

~

0 and

E

~

k

A

= m

A

, hen
e

jh~p

1

� � � ~p

n

ji

^

T j

~

k

A

ij

2

h

~

k

A

j

~

k

A

ih~p

1

� � � ~p

n

j~p

1

� � � ~p

n

i

=

jM(k

A

! fp

j

g)j

2

2m

A

V

h

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

i

2

1

n

Q

j=1

(2E

~p

j

V )

(2�)

4

Æ

(4)

(0)=V T

===========

jM(k

A

! fp

j

g)j

2

2m

A

V

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

V T

n

Q

j=1

(2E

~p

j

V )

:

The linear time fa
tor T =

R

t

+

t

�

dt in this expression was to be expe
ted from Fermi's

Golden Rule! This fa
tor 
an be divided out in order to obtain the 
onstant de
ay rate.

Next we integrate over all possible momenta of the n �nal-state parti
les. This time

it does matter whether there are identi
al parti
les in the �nal state. In order to avoid

double 
ounting we have to restri
t the integration to inequivalent 
on�gurations or divide
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by 1=n

k

! fa
tors for any group of n

k

identi
al �nal-state parti
les. Generi
ally we will

indi
ate this 
ombinatorial �nal-state identi
al-parti
le fa
tor by C

f

. The �nal expression

for the integrated 
onstant de
ay rate then be
omes

�

n

= C

f

�

R

density of states

z }| {

n

Y

j=1

V

Z

d~p

j

(2�)

3

�

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

jM(k

A

! fp

j

g)j

2

2m

A

�

n

Q

j=1

2E

~p

j

V

�

=

1

2m

A

C

f

Lorentz invariant

z }| {

Z

d�

n

jM(k

A

! fp

j

g)j

2

� C

f

Z

d�

n

;

in terms of the relativisti
ally invariant n-body phase-spa
e element

d�

n

�

�

n

Y

j=1

d~p

j

(2�)

3

1

2E

~p

j

�

(2�)

4

Æ

(4)

�

k

A

�

n

P

j=1

p

j

�

; (3)

whi
h is sometimes denoted by dPS

n

in other textbooks. This de
ay rate is 
alled the

partial de
ay width for the de
ay mode into the 
onsidered n-parti
le �nal state.

After summation over all possible �nal states one obtains the so-
alled total de
ay width

� =

1

2m

A

X

�nal states

C

f

Z

d�

f

jM(k

A

! fp

f

g)j

2

;

with d�

f


orresponding to a given �nal state.

8a This total de
ay width is related to the half-life of the de
aying parti
le

through the relation � = 1=�. If the de
aying parti
le is not at rest, the de-


ay width is redu
ed by a fa
tor m

A

=E

~

k

A

. This leads to an in
reased half-life

� E

~

k

A

=m

A

= �=

p

1� ~v

2

� 
� , where ~v is the velo
ity of the de
aying parti
le.

2.8.2 Cross se
tions for s
attering rea
tions

target

v

B

`

A

`

B

beam

O

�

B

�

A

Consider a beam of B parti
les hitting a target at rest


onsisting of A parti
les. The 
ase of two 
olliding par-

ti
le beams 
an be obtained from this by an appropriate

Lorentz boost. Let's start by assuming 
onstant densities

�

A

and �

B

in target and beam. The number of s
atter-

ing events will be proportional to (�

A

`

A

)(�

B

`

B

)O , with

O the 
ross-se
tional overlap area 
ommon to both the

beam and the target. The ratio

# s
attering events

(O`

A

�

A

)(O`

B

�

B

)=O

�

1

N

A

# s
attering events

N

B

=O

� �
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de�nes the 
ross se
tion � as the e�e
tive area of a 
hunk taken out of the beam by ea
h

parti
le in the target. The quantities N

A

and N

B

are the numbers of A and B parti
les

that are relevant for s
attering, i.e. the parti
les that at some point in time belong to the

overlap between beam and target. All of this 
an be equally well formulated in terms

of time-related quantities like the s
attering rate and the in
oming parti
le 
ux: simply

repla
e the number of s
attering events by the number of s
attering events per se
ond and

`

B

�

B

by the 
ux v

B

�

B

of beam parti
les. Hen
e,

� =

1

N

A

s
attering rate

beam 
ux

Approximate plane-wave states: in reality �

A

and �

B

are not 
onstant, sin
e the


olliding parti
les are des
ribed quantum me
hani
ally by wave pa
kets and both beam

and target have a density pro�le. However,

the studied range of the intera
tion between the 
olliding parti
les is usually

mu
h smaller than the width of the individual wave pa
kets perpendi
ular to

the beam, whi
h in turn is mu
h maller than the a
tual diameter of the beam.

Therefore, in good approximation �

A

and �

B


an be 
onsidered as lo
ally 
onstant on

quantum me
hani
al (i.e. intera
tion) length s
ales

3

, whereas the density pro�les inside

the beam and target 
an be in
orporated properly by averaging over the overlap region:

`

A

`

B

Z

d

2

x

?

�

A

(x

?

)�

B

(x

?

) � N

A

N

B

=O :

Here N

A

and N

B

are the e�e
tive numbers of A and B parti
les that are relevant for

s
attering and x

?

is the spatial 
oordinate perpendi
ular to the beam. From this it

follows that

# s
attering events = �N

A

N

B

=O ;

where � 
an be 
al
ulated for e�e
tively 
onstant values of �

A

and �

B


orresponding to

approximately plane-wave initial states. By the way, we don't have to restri
t ourselves to

the total number of s
attering events. In a similar way we 
an study the 
ross se
tion for

s
attering into the region d~p

1

� � � d~p

n

around the n-parti
le �nal-state momentum point

~p

1

; � � � ; ~p

n

. This is a
tually what dete
tors usually do: they dete
t parti
les with energy and

momentum in 
ertain �nite bins, whi
h are given by the dete
tor resolution. These bins


annot resolve the momentum spread of any of the wave pa
kets, just like the dete
tor 
ells


an in general not resolve the parti
le positions at the level of the de Broglie wavelengths.

For all pra
ti
al purposes dete
tors observe 
lassi
al point-like parti
les with well-de�ned

momenta (in dire
tion and magnitude). So, in the �nal state it makes sense to use plane

waves as well.

3

These (slowly 
hanging) densities 
an even be lo
ally zero!
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8b Cal
ulating 
ross se
tions therefore amounts to 
al
ulating transition prob-

abilities in momentum spa
e. These transition probabilities are universal in the

sense that they are independent of details of the experiment, su
h as the prop-

erties of the beams, the targets or the preparation of the initial-state parti
les.

The di�erential 
ross se
tion: 
onsider an initial state 
onsisting of one target par-

ti
le and one beam parti
le in the momentum state j

~

k

A

;

~

k

B

i s
attering into a �nal state


onsisting of n parti
les in a momentum state with momenta inside the bin d~p

1

� � � d~p

n

around ~p

1

; � � � ; ~p

n

. In analogy with the 
al
ulation in § 2.8.1, the 
orresponding di�erential

transition probability per unit time and per unit 
ux is given by

d� =

1

F

1

4E

~

k

A

E

~

k

B

V

jM(k

A

; k

B

! fp

j

g)j

2

d�

n

;

whi
h is usually referred to as the di�erential 
ross se
tion. As explained in § 2.8.1 this

result for d� is also valid for identi
al parti
les in the �nal state. In this expression F

stands for the 
ux asso
iated with the in
oming beam parti
le:

F =

1

V

j~v

rel

j =

j~v

A

� ~v

B

j

V

~v= ~p=E

======

j

~

k

A

=E

~

k

A

�

~

k

B

=E

~

k

B

j

V

;

where we have 
hosen ~e

z

along the beam axis. Furthermore, we have used that the four-

momentum of a massive parti
le reads p

�

0

= (m;

~

0 ) in its rest frame, whi
h be
omes

p

�

=

�


 (E

0

+~v � ~p

0

); 
 (~p

0

+E

0

~v )

�

E

0

=m; ~p

0

=

~

0

========= (m
;m
~v ) upon boosting with velo
ity v

along the ~e

p

-dire
tion. We therefore �nd

d� =

jM(k

A

; k

B

! fp

j

g)j

2

d�

n

4jE

~

k

B

~

k

A

� E

~

k

A

~

k

B

j

for the di�erential 
ross se
tion.

8b The so-
alled 
ux fa
tor

1

4

jE

~

k

B

~

k

A

� E

~

k

A

~

k

B

j

�1

is invariant under boosts

along the beam dire
tion and the same goes for the di�erential 
ross se
tion d�,

as expe
ted for a 
ross-se
tional area perpendi
ular to the beam.

2.8.3 CM kinemati
s and Mandelstam variables for 2! 2 rea
tions

Consider a 2 ! 2 rea
tion with matrix element M

�

k

A

; k

B

! p

1

; p

2

�

. In the CM frame

with the z-dire
tion taken along the beam axis and oriented parallel to the in
oming A

parti
les the 
orresponding kinemati
s reads:
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~

k

A

A

CM ~

k

B

B

before

CM

z-axis

2

~p

2

1

~p

1

�

�

after

k

�

A

= (E

A

; 0; 0; k) ; k

�

B

= (E

B

; 0; 0;�k) p

�

1

= (E

1

; ~p ) ; p

�

2

= (E

2

;�~p ) :

Hen
e, the two �nal-state parti
les are produ
ed ba
k-to-ba
k in the CM frame. Written

in 
ompa
t notation the CM momenta and energies are given by

k =

q

E

2

A;B

�m

2

A;B

; p = j~p j =

q

E

2

1;2

�m

2

1;2

and E

A

+ E

B

= E

1

+ E

2

� E

CM

) E

A;B

=

E

2

CM

+m

2

A;B

�m

2

B;A

2E

CM

; k =

p

(E

2

CM

�m

2

A

�m

2

B

)

2

� 4m

2

A

m

2

B

2E

CM

;

E

1;2

=

E

2

CM

+m

2

1;2

�m

2

2;1

2E

CM

; p =

p

(E

2

CM

�m

2

1

�m

2

2

)

2

� 4m

2

1

m

2

2

2E

CM

:

The matrix element is Lorentz invariant, so it 
an be expressed in terms of invariant


ombinations of the parti
le momenta. Sin
e only three out of four parti
le momenta are

independent, this leaves six kinemati
al variables: the squared masses of the four parti
les,

three so-
alled Mandelstam variables that 
ombine two of the parti
le momenta and one


ondition. We start with the Mandelstam variable

s � (k

A

+ k

B

)

2

= (p

1

+ p

2

)

2

= E

2

CM

:

In order to guarantee that both k; p � 0 and E

A;B

� m

A;B

this variable has to satisfy the

inequalities s � (m

A

+m

B

)

2

and s � (m

1

+m

2

)

2

. The expressions for the CM energies

and momenta then be
ome

E

A;B

=

s+m

2

A;B

�m

2

B;A

2

p

s

; E

1;2

=

s+m

2

1;2

�m

2

2;1

2

p

s

;

k =

p

(s�m

2

A

�m

2

B

)

2

� 4m

2

A

m

2

B

2

p

s

and p =

p

(s�m

2

1

�m

2

2

)

2

� 4m

2

1

m

2

2

2

p

s

:

The other two Mandelstam variables are

t � (k

A

� p

1

)

2

= (k

B

� p

2

)

2

and u � (k

A

� p

2

)

2

= (k

B

� p

1

)

2

;

whi
h 
ontain the angular dependen
e of the rea
tion through

2

~

k

A

� ~p

1

= 2k~e

z

� ~p = 2kp 
os � and 2

~

k

A

� ~p

2

= � 2k~e

z

� ~p = � 2kp 
os � :
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These three Mandelstam variables satisfy the energy-momentum 
onservation 
ondition

s + t+ u = m

2

A

+m

2

B

+m

2

1

+m

2

2

:

A few 
onventions: in general 2! 2 rea
tions the most similar initial- and �nal-state

parti
les are 
ombined into the t-variable. For instan
e, in the rea
tion e

+

e

�

! �

+

�

�

one should 
ombine the momenta of the ele
tron (e

�

) and muon (�

�

), or equivalently the

momenta of the positron (e

+

) and antimuon (�

+

). A rea
tion 
hannel is referred to as

s-
hannel (or t-
hannel, or u-
hannel) if the Mandelstam variable s (or t, or u) features in

the propagator at lowest order.

s-
hannel:

A B

t-
hannel:

1

A

u-
hannel:

2

A

The 2-body phase-spa
e element: in the CM frame, where

~

k

A

= �

~

k

B

� k~e

z

, the

beam 
ux reads

F

CM

=

k(E

A

+ E

B

)

E

A

E

B

V

�

kE

CM

E

A

E

B

V

:

The di�erential 
ross se
tion for a 2! 2 rea
tion in the CM frame therefore be
omes

d�

CM

=

jM(k

A

; k

B

! p

1

; p

2

)j

2

d�

2

4kE

CM

:

8b Note that the di�erential 
ross se
tion falls o� as 1=E

2

CM

at high energies.

This is a destru
tive interferen
e e�e
t 
aused by probing the relevant intera
-

tion length s
ale with parti
les that have a mu
h smaller de Broglie wavelength.

In analogy with equation (3) the Lorentz invariant phase-spa
e element for two �nal-state

parti
les be
omes

Z

d�

2

=

Z

d~p

1

(2�)

3

1

2E

1

Z

d~p

2

(2�)

3

1

2E

2

(2�)

4

CM: Æ(E

CM

�E

1

�E

2

)Æ(~p

1

+~p

2

)

z }| {

Æ

(4)

(k

A

+ k

B

� p

1

� p

2

)

CM

===

Z

dp

16�

2

p

2

E

1

E

2

Z

d
 Æ(E

CM

� E

1

� E

2

) :

Repla
ing the integration variable p by E

1

+E

2

=

p

p

2

+m

2

1

+

p

p

2

+m

2

2

this be
omes

Z

d�

2

=

Z

d(E

1

+ E

2

)

16�

2

E

1

E

2

p

2

p=E

1

+ p=E

2

Z

d
 Æ(E

CM

� E

1

� E

2

)

=

p

16�

2

E

CM

Z

d
 =

p

16�

2

E

CM

Z

2�

0

d�

Z

1

�1

d 
os � ;
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where � is the polar s
attering angle with respe
t to the beam axis and � the azimuthal

s
attering angle around the beam axis (as displayed in the �gure at the start of this

paragraph). From this the following angular di�erential 
ross se
tion 
an be obtained:

�

d�

d


�

CM

=

p

64�

2

kE

2

CM

jM

�

k

A

; k

B

! p

1

; p

2

�

j

2

: (4)

In view of rotational symmetry about the z-axis there will be no �-dependen
e and the

�-integral will straightforwardly yield a fa
tor 2� . On
e we also integrate over � to obtain

the total 
ross se
tion �, one has to restri
t this integration to inequivalent 
on�gurations

or multiply by the appropriate �nal-state identi
al-parti
le fa
tor C

f

.

To give a simple example, we again 
onsider the pro
ess

�(k

A

) + �(k

B

) ! �(p

1

) + �(p

2

)

in the s
alar �

4

-theory. As we have seen on page 50, the lowest-order matrix element for

this pro
ess is given by ��. Hen
e,

�

d�

d


�

CM

=

jMj

2

64�

2

E

2

CM

p

k

=

�

2

64�

2

E

2

CM

=

�

2

64�

2

s

and � =

1

2

Z

d


�

d�

d


�

CM

=

�

2

32�s

;

where the fa
tor 1=2 o

urring in the last expression is the identi
al-parti
le fa
tor for two

identi
al �nal-state parti
les. Further examples of 
ross se
tions for 2 ! 2 rea
tions 
an

for instan
e be found in Ex. 11.

2.9 Dealing with states in the intera
ting theory

9 In order to 
lose the gaps that were left behind during previous steps, we now

have to address some of the non-perturbative properties of the states in the

intera
ting theory.

2.9.1 K�all�en{Lehmann spe
tral representation (§7.1 in the book)

9a In the free theory h0jT

�

^

�

I

(x)

^

�

y

I

(y)

�

j0i 
ould be interpreted as the ampli-

tude for a parti
le to propagate from y to x. The question now is: how should

the 
orresponding 2-point Green's fun
tion h
jT

�

^

�(x)

^

�

y

(y)

�

j
i be interpreted

in the intera
ting theory? This question is related to the parti
le interpretation

of the intera
ting theory.

Complete set of intera
ting states: we start out by having a generi
 look at the ex
ited

states of the intera
ting theory, with the 
orresponding energies being de�ned relative to

the ground-state energy E

0

. This analysis will be based on the fa
t that

�

^

H;

^

~

P

�

= 0,

whi
h implies that there is a simultaneous set of eigenfun
tions of

^

H�E

0

^

1 and

^

~

P . These

states 
an 
onsist of an arbitrary number of parti
les or they 
an even be bound states.
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1) Zero-momentum states: let fj�

~

0

ig be the set of ex
ited eigenstates of

^

H with van-

ishing total three-momentum, i.e.

^

~

P j�

~

0

i =

~

0. These simultaneous eigenvalues of

^

H�E

0

^

1

and

^

~

P 
an be 
ombined into the four-ve
tor p

�

0

= (m

�

;

~

0 ), where m

�

> 0 is the \mass"

asso
iated with the parti
ular zero-momentum state.

2) Finite-momentum states: the generator of spa
etime translations

^

P

�

� (

^

H�E

0

^

1;

^

~

P )

transforms as a 
ontravariant four-ve
tor under boosts:

^

U

�1

(�)

^

P

�

^

U(�) = �

�

�

^

P

�

. This

implies that all boosts of the states j�

~

0

i have all possible total three-momenta ~p and are

also eigenstates of

^

H�E

0

^

1 with energy E

~p

(�) �

p

~p

2

+m

2

�

. The other way round,

any eigenstate with expli
it three-momentum 
an be boosted to a zero-momentum eigen-

state provided that m

�

> 0. The sets of eigenvalues p

�

= (E�E

0

; ~p ) are thus organized

into hyperboloids, as shown in the �gure below. The lowest-lying isolated hyperboloid


orresponds to the \1-parti
le" states of the intera
ting theory, whereas the other ones


orrespond to possible bound states. Above a 
ertain threshold value of m

�

a 
ontinuum

of \multiparti
le" states starts (see later).

j~p j

E�E

0

\parti
le" at rest

moving \parti
le"

\multiparti
le"


ontinuum

bound states

m

ph

Proof of the boost statement: 
onsider the Lorentz transformation � that transforms

p

�

0

= (m

�

;

~

0 ) into p

�

= �

�

�

p

�

0

= (E

~p

(�); ~p ). Then j�

~p

i �

^

U(�)j�

~

0

i indeed satis�es

^

P

�

j�

~p

i =

^

U(�)

^

U

�1

(�)

^

P

�

^

U(�)j�

~

0

i = �

�

�

^

U(�)

^

P

�

j�

~

0

i = �

�

�

p

�

0

^

U(�)j�

~

0

i = p

�

j�

~p

i :

By reversing the argument, the reversed statement 
an be proven as well, bearing in mind

that E�E

0

> 0 for the ex
ited states so that the 
ombined four-momentum eigenvalues

p

�

= (E�E

0

; ~p ) have to satisfy p

2

� 0.

Completeness relation: in the intera
ting theory we 
an therefore use the following


ompleteness relation asso
iated with this 
omplete set of states:

^

1 = j
ih
j +

X

�

Z

d~p

(2�)

3

j�

~p

ih�

~p

j

2E

~p

(�)

;

where the �rst term 
orresponds to the ground state and the se
ond one to all ex
ited states.
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The 2-point Green's fun
tion: next we take x

0

> y

0

and insert the above-given 
om-

pleteness relation into the 2-point Green's fun
tion. This results in the following split-up:

h
jT

�

^

�(x)

^

�

y

(y)

�

j
i = h
j

^

�(x)j
ih
j

^

�

y

(y)j
i

+

X

�

Z

d~p

(2�)

3

1

2E

~p

(�)

h
j

^

�(x)j�

~p

ih�

~p

j

^

�

y

(y)j
i :

In the absen
e of preferred dire
tions in the universe, the ground state j
i should be

invariant under spa
etime translations and Lorentz transformations, i.e. e

i

^

P �x

j
i = j
i

and

^

U(�)j
i = j
i. Therefore

h
j

^

�(x)j�

~p

i

p.19

==== h
je

i

^

P �x

^

�(0)e

�i

^

P �x

j�

~p

i = e

�ip�x

h
j

^

�(0)j�

~p

i

�

�

�

p

0

=E

~p

(�)

= e

�ip�x

h
j

^

U

�1

(�)

^

U(�)

^

�(0)

^

U

�1

(�)

^

U(�)j�

~p

i

�

�

�

p

0

=E

~p

(�)

p.22

==== e

�ip�x

h
j

^

�(�0)j�

~

�p

i

�

�

�

p

0

=E

~p

(�)

take � su
h that

~

�p=

~

0

================ e

�ip�x

h
j

^

�(0)j�

~

0

i

�

�

�

p

0

=E

~p

(�)

and similarly

h
j

^

�(x)j
i = h
j

^

�(0)j
i � v :

The ground-state expe
tation value v, whi
h in the literature is sloppily 
alled the \va
-

uum expe
tation value" or short vev of the �eld

^

�, usually is taken to be 0. If this is not

the 
ase then one should reformulate the theory in terms of the �eld

^

�

0

(x) =

^

�(x) � v ,

whi
h has a vanishing vev. The rest goes in the same way as des
ribed below. Leaving out

the vev we now obtain

h
j

^

�(x)

^

�

y

(y)j
i =

X

�

jh
j

^

�(0)j�

~

0

ij

2

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

(�)

�

�

�

�

p

0

=E

~p

(�)

x

0

>y

0

; p:25

=========

X

�

jh
j

^

�(0)j�

~

0

ij

2

Z

d

4

p

(2�)

4

ie

�ip�(x�y)

p

2

�m

2

�

+ i�

:

The integral on the last line we re
ognize as the Feynman propagator belonging to a

\�-parti
le" with mass m

�

, i.e. D

F

(x� y;m

2

�

).

9a

The parti
le interpretation has in fa
t 
hanged in the intera
ting theory from

free parti
les to dressed parti
les (quasi-parti
les), so the \parti
les" we are

dealing with here are not the parti
les that we know from the free theory!

K�all�en{Lehmann spe
tral representation: a similar pro
edure 
an be applied in the


ase that x

0

< y

0

. Combining both 
ases one arrives at the so-
alled K�all�en{Lehmann

spe
tral representation of the 2-point Green's fun
tion:

h
jT

�

^

�(x)

^

�

y

(y)

�

j
i =

Z

1

0

ds

2�

�(s)D

F

(x� y; s) ;
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where the fun
tion �(s) in the squared invariant mass s is a positive spe
tral density

fun
tion given by

�(s) =

X

�

2�Æ(s�m

2

�

) jh
j

^

�(0)j�

~

0

ij

2

:

The states in the intera
ting theory that des
ribe a single dressed parti
le 
orrespond to

an isolated Æ-fun
tion in the spe
tral density fun
tion:

�

1-part.

(s) = 2�Æ(s�m

2

ph

)

�

�

h
j

^

�(0)j�

~

0

i

1-part.

�

�

2

� 2�ZÆ(s�m

2

ph

) :

9a The �eld-strength/wave-fun
tion renormalization Z is the probability for

^

�

y

(0) to 
reate a state that des
ribes a single dressed parti
le from the ground

state, whereas m

ph

is the observable physi
al mass of the dressed parti
le, be-

ing the energy eigenvalue in its rest frame. This physi
al (dressed) mass is in

general not equal to the (bare) mass parameter m o

urring in the Lagrangian,

whi
h is not observable dire
tly!

In momentum spa
e: the K�all�en{Lehmann spe
tral representation trivially reads

Z

d

4

x e

ip�x

h
jT

�

^

�(x)

^

�

y

(0)

�

j
i =

Z

1

0

ds

2�

�(s)

i

p

2

� s+ i�

=

iZ

p

2

�m

2

ph

+ i�

+

Z

1

�s

th

ds

2�

�(s)

i

p

2

� s+ i�

in momentum spa
e, where s

th

denotes the threshold for the 
reation of the 
ontinuum

of \multiparti
le" states. The fa
t that the last integral does not start exa
tly at s

th

is


aused by the possible existen
e of multiparti
le bound states. Graphi
ally the analyti


(pole/
ut) stru
ture in the 
omplex p

2

-plane 
an be depi
ted as follows:

Im p

2

m

2

ph

\1-parti
le"

pole

s

th

bound-state

poles

bran
h 
ut

(
ontinuum of poles)

Re p

2

Figure 7: Poles and 
uts of the 2-point Green's fun
tion.

Intera
ting theory vs free theory:

� In the intera
ting theory jh
j

^

�(0)j�

~

0

ij

2

= jh
j

^

�(0)j�

~p

ij

2

represents the probability

for the �eld

^

�

y

(0) to 
reate a given dressed state from the ground state, with the

fa
tor Z being the asso
iated probability for 
reating a \1-dressed-parti
le" state.
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The fa
tor Z di�ers from unity sin
e in the intera
ting theory

^

�

y

(0) 
an also 
reate

\multiparti
le" intermediate states with a 
ontinuous mass spe
trum, unlike in the

free theory.

� In the free theory �(s) = 2�Æ(s�m

2

) and Z = 1, sin
e

h~p j

^

�

y

I

(0)j0i = h0j

p

2E

~p

â

~p

Z

d~q
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3

^

b
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+ â

y

~q

p

2E

~q

j0i = h0j0i = 1 :

For x

0

> 0 the quantity

Z
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�

^
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�
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�

j0i =

i

p

2
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2

+ i�

is interpreted as the amplitude for a parti
le to propagate from 0 to x.

2.9.2 2-point Green's fun
tions in momentum spa
e (§ 6.3 and 7.1 in the book)

9b Question: does all this also follow from an expli
it diagrammati
 
al
ula-

tion within perturbation theory?

In order to address this question we 
onsider the 2-point Green's fun
tion for  -parti
les

in the s
alar Yukawa theory (with tadpole diagrams ex
luded, as will be explained later):
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where

� i�

2

(p

2

) = (�ig)

2
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i
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1

�M

2

+ i�

i

(p� `

1

)

2
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2

+ i�

is the so-
alled  -parti
le self-energy at O(g

2

). Sin
e the 
orresponding diagram involves

one loop and therefore one energy-momentum integration, we usually refer to this self-

energy as the 1-loop self-energy.

9b There are two main approa
hes to 
al
ulate su
h an integral:

1. perform the `

0

1

-integration in the 
omplex plane, involving four 
omplex

poles, and work out the resulting

~

`

1

-integration;

2. apply the following two 
al
ulational tri
ks.
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Tri
k 1: use Feynman parameters. Writing the denominators in the integral as

D

1

� `

2

1
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+ i� and D

2

� (p� `

1

)

2

�m
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we 
an 
ombine the two denominators into
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2
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(�
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2

D

2

)

2

:

The parameters �

1;2

are 
alled Feynman parameters. Inserting the spe
i�
 expressions for

the denominators we then obtain
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2
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2
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;

with
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:

We have gained the following in this �rst step:

� The original integrand had four poles in the 
omplex `

0

1

-plane, whereas now we have

only two poles in the 
omplex `

0

-plane.

� The integrand has be
ome spheri
ally invariant, implying that integrals with an odd

numerator in ` should vanish, i.e.
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In 
ontrast, integrals with an even numerator in ` 
an be simpli�ed. For instan
e
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using that
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:

These properties will in parti
ular prove important for non-s
alar parti
les.

� The tri
k works equally well for an arbitrary number of propagators o

urring in the

loop:
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:
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Tri
k 2: perform Wi
k rotation. In order to perform the `

0

-part of the integral

R

d

4

` (`

2

��+ i�)

�j

=(2�)

4

the integration 
ontour C indi
ated in �gure 8 is used. Sin
e

the poles are situated outside the integration 
ontour in the 
omplex `

0

-plane, the integral

along the real `

0

-axis is transformed into an integral along the imaginary axis.
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Figure 8: Closed integration 
ontour used for performing Wi
k rotation.

In this way a Minkowskian integral 
an be transformed into a Eu
lidean one:
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This results in
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where the norm `

2
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= (`

0

E
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1
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2

is positive de�nite in Eu
lidean spa
e.

In the penultimate step it was used that in an n-dimensional Eu
lidean spa
e the transition

to spheri
al 
oordinates is given by
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where the gamma fun
tion �(z) satis�es

�(1=2) =

p

� ; �(1) = 1 and �(z + 1) = z�(z) :

The result after applying both tri
ks:
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where the in�nity originates from the large-momentum regime `

2

E

!1. The logarithm
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+ i�

gives rise to a bran
h 
ut for z 2
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, sin
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2 [0; 1℄, whi
h results in the requirement that p

2

> (M +m)

2

.

9b There is a minimal value p

2

min

= (M + m)

2

of p

2

for whi
h the bran
h


ut of the 2-point Green's fun
tion in the s
alar Yukawa theory starts, being

the threshold for the 
reation of a two-parti
le state with masses M and m.

This is pre
isely what we would expe
t based on the K�all�en{Lehmann spe
tral

representation.
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Dyson series: to all orders in perturbation theory the 2-point Green's fun
tion (a.k.a. the

full propagator or dressed propagator) is given by the Dyson series

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

 

y

(0)

�

j
i �

p p

=

p

+

1PI

p p

+

1PI 1PI

p p p

+ � � � ;
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2

) = + + + + � � �

is the 
olle
tion of all 1-parti
le irredu
ible (1PI) self-energy diagrams. Diagrams are 
alled

1-parti
le irredu
ible if they 
annot be split in two by removing a single line.

The single-parti
le pole and physi
al mass: the Dyson series is in fa
t a geometri


series, whi
h 
an be summed a

ording to

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

 

y

(0)

�

j
i =

p p

=

i

p

2

�M

2

+ i�

+

i

p

2

�M

2

+ i�

�

� i�(p

2

)

�

i

p

2

�M

2

+ i�

+ � � �

=

i

p

2

�M

2

� �(p

2

) + i�

:

The full propagator has a simple pole lo
ated at the physi
al mass M

ph

, whi
h is shifted

away from M by the self-energy:

h

p

2

�M

2

� �(p

2

)

i

�

�

�

�

p

2

=M

2

ph

= 0 ) M

2

ph

�M

2

� �(M

2

ph

) = 0 :

Close to this pole the denominator of the full propagator 
an be expanded a

ording to
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where �

0

(p

2

) stands for the derivative of the self-energy with respe
t to p

2

.

9b

Just like in the K�all�en{Lehmann spe
tral representation, the full prop-

agator has a single-parti
le pole of the form iZ=(p

2

�M

2

ph

+ i�) with

residue Z = 1=

�

1��

0

(M

2

ph

)

�

. This observed 
lose 
onne
tion to the non-

perturbative analyti
 stru
ture of the 2-point Green's fun
tion serves as

justi�
ation for our pro
edure, whi
h involved summing the geometri


series outside its formal radius of 
onvergen
e.
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2.9.3 Deriving n-parti
le matrix elements from n-point Green's fun
tions

For real s
alar �elds

^

�(x) we have seen that
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;

by whi
h is meant that the quantities on either side have the same single-parti
le poles and

residues at the physi
al mass squared m

2

ph

. The wave-fun
tion renormalization fa
tor Z


an be obtained straightforwardly from the 2-point Green's fun
tion in momentum spa
e

by multiplying by (p
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�m
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ph

)=i and taking the limit p

2

! m
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ph

.

9
 We now wish to use this single-parti
le pole stru
ture to obtain the asymp-

toti
 \in" and \out" states of the theory and in parti
ular their matrix elements.

Consider to this end
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What 
an we say about the pole stru
ture of this integrated Green's fun
tion?

� The integration region x

0

2 [T
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℄: sin
e the temporal integration interval is

bounded and the integrand has no p

0

-poles, the result of the integral is an analyti


fun
tion in p

0

without any poles.

� The other two integration regions: the integrand still has no poles, but the integration

intervals are unbounded. Therefore singularities in p
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may develop upon integration!
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where h
j

^

�(x)j�

~q

i

p. 67

==== e

�iq�x

h
j

^

�(0)j�

~

0

i

�

�

�

q

0

=E

~q

(�)

�

p

Z(�) e

�iq�x

�

�

�

q

0

=E

~q

(�)

. The phase of

h
j

^

�(0)j�

~

0

i does not matter in this 
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i. Now the Riemann{Lebesgue lemma 
an be invoked, whi
h states that the larger x
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(�). This fa
t 
an be quanti�ed

expli
itly by adding a damping fa
tor e
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(with in�nitesimal � > 0) to the integral, in

order to ensure that it is well-de�ned. This pro
edure is equivalent with the i� pres
ription

for obtaining the Feynman propagator in § 1.6 and the tilted time axis pres
ription in the

textbook by Peskin & S
hroeder. After performing the trivial ~x integration we get
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whi
h 
orresponds to isolated 1-parti
le poles, isolated bound-state poles or multiparti
le

bran
h-
ut poles. Subsequently we note that
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for a 1-parti
le eigenstate with momentum ~p that is


reated at asymptoti
ally large times.
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0

= �E

~p

= �

q

~p

2

+m

2

ph

:
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:
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LSZ redu
tion formula: the pro
edure des
ribed above 
an a
tually be worked out for

situations with as many 1-parti
le poles as there are �eld operators in the Green's fun
tion.

This leads to the so-
alled LSZ (H. Lehmann, K. Symanzik, W. Zimmermann) redu
tion

formula:

�
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~
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; (5)

where the use of e

�ik

j

0

�y

j

0

ensures that the parti
les in the \in" state have positive energy.

The S-matrix element involving n

0

parti
les in the \in" state and n parti
les in the

\out" state 
an be obtained from the 
orresponding (n + n

0

)-point Green's fun
tion by

extra
ting the leading singularities in the energies k

0

j

0

and p

0

j

, whi
h 
oin
ide with the

situations where the external parti
les be
ome on-shell.

9
 The pole stru
ture of the Green's fun
tions emerging at asymptoti
 times 
ontains all

relevant information about the s
attering amplitudes of the theory! To sele
t the required

information one should proje
t on the right singularities by using appropriate plane waves.

Wave pa
kets instead of plane waves:

� In the asymptoti
 treatment of multiparti
le states it is better to use normalized wave

pa
kets. In that 
ase x is 
onstrained to lie within a small band about the traje
tory

of a parti
le with momentum ~p , with the spatial extent of the band being determined

by the wave pa
ket. In this way the parti
les do not interfere and 
an e�e
tively be


onsidered free at asymptoti
 times, unlike plane-wave states. Therefore we formally

should have made the repla
ement

Z

d

4

x e

ip�x

!

Z

d

~

k

(2�)

3

Z

d

4

x e

ip

0

x

0

'(

~

k )e

�i

~

k�~x

;

with '(

~

k ) a fun
tion that is peaked around ~p , and we should have taken the limit

of a sharply peaked wave pa
ket '(

~

k )! (2�)

3

Æ(

~

k�~p ) at the end of the 
al
ulation.

� A 1-parti
le wave pa
ket spreads out di�erently than a multiparti
le wave pa
ket, so

the overlap between them goes to zero as the elapsed time goes to in�nity. Although

^

�(x) 
reates some multiparti
le states, we 
an \sele
t" the 1-parti
le state that we

want by using an appropriate wave pa
ket. By waiting long enough we 
an make

the multiparti
le 
ontribution to the matrix element as small as we like (
f. Fermi's

Golden Rule for time-dependent perturbation theory).
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� An n-parti
le asymptoti
 state is 
reated/annihilated by n �eld operators that are


onstrained to lie in distant wave pa
kets and therefore are e�e
tively lo
alized.

Under these 
onditions an n-parti
le ex
itation in the 
ontinuum 
an be represented

by n distin
t (independent) 1-parti
le ex
itations of the ground state.

Translated in terms of Feynman diagrams: in order to investigate the impli
ations

of the LSZ redu
tion formula we 
onsider the 4-point Green's fun
tion

Z

d

4
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1

e
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B
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h
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�

^

�(x

1

)

^

�(x

2

)

^

�(y

1

)

^

�(y

2

)

�

j
i

in the s
alar �

4

-theory. From this we want to derive the T -matrix element for the s
attering

pro
ess �(k

A

)�(k

B

)! �(p

1

)�(p

2

). To this end we need to 
onsider the 
ontributions from

fully 
onne
ted diagrams, as was explained in § 2.6. These diagrams 
an be represented

generi
ally by

amp

p

1

k

A

p

2

k

B

p

1

k

A

p

2

k

B

The blob in the 
entre of the diagram represents the sum of all amputated 4-point diagrams:

amp

1

A

2

B

=

1

A

2

B

+

1

A

2

B

+

1

A

2

B

+

1

B

2

A

+ � � � :

The shaded 
ir
les indi
ate that the 
orresponding full propagators

p p

=

i

p

2

�m

2

� �(p

2

)

should be used, where

� i�(p

2

) =

1PI

= + + + � � �

represents the 1-parti
le irredu
ible s
alar self-energy diagrams in �

4

-theory. Near the

physi
al parti
le pole p

2

= m

2

ph

the full propagator 
an be expanded a

ording to

p

2

�m

2

��(p

2

) � (p
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2

ph
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:
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As a result, the sum of all fully 
onne
ted diagrams 
ontains a produ
t of four poles:

iZ

p

2

1

�m

2

ph

iZ

p

2

2

�m

2

ph

iZ

k

2

A

�m

2

ph

iZ

k

2

B

�m

2

ph

;

multiplying the amputated 4-point diagrams. A

ording to the LSZ redu
tion formula (5)

the T -matrix element for the s
attering pro
ess �(k

A

)�(k

B

)! �(p

1

)�(p

2

) thus reads

h~p

1

~p

2

ji

^

T j

~

k

A

~

k

B

i = (

p

Z )

4

amp

1

A

2

B

;

with all external momenta being on-shell.

k

A

k

A

k

B

k

B

Any 4-point diagram that is not fully 
onne
ted, like the

one displayed in the �gure on the right, does not 
ontain

a produ
t of four poles. Su
h diagrams are therefore pro-

je
ted out in the transition from the Green's fun
tion to

the T -matrix.

9
 This 
ompletes the derivation of the 
onne
tion between s
attering ma-

trix elements and fully 
onne
ted amputated Feynman diagrams that was given

on page 52 of these le
ture notes. In fa
t we have also obtained the missing

ingredient in the Feynman rules for the s
alar �

4

-theory on page 52.

Multiply the sum of all possible fully 
onne
ted amputated Feynman diagrams in posi-

tion/momentum spa
e by a fa
tor (

p

Z )

n+n

0

for n+n

0

external parti
les.

2.9.4 The opti
al theorem (§ 7.3 in the book)

From the unitarity of the S-operator it follows that
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In order to investigate the impli
ations of this equation we 
onsider the s
attering pro
ess

�(k
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) in the s
alar �

4

-theory:
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where in the last step a 
omplete set of intermediate plane-wave states has been inserted.

In terms of matrix elements this be
omes:

� iM(k
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; k
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! p
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; p

2

) + iM
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; p

2
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! fq

j
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;


ontaining the n-body phase-spa
e element that was de�ned in equation (3). Using the

abbreviations a � k

A

; k

B

, b � p

1

; p

2

and f � fq

j

g this results in the generalized opti
al

theorem

� iM(a! b) + iM

�

(b! a) =

X

f

C

f

Z

d�

f

M

�

(b! f)M(a! f) ;

where C

f

stands for the 
ombinatorial identi
al-parti
le fa
tor belonging to the state f

(i.e. the fa
tors 1=n! in this �

4

example). This generalized opti
al theorem is equally

valid for initial/�nal states 
onsisting of one parti
le or more than two parti
les. In more


ompli
ated theories the summation on the right-hand-side of the opti
al theorem runs

over all possible sets of \�nal-state" parti
les that 
an be 
reated by the initial state a.

Spe
ialized to forward s
attering, i.e. p

1

= k

A

and p

2

= k

B

() a = b), this yields the

opti
al theorem in its standard form:

2ImM(a! a) =

X

f

C

f

Z

d�

f

jM(a! f)j

2

= inverse 
ux fa
tor��

tot

(a! anything) ;

where the inverse 
ux fa
tor reads 4E

CM

j

~

k j in the CM frame of the rea
tion.

9d The opti
al theorem expresses the total 
ross se
tion for s
attering in terms

of the attenuation (redu
tion) of the forward-going wave as the beams pass

through ea
h other. This is 
aused by the destru
tive interferen
e between the

s
attered wave and the beam.

Diagrammati
 example for �

4

-theory at �rst non-trivial order: in Ex. 12 it is

worked out that
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:

The fa
tors � i on the left-hand-side are in fa
t 
an
elled by the fa
tor i from Wi
k-

rotating the loop integral. Note the absen
e of the lowest-order matrix element on the

left-hand-side, be
ause it has no imaginary part. This is ni
ely 
onsistent with the right-

hand-side, whi
h 
ontributes at O(�

2

) rather than at O(�).
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Sour
es of imaginary parts: the imaginary parts that feature in the opti
al theorem

originate from the i� parts of the propagators. For instan
e

1

p
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�m

2

� i�
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p

2
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2

(p

2
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2
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2
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2
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2

= P

�

1

p

2

�m

2

�

� i�Æ(p

2

�m

2

) ;

where P stands for the prin
ipal value. When going from p

2

� i� to p

2

+ i� there is a

� 2�iÆ(p

2

�m

2

) jump (dis
ontinuity) in the propagator.

9d Non-vanishing imaginary parts 
orrespond to those situations where in-

termediate parti
les inside the loop(s) be
ome on-shell. The asso
iated lines of

the diagram are in that 
ase referred to as being \
ut". The imaginary parts

are the result of bran
h-
ut dis
ontinuities, marking invariant-mass values for

whi
h 
ertain multiparti
le intermediate states be
ome physi
ally possible.

The Cutkosky 
utting rules (without proof): the dis
ontinuities of an arbitrary

Feynman diagram 
an be obtained by means of a general method that is based on the

dis
ontinuities of the individual propagators. It involves the following three-step pro
edure

(usually referred to as the Cutkosky 
utting rules):

� 
ut the diagram in all possible ways, with all 
ut propagators be
oming on-shell

simultaneously;

� repla
e 1=(p

2

� m

2

+ i�) by � 2�iÆ(p

2

�m

2

) in ea
h 
ut propagator and perform

the loop integrals;

� sum the 
ontributions of all (kinemati
ally) possible 
uts.

2.10 The 
on
ept of renormalization (
hapter 10 in the book)

Before we 
lose this 
hapter on intera
ting s
alar �eld theories, there is one

�nal issue to be addressed.

As we have already observed in the previous dis
ussion, there still is the issue of UV di-

vergen
es from the loop integrals

R

1

0

d`

2

E

`

2

E

=(`

2

E

+�� i�)

j

for j � 2.

10 Question: how should we deal with UV divergen
es that o

ur at loop level

in the perturbative expansion of intera
ting quantum �eld theories, bearing in

mind that physi
al observables should be �nite?

The o

urren
e of singularities should not 
ome as a surprise, though. Inside the loops

parti
les of all energies are taken into a

ount as being des
ribed by the same theory, i.e. we

treat them as point-parti
les at all length s
ales, whi
h is rather unrealisti
.
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Regularization: before we 
an 
ontinue the dis
ussion we �rst have to quantify the UV

divergen
e. This is 
alled regularization.

10a An obvious way to quantify UV divergen
es is by using a 
uto� method:

Z

1

0

d`

2

E

to be repla
ed by

����������!

Z

�

2

0

d`

2

E

;

whi
h removes all Fourier modes with momentum larger than �.

This means that the 
orresponding �elds are not allowed to 
u
tuate too energeti
ally.

In this way we look at the physi
s through blurry glasses: we are interested in length

s
ales L

>

�

1=�, but we do not 
are about length s
ales L < 1=�. This approa
h re
e
ts

that quantum �eld theory is in some sense an e�e
tive �eld theory with � marking the

threshold of our ignoran
e beyond whi
h quantum �eld theory 
eases to be valid. As su
h,

the 
uto� � plays the role that 1=a played in the 1-dimensional quantum 
hain in Ex. 1,

although � does not 
orrespond to a spe
i�
 energy/mass s
ale in the theory and should

in fa
t be taken mu
h larger than any su
h s
ale.

10e

We speak of a renormalizable quantum �eld theory if it keeps its predi
tive

power in spite of its short
omings at small length s
ales.

Te
hni
ally this means that we should be able to absorb all UV divergen
es of the theory

into a �nite number of parameters of the theory (like 
ouplings and masses).

Example: 
onsider the �

4

-pro
ess �(k

A

)�(k

B

) ! �(p

1

)�(p

2

) at 1-loop order in the CM

frame of the rea
tion. To make life easy we will negle
t the mass of the parti
les in this

study, whi
h will not a�e
t the out
ome. Indi
ating the relevant invariant-mass s
ale of

the pro
ess by s, the matrix element reads
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�

+ i� + 3

�

+ O(�

3

) :

Details of the 
al
ulation are worked out in Ex. 12. As we will see later Z = 1+O(�

2

), so

there will be no 1-loop 
ontribution from the wave-fun
tion renormalization fa
tor (

p

Z )

4

in �

4

-theory.

From this result a few interesting observations follow.

1. The Lagrangian parameter (bare 
oupling) � is not an observable quantity! The

quantum 
orre
tions are an integral part of the e�e
tive 
oupling, whi
h 
an be

measured through jM

��!��

(s; �)j

2

.
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10b

This e�e
tive 
oupling is energy-dependent due to the 
reation and an-

nihilation of virtual parti
les (quantum 
u
tuations) at 1-loop order.

So, the e�e
tive strength of the �

4

-intera
tion 
hanges with energy!

2. M

��!��

(s; �) depends logarithmi
ally on the 
uto� at O(�

2

). A short but sloppy

way of saying this is that \M

��!��

(s; �) is logarithmi
ally divergent".

3. jM

��!��

(s; �)j

2

is observable and should therefore be independent of �. After all, �


an be 
hosen arbitrarily and as su
h an observable 
annot depend on it. To a
hieve

this, the unobservable bare 
oupling � should depend on the 
uto� �:
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:

10b This is an example of a so-
alled Renormalization Group Equation

(or short: RGE), whi
h tells us that �(�

2

) grows with �

2

if �(�

2

) > 0.

The mira
le of vanishing divergen
es: renormalization

Suppose we measure the above-given e�e
tive 4-point 
oupling at s = �

2

and � = �=2,

and let's 
all this physi
al observable �

2

ph

:
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:

The bare 
oupling � 
an then be expressed in terms of the physi
al 
oupling �

ph

and the

divergen
e log(�

2

=�

2

) a

ording to

�� = � �
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If we now want to know the e�e
tive 4-point 
oupling at an arbitrary s
ale s and s
attering

angle �, then we 
an simply write

jM
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where the log(�

2

=s) term is 
ompletely governed by the above-given RGE for �. This re-


e
ts that the observable e�e
tive 4-point 
oupling should not depend on the 
hoi
e of

referen
e s
ale �.

The referen
e s
ale � labels an entire equivalen
e 
lass of parametrizations of

the �

4

-theory and it should not matter whi
h element of the 
lass we 
hoose for

setting up the theory. These elements all lie on the same RGE traje
tory.

When expressed in terms of the physi
al 
oupling �

ph

, the e�e
tive 
oupling jM

��!��

(s; �)j

2

is independent of the 
uto� �, as expe
ted for a 
orre
t observable! The 
uto� dependen
e

has been absorbed into a rede�nition of the unobservable Lagrangian parameter (bare 
ou-

pling) � in terms of the observable physi
al parameter (e�e
tive 
oupling) �

ph

. In the

literature this physi
al observable is usually referred to as the renormalized 
oupling �

R

,

although this terminology is a bit strange bearing in mind that the original 
oupling was

not normalized to begin with. This is an example of the 
on
ept of renormalization.

10


Renormalization: express physi
ally measurable quantities in terms of physi
ally

measurable quantities and not in terms of bare Lagrangian parameters.

� For setting up a perturbative expansion, the bare Lagrangian parameters are in fa
t

not the right parameters. Instead the physi
ally measurable parameters should be

used (
f. the dis
ussion about m and m

ph

in § 2.9.2).

� The o

urren
e of in�nities in the loop integrals is linked to this. Our initial pertur-

bative expansion 
onsisted of taking � ! 1 while keeping � and m �nite. From

the renormalization group viewpoint, however, the set (�=�=1; � <1; m <1)

does not belong to the equivalen
e 
lass of the �

4

-theory!

� The 
onvergen
e of the perturbative series 
an be further improved by using phys-

i
al quantities at the \right s
ale", thereby avoiding large logarithmi
 fa
tors like

log(�

2

=s) in the example above. This 
hoi
e of s
ale has no 
onsequen
e for all-order


al
ulations, but it does if the series is trun
ated at a 
ertain perturbative order.

To 
omplete the story for the s
alar �

4

-theory we 
onsider the UV divergen
es that are

present in the s
alar self-energy. This time the mass parameter is essential and therefore

should not be negle
ted.

S
alar self-energy at O(�):

� i�(p

2

)

O(�)

====

p p

`

1

=

� i�

2

Z

d

4

`

1

(2�)

4

i

`

2

1

�m

2

+ i�


uto� �� m

�����������!

Wi
k rotation

� i�

32�

2

Z

�

2

0

d`

2

E

`

2

E

`

2

E

+m

2

� i�

=

� i�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

:
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After Dyson summation the full propagator be
omes

i

p

2

�m

2

� �(p

2

) + i�

�

iZ

p

2

�m

2

ph

+ regular terms :

Sin
e the 1-loop s
alar self-energy does not depend on p

2

, it is absorbed 
ompletely into

the physi
al mass:

m

2

ph

= m

2

+ �(m

2

ph

)

O(�)

==== m

2

+

�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

;

whereas the residue of the pole remains 1.

10d Note the strong �

2

dependen
e of the s
alar mass, whi
h implies that this

mass is very sensitive to high-s
ale quantum 
orre
tions. This is in fa
t a gen-

eral feature of s
alar parti
les, like the Higgs boson: intrinsi
ally the quantum


orre
tions to the mass of a s
alar parti
le are dominated by the highest mass

s
ale the s
alar parti
le 
ouples to!

S
alar self-energy at O(�

2

): the residue of the pole is a�e
ted at 2-loop level by the


ontribution

p p

`

2

`

1

=

(�i�)

2

6

Z

d

4

`

1

(2�)

4

Z

d

4

`

2

(2�)

4

i

`

2

1

�m

2

+ i�

i

`

2

2

�m

2

+ i�

i

(`

1

+ `

2

+ p)

2

�m

2

+ i�

= a+ bp

2

+ 
p

4

+ � � � :

To assess the UV behaviour of this diagram we perform naive power 
ounting, whi
h in-

volves treating all loop momenta as being of the same order of magnitude. For `

1;2

!1

we obtain an integral of the order

R

d

8

`

E

=`

6

E

`

E

� �

����! �

8�6

= �

2

.

� a = O(�

2

) is obtained by setting p = 0;

� b = O(log�) is obtained by taking

1

2

�

2

=�p

2

0

and then setting p = 0. In naive power


ounting this logarithmi
ally divergent term 
orresponds to integrals of order �

0

.

� 
 = O(1) is obtained by taking

1

4!

�

4

=�p

4

0

and then setting p = 0.

Adding all self-energy 
ontributions and fo
ussing on the diverging terms

i

p

2

�m

2

� �(p

2

) + i�

!

i

p

2

�m

2

� A� Bp

2

�

iZ

p

2

�m

2

ph

+ regular terms ;

Z =

1

1�B

= O(log �) ; m

2

ph

=

m

2

+A

1�B

� Zm

2

+ Æm

2

; Æm

2

=

A

1�B

= O(�

2

) :
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This leads to an O(�

2

) shift in the mass and an O(log�) 
ontribution to the wave-

fun
tion renormalization, whi
h 
an be absorbed in the �eld � itself.

So, UV divergent loop 
orre
tions in �

4

-theory are present in �(p

2

) andM

��!��

(s; �), with

�(m

2

ph

) = m

2

ph

�m

2

= (Z � 1)m

2

+ Æm

2

� m

2

Æ

Z

+ Æm

2

; �

0

(m

2

ph

) = 1� 1=Z

and M

��!��

(s = �

2

; �=2) = ��

ph

� �Z

2

�� Æ

�

:

The o

urren
e of the fa
tor Z

2

in the last expression originates from the multipli
ative

fa
tor (

p

Z )

4

that should be added a

ording to the Feynman rules.

2.10.1 Physi
al perturbation theory (a.k.a. renormalized perturbation theory)

10


The lowest-order �

4

-theory should have been written in terms of the exper-

imentally measurable physi
al parameters m

ph

and �

ph

, and perturbation

theory should have been de�ned with respe
t to this lowest-order theory.

This is done as follows: take the original Lagrangian and write

� = �

R

p

Z ; m

2

Z = m

2

ph

� Æm

2

; �Z

2

= �

ph

� Æ

�

and Z � 1 + Æ

Z

so that

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

�

�

4!

�

4

=

1

2

(�

�

�

R

)(�

�

�

R

) �

1

2

m

2

ph

�

2

R

�

�

ph

4!

�

4

R

+

1

2

Æ

Z

(�

�

�

R

)(�

�

�

R

) +

1

2

Æm

2

�

2

R

+

Æ

�

4!

�

4

R

:

We get ba
k the original Lagrangian in terms of renormalized obje
ts (�rst line) and we

obtain extra intera
tions that are 
alled 
ounterterms (se
ond line), sin
e their purpose

is to 
an
el the divergen
es in the theory. The Feynman rules for the propagators and

verti
es in
luding 
ounterterms are now given by

p

=

i

p

2

�m

2

ph

+ i�

; = �i�

ph

;

�

p p

= i(p

2

Æ

Z

+ Æm

2

) ;

�

= iÆ

�

:

Renormalization 
onditions: as an expli
it example, the full propagator now reads

i=

�

p

2

�m

2

ph

��

R

(p

2

)

�

, with the renormalized self-energy given by

� i�

R

(p

2

) = +

�

+ + +

�

+

�

+ � � �
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The parameters Æ

Z

and Æm

2


an be �xed by imposing the renormalization 
onditions

�

R

(m

2

ph

) = 0 and �

0

R

(m

2

ph

) = 0 ) full propagator =

i

p

2

�m

2

ph

+regular terms :

The pole stru
ture of the full propagator then resembles that of a free parti
le, so in that

sense the physi
al 1-parti
le states have been re-normalized by this pro
edure. Adding

one more renormalization 
ondition based on M

��!��

in order to �x Æ

�

, we have three


onditions �xing three 
ounterterm parameters. This will in fa
t be suÆ
ient to make all

observables of the �

4

-theory �nite.

10e

The s
alar �

4

-theory is 
alled renormalizable: \the in�nities of the theory


an be absorbed into a �nite number of parameters".

2.10.2 What has happened?

The above pro
edure seems odd: we 
al
ulated something that turned out to be in�nite,

then subtra
ted in�nity from our original mass and 
oupling in an arbitrary way and ended

up with something �nite. Moreover, we have added divergent terms to our Lagrangian and

we have suddenly ended up with a s
ale-dependent 
oupling. Why would a pro
edure


onsisting of su
h ill-de�ned mathemati
al tri
ks be legitimate? To see what has really

happened, let us 
losely examine the starting point of our 
al
ulation.

In general, we start with a Lagrangian 
ontaining all possible terms that are 
ompatible

with basi
 assumptions su
h as relativity, 
ausality, lo
ality, et
. It still 
ontains a few

parameters su
h as m and � in the 
ase of �

4

-theory. It is tempting to 
all them \mass"

and \
oupling", as they turn out to be just that in the 
lassi
al (i.e. lowest-order) theory.

However, up to this point they are just free parameters. In order to make the theory

predi
tive, the parameters need to be �xed by a set of measurements: we should 
al
ulate

a set of 
ross se
tions at a given order in perturbation theory, measure their values and then

�t the parameters so that they reprodu
e the experimental data. After this pro
edure, the

theory is 
ompletely determined and be
omes predi
tive.

The bare parameters m and � are only useful in intermediate 
al
ulations and will be

repla
ed by physi
al (i.e. measured) quantities in the end anyway. So, we might as well

parametrize the theory in terms of the latter. The renormalizability hypothesis is that this

reparametrization of the theory is enough to turn the perturbation expansion into a well-

de�ned expansion. The divergen
e problem then has nothing to do with the perturbation

expansion itself: we have just 
hosen unsuitable parameters to perform it. Also, the

fa
t that our physi
al 
oupling is s
ale-dependent should not surprise us. The physi
al

reason for this \running" is the existen
e of quantum 
u
tuations, whi
h were not there

in the 
lassi
al theory. These 
u
tuations 
orrespond to intermediate parti
le states: at
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suÆ
iently high (i.e. relativisti
) energies, new parti
les 
an be 
reated and annihilated.

As the available energy in
reases, more and more energeti
 parti
les 
an be 
reated. This

e�e
tively 
hanges the 
ouplings.

Having traded the bare parameters m and � for renormalized parameters m

ph

and �

ph

,

let us take a 
loser look at the internal 
onsisten
y of the renormalization pro
edure. We

have introdu
ed the physi
al 
oupling at a referen
e s
ale �, but we 
ould equally well have


hosen an energy s
ale �

0

with 
orresponding e�e
tive 
oupling �

0

ph

. Physi
al pro
esses

should not depend on our 
hoi
e of referen
e s
ale, hen
e the 
ouplings should be related

in su
h a way that for any observable O we have O = O(m

ph

; �; �

ph

) = O(m

ph

; �

0

; �

0

ph

).

In other words, there should exist an equivalen
e 
lass of parametrizations of the theory

and it should not matter whi
h element of the 
lass we 
hoose. This observation 
lari�es

where the divergen
es 
ame from: our initial perturbation expansion 
onsisted of taking

� !1 while keeping m and � �nite. From the viewpoint of the renormalization group,

however, the set (� = � =1 ; m <1 ; � <1) does not belong to any equivalen
e 
lass

of the �

4

-theory.

2.10.3 Super�
ial degree of divergen
e and renormalizability

10e The statement at the end of §2.10.1 was a bit premature. In fa
t we still

have to prove that amplitudes with more than four external parti
les do not

introdu
e a new type of in�nity that 
annot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will 
ontain singular building blo
ks like and that should be
ome �nite

on
e we perform the afore-mentioned renormalization pro
edure. The question that re-

mains is whether the overall 6-point diagram 
an give rise to a new type of in�nity. To assess

this we perform naive power 
ounting, i.e. we treat all loop momenta as being of the same

large order of magnitude O(�). The out
ome of this power 
ounting is 
alled the super�
ial

degree of divergen
e D of the diagram, with D = 0 denoting logarithmi
 divergen
e.

Consider a 1PI amputated diagram with N external lines, P propagators and V verti
es.

� In �

4

-theory four lines enter ea
h vertex, ea
h propagator 
ounts twi
e towards the

total number of lines entering verti
es and ea
h external line 
ounts on
e. This results

in the 
ondition

4V = N + 2P ) P = 2V �N=2 and N = even number :
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� The number of loop momenta is given by the number of propagators � the number

of four-momentum Æ-fun
tions + 1, sin
e one of the Æ-fun
tions 
orresponds to the

external momenta and will not �x an internal loop momentum (see page 53). This

results in

L = P � V + 1 = V �N=2 + 1

independent undetermined loop momenta. So, loop diagrams require V � N=2.

Power 
ounting: assume for argument's sake that the loop momenta are n-dimensional.

That means that in the 
ontext of naive power 
ounting ea
h loop momentum 
ontributes

�

n

and ea
h propagator �

�2

. The super�
ial degree of divergen
e of the diagram then reads

D = nL� 2P = n(V �N=2 + 1)� 2(2V �N=2) = n + V (n� 4) +N(1� n=2) ;

whereas the 
oupling � has mass dimension [�℄ = 4� n in n dimensions.

Super�
ially the diagram diverges like �

D

if D > 0 and like log(�) if D = 0,

provided it 
ontains a loop. The diagram does not diverge super�
ially if D < 0.

Let's now 
onsider a few values for the dimensionality n of spa
etime.

n = 4: D = 4 � N is independent of V and [�℄ = 0 ) the theory is renormalizable.

Divergen
es o

ur at all orders, but only a �nite number of amplitudes diverges

super�
ially (i.e. amplitudes with N = 2 or 4)! The theory keeps its predi
tive

power in spite of the in�nities that o

ur if we assume it to be valid at all energies.

n = 3: D = 3�N=2� V and [�℄ = 1 ) the theory is superrenormalizable. At most a

�nite number of diagrams diverges super�
ially (i.e. the diagrams with N = 2 and

V = 1 or V = 2), as the diagrams get less divergent if the loop order is in
reased!

n = 5: D = 5� 3N=2 + V and [�℄ = � 1 ) the theory is nonrenormalizable. Now all

amplitudes will diverge super�
ially at a suÆ
iently high loop order! An in�nite

amount of 
ounterterms would be required to remove all divergen
es, whi
h means

that all predi
tive power is lost if we assume the theory to be valid at all energies!

10e

If we express the super�
ial degree of divergen
e in terms of V and N, the


oeÆ
ient in front of V determines whether the theory is superrenormalizable

(negative 
oeÆ
ient), renormalizable (zero 
oeÆ
ient) or nonrenormalizable

(positive 
oeÆ
ient)!

In 
on
lusion: for n > 4 the s
alar �

4

-theory is nonrenormalizable and [�℄ < 0, for n = 4

it is renormalizable and [�℄ = 0, and for n < 4 it is superrenormalizable and [�℄ > 0.

These 
on
lusions agree ni
ely with the general dis
ussion on page 28 of these le
ture notes.
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3 The Dira
 �eld

During the next three and a half le
tures Chapter 3 of Peskin & S
hroeder will be 
overed.

We have seen various aspe
ts of s
alar theories, des
ribing spin-0 parti
les. However, most

parti
les in nature have spin 6= 0.

11a Question: how should we �nd Lorentz-invariant equations of motion for

�elds that do not transform as s
alars?

Consider to this end an n-
omponent multiplet �eld �

a

(x) with a = 1; � � � ; n, whi
h has

the following linear transformation 
hara
teristi
 under Lorentz transformations:

�

a

(x)

Lorentz transf.

����������! M

ab

(�)�

b

(�

�1

x)

with summation over the repeated index implied. A 
ompa
t way of writing this is

�(x)

Lorentz transf.

����������! M(�)�(�

�1

x) :

In the 
ase of s
alar �elds the transformation matrix M(�) was simply the identity matrix.

In order to �nd di�erent solutions, we make use of the fa
t that the Lorentz transformations

form a group: �

�

�

= g

�

�

is the unit element, �

�1

= �

T

is the inverse, and for �

1

and

�

2

being Lorentz transformations also �

3

= �

2

�

1

is a Lorentz transformation. The

transformation matri
es M(�) should re
e
t this group stru
ture:

M(g) = I

n

; M(�

�1

) = M

�1

(�) and M(�

2

�

1

) = M(�

2

)M(�

1

) ;

where I

n

is the n�n identity matrix. To phrase it di�erently, the transformation matri
es

M(�) should form an n-dimensional representation of the Lorentz group!

The 
ontinuous Lorentz group (rotations and boosts): transformations that lie

in�nitesimally 
lose to the identity transformation de�ne a ve
tor spa
e, 
alled the Lie

algebra of the group. The basis ve
tors for this ve
tor spa
e are 
alled the generators of

the Lie algebra. The Lorentz group has six generators J

��

= �J

��

, three for boosts and

three for rotations. These generators are antisymmetri
, as a result of �

�1

= �

T

, and they

satisfy the following set of fundamental 
ommutation relations:

�

J

��

; J

��

�

= i

�

g

��

J

��

� g

��

J

��

� g

��

J

��

+ g

��

J

��

�

:

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by

K

j

� J

0j

respe
tively J

j

�

1

2

�

jkl

J

kl

) J

jk

= �

jkl

J

l

(j ; k ; l = 1; � � � ; 3) ;

with summation over the repeated spatial indi
es implied. The latter generators, whi
h

span the Lie algebra of the rotation group, satisfy the fundamental 
ommutation relations

�

J

j

; J

k

�

= i�

jkl

J

l

:
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11a In fa
t it is proven in Ex. 15 that all �nite-dimensional representations

of the Lorentz group 
orrespond to pairs of integers or half integers (j

+

; j

�

),

where both j

+

and j

�


orrespond to a representation of the rotation group.

The sum j

+

+ j

�

should be interpreted as the spin of the representation, sin
e

it 
orresponds to the a
tual rotations 
ontained in the Lorentz group.

A �nite Lorentz transformation is then in general given by exp(�i!

��

J

��

=2), where the

antisymmetri
 tensor !

��

2

IR

represents the Lorentz transformation. For instan
e:

!

12

= �!

21

= Æ� ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 0 0 0

0 0 �Æ� 0

0 Æ� 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal rotation about the z-axis (see Ex. 14), and

!

01

= �!

10

= Æv ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 Æv 0 0

Æv 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal boost along the x-dire
tion (see Ex. 14).

The task at hand is now to �nd the matrix representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

� (J

��

)

�

�

= i(g

��

g

�

�

� g

�

�

g

��

) are the six generators that des
ribe Lorentz transfor-

mations of 
ontravariant four-ve
tors:

x

�

Lorentz transf.

����������! �

�

�

x

�

=

�

exp(�i!

��

J

��

=2)

�

�

�

x

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�

x

�

:

This implies that g

�

�

�

i

2

!

��

(J

��

)

�

�

= g

�

�

+!

�

�

represents the in�nitesimal form of

the Lorentz transformation matrix �

�

�

, as is indeed the 
ase.

� J

��

= i(x

�

�

�

� x

�

�

�

) are the six generators in 
oordinate spa
e, whi
h des
ribe the

in�nitesimal Lorentz transformations of s
alar �elds

�(x)

Lorentz transf.

����������! �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) ;

as derived on page 11.
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11b

Dira
's tri
k: introdu
e four n� n matri
es 


�

that are referred to as the


-matri
es of Dira
, whi
h satisfy the Dira
 algebra (Cli�ord algebra)

�




�

; 


�

	

� 


�




�

+ 


�




�

= 2g

��

I

n

;

with I

n

the n�n identity matrix. In Ex. 14 it is proven that this implies that

the n�n matri
es S

��

�

i

4

�




�

; 


�

�

form a representation of the generators

J

��

of the Lorentz group. In fa
t this is true for any spa
etime dimensionality.

Four-dimensional solution to the Dira
 algebra: sin
e there are no solutions for

n = 2 or 3, the �rst solution 
an be found for n = 4. Written in 2�2 blo
k form in terms

of the 2�2 identity matrix I

2

and the Pauli spin matri
es

�

1

=

 

0 1

1 0

!

; �

2

=

 

0 � i

i 0

!

and �

3

=

 

1 0

0 � 1

!

;

the solution reads




0

=

 

0 I

2

I

2

0

!

and 


j

=

 

0 �

j

� �

j

0

!

(j = 1; 2; 3)

in the Weyl representation, whi
h is also known as the 
hiral representation. In fa
t there

is an in�nite number of su
h four-dimensional representations, sin
e for any invertable 4�4

matrix V also V 


�

V

�1

is a solution. In the Weyl representation the generators of the

Lorentz group have a blo
k-diagonal form. The generators for boosts are given by

S

0j

=

i

4

�




0

; 


j

�

=

i

2




0




j

= �

i

2

 

�

j

0

0 � �

j

!

(j = 1; 2; 3) ;

whereas the generators S

1

, S

2

and S

3

for rotations follow from

S

jk

j 6=k

====

i

4

�




j

; 


k

�

= �

i

4

 

�

�

j

; �

k

�

0

0

�

�

j

; �

k

�

!

= �

jkl

 

1

2

�

l

0

0

1

2

�

l

!

� �

jkl

S

l

(j; k = 1; 2; 3)

) S

l

=

 

1

2

�

l

0

0

1

2

�

l

!

�

1

2

�

l

(l = 1; 2; 3) :

The generators for rotations look like twi
e repli
ated two-dimensional representations of

the rotation group. We will 
ome ba
k to this point later on. As a result of the properties

(


0

)

y

= 


0

; (


j

)

y

= � 


j

(j = 1; 2; 3) ) (


�

)

y

= 


0




�




0

;

the generators of the Lorentz group satisfy

(S

��

)

y

= �

i

4

�

(


�

)

y

; (


�

)

y

�

=

i

4

�

(


�

)

y

; (


�

)

y

�

= 


0

S

��




0

:
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This means that the generators of rotations are hermitian, sin
e (S

jk

)

y

= S

jk

, indi
ating

that rotations preserve normalization. On the other hand, the generators of boosts are

non-hermitian, sin
e (S

0j

)

y

= �S

0j

, indi
ating that boosts do not preserve normalization

owing to the Lorentz 
ontra
tion of spatial volumes.

Dira
 spinors and adjoint Dira
 spinors: a four-
omponent �eld  (x) that Lorentz

transforms a

ording to this four-dimensional representation of the Lorentz group is 
alled

a Dira
 spinor:

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x) with �

1=2

= exp(�i!

��

S

��

=2) :

The adjoint Dira
 spinor

�

 (x) is de�ned as

�

 (x) �  

y

(x)


0

and therefore transforms as

�

 (x)

Lorentz transf.

����������!

�

 (�

�1

x)�

�1

1=2

;

sin
e




0

�

y

1=2




0

= 


0

exp

�

i!

��

[S

��

℄

y

=2

�




0

(S

��

)

y

= 


0

S

��




0

============ exp(i!

��

S

��

=2) = �

�1

1=2

:

Using the important 
-matrix property

�




�

; S

��

�

=

i

2

�




�

; 


�




�

�

=

i

2

(


�




�




�

� 


�




�




�

) = i(g

��




�

� g

��




�

)

= i(g

��

g

�

�

� g

�

�

g

��

)


�

= (J

��

)

�

�




�

;

the following in�nitesimal Lorentz-transformation identity holds up to O(!):

�

I

4

+

i

2

!

��

S

��

�




�

�

I

4

�

i

2

!

��

S

��

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�




�

:

This re
e
ts that for �nite transformations

�

�1

1=2




�

�

1=2

= �

�

�




�

;

whi
h indi
ates that 


�

transforms like a 
ontravariant four-ve
tor provided it is properly


ontra
ted with Dira
 spinors and adjoint Dira
 spinors.

11d Consequently,  (x), 


�

�

�

 (x), 


�




�

�

�

�

�

 (x); � � � are good building blo
ks

for 
onstru
ting a Lorentz-invariant wave equation for Dira
 spinors, whereas

�

 (x) (x),

�

 (x)


�

�

�

 (x); � � � are s
alar building blo
ks for obtaining the 
or-

responding Lagrangian.
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3.1 Towards the Dira
 equation (§ 3.2 and 3.4 in the book)

11d Dira
-�eld bilinears (
urrents): the interesting obje
ts in spinor

spa
e are of the form

�

 � , with � a 4� 4 matrix that 
onsists of a sequen
e

of 
-matri
es. These obje
ts are 
alled bilinears or 
urrents. They will be

needed to 
onstru
t Lagrangians that in
lude intera
tions with other �elds, like

�

 (x)


�

 (x)A

�

(x) for intera
tions with a ve
tor �eld and

�

 (x)


�




�

 (x)h

��

(x)

for intera
tions with a tensor �eld. A basis for � that satis�es �

y

= 


0

�


0

is

given by the following 
ombinations of 
-matri
es:

I

4

; 


�

; �

��

=

i

2

�




�

; 


�

�

; 


�




5

; i


5

;

where




5

� i


0




1




2




3

= �

i

4!

�

����




�




�




�




�

in terms of the totally antisymmetri
 tensor

�

����

=

8

>

>

>

<

>

>

>

:

+1 if (����) = even permutation of (0123)

� 1 if (����) = odd permutation of (0123)

0 else

:

Properties of 


5

: the properties of the matrix 


5

will prove important for the des
ription

of weak intera
tions. They read:

(


5

)

y

= 


5

; (


5

)

2

= I

4

and

�




5

; 


�

	

= 0 (� = 0; � � � ; 3)

)

�




5

; S

��

�

= 0 )

�




5

;�

1=2

�

= 0 :

This means that 


5

is a \Lorentz s
alar" if it is properly 
ontra
ted with Dira
 spinors

and adjoint Dira
 spinors. Sin
e 


5


ommutes with the generators of Lorentz transforma-

tions in spinor spa
e, eigenve
tors of 


5


orresponding to di�erent eigenvalues transform

independently (i.e. without mixing).

11


A

ording to S
hur's lemma this implies that the Dira
 representation of the

Lorentz group is redu
ible, i.e. we should be able to write it in terms of two

independent lower-dimensional 
hiral representations.

In the Weyl representation of the 
-matri
es, the matrix 


5

has the following form in terms

of 2�2 blo
ks:




5

=

 

� I

2

0

0 I

2

!

:
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As a result,

P

R

�

1

2

(I

4

+ 


5

) =

 

0 0

0 I

2

!

and P

L

�

1

2

(I

4

� 


5

) =

 

I

2

0

0 0

!

are (
hiral) proje
tion operators on 2-dimensional ve
tors  

R

and  

L

:

 �

 

 

L

 

R

!

! P

R

 =

 

0

 

R

!

and P

L

 =

 

 

L

0

!

;

whi
h are eigenve
tors of 


5


orresponding to the 
hirality eigenvalues +1 and �1.

In terms of these right-handed Weyl spinors  

R

and left-handed Weyl spinors  

L

the in-

�nitesimal Lorentz transformations of  
an be rewritten as (
f. Ex. 15 and the generators

that are given on page 91)

 

 

L

 

R

!

Lorentz transf.

����������!

 

[I

2

� i

~

� � ~�=2�

~

� � ~�=2℄ 

L

[I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄ 

R

!

:

The real in�nitesimal parameters

~

� and

~

� 
oin
ide with the parameters Æ~� and Æ~v that

were used in Ex. 14. We see that the Weyl spinors transform independently, whi
h indeed

implies that the four-dimensional Dira
 representation of the Lorentz group is redu
ible

and 
an be split into two two-dimensional representations. For later use we mention the

following identity for the Pauli spin matri
es:

�

2

~�

�

= �~��

2

) �

2

 

�

L

Lorentz transf.

����������! �

2

[I

2

+ i

~

� � ~�

�

=2�

~

� � ~�

�

=2℄ 

�

L

= [I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄�

2

 

�

L

;

whi
h indi
ates that �

2

 

�

L

transforms like a right-handed Weyl spinor.

Chirality and 
urrents: from the 4� 4 matrix basis on the previous page all possible

hermitian 
urrents 
an be obtained as

�

 � , sin
e (

�

 � )

y

=  

y

�

y




0

 

�

y

=


0

�


0

========

�

 � .

These 
urrents and their asso
iated 
ontinuous Lorentz transformations read:

s
alar 
urrent : j

S

(x) �

�

 (x) (x)

Lorentz transf.

����������! j

S

(�

�1

x) ;

ve
tor 
urrent : j

�

V

(x) �

�

 (x)


�

 (x)

Lorentz transf.

����������! �

�

�

j

�

V

(�

�1

x) ;

tensor 
urrent : j

��

T

(x) �

�

 (x)�

��

 (x)

Lorentz transf.

����������! �

�

�

�

�

�

j

��

T

(�

�1

x) ;

axial ve
tor 
urrent : j

�

A

(x) �

�

 (x)


�




5

 (x)

Lorentz transf.

����������! �

�

�

j

�

A

(�

�1

x) ;

pseudo s
alar 
urrent : j

P

(x) � i

�

 (x)


5

 (x)

Lorentz transf.

����������! j

P

(�

�1

x) ;

making use of the fa
t that �

�1

1=2




�

�

1=2

= �

�

�




�

and �

�1

1=2




5

�

1=2

= 


5

.
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Using the 
hiral proje
tion operators P

L=R

, the Dira
 spinors 
an be de
omposed into


hiral 
omponents a

ording to

P

L=R

 (x) �  

L=R

)

�

 

L=R

� ( 

L=R

)

y




0

=  

y

P

L=R




0

=  

y




0

P

R=L

=

�

 P

R=L

:

This results in the following 
hiral de
ompositions of the 
urrents.

� The s
alar 
urrent mixes left- and right-handed Weyl spinors, sin
e

�

  =

�

 (P

R

+ P

L

) =

�

 (P

2

R

+ P

2

L

) =

�

 

L

 

R

+

�

 

R

 

L

:

This will prove important for the des
ription of massive spin-1/2 parti
les.

� The ve
tor 
urrent treats left- and right-handed Weyl spinors on equal footing, sin
e

�

 


�

 =

�

 


�

(P

2

R

+ P

2

L

) =

�

 (P

L




�

P

R

+ P

R




�

P

L

) =

�

 

R




�

 

R

+

�

 

L




�

 

L

:

This will prove important for ve
tor-like theories, des
ribing for instan
e the ele
tro-

magneti
 and strong intera
tions.

� Similarly the tensor 
urrent mixes left- and right-handed Weyl spinors:

�

 �

��

 =

�

 

L

�

��

 

R

+

�

 

R

�

��

 

L

:

This is needed for des
ribing Lorentz transformations, as we have seen already.

� The axial ve
tor 
urrent treats left- and right-handed Weyl spinors in opposite ways:

�

 


�




5

 =

�

 


�




5

(P

2

R

+ P

2

L

) =

�

 (P

L




�




5

P

R

+ P

R




�




5

P

L

) 

=

�

 

R




�




5

 

R

+

�

 

L




�




5

 

L




5

 

R=L

=� 

R=L

============

�

 

R




�

 

R

�

�

 

L




�

 

L

:

This will prove important for 
hiral theories, like the one that des
ribes weak inter-

a
tions.

� Similarly the pseudo s
alar 
urrent de
omposes a

ording to

i

�

 


5

 = i

�

 

L




5

 

R

+ i

�

 

R




5

 

L

= i

�

 

L

 

R

� i

�

 

R

 

L

:

This will prove important in des
ribing intera
tions between spin-0 and spin-1/2

parti
les.

Handy 
ombinations of su
h 
urrents are given by the left/right-handed ve
tor 
urrents

j

�

L=R

(x) �

�

 (x)


�

P

L=R

 (x) =

�

 

L=R

(x)


�

 

L=R

(x) ;

whi
h will feature in the Standard Model of ele
troweak intera
tions.
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11e Dira
 equation: let's now try to 
onstru
t a Lorentz-invariant wave

equation that has the Klein-Gordon equation built in. The simplest 
andidate

is the Dira
 equation

(i


�

�

�

�m) (x) = 0 :

This is a �rst order di�erential equation, whereas the Klein-Gordon equation was a se
ond

order equation. This is possible be
ause 


�

behaves like a ve
tor without a
tually intro-

du
ing a preferred dire
tion, whi
h is not possible in s
alar theories!

Proof: �rst of all

0 = (i


�

�

�

+m)(i


�

�

�

�m) (x) = � (


�




�

�

�

�

�

+m

2

) (x)

= �

�

1

2

�




�

; 


�

	

�

�

�

�

+m

2

�

 (x)

f


�

;


�

g=2g

��

I

4

============ � (� +m

2

) (x) ;

so the Klein-Gordon equation is indeed built in! Se
ondly, under 
ontinuous Lorentz trans-

formations a Dira
 spinor transforms a

ording to  (x) !  

0

(x) = �

1=2

 (�

�1

x). If  (x)

satis�es the Dira
 equation then it follows that

8

x

(i


�

�

�

�m) (x) = 0 ) (i


�

�

�

�m)�

1=2

 (�

�1

x) = �

1=2

(i�

�

�




�

�

�

�m) (�

�1

x)

= �

1=2

�

i�

�

�




�

(�

�1

)

�

�

(�

�

 )(�

�1

x)�m (�

�1

x)

�

= �

1=2

�

i


�

�

�

 �m 

�

(�

�1

x) = 0

) (i


�

�

�

�m) 

0

(x) = 0 :

If the �eld  (x) satis�es the Dira
 equation then so does the Lorentz transformed �eld

 

0

(x), as required for having a Lorentz invariant wave equation.

In the Weyl representation the Dira
 equation reads

0 = (i


�

�

�

�m) =

 

�mI

2

i(I

2

�

0

+~� �

~

5

)

i(I

2

�

0

�~� �

~

5

) �mI

2

! 

 

L

 

R

!

�

 

�mI

2

i�

�

�

�

i��

�

�

�

�mI

2

! 

 

L

 

R

!

using the 
ompa
t notation

�

�

� (I

2

; ~� ) and ��

�

� (I

2

;�~� ) ) 


�

=

 

0 �

�

��

�

0

!

:

From this we 
on
lude that

11e

the two representations asso
iated with  

L

and  

R

are mixed by the mass

term in the Dira
 equation! In the massless 
ase the Dira
 equation splits into

two independent wave equations for  

L

and  

R

, the so-
alled Weyl equations

i��

�

�

�

 

L

(x) = 0 and i�

�

�

�

 

R

(x) = 0 :
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The Dira
 Lagrangian: the Lagrangian that 
orresponds to the Dira
 equation reads

L

Dira


(x) =

�

 (x)(i


�

�

�

�m) (x) :

Proof: the Euler-Lagrange equations for the

�

 and  �elds are given by

�

�

�

�L

�(�

�

�

 )

�

�

�L

�

�

 

= � (i


�

�

�

�m) = 0 ;

�

�

�

�L

�(�

�

 )

�

�

�L

� 

= �

�

�

i

�

 


�

�

+m

�

 =

�

 (i

 

�

�




�

+m) = 0 ;

whi
h are indeed the Dira
 equation and the 
orresponding adjoint equation

0 =

�

(i


�

�

�

�m) (x)

�

y




0

= � i

�

�

�

 

y

(x)

�




� y




0

�m 

y

(x)


0

= �

�

 (x)(i

 

�

�




�

+m) :

11e Conserved 
urrents: in preparation for the quantization of the free

Dira
 theory and the derivation of its parti
le interpretation, we have a 
loser

look at the 
onserved 
urrents for the solutions  (x) of the Dira
 equation.

1. The ve
tor 
urrent j

�

V

(x) is 
onserved.

Proof 1: �

�

j

�

V

= (�

�

�

 )


�

 +

�

 


�

�

�

 

Dira
 eqns.

======== im

�

  � im

�

  = 0 .

Proof 2: in Ex. 17 an alternative proof is given based on global U(1) invarian
e.

2. The axial ve
tor 
urrent j

�

A

(x) is 
onserved if m=0.

Proof 1: �

�

j

�

A

= (�

�

�

 )


�




5

 �

�

 


5




�

�

�

 

Dira
 eqns.

======== 2im

�

 


5

 = 0 if m = 0.

Proof 2: in Ex. 17 an alternative proof is given based on global 
hiral invarian
e.

3. The energy-momentum tensor T

��

is 
onserved.

Only the spa
etime 
oordinates of

�

 (x) and  (x) transform under translations,

i.e. the spinors themselves do not transform. Consequently, the energy-momentum

tensor T

��

derived on page 8 will be 
onserved. This gives rise to four 
onserved


harges, the �eld energy

H =

Z

d~x H =

Z

d~x

h

�

 

_

 +

_

�

 �

�

 

� L

Dira


i

=

Z

d~x �

 

_

 

and �eld momentum

~

P = �

Z

d~x

h

�

 

~

5

 + (

~

5

�

 )�

�

 

i

= �

Z

d~x �

 

~

5

 :

Here we used that in these Noether 
harges  (x) should satisfy the Dira
 equation,

and that �

 

=

�L

Dira


�(�

0

 )

= i

�

 


0

= i 

y

as well as �

�

 

=

�L

Dira


�(�

0

�

 )

= 0 .

From these 
onjugate momenta we 
an read o� that out of the eight real

degrees of freedom of the Dira
 spinor  (x) in fa
t four belong to the


onjugate momentum.
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4. Under 
ontinuous Lorentz transformations a Dira
 spinor transforms as

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x)

inf.

�

�

I

4

�

i

2

!

��

S

��

�

 (x)�

1

2

!

��

�

x

�

�

�

� x

�

�

�

�

 (x) ;

where the �rst term is typi
al for Dira
 spinors and the se
ond term is the same

as for s
alar �elds. Bearing in mind that the Dira
 Lagrangian is a Lorentz s
alar,

we 
an generalize the derivation on page 11 to arrive at the following six 
onserved

Noether 
urrents:

J

���

(x) =

�L

Dira


�(�

�

 )

�

x

�

�

�

� x

�

�

�

� iS

��

�

 (x) +

�

g

��

x

�

� g

��

x

�

�

L

Dira


(x)

= T

��

x

�

� T

��

x

�

+

�

 (x)


�

S

��

 (x) :

11e The last term in these 
onserved Noether 
urrents is spe
i�
 for Dira


theories. After quantization of the Dira
 theory this term will help us to

determine the spin of the parti
les des
ribed by the (free) Dira
 �eld theory.

3.2 Solutions of the free Dira
 equation (§ 3.3 in the book)

11f

Sin
e solutions of the (free) Dira
 equation automati
ally satisfy the Klein-

Gordon equation, we 
an use the standard plane-wave (Fourier) de
omposition

in order to de
ouple the degrees of freedom as mu
h as possible.

The positive-energy 
ase: a

ording to this de
omposition we introdu
e

 

p

(x) � u(p)e

�ip�x

with p

2

= m

2

and p

0

> 0 ) p

�

=

�

p

~p

2

+m

2

; ~p ) � (E

~p

; ~p ) :

The spinor u(p) then has to satisfy the Dira
 equation in momentum spa
e:

(


�

p

�

�m)u(p) � (p=�m)u(p) = 0 ;

using Feynman slash notation. The 
laim is now that u(p) 
an be written as

u(p) =

 

p

p � � �

p

p � �� �

!

;

with � an arbitrary normalized 2-dimensional ve
tor.

Proof: using that

p

(p � �)(p � ��) =

p

(p

0

I

2

� ~p � ~� )(p

0

I

2

+ ~p � ~� )

f�

j

;�

k

g=2Æ

jk

I

2

=========== I

2

q

p

2

0

� ~p

2

= mI

2

;

it easily follows that

(p=�m)u(p) =

 

�mI

2

p � �

p � �� �mI

2

! 

p

p � � �

p

p � �� �

!

= 0 :
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The negative-energy 
ase: similarly we introdu
e

 

p

(x) � v(p)e

+ip�x

with again p

�

= (E

~p

; ~p )

to get two more independent solutions of the Dira
 equation. The spinor v(p) has to

satisfy

� (


�

p

�

+m)v(p) � � (p= +m)v(p) = 0

and is given by

v(p) =

 

p

p � � �

�

p

p � �� �

!

;

with � another arbitrary normalized 2-dimensional ve
tor.

Heli
ity: for the normalized base ve
tors �

1

; �

2

and �

1

; �

2

we 
ould for instan
e 
hoose

the eigenve
tors of ~� � ~p=j~p j � ~� � ~e

p

with eigenvalues +1 ;�1. This results in

u

1

(p) =

 

p

E

~p

� j~p j �

1

p

E

~p

+ j~p j �

1

!

j~p j�m

����!

p

2E

~p

 

0

�

1

!

;

u

2

(p) =

 

p

E

~p

+ j~p j �

2

p

E

~p

� j~p j �

2

!

j~p j�m

����!

p

2E

~p

 

�

2

0

!

and

v

1

(p) =

 

p

E

~p

� j~p j �

1

�

p

E

~p

+ j~p j �

1

!

j~p j�m

����! �

p

2E

~p

 

0

�

1

!

;

v

2

(p) =

 

p

E

~p

+ j~p j �

2

�

p

E

~p

� j~p j �

2

!

j~p j�m

����!

p

2E

~p

 

�

2

0

!

:

11g

In the ultrarelativisti
 limit the 
hiral states 
oin
ide with the eigenstates of

the heli
ity operator

^

h = ~e

p

�

^

~

S =

1

2

 

~� � ~e

p

0

0 ~� � ~e

p

!

:

In that 
ase positive heli
ity (h = +1=2) 
orresponds to right-handed 
hirality

( 

R

) and negative heli
ity (h = � 1=2) to left-handed 
hirality ( 

L

).

Heli
ity is frame dependent if m 6= 0, sin
e ~e

p


an be 
ipped by a boost along

that dire
tion. Heli
ity is frame independent if m = 0. The Lorentz invarian
e

of heli
ity for m = 0 is manifest in the notation of Weyl spinors, sin
e  

L=R

live in di�erent representations of the Lorentz group.
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Normalization and orthogonality of the u and v spinors: from the orthogonality

properties �

r y

�

s

= Æ

rs

and �

r y

�

s

= Æ

rs

of the normalized 2-dimensional base ve
tors �

1

; �

2

and �

1

; �

2

, it follows that

u

r y

(p)u

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � � �

s

p

p � �� �

s

!

= �

r y

(p � � + p � ��)�

s

= 2E

~p

Æ

rs

;

v

r y

(p)v

s

(p) =

�

�

r y

p

p � � ; � �

r y

p

p � ��

�

 

p

p � � �

s

�

p

p � �� �

s

!

= �

r y

(p � � + p � ��)�

s

= 2E

~p

Æ

rs

;

u

r y

(p)v

s

(~p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � �� �

s

�

p

p � � �

s

!

= 0 = v

r y

(~p)u

s

(p) ;

with ~p

�

� (p

0

;�~p ) ) ~p � �� = p �� and ~p �� = p � �� . This is obviously not boost-invariant.

Lorentz invariant 
ontra
tions are obtained through

�u

r

(p)u

s

(p) = u

r y

(p)


0

u

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

p

p � �� �

s

p

p � � �

s

!

= 2mÆ

rs

;

�v

r

(p)v

s

(p) = v

r y

(p)


0

v

s

(p) =

�

�

r y

p

p � � ; � �

r y

p

p � ��

�

 

�

p

p � �� �

s

p

p � � �

s

!

= � 2mÆ

rs

;

�u

r

(p)v

s

(p) =

�

�

r y

p

p � � ; �

r y

p

p � ��

�

 

�

p

p � �� �

s

p

p � � �

s

!

= 0 = �v

r

(p)u

s

(p) :

Polarization sums: for dealing with Feynman diagrams that involve Dira
 fermions,

polarization sums (heli
ity sums) are an essential ingredient. These polarization sums read

2

X

s=1

u

s

(p)�u

s

(p) =

2

X

s=1

 

p

p � � �

s

p

p � �� �

s

!

�

�

s y

p

p � �� ; �

s y

p

p � �

�

=

0

B

B

�

p

p � �

2

P

s=1

�

s

�

s y

p

p � ��

p

p � �

2

P

s=1

�

s

�

s y

p

p � �

p

p � ��

2

P

s=1

�

s

�

s y

p

p � ��

p

p � ��

2

P

s=1

�

s

�

s y

p

p � �

1

C

C

A


ompl.

======

 

mI

2

p � �

p � �� mI

2

!

= 


�

p

�

+mI

4

= p= +mI

4

;

2

X

s=1

v

s

(p)�v

s

(p) = p=�mI

4

;

where in the third step the 
ompleteness relation for the 2-dimensional basis �

1

; �

2

is used.
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3.3 Quantization of the free Dira
 theory (§ 3.5 in the book)

11g The same philosophy will be applied as in the Klein-Gordon 
ase. We

diagonalize the Hamiltonian

^

H of the Dira
 theory in its quantized form by

expanding the solutions of the Dira
 equation in spatial plane-wave modes,

whi
h are written in terms of 
reation and annihilation operators. The par-

ti
le interpretation is obtained by letting these 
reation operators a
t on the

va
uum state j0i, whi
h is de�ned to 
ontain no parti
les (i.e. positive-energy

quanta) and to have the lowest energy. This leads to the requirement that

the spe
trum of

^

H should be bounded from below. On top of that, we again de-

mand that 
ausality should be preserved for having a viable theory.

Derivation of the operator algebra: step 1. A

ording to the dis
ussion on page 97

H

Dira


(x) = �

 

(x)

_

 (x) = i 

y

(x)

_

 (x) :

In analogy with the s
alar 
ase we expand a solution of the Dira
 equation in terms of

plane-wave modes, bearing in mind that

^

 (x) is non-hermitian and has spinorial degrees

of freedom:

^

 (x) =

Z

d~p

(2�)

3

1

p

2E

~p

2

X

s=1

�

â

s

~p

u

s

(p)e

�ip�x

+

^

b

s y

~p

v

s

(p)e

ip�x

�

�

�

�

p

0

=E

~p

:

The di�eren
e with the s
alar 
ase is the o

urren
e of the u and v spinors that span

spinor spa
e. The Hamilton operator of the free Dira
 theory now reads

^

H =

Z

d~x i

^

 

y

(x)

_

^

 (x) =

Z

d~x

Z

d~p d~p

0

(2�)

6

p

E

~p

0

2

p

E

~p

2

X

s;s

0

=1

�

â

s y

~p

u

s y

(p)e

ip�x

+

^

b

s

~p

v

s y

(p)e

�ip�x

�

�

�

�

â

s

0

~p

0

u

s

0

(p

0

)e

�ip

0

�x

�

^

b

s

0

y

~p

0

v

s

0

(p

0

)e

ip

0

�x

�

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

~x integral

========

Z

d~p

(2�)

3

1

2

2

X

s;s

0

=1

�

â

s y

~p

â

s

0

~p

u

s y

(p)u

s

0

(p)�

^

b

s

~p

^

b

s

0

y

~p

v

s y

(p)v

s

0

(p)

+

^

b

s

~p

â

s

0

�~p

v

s y

(p)u

s

0

(~p)e

�2itE

~p

� â

s y

~p

^

b

s

0

y

�~p

u

s y

(p)v

s

0

(~p)e

2itE

~p

�

�

�

�

p

0

=E

~p

norm.

=====

Z

d~p

(2�)

3

2

X

s=1

E

~p

�

â

s y

~p

â

s

~p

�

^

b

s

~p

^

b

s y

~p

�

:

101



From this expression for the Hamilton operator of the free Dira
 theory we 
an read o�

that

� the energy spe
trum is not bounded from below if we use 
ommutation relations like

in the 
ase of s
alar theories;

� it does 
ertainly not help if

^

b

s y

~p

is repla
ed by 
̂

s

~p

, sin
e in that 
ase the problem


annot be solved at all;

�

11g we are for
ed to impose fermioni
 anti
ommutation relations on the 
re-

ation and annihilation operators

^

b

s y

~p

and

^

b

s

~p

, being the alternative starting

point for setting up a many-parti
le quantum theory:

�

^

b

s

~p

;

^

b

s

0

y

~p

0

	

= (2�)

3

Æ(~p� ~p

0

)Æ

ss

0

^

1 and

�

^

b

s

~p

;

^

b

s

0

~p

0

	

=

�

^

b

s y

~p

;

^

b

s

0

y

~p

0

	

= 0 :

Upon implementing these anti
ommutation relations, the Hamilton operator indeed be-


omes bounded from below by a zero-point energy:

^

H =

Z

d~p

(2�)

3

2

X

s=1

E

~p

�

â

s y

~p

â

s

~p

+

^

b

s y

~p

^

b

s

~p

� (2�)

3

Æ(

~

0 )

^

1

�

:

� Again only positive-energy quanta feature in the Hamilton operator.

� This time we �nd an in�nite zero-point energy with opposite sign, whi
h 
an again

be removed by normal ordering:

^

b

y

^

b ! N(

^

b

y

^

b) =

^

b

y

^

b ;

^

b

^

b

y

! N(

^

b

^

b

y

) = �

^

b

y

^

b :

Note the extra minus sign that is required for normal ordering of fermioni
 operators.

This will also have reper
ussions on the derivation of Wi
k's theorem and the ensuing

Feynman rules.

The opposite-sign fermioni
 zero-point energy 
ould a
tually 
an
el the in�nities

originating from bosoni
 zero-point energies. So, there might be some profound

physi
al 
on
epts hidden in the zero-point se
tor . . . !?

Let's ignore the latter issue from now on and pro
eed with the operator algebra.

Question: do the operators â ; â

y

also obey fermioni
 anti
ommutation relations

or bosoni
 
ommutation relations?
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Derivation of the operator algebra: step 2. To address the previous question we

need to study the 
ausal stru
ture of the theory. In the s
alar 
ase this was intimately

linked to the parti
le and antiparti
le propagation amplitudes. This will involve both the

Dira
 operator �eld and the adjoint Dira
 operator �eld, whi
h is given by

^

�

 (x) =

Z

d~p

(2�)

3

1

p

2E

~p

2

X

s=1

�

â

s y

~p

�u

s

(p)e

ip�x

+

^

b

s

~p

�v

s

(p)e

�ip�x

�

�

�

�

p

0

=E

~p

=

^

 

y

(x)


0

:

We start by having a look at the propagation of positive-energy parti
les from y to x.

This is de�ned a

ording to

h0j

^

 

a

(x)

^

�

 

b

(y)j0i =

Z

d~pd~p

0

(2�)

6

e

�ip�x+ip

0

�y

2

p

E

~p

E

~p

0

2

X

s;s

0

=1

u

s

a

(p)�u

s

0

b

(p

0

)h0jâ

s

~p

â

s

0

y

~p

0

j0i

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

2

X

s=1

u

s

a

(p)�u

s

b

(p)

�

�

�

p

0

=E

~p

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

(p= +mI

4

)

ab

�

�

�

p

0

=E

~p

= (i�=

x

+mI

4

)

ab

D(x� y) ;

where a; b = 1; � � �; 4 are Dira
 spinor indi
es (whi
h should not be 
onfused with the

spin-1/2 quantum numbers s; s

0

) and D(x � y) is given on page 19. This expression is

valid irrespe
tive of the statisti
s for the â-operators:

h0jâ

s

~p

â

s

0

y

~p

0

j0i = h0j

�

(2�)

3

Æ(~p� ~p

0

)Æ

ss

0

^

1 � â

s

0

y

~p

0

â

s

~p

�

j0i = (2�)

3

Æ(~p� ~p

0

)Æ

ss

0

;

where the +=� sign o

urring after the �rst step refers to bosoni
/fermioni
 statisti
s.

Similarly the propagation of positive-energy antiparti
les from x to y is given by

h0j

^

�

 

b

(y)

^

 

a

(x)j0i =

Z

d~p d~p

0

(2�)

6

e

ip�x�ip

0

�y

2

p

E

~p

E
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2

X
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�v

s

0

b

(p

0

)v

s

a

(p)h0j

^

b

s
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~p

0

^

b

s y

~p

j0i

�

�

�

p
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=E

~p

; p

0

0
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~p

0

=

Z

d~p

(2�)

3

e

ip�(x�y)

2E
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2

X
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v

s

a

(p)�v
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b

(p)

�

�

�

p
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=E
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=

Z

d~p

(2�)

3

e

ip�(x�y)

2E

~p

(p=�mI

4

)
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�

�

�

p

0

=E

~p

= � (i�=

x

+mI

4

)

ab

D(y � x) :

Important observation for the 
ausality dis
ussion: for (x � y)

2

< 0 we know

from the s
alar 
ase that D(x� y) = D(y�x), hen
e we have to 
on
lude that

h0j

�

^

 

a

(x);

^

�

 

b

(y)

�

j0i 6= 0 and h0j

�

^

 

a

(x);

^

�

 

b

(y)

	

j0i = 0 in that 
ase.
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Causality: in the 
oordinate representation any observable that involves Dira
 parti
les


ontains an even number of spinor �elds, i.e. as many  as

�

 �elds, sin
e su
h an observ-

able should have no open spinor indi
es. So, if either

�

^

 

a

(x) ;

^

�

 

b

(y)

�

=

�

^

 

a

(x);

^

 

b

(y)

�

= 0
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�

^

 

a
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^

�

 

b

(y)

	

=

�

^

 

a

(x);

^

 

b

(y)

	

= 0 for (x � y)

2

< 0, then measurements do not

in
uen
e ea
h other for spa
elike separations and 
ausality is preserved! As we have seen

above, the �rst option 
annot be a
hieved but the se
ond option is possible. Based on the

previous dis
ussion,

�
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^
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b
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0

	

�

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

= 0

and

�

^

 

a

(x) ;
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=

Z

d~pd~p

0

(2�)

6

1

2

p

E

~p

E

~p

0

2

X

s;s

0

=1

�

u

s

a

(p)u

s

0

b

(p

0

) e

�ip�x�ip

0

�y

�

â

s

~p

; â

s

0

~p

0

	

+ v

s

a

(p)v

s

0

b

(p

0

) e

ip�x+ip

0

�y

�

^

b

s y

~p

;

^

b

s

0

y

~p

0

	

+ u

s

a

(p)v

s

0

b

(p

0

) e

�ip�x+ip

0

�y

�

â

s

~p

;

^

b

s

0

y

~p

0

	

+ v

s

a

(p)u

s

0

b

(p

0

) e

ip�x�ip

0

�y

�

^

b

s y

~p

; â

s

0

~p

0

	

�

�

�

�

p

0

=E

~p

; p

0

0

=E

~p

0

= 0

is guaranteed for spa
elike separations (x� y)

2

< 0 if

�

â

s

~p

; â

s

0

y

~p

0

	

= (2�)

3

Æ(~p�~p

0

)Æ

ss

0

^

1 =

�

^

b

s

~p

;

^

b

s

0

y

~p

0

	

; with all other anti
ommutators being 0 :

Note: the anti
ommutation relation for â and â

y

follows from the �rst two terms in the

�rst expression, bearing in mind the anti
ommutation relation for

^

b and

^

b

y

as well as the

equality D(x� y) = D(y � x) for (x� y)

2

< 0.

11g

In the free Dira
 theory both parti
les and antiparti
les have to be fermions.

On top of that, the 
reation and annihilation operators for parti
les anti
om-

mute with those for antiparti
les. This implies that parti
les and antiparti-


les are versions of the same obje
t, di�ering merely by the quantum number


harge (as we will see below).
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Canoni
al equal-time anti
ommutation relations: from the fundamental fermioni


anti
ommutation relations for 
reation and annihilation operators it follows that

�

^

 

a

(~x; t);

^

�

 

b

(~y; t)

	

p:103

=====

Z

d~p

(2�)

3

^

1

2E

~p

h

e

i~p �(~x�~y )

(p=+mI

4

)

ab

+ e

� i~p �(~x�~y )

(p=�mI

4

)

ab

i

�

�

�

�

p

0

=E

~p

~p!� ~p in 2nd term

==============

Z

d~p

(2�)

3

e

i~p �(~x�~y )

(


0

)

ab

^

1 = (


0

)

ab

Æ(~x� ~y )

^

1

)

�

^

 

a

(~x; t); �̂

 




(~y ; t)

	

=

X

b

�

^

 

a

(~x; t); i

^

�

 

b

(~y; t)

	

(


0

)

b


(


0

)

2

= I

4

======= iÆ

a


Æ(~x� ~y )

^

1

and

�

^

 

a

(~x; t);

^

 




(~y; t)

	

=

�

�̂

 

a

(~x; t); �̂

 




(~y; t)

	

= 0 :

11g The quantization of the free Dira
 theory 
ould equally well have been

performed by imposing 
anoni
al equal-time anti
ommutation relations for the

�elds and their 
orresponding 
onjugate momenta.

Completing the parti
le interpretation: what else do we know about the parti
les

and antiparti
les in the Dira
 theory?

� After quantization the momentum 
arried by the Dira
 �eld be
omes (
f. page 97)

^

~

P = �

Z

d~x �̂

 

(x)

~

r

^

 (x) =

Z

d~x

^

 

y

(x)(�i

~

5

)

^

 (x)

=

Z

d~p

(2�)

3

~p

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s

~p

^

b

s y

~p

) =

Z

d~p

(2�)

3

~p

2

X

s=1

(â

s y

~p

â

s

~p

+

^

b

s y

~p

^

b

s

~p

) ;

just like in the s
alar 
ase.

� After quantization the 
onserved 
harge (
alled parti
le number) originating from

the global U(1) gauge symmetry be
omes

^

Q =

Z

d~x

^

j

0

V

(x) =

Z

d~x

^

 

y

(x)

^

 (x) =

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

+

^

b

s

~p

^

b

s y

~p

)

) N(

^

Q) =

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s y

~p

^

b

s

~p

) ;

whi
h implies that parti
les/antiparti
les have parti
le number +=� 1. Multiplied

by the ele
tromagneti
 
harge q of the parti
les this yields the total 
harge operator

for intera
tions with ele
tromagneti
 �elds (see later). So, in that 
ase we 
an read

o� that parti
les and antiparti
les have opposite 
harge.
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� Based on the dis
ussion on page 98, the total spin operator is given by

^

~

S =

Z

d~x

^

 

y

(x)

 

1

2

~� 0

0

1

2

~�

!

^

 (x) :

Just like in the previous 
ase, the order of the

^

b

s

~p

and

^

b

s y

~p

operators results in

opposite spin quantum numbers for antiparti
les if we would set �

s

= �

s

in the

v and u spinors.

This allows us to read o� the parti
le 
ontent of the free Dira
 theory. We already know

that for anti
ommuting 
reation and annihilation operators there exists a groundstate

(va
uum state) j0i su
h that h0j0i = 1 and â

s

~p

j0i =

^

b

s

~p

j0i = 0 for all ~p and s. Then

N(

^

H)j0i = 0,

^

~

P j0i =

~

0 and N(

^

Q)j0i = 0, i.e. the va
uum \has" energy E = 0,

momentum

~

P =

~

0 and 
harge Q = 0. From this groundstate the 1-parti
le ex
itations


an be obtained as â

s y

~p

j0i and

^

b

s y

~p

j0i, 
orresponding to an energy E

~p

, a momentum ~p ,

spin 1/2 and opposite 
harge/parti
le number. In view of the fermioni
 anti
ommutation

relations, â

y


reates fermioni
 parti
les and

^

b

y


reates fermioni
 antiparti
les.

11g

We 
an summarize the parti
le interpretation of the free Dira
 theory as follows:

â

s y

~p


reates parti
les with energy E

~p

, momentum ~p , spin 1/2, 
harge q and po-

larization appropriate to �

s

, whereas

^

b

s y

~p


reates antiparti
les with energy E

~p

,

momentum ~p , spin 1/2, 
harge �q and polarization opposite to �

s

. Hen
e,

if m = 0 then

^

 

L=R

(x) annihilates parti
les with negative/positive heli
ity and


reates antiparti
les with positive/negative heli
ity.

Inversion of the Dira
 equation: the retarded Green's fun
tion is obtained by

�

S

R

(x� y)

�

ab

� �(x

0

� y

0

)h0j

�

^

 

a

(x);

^

�

 

b

(y)

	

j0i

p. 103

===== �(x

0

� y

0

)(i�=

x

+mI

4

)

ab

�

D(x� y)�D(y � x)

�

= (i�=

x

+mI

4

)

ab

D

R

(x� y) :

We have used in the last step that �

0

�(x

0

� y

0

) = Æ(x

0

� y

0

) 
auses D(x� y)�D(y� x)

to vanish a

ording to property 2 on page 20, whi
h implies that it is safe to inter
hange

the order of �(x

0

� y

0

) and (i�=

x

+mI

4

)

ab

.

Proof that this Green's fun
tion indeed inverts the Dira
 equation:

(i�=

x

�m)S

R

(x�y) = (i�=

x

�m)(i�=

x

+m)D

R

(x�y) = � (�+m

2

)D

R

(x�y)I

4

= iÆ

(4)

(x�y)I

4

:

In Fourier language this inversion reads:

(i�=

x

�m)S

R

(x� y) =

Z

d

4

p

(2�)

4

(p=�m)

~

S

R

(p)e

�ip�(x�y)

= i

Z

d

4

p

(2�)

4

e

�ip�(x�y)

I

4

)

~

S

R

(p) =

i(p= +m)

p

2

�m

2

�

i

p=�m

;
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with the same pres
ription to go around the 
omplex poles as in the Klein-Gordon 
ase.

Similarly the Feynman pres
ription yields the Feynman propagator

�

S

F

(x� y)

�

ab

=

Z

d

4

p

(2�)

4

i(p= +mI

4

)

ab

p

2

�m

2

+ i�

e

�ip�(x�y)

= (i�=

x

+mI

4

)

ab

D

F

(x� y)

=

8

>

<

>

:

(i�=

x

+mI

4

)

ab

D(x� y) = h0j

^

 

a

(x)

^

�

 

b

(y)j0i if x

0

> y

0

(i�=

x

+mI

4

)

ab

D(y � x) = �h0j

^

�

 

b

(y)

^

 

a

(x)j0i if x

0

< y

0

� h0jT (

^

 

a

(x)

^

�

 

b

(y))j0i :

Note the extra minus sign in the de�nition of time ordering for fermioni
 �elds. Just

like in the Klein-Gordon 
ase the Feynman propagator

�

S

F

(x� y)

�

ab

is the time-ordered

propagation amplitude, whi
h will play a 
ru
ial role in the Feynman rules for fermions.

Lorentz transformations and

^

 (x): just like in the Klein-Gordon 
ase the 1-parti
le

states are normalized a

ording to j~p; si �

p

2E

~p

â

s y

~p

j0i, with a similar expression holding

for 1-antiparti
le states. Using this de�nition we 
an de�ne the unitary operator that

implements (a
tive) Lorentz transformations in the Hilbert spa
e of quantum states:

j

�!

�p; si �

^

U(�)j~p; si )

q

2E

�!

�p

â

s y

�!

�p

j0i =

p

2E

~p

^

U(�) â

s y

~p

^

U

�1

(�)

� j0i

z }| {

^

U(�)j0i

) de�ne:

^

U(�) â

s y

~p

^

U

�1

(�) =

s

E

�!

�p

E

~p

â

s y

�!

�p

;

provided that we 
hoose the axis of spin quantization to be parallel to the boost/rotation

axis. The transformation property of

^

b

s y

~p

has an analogous form. As a result:

^

U(�)

^

 (x)

^

U

�1

(�) =

Z

d~p

(2�)

3

1

2E

~p

q

2E
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�p

2

X
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�

â

s

�!

�p

u
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(p)e

�ip�x

+

^

b

s y

�!

�p

v

s

(p)e

ip�x

�

p

0

=�p

====

Z

d~p

0

(2�)

3

1

p

2E

~p

0

2

X

s=1

�

â

s

~p

0

�

�1

1=2

u

s

(p

0

)

z }| {

u

s

(�

�1

p

0

)e

�ip

0

��x

+

^

b

s y

~p

0

�

�1

1=2

v

s

(p

0

)

z }| {

v

s

(�

�1

p

0

)e

ip

0

��x

�

)

^

U(�)

^

 (x)

^

U

�1

(�) = �

�1

1=2

^

 (�x) ;

where the se
ond line is obtained by using that

R

d~p=(2E

~p

) and e

� ip�x

are all Lorentz

invariant. This implies that the transformed �eld 
reates/destroys antiparti
les/parti
les

at the spa
etime point �x.
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3.4 Dis
rete symmetries

11i Apart from the symmetry under 
ontinuous Lorentz transformations and

translations, there are two more spa
etime symmetries a free Lagrangian should

have in relativisti
 �eld theories. These 
orrespond to the dis
rete Lorentz trans-

formations that 
omplete the Lorentz group:

� parity (spatial inversion) P , whi
h reverses the handedness of spa
e: t; ~x

P

== t;�~x .

� time reversal T , whi
h inter
hanges forward and ba
kward light 
ones: t; ~x

T

== �t; ~x .

In addition it is also useful to 
onsider a non-spa
etime dis
rete operation 
alled 
harge


onjugation C , whi
h inter
hanges parti
les and antiparti
les. In parti
ular P and C play

a 
ru
ial role in 
onstru
ting the Standard Model of ele
troweak intera
tions. In these

le
ture notes we will expli
itly 
onsider parity transformations. The details for the other

dis
rete transformations 
an be found in the textbook of Peskin & S
hroeder.

mirror

parity

~p �~p

Parity: this mirror-re
e
tion spa
etime trans-

formation is implemented in the Hilbert spa
e

of quantum states by a unitary operator (basis

transformation)

^

P . Its a
tion on the 
reation

and annihilation operators is su
h that a state

j~p ; si is transformed into a state j �~p ; si, pro-

vided that the spin is quantized along an arbi-

trary �xed axis.

4

This implies

^

P â

s

~p

^

P

y

= �

a

â

s

�~p

and

^

P

^

b

s

~p

^

P

y

= �

b

^

b

s

�~p

;

where �

a;b

are phase fa
tors. Applying

^

P twi
e

should have no e�e
t on observables in the Dira
 theory. These observables 
ontain as

many  as

�

 �elds, so the phase fa
tors drop out as long as �

a

and �

b

are related

appropriately (see below). In analogy to the 
ase of 
ontinuous Lorentz transformations,

the transformation property of the Dira
 �eld under parity then be
omes

^

P

^

 (x)

^

P

y

=

Z

d~p

(2�)

3

1

p

2E

~p

2

X

s=1

�

�

a

â

s

�~p

u

s

(p)e

�ip�x

+�

�

b

^

b

s y

�~p

v

s

(p)e

ip�x

�

�

�

�

p

0

=E

~p

� �

(P )

1=2

^

 (~x) ;

with ~x

�

� (x

0

;�~x ). Using ~p

�

� (p

0

;�~p ) ) ~p � �� = p � � and ~p � � = p � �� , we 
an

rewrite the u and v spinors a

ording to

4

If we would instead use spin quantization along the momentum dire
tion, then also the asso
iated

quantum number heli
ity would be reversed under parity.
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u

s

(p) =

 

p

p � � �
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p
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s

!
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p

~p � �� �

s
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s

!
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p
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s

p

~p � �� �

s

!

= 


0

u

s

(~p) ;

v

s

(p) =

 

p

p � � �

s

�

p

p � �� �

s

!

=

 

p

~p � �� �

s

�

p

~p � � �

s

!

= � 


0

 

p

~p � � �

s

�

p

~p � �� �

s

!

= � 


0

v

s

(~p) :

Bearing in mind that the integral over ~p and the energy E

~p

are una�e
ted by the transition

from ~p to

~

~p = � ~p, this leads to

^

P

^

 (x)

^

P

y

=

Z

d

~

~p

(2�)

3

1

p

2E

~

~p

2

X

s=1

�

�
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â

s

~

~p




0

u

s

(~p)e

�i~p�~x

� �

�

b

^

b

s y

~

~p




0

v

s

(~p)e

i~p�~x

�

�

�

�

~p

0

=E

~

~
p

= �

(P )

1=2

^

 (~x)

) �

�

b

= � �

a

and �

(P )

1=2

= �

a




0

:

The transformation property of

^

�

 (x) then follows:

^

P

^

�

 (x)

^

P

y

=

^

P

^

 

y

(x)


0

^

P

y

�

^

P ; 


0

�

= 0

=========

�

^

P

^

 (x)

^

P

y

�

y




0

= �

�

a

^

�

 (~x)


0

=

^

�

 (~x)�

(P )

�1

1=2

;

sin
e

^

P a
ts on the Hilbert spa
e of quantum states and not on spinor spa
e. The e�e
tive

transformation properties of the 
-matri
es then read

�

(P )

�1

1=2




�

�

(P )

1=2

�

�

a

�

a

=1

====== 


0




�




0

= 


�

;

whi
h we 
an write as

�

(P )

�1

1=2




�

�

(P )

1=2

= (�

P

)

�

�




�

with (�

P

)

�

�

=

0

B

B

�

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

= spatial inversion

in analogy with the 
ontinuous Lorentz transformations. Furthermore

�

(P )

�1

1=2




5

�

(P )

1=2
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0




5




0

= � 


5

= det(�

P

)


5

:

Now we have all ingredients for deriving the transformation properties of the normal-

ordered 
urrents that are the basi
 building blo
ks for observables:

s
alar 
urrent : N

�

^

j

S

(x)

�

P

��! N

�

^

j

S

(~x)

�

;

ve
tor 
urrent : N

�

^

j

�

V

(x)

�

P

��! N

�

^

j

V

�

(~x)

�

;

tensor 
urrent : N

�

^

j

��

T

(x)

�

P

��! N

�

^

j

T

��

(~x)

�

;

axial ve
tor 
urrent : N

�

^

j

�

A

(x)

�

P

��! �N

�

^

j

A

�

(~x)

�

;

pseudo s
alar 
urrent : N

�

^

j

P

(x)

�

P

��! �N

�

^

j

P

(~x)

�

:
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These transformation properties a
tually follow from the fa
t that left/right-handed �elds

are transformed into right/left-handed �elds under partity. Note that the phase fa
tor �

a

does not o

ur in any of these transformation properties. Therefore we might just as well

set �

a

= � �

b

= 1, resulting in the following textbook statement:

11i in the Dira
 theory parti
les and antiparti
les have opposite intrinsi
 parity.

Sin
e �

�

P

��! �

�

, the free Dira
 Lagrangian is evidently invariant under parity.

Charge 
onjugation and time reversal: after similar sets of steps it 
an be derived

how the normal-ordered 
urrents transform under 
harge 
onjugation and time reversal.

These topi
s will not be dis
ussed in these le
ture notes. The interested reader is referred

to p. 67{71 in the textbook of Peskin & S
hroeder.

Intera
ting relativisti
 �eld theories: the free Dira
 Lagrangian is invariant under

all three dis
rete symmetries. For intera
ting theories involving Dira
 �elds, however, the

following holds:

� ele
tromagneti
, strong and gravitational intera
tions are P - and C-invariant;

� weak intera
tions violate P - and C-invarian
e (maximally) in the Standard Model,

but preserve the 
ombined CP -invarian
e;

� rare pro
esses involving K-mesons violate CP -invarian
e: within the Standard Model

this leads to the requirement that there should be at least three families of fermions;

� all intera
ting relativisti
 �eld theories should be CPT -invariant in order to have a

theory that preserves 
ausality and that has a Lorentz-s
alar hermitian Lagrangian.

110



4 Intera
ting Dira
 �elds and Feynman diagrams

The next le
ture 
overs § 4.7 of Peskin & S
hroeder.

12 We have already seen in detail how the Feynman rules 
ome about in s
alar

theories. Next we move on to theories that involve Dira
 fermions. In that 
ase

the intera
tion Hamiltonian will 
ontain an even number of spinor �elds in

order to have a Lorentz invariant a
tion.

4.1 Wi
k's theorem for fermions

The �rst thing we have to do is to generalize Wi
k's theorem. We start with the propagator

using expli
it spinor indi
es a and b:

h0jT

�

^
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(x)

^

�
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(y)
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j0i =
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S
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=
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d

4
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e

�ip�(x�y)

=
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+ h0j
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(x)
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0
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0
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^
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(y)

^

 

a

(x)j0i if x

0

< y

0

= �h0jT

�

^

�

 

b

(y)

^

 

a

(x)

�

j0i;

whi
h involves time-ordered �elds. For Wi
k's theorem we will have to generalize the

de�nition of time ordering to 
ases with more �elds. De�ne time ordering to pi
k up one

minus sign for ea
h inter
hange of fermioni
 operators: e.g. for x

0

3

> x

0

1

> x

0

4

> x

0

2
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2

) :

Similarly the de�nition of normal ordering is generalized for more than two fermioni
 op-

erators a

ording to

N(â

s

~p

â

r

~q

â

t y

~

l

) = (�1)

2

â

t y

~

l

â

s

~p

â

r

~q

= (�1)

3

â

t y

~

l

â

r

~q

â

s

~p

;

where again ea
h inter
hange of fermioni
 operators gives rise to a minus sign.

12a

In the proof of Wi
k's theorem the order of the 
reation and annihilation

operators will matter this time.

Based on these generalizations of time ordering and normal ordering, we 
an extend the

de�nition of 
ontra
tions (see Ex. 20):
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+
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^
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(x)
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=

�

S

F

(x� y)

�

ab

^

1
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where

^

 

+

and

^

 

�


orrespond to the positive and negative frequen
y parts. Furthermore

^

 

a

(x)

^

 

b

(y) =

^

�

 

a

(x)

^

�

 

b

(y) = 0 ;

sin
e these �elds anti
ommute.

Wi
k's theorem for fermioni
 �elds: let's again skip the subs
ript I that we would

normally use to indi
ate (free) intera
tion pi
ture �elds. Wi
k's theorem then states
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as before, with for example
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:

The proof of this version of Wi
k's theorem (see Ex. 20) pro
eeds in a way similar to the

one that was worked out for s
alar �elds.

4.2 Feynman rules for the Yukawa theory

In order to assess the 
onsequen
es of the fermioni
 version of Wi
k's theorem we 
onsider

the Yukawa theory for the intera
tions between fermions and s
alars. The Lagrangian of

the Yukawa theory is given by

L

Yukawa

=

�

 (i
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�

�

�m
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�)(�
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�) �
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� g
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 � � � L

Dira


+L

KG

+L

int

;

with � a real s
alar �eld and  a Dira
 �eld. Here � = I

4

represents s
alar intera
tions

and � = i


5

pseudos
alar intera
tions. This gives rise to the following intera
tion term in

the Hamilton operator of the Yukawa theory:

^

H

int

= g

R

d~x

^

�

 (x)�

^

 (x)

^

�(x).

4.2.1 Impli
ations of Fermi statisti
s

In order to study the 
onsequen
es of fermioni
 minus signs we 
onsider the  -fermion

s
attering rea
tion

 (k

A

; s

A

) (k

B

; s

B

) !  (p

1

; r

1

) (p

2

; r

2

)

at lowest order in perturbation theory, with the momenta and spin quantum numbers of the

parti
les indi
ated between parentheses. In 
hapter 2 we have seen that the 
orresponding

T -matrix element is given by (skipping spin quantum numbers)

h~p

1

~p

2

ji

^

T j

~
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�

0

h~p
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�
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� i
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I
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�

j

~

k

A

~

k

B

i

0

�

fully 
onne
ted

and amputated

� fa
tor

in terms of free-parti
le plane-wave states and intera
tion-pi
ture (free) �elds. The lowest-
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order 
ontribution to the  -s
attering rea
tion then reads

0

h~p

1

~p

2

jT
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:

In order to perform the 
orresponding 
al
ulation we have to de�ne
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with similar expressions for other initial and �nal states.

12b Sin
e

^

 

I


ontains â and

^

b

y

operators, it 
an be 
ontra
ted with a fermion

state on the right (initial state) or an antifermion state on the left (�nal state).

The opposite holds for

^

�

 

I

, sin
e it 
ontains

^

b and â

y

operators.

Minus signs from inter
hanging fermions: for the lowest-order  -fermion-s
attering

T -matrix elements we obtain (with the numbers indi
ating the order in whi
h we perform

the 
ontra
tions and the � behind the 
olon indi
ating the 
orresponding sign)
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whi
h have opposite signs. Note that we have used here a de�nition for the two-fermion

initial and �nal states: j
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These T -matrix elements 
orrespond to the following Feynman diagrams:
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k
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q= k

A

�p

2

:

In these Feynman diagrams solid lines are used to indi
ate the fermions and dashed ones

to indi
ate the s
alar parti
les.

11g Due to Fermi statisti
s the se
ond 
ontribution has a relative minus sign

with respe
t to the �rst one, sin
e it involves the inter
hange of two fermions.

The overall sign depends on the de�nitions of the multiparti
le states, for instan
e one

might de�ne h~p
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j / h0j â
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.

Minus signs from 
losed fermion loops: the Feynman rules for fermions result in a

fa
tor �1 for 
losed fermion loops, as well as a tra
e of a produ
t of Dira
 matri
es. We

�nd for instan
e that
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In order to �gure out how the matri
es in the propagators should be 
ontra
ted, we have

used expli
it (repeated) spinor labels during intermediate steps.

12b This sign di�eren
e between fermioni
 and bosoni
 loops has important im-

pli
ations for the high-energy behaviour of the fundamental intera
tions: strong

intera
tions are asymptoti
ally free, ele
tromagneti
 intera
tions are not.

4.2.2 Drawing 
onvention

12


In analogy with the 
onventions for the s
alar Yukawa theory, we also draw ar-

rows on the fermion lines in the a
tual Yukawa theory. These arrows represent

the dire
tion of parti
le-number 
ow: parti
les 
ow along the arrow, antipar-

ti
les 
ow against it. In this 
onvention

^

 
orresponds to an arrow 
owing

into a vertex, whereas

^

�

 
orresponds to an arrow 
owing out of a vertex. Sin
e

every intera
tion vertex features both

^

 and

^

�

 , the arrows link up to form a


ontinuous 
ow. But this time there is more to it!
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Consider for example a Feynman diagram like
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In order to �gure out how the spinors and matri
es should be 
ontra
ted, we have used

expli
it (repeated) spinor labels during intermediate steps.

12


Here we see another reason for introdu
ing the arrow 
onvention: the spinor

indi
es are in this way always 
ontra
ted along the fermion line, with the ar-

row indi
ating the reversed order. Phrased di�erently, you should insert 4� 4

matri
es and spinors while going against the arrow on fermion lines!

4.2.3 K�all�en{Lehmann spe
tral representation for fermions

The non-perturbative analysis of the 2-point Green's fun
tion follows the same steps as in

the s
alar 
ase with just a few obvious modi�
ations:
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+ i�
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Like before, Z

2

represents the probability for the fermioni
 quantum �eld to 
reate or

annihilate an exa
t \1-dressed parti
le" eigenstate of

^

H from the ground state, with m

ph

denoting its observable physi
al mass:
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:

More details will be worked out in the next 
hapter.
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4.2.4 Momentum-spa
e Feynman rules for the Yukawa theory

The Feynman rules that we have obtained for the Yukawa theory in the previous se
tions


an be summarized by the following list:

1. For ea
h s
alar propagator

q

insert

i

q

2

�m

2

�

+ i�

.

For ea
h fermion propagator

q

insert the 4�4 matrix

i(q= +m

 

)

q

2

�m

2

 

+ i�

.

2. For ea
h vertex insert the 4�4 matrix �ig�.

3. For ea
h external s
alar line

q

insert

p

Z .

For ea
h in
oming fermion line

k

insert u

s

(k)

p

Z

2

, originating from

^

 .

For ea
h in
oming antifermion line

k

insert �v

s

(k)

p

Z

2

, originating from

^

�

 .

For ea
h outgoing fermion line

p

insert �u

r

(p)

p

Z

2

, originating from

^

�

 .

For ea
h outgoing antifermion line

p

insert v

r

(p)

p

Z

2

, originating from

^

 .

4. Impose energy-momentum 
onservation at ea
h vertex by �xing one of the momenta.

5. Integrate over ea
h undetermined loop momentum l

j

:

Z

d

4

l

j

(2�)

4

.

6. Figure out the relative signs of the diagrams, 
aused by inter
hanging fermions.

7. Insert 4�4 matri
es and spinors while going against the arrow on fermion lines.

8. Ea
h fermion loop re
eives a minus sign and involves a tra
e over spinor spa
e.

The following observations 
an be made. First of all, no symmetry fa
tors are needed in

the Yukawa theory sin
e all �elds in the intera
tion are di�erent. Se
ondly, as 
an be seen

from the propagator, the sign (dire
tion) of the momentum matters for fermions. Finally,

ea
h distin
t type of parti
le in the theory will have its own wave-fun
tion renormalization

fa
tor, i.e.

p

Z for the s
alar parti
les and

p

Z

2

for the fermions.
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4.3 How to 
al
ulate squared amplitudes

12d The �nal expressions for amplitudes that involve external fermions typi-


ally feature subexpressions starting with a �u or �v spinor, followed by a 
hain

of 
ontra
ted matri
es in spinor spa
e, and 
losed by a u or v spinor. How

should we 
al
ulate squared amplitudes of that form?

In order to answer this question we sele
t a typi
al term that features in jMj

2

:

�

�u(p)�

1

u(k)

��

�u(p)�

2

u(k)

�

�

;

where the �rst fa
tor originates from M and the se
ond one from M

�

. Here �

1;2

denote

arbitrary 4�4 matri
es in spinor spa
e.

Step 1: expressing things in terms of tra
es in spinor spa
e.

We 
an make use of the identity

�

�u(p)�

2

u(k)

�

�

= �u(k)


0

�

y

2




0

u(p)

to rewrite the expression given above in terms of tra
es in spinor spa
e:

�

�u(p)�

1

u(k)

��

�u(p)�

2

u(k)

�

�

=

X

a;���;d

�

�u

a

(p) �

1

ab

u

b

(k)

��

�u




(k)(


0

�

y

2




0

)


d

u

d

(p)

�

=

X

a;���;d

�

u(p) �u(p)

�

da

�

1

ab

�

u(k) �u(k)

�

b


(


0

�

y

2




0

)


d

= Tr

�

�

u(p)�u(p)

�

�

1

�

u(k)�u(k)

�




0

�

y

2




0

�

:

Looking at the tra
e in the last line, the various 
ombinations of Dira
 spinors o

urring

between square bra
kets are in fa
t 4�4 matri
es in spinor spa
e.

Step 2: employing polarization sums.

� If we are not able to produ
e polarized beams or to measure the polarization of the

�nal-state parti
les, then we have to average over the initial-state polarizations and

to sum over the �nal-state polarizations:

Tr

�

�

u(p)�u(p)

�

�

1

�

u(k)�u(k)

�




0

�

y

2




0

�

!

1

2

Tr

�

�

P

r

u

r

(p)�u

r

(p)

�

�

1

�

P

s

u

s

(k)�u

s

(k)

�




0

�

y

2




0

�

=

1

2

Tr

�

[p=+m

 

℄ �

1

[k=+m

 

℄


0

�

y

2




0

�

;

if we assume that one of the fermions is an initial-state fermion and the other one

a �nal-state fermion. The �nal tra
e 
an be worked out using the tra
e te
hnology

developed in Ex. 16.
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� If we are able to polarize the beams or measure polarization, then we 
an use a similar

tri
k provided that we proje
t the Dira
 spinors on the 
orre
t polarization states:

u

s

(k) ! P u

s

(k) ) �u

s

(k) ! �u

s

(k)


0

P

y




0

� �u

s

(k)

�

P

u

r

(p) ! P

0

u

r

(p) ) �u

r

(p) ! �u

r

(p)


0

P

0y




0

� �u

r

(p)

�

P

0

:

This allows us to perform the spin sums as before, but this time without plugging in

the spin average fa
tor 1=2. The spin proje
tion matri
es P;

�

P and P

0

;

�

P

0

will sele
t

the 
orre
t states! This time we get

Tr

�

P

0

[p=+m

 

℄

�

P

0

�

1

P [k=+m

 

℄

�

P 


0

�

y

2




0

�

:

On
e we know the spin proje
tion matri
es, the resulting tra
es 
an be 
al
ulated.

� If we are interested in polarized 
ross se
tions at high energies, then m

 


an be

negle
ted with respe
t to the energy of the fermions. On top of that it will in

that 
ase make sense to 
onsider heli
ity states as our polarization states of 
hoi
e.

After all, heli
ity eigenstates and 
hirality eigenstates 
oin
ide and are not mixed by

Lorentz transformations if m

 

= 0. In that 
ase the spin proje
tions be
ome

u

s

(k) ! P

R=L

u

s

(k) ; �u

s

(k) ! �u

s

(k)P

L=R

for heli
ity +=� fermions ;

v

s

(k) ! P

R=L

v

s

(k) ; �v

s

(k) ! �v

s

(k)P

L=R

for heli
ity �=+ antifermions ;

where it is used that

�

P

L=R

= P

R=L

. The indi
ated 
hiralities re
e
t the fa
t that

parti
les and antiparti
les have an opposite de�nition for their polarization states.

12d

To summarize: 
al
ulating 
ross se
tions involving fermions simply boils down

to working out a 
olle
tion of tra
es, irrespe
tive of the fa
t whether one is able

to polarize the beams and/or measure �nal-state polarization.

Tra
e te
hnology: the most important tra
e identities have been worked out in Ex. 16.

The relevant part that we need later on is summarized by

Tr(


�

1

� � � 


�

2n+1

) = Tr(odd number of 
-matri
es) = 0 ;

Tr(


�

1

� � � 


�

2n+1




5

) = 0 ;

Tr(I

4

) = 4 ; Tr(


�




�

) = 4g

��

; Tr(


�




�




�




�

) = 4(g

��

g

��

� g

��

g

��

+ g

��

g

��

) ;

Tr(


5

) = Tr(


�




�




5

) = 0 ; Tr(


�




�




�




�




5

) = � 4i�

����

;

with �

����

�

����

= 2Æ

�

�

Æ

�

�

� 2Æ

�

�

Æ

�

�

.
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5 Quantum Ele
trodynami
s (QED)

During the last two le
tures material will be 
overed that is not treated in this form in the

textbook of Peskin & S
hroeder.

13

In this last 
hapter we will have a look at ele
tromagneti
 intera
tions of

matter parti
les. This will be used as motivation for the gauge prin
iple,

whi
h introdu
es the 
on
ept of gauge bosons as fundamental for
e 
arriers.

5.1 Ele
tromagnetism

We start with the derivation of Maxwell's equations in va
uum in 
ovariant form. For an

ele
tromagneti
 �eld in va
uum with 
harge density �




(t; ~x ) � �




(x) 2

IR

and 
urrent

density

~

j




(t; ~x ) �

~

j




(x) 2

IR

3

the Maxwell equations read:

~

5

�

~

B(x) = 0 ;

~

5

�

~

E(x) = �

�

�t

~

B(x) ;

~

5

�

~

E(x) = �




(x) ;

~

5

�

~

B(x) =

�

�t

~

E(x) +

~

j




(x) ;

where

~

E(t; ~x ) �

~

E(x) 2

IR

3

and

~

B(t; ~x ) �

~

B(x) 2

IR

3

are the ele
tri
 and magneti
 �elds.

Next we introdu
e the ele
tromagneti
 4-ve
tor potential

A

�

(x) �

�

�(x) ;

~

A(x)

�

;

su
h that

~

E(x) = �

~

5

�(x) �

�

�t

~

A(x) ;

~

B(x) =

~

5

�

~

A(x) :

In this way the two Maxwell equations on the �rst line are satis�ed automati
ally, sin
e

~

5

�

�

~

5

�

~

A(x)

�

= 0 and

~

5

�

�

~

5

�(x)

�

=

~

0 . The other two Maxwell equations 
an be

rewritten as

�




(x) = �

�

�t

�

~

5

�

~

A(x)

�

�

~

5

�

�

~

5

�(x)

�

=

�

�

2

�t

2

�

~

5

2

�

�(x) �

�

�t

�

~

5

�

~

A(x) +

�

�t

�(x)

�

and

~

j




(x) =

~

5

�

�

~

5

�

~

A(x)

�

+

�

2

�t

2

~

A(x) +

�

�t

~

5

�(x)

=

�

�

2

�t

2

�

~

5

2

�

~

A(x) +

~

5

�

~

5

�

~

A(x) +

�

�t

�(x)

�

;
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using the identity

~

5

�

�

~

5

�

~

A(x)

�

general

======

~

5

�

~

5

�

~

A(x)

�

�

~

5

2

~

A(x) :

De�ning the ele
tromagneti
 4-
urrent density

j

�




(x) �

�

�




(x) ;

~

j




(x)

�

Maxwell's equations 
an be 
ast in the form of the 
ovariant ele
tromagneti
 wave equation

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

= j

�




(x) :

Gauge freedom: the ve
tor potential A

�

(x) is not �xed 
ompletely by its relation to

the ele
tri
 and magneti
 �elds. For an arbitrary, suÆ
iently di�erentiable s
alar fun
tion

�(x) that vanishes suÆ
iently qui
kly as j~x j ! 1, the transformed ve
tor potential

A

�

(x) ! A

0 �

(x) = A

�

(x) + �

�

�(x)

gives rise to the same ele
tri
 and magneti
 �elds and therefore des
ribes the same physi
s.

13a The asso
iated freedom to 
hoose the ve
tor potential is 
alled the gauge freedom.

Sin
e the 
urrent density j

�




(x) is a physi
al observable, the �eld-derivative 
ombination

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

should be gauge invariant, i.e. independent of the 
hoi
e of gauge.

Proof: introdu
e the ele
tromagneti
 �eld tensor (see Ex. 2)

F

��

(x) = �

�

A

�

(x)� �

�

A

�

(x) = �F

��

(x) =

0

B

B

B

B

B

�

0 �E

1

(x) �E

2

(x) �E

3

(x)

E

1

(x) 0 �B

3

(x) B

2

(x)

E

2

(x) B

3

(x) 0 �B

1

(x)

E

3

(x) �B

2

(x) B

1

(x) 0

1

C

C

C

C

C

A

;

then the ele
tromagneti
 wave equation 
an be rewritten as

j

�




(x) = �

�

�

�

A

�

(x)� �

�

�

�

A

�

(x) = �

�

�

�

�

A

�

(x)� �

�

A

�

(x)

�

= �

�

F

��

(x) :

Sin
e the ele
tromagneti
 �eld tensor is gauge invariant, i.e.

F

0��

(x) = �

�

A

0 �

(x)��

�

A

0 �

(x) = �

�

�

A

�

(x)+�

�

�(x)

�

��

�

�

A

�

(x)+�

�

�(x)

�

= F

��

(x) ;

the same holds for �

�

F

��

(x) = j

�




(x).

Lo
al 
harge 
onservation: from the ele
tromagneti
 wave equation one 
an derive that

�

�

j

�




(x) = �

�

�

�

F

��

(x) = 0 ;

sin
e F

��

(x) = �F

��

(x). Hen
e,

13a the 
urrent density j

�




(x) is a 
onserved 
urrent and the ele
tri
 
harge

R

V

d~x j

0




(x) =

R

V

d~x �




(x) is 
onserved lo
ally.
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Ele
tromagneti
 Lagrangian: the Lagrangian density belonging to the ele
tromagneti


wave equation is given by

L

e.m.

(x) = �

1

4

F

��

(x)F

��

(x) � j

�




(x)A

�

(x) :

Proof: �rst we 
onsider

�L

e.m.

�(�

�

A

�

)

= �

1

4

�

�

�(�

�

A

�

)

F

��

�

F

��

�

1

4

F

��

�

�

�(�

�

A

�

)

F

��

�

Ex.2

==== �

1

4

(g

�

�

g

�

�

� g

�

�

g

�

�

)F

��

�

1

4

F

��

(g

��

g

��

� g

��

g

��

) = �F

��

:

As a result, the Euler-Lagrange equation for the �eld A

�

(x) indeed reads

� �

�

F

��

(x) + j

�




(x) = 0 ) �

�

F

��

(x) = j

�




(x) :

5.2 QED and the gauge prin
iple

For Dira
 fermions (matter parti
les) with 
harge q the ele
tromagneti
 
urrent density

is given by j

�


 ;Dira


(x) = q

�

 (x)


�

 (x), sin
e

� this 
urrent is indeed 
onserved (
f. page 97);

� after normal ordering the 0

th


omponent 
an indeed be identi�ed with the total


harge density (
f. page 105):

Z

d~x N

�

^

j

0


 ;Dira


(x)

�

= q

Z

d~p

(2�)

3

2

X

s=1

(â

s y

~p

â

s

~p

�

^

b

s y

~p

^

b

s

~p

) ;


ounting parti
les with 
harge q and antiparti
les with 
harge �q .

Minimal substitution and QED: the Lagrangian density of Dira
 fermions with 
harge

q in an ele
tromagneti
 �eld is obtained by applying the

13b minimal substitution pres
ription p

�

! p

�

�qA

�

QM

===) i�

�

! i�

�

�qA

�

to the Lagrangian density L

Dira


(x) of the free Dira
 theory and by subsequently adding

the kineti
 pure ele
tromagneti
 term L

Maxwell

(x) = �

1

4

F

��

(x)F

��

(x).

13b This results in the Lagrangian density for Quantum Ele
trodynami
s (QED):

L

QED

(x) =

�

 (x)(i�=�m) (x) �

1

4

F

��

(x)F

��

(x) � q

�

 (x)


�

 (x)A

�

(x) ;


ontaining the aforementioned intera
tion term

L

int

(x) = � q

�

 (x)


�

 (x)A

�

(x) = � j

�


;Dira


(x)A

�

(x) :
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As in the 
ase of the Yukawa intera
tions, also the lo
al ele
tromagneti
 intera
tions be-

tween the matter parti
les are mediated by for
e 
arriers. This was to be expe
ted, bearing

in mind that 
harged obje
ts are observed to intera
t while being at non-zero dis
tan
e!

Sin
e [ ℄ = [

�

 ℄ = 3=2 and [A

�

℄ = 1, the ele
tri
 
harge q 2

IR

is a dimensionless 
oupling


onstant. We will see later that this dimensionless 
oupling 
onstant indeed implies that

QED is a renormalizable theory.

QED from a symmetry prin
iple: lo
al gauge invarian
e (gauge prin
iple).

Alternatively we 
ould start from the free Dira
 Lagrangian

L

Dira


(x) = i

�

 (x)


�

�

�

 (x) � m

�

 (x) (x) ;

whi
h is invariant under the global gauge transformation (abelian U(1) transformation)

 (x)!  

0

(x) = e

i�

 (x) ;

�

 (x)!

�

 

0

(x) = e

� i�

�

 (x) (� 2

IR

independent of x

�

) :

A

ording to Noether's theorem this global gauge symmetry 
an be asso
iated with a


onserved 
urrent and 
harge. In non-relativisti
 quantum me
hani
s this global gauge

invarian
e of a free-fermion system simply underlines the unobservability of the absolute

phase of a wave fun
tion: only relative phases are observable through interferen
e.

13


The gauge prin
iple: in the 
ontext of relativisti
 gauge theories, whi
h should

be lo
al, it is now postulated that this gauge invarian
e should also hold lo
ally.

Consider to this end the lo
al gauge transformation

 (x)!  

0

(x) = e

i�(x)

 (x) ;

�

 (x)!

�

 

0

(x) = e

� i�(x)

�

 (x) (�(x) a real s
alar �eld) :

The requirement of lo
al gauge invarian
e

5

has profound 
onsequen
es, sin
e the kineti


term transforms as

i

�

 (x)


�

�

�

 (x) ! i

�

 (x)e

� i�(x)




�

�

�

�

e

i�(x)

 (x)

�

= i

�

 (x)


�

�

�

 (x)�

�

 (x)


�

 (x)

�

�

�

�(x)

�

and therefore is not invariant under lo
al gauge transformations. The last term, whi
h

involves the 
ovariant ve
tor �eld �

�

�(x), expli
itly spoils the invarian
e. So, we need

to repla
e the ordinary derivative �

�

by a gauge 
ovariant derivative (or short: 
ovariant

derivative) D

�

su
h that

D

�

 (x) ! D

0

�

 

0

(x) = e

i�(x)

D

�

 (x) ;


ausing D

�

 (x) and  (x) to transform similarly under lo
al gauge transformations! This


an be a
hieved by

D

�

� �

�

+ igA

�

(x) ; with A

�

(x) ! A

0

�

(x) = A

�

(x)�

1

g

�

�

�(x) ;

5

See the ba
helor thesis of Pim van Oirs
hot for more details and extra motivation
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where g is a gauge 
oupling and A

�

(x) a gauge �eld. In view of the Lorentz transforma-

tion property of �

�

�(x), this gauge �eld should be a 
ovariant ve
tor �eld. Its transfor-

mation property resembles a gauge transformation for the ele
tromagneti
 ve
tor potential

with �(x) = ��(x)=g. This observed gauge-freedom redundan
y in the ele
tromagneti


des
ription is exploited here to reveal the more profound lo
al gauge invarian
e of QED!

Proof:

D

0

�

 

0

(x) =

�

�

�

+ ig

�

A

�

(x)�

1

g

�

�

�(x)

�

�

e

i�(x)

 (x)

= e

i�(x)

�

�

�

 (x) + i (x)�

�

�(x) + igA

�

(x) (x)� i (x)�

�

�(x)

�

= e

i�(x)

D

�

 (x) :

This means that the Lagrangian

i

�

 (x)


�

D

�

 (x) � m

�

 (x) (x) = i

�

 (x)


�

�

�

 (x) � m

�

 (x) (x) � g

�

 (x)


�

 (x)A

�

(x)

is lo
ally gauge invariant. It 
ontains the gauge intera
tion

L

int

(x) = � g

�

 (x)


�

 (x)A

�

(x) ;

whi
h involves a gauge �eld that is 
oupled to a 
onserved 
urrent. Finally we 
an add

the gauge-invariant kineti
 term L

Maxwell

(x) = �

1

4

F

��

(x)F

��

(x) for a free gauge �eld,

where the �eld tensor F

��

(x) is de�ned as

igF

��

(x) �

�

D

�

; D

�

�

=

�

�

�

+ igA

�

(x)

��

�

�

+ igA

�

(x)

�

�

�

�

�

+ igA

�

(x)

��

�

�

+ igA

�

(x)

�

= ig

�

�

�

A

�

(x)� �

�

A

�

(x)

�

:

In 
on
lusion, for g = jej we �nd the same Lagrangian L

QED

as obtained by minimal

substitution for a parti
le with 
harge +jej. For a general 
harge q = Qjej one has to

modify the gauge transformation a

ording to e

i�(x)

! e

iQ�(x)

and the 
ovariant deriva-

tive a

ording to D

�

! �

�

+ iQjejA

�

(x) = �

�

+ iqA

�

(x). Su
h a res
aling leaves the

transformation property of the gauge �eld una�e
ted, but 
hanges the intera
tion strength

from jej to q .

Massless gauge �elds: a massive gauge �eld would 
orrespond to an extra mass term

+

1

2

M

2

A

A

�

(x)A

�

(x) in the Lagrangian, whi
h is obviously not gauge invariant. A theory

that is manifestly invariant under lo
al gauge transformations requires the gauge bosons

des
ribed by A

�

(x) to be massless, i.e. M

A

= 0. So, in order to give mass to gauge

bosons an additional me
hanism is required in the 
ontext of gauge theories.

13
 Going beyond QED: motivated by the su

ess of des
ribing QED through

the gauge prin
iple, this postulate will later on be extended to other types of
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gauge transformations in order to des
ribe other fundamental intera
tions in

nature, i.e. the strong and weak intera
tions. The asso
iated extended gauge

intera
tions will des
ribe the fundamental intera
tions between matter fermions

as being mediated by gauge bosons, just like we have just worked out for the ele
-

tromagneti
 intera
tions that are mediated by photons. In order to �nd the right

group stru
ture for the extended gauge transformations, we will be guided by ex-

perimental observations of parti
le intera
tions and 
harge 
onservation laws!

5.2.1 Quantization of the free ele
tromagneti
 theory

The gauge freedom of the ele
tromagneti
 ve
tor potential 
ompli
ates the usual

quantization pro
edure. The reason for this lies in the following observations.

The ele
tromagneti
 gauge freedom revisited:

� The gauge freedom for non-
onstant �(x) re
e
ts the redundan
y in our des
ription

of ele
tromagnetism: the gauge-transformed �elds des
ribe the same physi
s and

are therefore to be identi�ed. This 
an be tra
ed ba
k to the ele
tromagneti
 wave

equation

�A

�

(x)� �

�

�

�

�

A

�

(x)

�

= (g

�

�

�� �

�

�

�

)A

�

(x) = j

�




(x) ;

where the di�erential operator (g

�

�

� � �

�

�

�

) is not invertible in the Green's fun
-

tion sense as (g

�

�

� � �

�

�

�

)�

�

�(x) = 0 for arbitrary �(x). Given an initial �eld


on�guration A

�

(t

0

; ~x ) we 
annot unambiguously determine A

�

(t; ~x ), sin
e A

�

(x)

and A

�

(x) + �

�

�(x) are not distinguishable.

13a Hen
e, A

�

(x) is a
tually not a physi
al obje
t as it 
ontains redundant

information! All �elds that are linked by a gauge transformation form an

equivalen
e 
lass and are therefore to be identi�ed: the physi
s is uniquely

des
ribed by sele
ting a representative of ea
h equivalen
e 
lass. Di�erent


on�gurations of these representatives are 
alled di�erent gauges. By �xing

the gauge the redundan
y is removed and an unambiguous ele
tromagneti


evolution is obtained. We 
an 
hoose freely here, but some 
hoi
es will

prove more handy for 
ertain problems than others.

� By 
hoosing an appropriate �(x) it is possible to 
ast A

�

(x) in su
h a form that

the Coulomb 
ondition

~

5

�

~

A

trans

(x) = A

trans

0

(x) = 0 is satis�ed. In this form we

see immediately that A

trans

�

(x) has in fa
t only two physi
al (transverse) degrees of

freedom! These are the degrees of freedom that should be quantized in the 
orre-

sponding quantum �eld theory . . . however, the Coulomb 
ondition is not Lorentz

invariant and therefore leads to Feynman rules that are rather unpleasant.
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� Lorentz invarian
e is manifest, resulting in simple Feynman rules, if we 
hoose �(x)

su
h that the Lorenz 
ondition � � A(x) = 0 is satis�ed. In this form we do not

see straightaway that A

�

(x) has two physi
al degrees of freedom. One would ex-

pe
t three physi
al degrees of freedom in view of the Lorenz 
ondition � �A(x) = 0,

but there is still more gauge freedom left as a result of the gauge transformation

A

�

(x)! A

0

�

(x) = A

�

(x) + �

�

�

0

(x) with ��

0

(x) = 0.

Quantized free ele
tromagneti
 �eld: the quantized ele
tromagneti
 theory should

reprodu
e the 
lassi
al Maxwell theory in the 
lassi
al limit. Due to the 
orresponden
e

prin
iple this implies that the above-given gauge-�xing 
onditions are to be implemented

as expe
tation values for physi
al (asymptoti
) Fo
k states j i. As a dire
t 
onsequen
e

of implementing the Lorenz 
ondition h j� �

^

A(x)j i = 0, all relevant 
omponents of the

ele
tromagneti
 potential satisfy the massless KG equation �A

�

(x) = 0. In the Coulomb

gauge we 
an therefore quantize as in the massless s
alar 
ase:

^

A

trans

�

(x)

^

A

y

�

(x)=

^

A

�

(x)

==========

Z

d~p

(2�)

3

1

p

2E

~p

2

X

r=1

�

â

r

~p

�

r

�

(p)e

�ip�x

+ â

ry

~p

�

r�

�

(p)e

ip�x

�

�

�

�

p

0

=E

~p

= j~p j

;

in terms of the two physi
al transverse polarization ve
tors

�

1

0

(p) = �

2

0

(p) = 0 ; ~�

1

(p) � ~p = ~�

2

(p) � ~p = 0

with normalization 
ondition �

r

(p) � �

r

0

�

(p) = � Æ

rr

0

. The 
reation and annihilation opera-

tors â

ry

~p

and â

r

~p

of the

13d massless ele
tromagneti
 spin-1 energy quanta (photons = antiphotons)

satisfy the bosoni
 quantization 
onditions

�

â

r

~p

; â

r

0

y

~p

0

�

= (2�)

3

Æ

rr

0

Æ(~p� ~p

0

)

^

1 and

�

â

r

~p

; â

r

0

~p

0

�

=

�

â

r y

~p

; â

r

0

y

~p

0

�

= 0 :

If we repla
e the Coulomb 
ondition by the Lorenz 
ondition, the two versions of the

ele
tromagneti
 �eld are linked by the identity h j

^

A

�

(x)j i = h j

^

A

trans

�

(x)j i + �

�

�(x) ,

with ��(x) = 0. This identity re
e
ts the remaining gauge arbitrariness of the 
lassi
al

ele
tromagneti
 �eld h j

^

A

�

(x)j i in the Lorenz gauge.

Feynman propagator and polarization sum: for performing Feynman-diagram 
al-


ulations we need one more ingredient, the photon propagator. The amplitude for the

propagation of photons from y to x reads

h0j

^

A

trans

�

(x)

^

A

trans

�

(y)j0i =

Z

d~p d~p

0

(2�)

6

e

�ip�x+ip

0

�y

2

p

E

~p

E

~p

0

2

X

r;r

0

=1

�

r

�

(p)�

r

0

�

�

(p

0

)h0jâ

r

~p

â

r

0

y

~p

0

j0i

�

�

�

�

p

0

= j~p j ; p

0

0

= j~p

0

j

=

Z

d~p

(2�)

3

e

�ip�(x�y)

2E

~p

2

X

r=1

�

r

�

(p)�

r�

�

(p)

�

�

�

�

p

0

= j~p j

:
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This expression for the propagation amplitude is rather awkward, sin
e it involves the

so-
alled polarization sum for external (physi
al) photons:

2

X

r=1

�

r

�

(p)�

r�

�

(p) = � g

��

�

p

�

p

�

(n � p)

2

+

p

�

n

�

+ n

�

p

�

n � p

;

expressed in terms of the temporal unit ve
tor n

�

� (1;

~

0 ). Su
h a 
ompli
ated expression

is unavoidable for external photons and for the propagator in the Coulomb gauge, but we


an exploit the gauge freedom in the Lorenz gauge to remove all terms / p

�

; p

�

(see § 5.5).

In this so-
alled 't Hooft-Feynman gauge the photon propagator redu
es to

h0jT

�

^

A

�

(x)

^

A

�

(y)

�

j0i =

Z

d

4

p

(2�)

4

�ig

��

p

2

+ i�

e

�ip�(x�y)

= � g

��

D

F

(x� y;m

2

= 0) :

14a The propagator for internal (virtual) photons has be
ome extremely simple

and manifestly Lorentz 
ovariant in the 't Hooft-Feynman gauge!

5.3 Feynman rules for QED (§ 4.8 in the book)

In order to obtain the full set of momentum-spa
e Feynman rules for QED we simply have

to supplement the Feynman rules for fermions, whi
h were given in the 
ontext of the

Yukawa theory, by the following four photoni
 Feynman rules:

1. For ea
h photon propagator

q

�

�

insert

�ig

��

q

2

+ i�

.

2. For ea
h QED vertex

�

insert �iq


�

.

3. For ea
h in
oming photon line

�

p

=

^

A

�

(x)j~p ; ri

0

insert �

r

�

(p)

p

Z

3

(r=1; 2).

For ea
h outgoing photon line

�

p

=

0

h~p; rj

^

A

�

(x) insert �

r�

�

(p)

p

Z

3

(r=1; 2).

The following remarks are in order. First of all, the polarization ve
tors featuring in

the last two Feynman rules are transverse (physi
al) ones and

p

Z

3

is the wave-fun
tion

renormalization fa
tor for photons. Se
ondly, the sign (dire
tion) of the momentum in the

photon propagator does not matter, like in the s
alar 
ase. Finally, the 
-matrix o

urring

in the QED vertex is a 4�4 matrix in spinor spa
e that will be 
ontra
ted with other 4�4

matri
es and/or spinors, with the Dira
 indi
es 
ontra
ted as usual along the fermion line

against the arrow.

14a Remark: sin
e h j

^

A

�

(x)j i = h j

^

A

trans

�

(x)j i+�

�

�(x) with ��(x) = 0,

we 
an always add to �

r

�

(p) a term / p

�

with p

2

= 0 without 
hanging the

physi
s out
ome (see § 5.5).
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5.4 Full fermion propagator (§ 7.1 in the book)

To all orders in perturbation theory the full fermion propagator in QED is given by the

Dyson series

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

�

 (0)

�

j
i �

p p

=

p

+

1PI

p p

+

1PI 1PI

p p p

+ � � � ;

where

1PI

� � i�(p=) = + + + + � � �

is the 
olle
tion of all 1-parti
le irredu
ible fermion self-energy diagrams. This Dyson series


an again be summed up as a geometri
 series:

Z

d

4

x e

ip�x

h
jT

�

^

 (x)

^

�

 (0)

�

j
i =

p p

=

i(p= +m)

p

2

�m

2

+ i�

+

i(p= +m)

p

2

�m

2

+ i�

�

� i�(p=)

�

i(p= +m)

p

2

�m

2

+ i�

+ � � �

=

i

p=�m� �(p=)

� S(p) ;

using that �(p=) = �

S

(p

2

)m+ �

V

(p

2

) p= 
ommutes with p= and the mass parameter m in

the Lagrangian. The full propagator has a simple pole lo
ated at the physi
al mass m

ph

,

whi
h is shifted away from m by the fermion self-energy:

h

p=�m� �(p=)

i

�

�

�

�

p==m

ph

= 0 ) m

ph

�m� �(p= = m

ph

) = 0 :

Close to this pole the denominator of the full propagator 
an be expanded a

ording to

p=�m� �(p=) � (p=�m

ph

)

�

1� �

0

(p= = m

ph

)

�

+ O

�

[p=�m

ph

℄

2

�

for p= � m

ph

;

where �

0

(p=) stands for the derivative of the fermion self-energy with respe
t to p=. Just like

in the K�all�en{Lehmann spe
tral representation, the full propagator has a single-parti
le

pole of the form iZ

2

(p=+m

ph

)=(p

2

�m

2

ph

+ i�) with Z

2

= 1=

�

1��

0

(p= = m

ph

)

�

(see p.115).

The fermion self-energy: in order to �nd out whether the fermion self-energy is more

diÆ
ult to 
al
ulate we 
onsider the 1-loop 
ontribution in QED. Indi
ating the photon
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mass by � we then obtain

p p

`

1

p� `

1

= � i�

2

(p=) = (�iq)

2

Z

d

4

`

1

(2�)

4




�

i(=̀

1

+m)

`

2

1

�m

2

+ i�




�

�ig

��

(p�`

1

)

2

� �

2

+ i�

�

�

�

�

�#0

= � q

2

Z

d

4

`

1

(2�)

4

4m� 2=̀

1

�

`

2

1

�m

2

+ i�

��

(p�`

1

)

2

� �

2

+ i�

�

p. 70 , `

1

= `+�

2

p

============== � q

2

Z

1

0

d�

2

Z

d

4

`

(2�)

4

4m� 2=̀� 2�

2

p=

(`

2

��+ i�)

2

= � q

2

Z

1

0

d�

2

(4m� 2�

2

p=)

Z

d

4

`

(2�)

4

1

(`

2

��+ i�)

2

;

with

� = �

2

�

2

+ (1� �

2

)m

2

� �

2

(1� �

2

)p

2

just like in the s
alar 
ase. In the se
ond line of this expression we have used that




�

(=̀

1

+m)


�

= (m� =̀

1

)


�




�

+ 2=̀

1

= 4m� 2=̀

1

:

The threshold for the 
reation of a fermion{photon 2-parti
le state is here situated at

p

2

= (m + �)

2

, whi
h approa
hes m

2

in the limit �#0 for massless photons. The rest of

the 
al
ulation, in
luding the regularization of the UV divergen
e, goes like in the s
alar


ase worked out in § 2.9.2. Note that the fermion mass re
eives a UV-divergent shift

�

2

(p= = m

ph

) / m

ph

log(�

2

=m

2

ph

).

14b Fermion masses are naturally prote
ted against high-s
ale quantum 
orre
-

tions: if there would be no 
oupling between left- and right-handed Dira
 �elds

in the Dira
 Lagrangian (i.e. m = 0), then no su
h 
oupling 
an be indu
ed by

the perturbative ve
tor-
urrent QED 
orre
tions! Fermion masses are prote
ted

by the invarian
e under 
hiral transformations of the massless theory.

5.5 The Ward {Takahashi identity in QED (§ 7.4 in the book)

14
 Question: how does the gauge invarian
e of QED manifest itself in Green's

fun
tions and s
attering amplitudes?

In order to answer this question, we 
onsider a QED diagram to whi
h we want to atta
h

an additional on/o�-shell photon with momentum k . Upon 
ontra
tion of this photon line

with the 
orresponding momentum k a spe
ial identity 
an be derived that is related to

the U(1) gauge symmetry. After all, lo
al U(1) gauge invarian
e 
auses the photon �eld
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to 
ouple to a 
onserved 
urrent resulting from 
harged matter. By repla
ing the photon

�eld by its momentum we perform the e�e
tive momentum-spa
e repla
ement A

�

! �

�

,

whi
h should produ
e a vanishing result when applied to a full-
edged 
onserved 
urrent.

Step 1: how 
an the photon be atta
hed to an arbitrary diagram involving (anti)fermions

and photons?

� The photon 
annot be atta
hed to a photon, sin
e it has 
harge 0.

� The photon 
an be atta
hed to a fermion line that 
onne
ts two external points or

to a fermion loop.

Step 2: 
onsider an arbitrary fermion line with j photons atta
hed to it and all photon

momenta de�ned to be in
oming. Graphi
ally this 
an be represented by

`

j

k

j

�

j

`

j�1

k

j�1

�

j�1

`

j�2

`

2

k

2

�

2

`

1

k

1

�

1

`

0

where `

i

= `

0

+

i

P

n=1

k

n

. This line 
an either 
ow between external points or 
lose into a

loop (whi
h means that l

0

= l

j

) and the photons 
an either be on-shell or virtual. There

will be j +1 pla
es to insert the extra photon with momentum k , for example between

photons i and i+1:

k

�

�

`

i

+k

k

�

`

i

�

i

`

i�1

= � � �

h

i

=̀

i

+ k=�m

�

�iqk=

�

i

=̀

i

�m

�

�iq


�

i

�

i

=̀

i�1

�m

i

� � �

= � � �

h

q

�

i

=̀

i

�m

�

i

=̀

i

+ k=�m

�

�

�iq


�

i

�

i

=̀

i�1

�m

i

� � � ;

where we have used that k= = =̀

i

+ k= �m � (=̀

i

�m) in the last step. Insertion between

photons i�1 and i gives in a similar way:

� � �

h

i

=̀

i

+ k=�m

�

�iq


�

i

�

q

�

i

=̀

i�1

�m

�

i

=̀

i�1

+ k=�m

� i

� � � :
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Note that the se
ond term of the i

th

insertion 
an
els the �rst term of the (i�1)

th

insertion.

Finally we have to sum over all possible insertions along the fermion line. This 
auses all

terms to 
an
el pairwise ex
ept for two unpaired terms at the very end of the 
hain:

j

X

i=0

k

�

�

`

j

+k `

i

+k

k

�

`

i

`

0

= q �

`

j

k

j

`

j�1

k

j�1

k

2

`

1

k

1

`

0

� q �

`

j

+k

k

j

`

j�1

+k

k

j�1

k

2

`

1

+k

k

1

`

0

+k

As soon as all 
harge is a

ounted for, the fermion line represents a 
onserved 
urrent

and the right-hand-side of the above identity should vanish! This happens in two distin
t


ases.

Case 1: if the fermion line is part of an on-shell matrix element and 
onne
ts two of

the external (asymptoti
) fermion states, then the 
orresponding amputation pro
edure

removes both terms on the right-hand-side. This is 
aused by the fa
t that one of the

endpoints gives rise to a shifted 1-parti
le pole, i.e. 1=(`

2

j

�m

2

) instead of 1=[(`

j

+k)

2

�m

2

℄

or 1=[(`

0

+ k)

2

�m

2

℄ instead of 1=(`

2

0

�m

2

).

Case 2: if the fermion line 
loses in itself to form a loop (i.e. `

0

= `

j

+ k), then the two

terms on the right-hand-side give rise to the integrals

� q

j+1

Z

d

4

`

0

(2�)

4

�

Tr

�

1

=̀

0

�m




�

j

1

=̀

j�1

�m




�

j�1

� � �

1

=̀

1

�m




�

1

�

� Tr

�

1

=̀

0

+ k=�m




�

j

1

=̀

j�1

+ k=�m




�

j�1

� � �

1

=̀

1

+ k=�m




�

1

�

�

= 0 ;

if we are allowed to 
hange the integration variable from `

0

to `

0

+ k in the �rst term!
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Diagrammati
ally this 
an be summarized by the following two Ward {Takahashi identi-

ties for on-shell amplitudes and fermion loops:

k

�

�

�

k

= 0 and

k

�

�

�

k

= 0 :

More general identity: the Ward {Takahashi identity for Green's fun
tions reads

k

�

�

q

1

q

n

p

1

p

n

�

k

= q

n

X

i=1

q

1

q

n

q

i

�k

p

1

p

n

� q

n

X

i=1

q

1

q

n

p

1

p

n

p

i

+k

where the blobs represent all possible diagrams and photon insertions. In formula language

this 
an be written 
ompa
tly as

k

�

G

�

(k; p

1

; � � � ; p

n

; q

1

; � � � ; q

n

) = q

X

i

�

G(p

1

; � � � ; p

n

; q

1

; � � � ; q

i�1

; q

i

� k; q

i+1

; � � � ; q

n

)

� G(p

1

; � � � ; p

i�1

; p

i

+ k; p

i+1

; � � � ; p

n

; q

1

; � � � ; q

n

)

�

:

14
 This is the diagrammati
 identity that imposes the U(1) gauge symmetry

and asso
iated ele
tri
 
harge 
onservation on quantum me
hani
al amplitudes!

Example of a Ward{Takahashi identity:

k

�

�

�

k

p

p+k

amp

= k

�

�

�

k

p

p+k

= S(p+ k)

�

�iq k

�

�

�

(p+ k; p)

�

S(p)

Ward{Takahashi

=========== q S(p)� q S(p+ k)

) �ik

�

�

�

(p+ k; p) = S

�1

(p+ k)� S

�1

(p) = �i

�

k=+ �(p=)� �(p= + k=)

�

:

Here S(p) is the full fermion propagator, �(p=) the 
orresponding 1-parti
le irredu
ible

self-energy and �iq �

�

(p + k; p) the sum of all amputated 3-point diagrams 
ontributing

to the QED vertex. Hen
e, �

�

(p + k; p) is given by 


�

at lowest order in perturbation

theory, whi
h is indeed in agreement with the Ward{Takahashi identity.
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5.6 The photon propagator (§ 7.5 in the book)

The Ward {Takahashi identity has important impli
ations for the properties of

the photon propagator.

Transversality: the 1-parti
le irredu
ible photon self-energy

i�

��

(k) �

�

k

1PI

�

k

satis�es the Ward {Takahashi identity (transversality 
ondition)

k

�

�

��

(k) = 0 :

In view of Lorentz 
ovarian
e �

��

(k) 
an be de
omposed into only two possible terms, a

term / g

��

and a term / k

�

k

�

. Therefore the Ward{Takahashi identity translates into

the 
ondition

�

��

(k) = (k

2

g

��

� k

�

k

�

)�(k

2

) ;

with �(k

2

) regular at k

2

= 0 sin
e a pole at k

2

= 0 would imply the existen
e of a single-

massless-parti
le intermediate state. As a result, the full photon propagator is of the form

�

k

�

k

= +

1PI

+

1PI 1PI

+ � � �

=

�ig

��

k

2

+ i�

+

�ig

��

k

2

+ i�

�

i(k

2

g

��

� k

�

k

�

)�(k

2

)

�

�ig

��

k

2

+ i�

+ � � �

= �

i

k

2

+ i�

(g

��

� k

�

k

�

=k

2

)

�

1 + �(k

2

) + � � �

�

�

i

k

2

+ i�

k

�

k

�

k

2

=

�i(g

��

� k

�

k

�

=k

2

)

(k

2

+ i�)

�

1� �(k

2

)

�

�

i

k

2

+ i�

�

k

�

k

�

k

2

�

:

Mass of the photon: 
onsider an arbitrary internal photon line

�

k

�

k

q = Q jej q

0

= Q

0

jej

on-shell on-shell

The k

�

and k

�

terms in the full propagator yield a vanishing 
ontribution due to the

Ward {Takahashi identity for on-shell amplitudes. Hen
e,

�

k

�

k

e�e
tively

����������!

�ig

��

(k

2

+ i�)

�

1� �(k

2

)

�

;
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whi
h has a pole at k

2

= 0 with residue Z

3

�

�

1 � �(0)

�

�1

. As a result of the Ward {

Takahashi identity, whi
h in turn is a 
onsequen
e of the gauge symmetry, m

photon

= 0 to

all orders in perturbation theory:

14b + 14


the lo
al U(1) gauge symmetry prote
ts the photon from be
oming

massive through quantum 
orre
tions.

Observable 
harge: 
onsider the same amplitude as before for

� low jk

2

j ) e ! e

p

Z

3

, whi
h is the �nite physi
ally observable 
harge obtained

from the singular quantities e and Z

3

;

� high jk

2

j )

�ig

��

e

2

k

2

!

�ig

��

e

2

k

2

�

1� �(k

2

)

�

=

�ig

��

Z

3

e

2

k

2

�

1� Z

3

�

�(k

2

)� �(0)

�

�

)

e

2

4�

= � ! �(k

2

) =

Z

3

�

1� Z

3

�

�(k

2

)� �(0)

�

;

where the fa
tor Z

3

in front of

�

�(k

2

)��(0)

�

turns e

2

inside the photon self-energy

into the �nite 
ombination Z

3

e

2

.

14d

The ele
tromagneti
 �ne stru
ture 
onstant be
omes a running 
oupling,

i.e. a 
oupling that 
hanges with invariant mass. In fa
t it be
omes larger

with in
reasing invariant mass, 
ausing the ex
hanged (virtual) photon to

propagate more easily through spa
etime.

The physi
al pi
ture behind this is that virtual fermion-antifermion pairs that are


reated from the va
uum partially s
reen the 
harges of the intera
ting parti
les

(va
uum polarization), resulting in a lower e�e
tive 
harge. For larger jk

2

j more of

the polarization 
loud is penetrated and hen
e more of the a
tual 
harge 
an be felt.

All 
ouplings in the Standard Model of ele
-

troweak intera
tions are in fa
t running 
ou-

plings. As 
an be seen in the plot, the be-

haviour of the hyper
harge 
oupling, indi
ated

by U(1), resembles the one for QED. How-

ever, due to bosoni
 loop e�e
ts the 
ouplings

of the weak intera
tions, indi
ated by SU(2),

and strong intera
tions, indi
ated by SU(3),

a
tually be
ome weaker for in
reasing invari-

ant mass.
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UV divergen
es: at 1-loop order the photon self-energy in QED is given by
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E
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E

g

��

(� + `

2

E

=2) + (k

2

g

��

� k

�

k

�

)2�

2

(1��

2

)

(`

2

E
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where � = m

2

� �

2

(1� �

2

)k

2

. The resulting integral is 
learly divergent.

Transversality lost: if we were to regularize (quantify) the UV divergen
e in the usual

way by means of a 
uto� �, then �

��

2

(k) would 
ontain a leading singularity that is pro-

portional to g

��

R

�

2

0

d`

2

E

= �

2

g

��

. This has disastrous 
onsequen
es, sin
e it violates the

transversality requirement and gives the photon an in�nite mass. After all, a �

2

g

��

term

in �

��

(k) gives rise to a �

2

=k

2


ontribution to �(k

2

) and therefore shifts the pole of

k

2

�

1� �(k

2

)

�

away from k

2

= 0.

Question: what has happened here?

In fa
t the fermion-loop Ward {Takahashi identity on p. 131 has been invalidated, sin
e we

are a
tually not allowed to shift the integration variable without 
onsequen
es when using

the 
uto� method.

14e We need another regularization s
heme that preserves the fundamental U(1)

symmetry, otherwise the results 
annot be trusted. Dimensional regularization

('t Hooft {Veltman, 1972): 
ompute Feynman diagrams as analyti
 fun
tions of

the dimensionality of spa
etime. Use to this end an n-dimensional Minkowski

spa
e 
onsisting of one time dimension and n�1 spatial dimensions.

� For suÆ
iently small n any loop integral will 
onverge in the UV domain

and the fermion-loop Ward {Takahashi identity is retained for all su
h n.
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� The �nal expressions for observables are then obtained as n! 4 limits.

Examples of integrals 
al
ulated with dimensional regularization (DREG):
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Here we have used the integral identity

1
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�1

=

�(b)�(
)

�(b + 
)

in terms of the gamma fun
tion �(z), whi
h satis�es

�(1=2) =

p

� ; �(1) = 1 and �(z + 1) = z�(z) :

This time �(2�n=2) represents the UV singularities, sin
e the gamma fun
tion �(z) has

poles at z = 0;�1;�2; � � � and therefore �(2�n=2) has poles at n = 4; 6; 8; � � � :

�(2�n=2)
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= 0:5772 = Euler's 
onstant :

In a similar way one �nds
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Transversality restored: returning to the integrand on page 134, we see that the non-

transverse term indeed vanishes:
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integrals

����! 0 ;

as required by gauge symmetry. So, dimensional regularization is a viable way of dealing

with UV divergen
es in the 
ontext of gauge symmetries. This regularization method was

used su

essfully by 't Hooft and Veltman to prove the renormalizability of the Standard

Model of ele
troweak intera
tions, for whi
h they were awarded the Nobel Prize in 1999.
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