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1 The Klein-Gordon field

The first four lectures cover Chapter 2 of the textbook by Peskin & Schroeder. The relevant
conventions are listed on pages xix—xxi in the book, involving the use of so-called natural
units (A = ¢ = po = € = 1) by absorbing these constants in the relevant fields and
quantities. As a result, a single scale remains: mass. Please familiarize yourself with these

conventions and treat Chapter 1 as reading material, as recommended by the authors.

Throughout this reader you will encounter circled numbers. These numbers match the

markers listed in the course’s storyline (http://www.hef.ru.nl/~wimb/QFT_story.pdf ).

1.1 Arguments in favour of Quantum Field Theory

From particle—wave duality we know that the properties of e.g. electrons and photons are
similar: both objects give rise to diffraction phenomena and carry a particle-like punch.
Historically electromagnetism was first perceived as a field theory and its particle inter-
pretation (photons) was observed later through the photo-electric effect. The other way
around, electrons were first perceived as elementary particles and the field aspects emerged

only once relativistic energies were considered.

@ Question: what is more fundamental, the fields (with particles being derived
quantities resulting from quantization) or the particles (with the fields being
derived quantities resulting from collective many-particle behaviour) ?

There are four observations that support the former point of view.

1. Classical physics: as supported by experiment there should be no “action at a dis-

tance”, i.e. there should be no forces that are felt everywhere instantaneously. As
a result, the instantaneous laws of Newton and Coulomb had to be replaced by the

local laws of nature of Einstein and Maxwell, based on field theories! ... However,

strictly speaking a locally defined particle approach is still possible.

2. Relativistic quantum mechanics: as supported by any high-energy collision exper-

iment a relativistic one-particle quantum theory is not feasible. The number of

particles is not conserved, i.e. particles are not indestructible. This differs strongly

from non-relativistic quantum mechanics as formulated by Schrodinger, where mas-
sive particles are around forever and can thus be perceived as fundamental. Photons
are massless and are therefore always to be treated relativistically, so we have no

photon conservation.

Let’s recall what happened when we were trying to construct a relativistic quantum me-
chanical theory for a free particle in flat (Minkowskian) spacetime. The ingredients for the

construction were:



e A wave equation that keeps its form under Lorentz-transformations, as required by

the relativity principle.
e A correct quantum mechanical probability interpretation.

e The relativistic relation F = 1/p2 + m? should be built in, in order to ensure that

particle—wave duality is properly incorporated.

The following problems were encountered:

e Negative-energy solutions, leading to an energy spectrum that is unbounded from
below. Dirac solved this for fermionic theories by demanding that the sea of negative-
energy states (Dirac sea) is occupied. Unwanted transitions are then forbidden pro-
vided that the exclusion principle applies, which is the case for fermions. However,
that means that the resulting one-particle theory has in fact an infinite number of

particles.

e At energies of the order of the particle mass, extra particles can be liberated from the
Dirac sea. In Dirac’s theory this is called particle—hole creation, which corresponds

to particle—antiparticle pair creation in quantum field theory.

In order to see at what length scales the breakdown of one-particle quantum mechanics
occurs we use the old units for a moment and consider a particle with mass m in a box with
size L. According to Heisenberg’s uncertainty relation the momentum of the particle then
has an uncertainty Ap = O(h/L). This in turn leads to an uncertainty in the relativistic
energy E = \/]m > pc of roughly cAp = O(he/L). If this energy uncertainty
exceeds the energy threshold 2mc? then pair creation may occur. This happens at length
scales L < O(A.), with A, = fi/(mc) the Compton wavelength. At these length scales
we cannot say anymore that we are dealing with a single particle, since it is accompanied
by a swarm of particle—antiparticle pairs, and a description with an unspecified number
of particles is required! Note that the Compton wavelength is smaller than the de Broglie
wavelength A, = h/p, which is the length scale where the wave-like nature of particles

becomes apparent.

@ The Compton wavelength is the length scale where even the concept of a

single point-like particle breaks down.

So, if we were to use a particle approach that is defined locally, it cannot be a single-particle

approach since multi-particle objects will unavoidably feature.

3. Many-particle quantum mechanics: the particle interpretation of a quantum mechan-

ical theory can change radically in a different physical environment (cf. particles be-
coming waves in low-temperature superfluid *He, coherent states in a driven oscillator

system, ... ). That means that the nature of particles can change!




4. The observation that all particles of the same type and in the same physical setting

are always the same everywhere. This hints at a description of physics that spans

all of space and time.

1.2 Lagrangian and Hamiltonian formalism (§ 2.2 in the book)

@ In order to set up quantum field theory we first consider classical field
theory in the Lagrangian and Hamiltonian formalism. The philosophy behind
this is that wave equations can be viewed as equations of motion for the wave
functions, i.e. the fields. This is best formulated in terms of Lagrangians for
continuous systems. Such Lagrangians are particularly suitable for discussing

symmetries, the cornerstones of relativistic quantum field theory.

Classical Lagrangian formalism: for a finite number of degrees of freedom the La-

grangian is given by
L({g; (1)} {g;(t) = dg;(t)/dt},t) = T—V |
where ¢; are generalized coordinates, T' is the kinetic energy and V' the potential energy.

Hamilton’s variation principle: classical solutions to the equations of motion (classical
paths) are obtained by finding the extrema of the action S = fttf dt L under synchronous
variations of the paths while keeping the endpoints fixed.

Variation around the classical path

for a free particle

The condition for a stationary action reads

to
6S = 5(/ dtL) = 0 for ¢;(t) — g;(t)+dg;(t) such that &g;(t1) =0q;(t2) =0.

t1

From this it follows that

(0L =tz t2 8L d oL

dt | — d0q; + 5q [ ] + /dt — = — dg; = 0.
zj:/tl (3qj ! ]> z]: 9 s z]: & dg; dt 8q )
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This has to be true for all dg;, so from this the Lagrange equations follow:
d ( 3L) 0L

These are the equations of motion for a system without boundary conditions.

\ (25 ,9;) !y (2)

Figure 1: A classical, non-relativistic example of a continuous system.

Now we switch from a discrete set of particles to a field. A field is a dynamical system with
a continuous, infinite number of degrees of freedom, i.e. at least one degree of freedom for
each point in space. An example is given by the string in figure 1, in which case gradients
in z will enter V' as elastic energy (see also Ex.1). In the field-theory case the discrete
set of generalized coordinates {g;(t)} is replaced by a continuous generalized coordinate
#(z), where z is a spacetime four-vector. In this way we treat £ and ¢ on equal footing,
as required for a relativistic approach. The Lagrangian L({q]-}, {4}, t) is replaced by a
Lagrangian density L(¢(x),d,¢), which depends on the generalized cooordinate ¢(z) and

the corresponding four-velocity 0,¢(z). The fact that the derivates with respect to time

and space should be combined into a four-velocity 0,¢(z) is needed for a proper relativis-

tic treatment, as we will see later on. In practice we only work with Lagrangian densities,

so we usually refer to £ in a sloppy way as ‘the Lagrangian’.

Now that we have a Lagrangian, we need to formulate Hamilton’s variation principle for

continuous systems:

5S = 5( /:dt / 4z £(4, aﬂqs)) = 5( / “de Lo aﬂqb)) — 0

1

|Z| — o0
for ¢(z) — ¢(z) + 0¢(z) such that d¢p(x) —— 0 and V 6¢(t1,7) = dp(t2,7) =0 .
T
This means that the system evolves between two field configurations that are kept fixed at
the temporal and spatial boundaries of the four-dimensional integration region. The latter

requirement, follows from the fact that we will consider systems with finite properties only.



From this variation principle it follows that

[ foL oL
58 _/Md”{a¢5¢+a(aﬂ¢)5(a“¢)}

[t o - -
/mldxau<a(a“¢)5¢ +/xld:c 96 oy 5(0,0) dp =0

for all allowed variations d¢. According to Gauss’ divergence theorem, the first integral in

the final expression vanishes since it gives rise to an integral over the boundary of the four-

dimensional integration region. The final result is the so-called Euler—Lagrange equation

for a stationary action:
oL oL
ol == = =— .
H ( 2(0,¢0) ) 0p
We get the same equation for each extra field occuring in L.

An immediate consequence of the variation principle is that the equation of motion (Euler—
Lagrange equation) does not change if we add a ¢-dependent four-divergence to the La-
grangian: £ — L + 0,G*. The reason is that this extra term adds a boundary contri-
bution to S. Such a boundary contribution remains unaffected by a field variation with
fixed boundaries. Note that we have not considered the possibility of having terms in the
Lagrangian that couple ¢(t,Z) to ¢(¢,%). This follows from the locality requirement that
we have to impose on viable quantum field theories. As a result, only ¢(z) and 9,¢(x)

occur.

Just like the Lagrangian, the Hamiltonian H in the discrete case becomes an integral of
the Hamiltonian density 4 in the continuous case:

H({g},{p;}) = ijdj—L — /de(@ﬁ@ﬁ,ﬂ) = /df {W%—L‘} ,

with the conjugate momenta for both cases defined as

oL oL

pi=E — — TE=E .
79 0(9¢/0t)
Note the preferred treatment of ¢ with respect to & in the definition of H: d¢/0t occurs
in the definition of w. That means that ¢ and & are not treated on equal footing in the

Hamiltonian formalism, making the Hamiltonian formalism less suitable for dealing with

relativistic field theories than the Lagrangian formalism. We will need to know H, though,

for performing the quantization of the classical theory.

Example: consider the following Lagrangian containing a set of fields labeled by a € N

(9u62)(0"60) — 5167

DN | —

L({6u} A0u00}) = 562 = 5(T60) = S =
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A summation convention is implied here, so ¢2 = > ¢2. Note that according to the
standard convention in the book 9,¢, = (0()(;5@,6(;5@) and 0*¢, = (OpPa, —6%). Using
Einstein’s standard summation convention for repeated Minkowski indices, the Euler—

Lagrange equations then read
0,(0"9a) + ¢y = (8 =V +m*)dy = (O+m*)gy = 0,

i.e. all fields ¢, satisfy the familiar Klein-Gordon equation. The conjugate momenta and

the Hamiltonian density are given by

oL . . 1 1
T = g T ¢ and H = ¢.ma— L = §7r§ + 5(wsa)2 + §m2¢g :
The first (kinetic) term in the Hamiltonian density corresponds to the energy cost of “mov-
ing” in time, the second (elastic) term to the energy cost of “shearing” in space, and the
third (mass) term is the energy cost of having the field around at all. Note that in deriving
this Hamiltonian we sum over all fields in the term éawa. This makes sense, since all fields

¢ are independent.

@ Question: apart from being local, what requirements do we have to impose

on the Lagrangian density of a relativistic quantum field theory?

Relativity principle: the guiding principle will be the relativity principle, which states

that in each inertial frame the physics should be the same. One option is to use a pas-

sive transformation to go from one inertial frame to the other. In that case we have
to find a relativistic wave equation that keeps its form under Lorentz transformations:
Df(x) =0 = D'f'(2') = 0, where D is a differential operator and f a field. The
prime indicates Lorentz-transformed objects. Alternatively, we can physically transform
all fields and demand the relativistic wave equation to be invariant. This is called an active
transformation. To phrase it differently, if a field satisfies the equation of motion, then the

same should hold for the Lorentz-transformed field:
Df(z)=0 = Df'(z)=0.

This is automatically guaranteed if the associated Lagrangian density £ is a Lorentz scalar

field, since the action S will in that case be Lorentz invariant and therefore an extremum

of the action will indeed yield another extremum upon Lorentz transformation. Similar

arguments hold for constant translations ' = x + ¢, where x; is a constant four-vector.

Proof: in order to prove that the action is Lorentz invariant if £ is a Lorentz scalar

field, we first give the official definition of a Lorentz scalar field. Consider to this end the

v

Lorentz transformation z# — 2'* = A* ¥, with A a continuous Lorentz transformation

tensor (describing rotations and boosts). Then ¢(z) € R is called a Lorentz scalar field

6



if it transforms as @(z) — ¢'(r) = #(A'z) under the Lorentz transformation, i.e. the
transformed field evaluated at the transformed spacetime point gives the same value as
the original field in the spacetime point prior to the Lorentz transformation. The Jacobian
of this transformation is 1, since det A = 1 for a continuous Lorentz transformation.

Therefore, for a Lorentz scalar Lagrangian density £

scalar

L(x) —— L'(z) = LA '2) = Ly) =

g = / d'z L(z) = §' = / diz £(z) = / d' L(y) Z=wdacoian =] / d'yL(y) = S .

Note, though, that the endpoints ¢; and ¢, of the temporal integration interval will change

under boosts.

1.2.1 Noether’s theorem for continuous symmetries

@ As a next ingredient for setting up quantum field theory we will try to iden-
tify conserved currents and “charges” that are present in the theory. These
conserved charges are instrumental in quantizing the theory and finding its par-

ticle interpretation.

Consider a field ¢(z) that satisfies the Euler—Lagrange equation of £(¢,d,¢) and apply

the infinitesimal continuous transformation

d(z) = ¢'(z) = é(x)+ aA¢(z), with a independent of z and infinitesimal .

We speak of a symmetry under this transformation if £(z) changes by a four-divergence:
L(z) — L(z) + a0,G"(z), since that implies that the equation of motion is left invariant

(cf. the remark on page 5). In that case

oL oL
oL oL oL
= o0 (55529) + 2 5 ~ (.9 )] 20

The second term is zero if ¢(z) is a solution to the Euler—Lagrange equation. In that case
we are left with
) ( oL ro G“) 8,5* = 0
5 A — = 0, =0,
“\9(0,9) #

i.e. j# is a conserved current when expressed in terms of solutions to the Euler—Lagrange

equations. This is trivially extended to cases with more fields and automatically leads to

Noether’s theorem|: for each continuous symmetry there is a conserved current.




This theorem has two important consequences:
e The “charge” Q(t) = [dZ j%(x) is conserved globally if j(x) vanishes sufficiently
fast for |#| — co. Proof: if j(z) vanishes sufficiently fast for || — oo we have

dQ(t) _ L 07° Aui*r =0 - = = Gauss .
7 —/dazat — /dey—— /dsg-O.

e More importantly this charge conservation also holds locally!

Proof: following the previous case

d d - .
T = —/da?j“(a:) = —/dfv-j Gawss _ [45.7 .

dt
% 4 5(v)

In other words: any charge leaving the closed volume V' must be accounted for by

an explicit flow of the current j through the surface S(V') of V.

Translation symmetry: from imposing the relativity principle we know that £(x) should

be a Lorentz scalar, so under an infinitesimal translation

¥ — 2’ = ¥ —a” where o is a constant infinitesimal four-vector

we have )
mverse

L(z) — L'(z) = ﬁ(m) ~ L(z)+a"8,L(z) = L(z)+ a,0,(g" L(z)) .

The last term is a total four-divergence, so relativistic field theories have translation sym-
metry with [G#(z)]” = g#L(z) for all four independent translations labeled by v. Now

suppose that £ depends on an arbitrary collection of fields f,(z) that transform as

fo(@) = falz+a) = fo(z)+ ,0fu(z) = fo(z)+ [Afa(a:)]y ,

which is valid for all components of viable quantum fields. For f,(z) satisfying the Euler—

Lagrange equations, this results in four conserved currents:

oL
(9 fa)

and hence four conserved charges:

/dfT“O - /df[g—zfa—z] - /df[ﬂafa—ﬁ] - /dmt ~- H,
/da?T“j = —/df[g—zvffa—o] = —/dfﬂavjfa = PJ.

Summation over a is again implied. The quantity 7" is called the stress-energy tensor or

™ = ( )8”a—g’“’ﬁ (v=0,---,3),

energy-momentum tensor, H is the physical energy carried by the fields f,, and P’ is the

4% component of the physical momentum carried by the fields f,. We will see later that

what we just did does not just hold for scalar fields, but also for any component of a vector,

spinor, ... field.



@ The field energy H will play a crucial role in the quantization of free field
theories, since it will feature in the quantum mechanical requirement of having
an energy spectrum that is bounded from below. On top of that it determines
the quantum mechanical time evolution. The field momentum will help us in

determining the particle interpretation of free quantum field theories.

Intermezzo 1: the energy-momentum tensor in cosmology

In general relativity a curved-spacetime version of the energy-momentum tensor ©*” fea-
tures, which is symmetric under the interchange of p and v. In the modified Einstein
equation including cosmological constant:
1
R, — igu,,R + Ag = —81GO,, (G = Newton’s constant) ,
this symmetrized energy-momentum tensor describes matter and energy in the universe,

whereas the Ricci tensor R, , scalar curvature R = g’ R,, and cosmological constant A

describe the “structure” of spacetime for an empty space (i.e. for the vacuum).

The flat-spacetime version of the energy-momentum tensor 7T# that we have just derived
is in general not guaranteed to be symmetric under the interchange of u and v. However,
this can be arranged by adding an appropriate extra term 0,K°* with KP* = — K
such that ©# = TH 4 9,K** = ©"* and 0,0* = 0,T"" 4 0,0,K"* = 0,0,K"" = 0.
For an explicit example, see Ex. 2.1 in the textbook by Peskin & Schroeder.

By bringing the cosmological-constant term to the right-hand side of the modified Einstein
equation, it can be viewed as representing the energy-momentum tensor of empty space
itself (taking into account such effects as vacuum energy and vacuum pressure). Such a
cosmological-constant term therefore constitutes the vacuum contribution to the curvature.
In view of its proportionality to the metric tensor, the cosmological-constant term is the
same for all inertial observers in the flat-spacetime case, which is compatible with the
notion that in that case the vacuum should not have a preferred frame. So, the presence

of a cosmological-constant term does not conflict with any first-principle requirements!

For a positive cosmological constant (A >0) the energy density of the vacuum

18 positive and the associated pressure is negative, resulting in an accelerated

expansion of empty space as seems to be supported by experiment (see next

page). Such a vacuum energy is usually referred to as dark energy. We will

see shortly that field quantization can actually provide a source of dark energy.

The reason why the pressure is negative follows from the simple fact that energy is released
if the volume of space expands, whereas a positive “pressure on space” would require work
to be exerted during the expansion. For a positive cosmological constant the vacuum

represents an unlimited energy reservoir, which is tapped when the universe inflates.




Accelerated expansion of the universe

If all of the energy in the universe would be in the form of matter, radiation and grav-
itational waves, the rate of expansion of the universe would decrease continuously after
the Big Bang due to gravity. However, if empty space itself would also carry a positive
energy density, which could be viewed as “the energy cost of having space”, then this is
not necessarily true anymore. Such a dark-energy density would have a repelling effect.
Moreover, if this density would be constant it would not be affected by the expansion of
the universe, whereas the density of matter decreases as the universe expands. This would
imply that the universe could undergo a transition from being matter/radiation dominated
at early stages to being dark-energy dominated at later stages, resulting in a reacceleration
of the universe from a certain moment onwards. Precisely this scenario seems to be borne

out by experiment (see the figure below and the lecture course “Gravity and the Cosmos”).

Saul Perlmutter, Brian Schmidt, Adam Riess (2011 Nobel Prize in Physics)

Expansion is Accelerating
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:
p
O
2]
=
o
>
L

| | I I |
24 6 8 9 10 11

LOOKBACK TIME (BILLIONS OF YEARS)

PNDW t-SLD"q.*"w‘EST 6G YRS AGO
I
0

The expansion rate of the universe at different times can be inferred from the redshift of
far away objects, provided that we can determine in a reliable way how much distance
the light has travelled before reaching us. To this end supernova la explosions are used
as standard candles. Since these explosions produce as much light as an entire galaxy
at peak luminosity, they can be used as beacons to look into the distant past. Another
crucial feature of supernova la explosions is that they have a well-defined mechanism:
a white dwarf accretes matter from a companion star until it reaches a critical mass at
which a runaway carbon fusion is triggered that sets off the explosion. These supernova la
explosions produce a distinctive luminosity spectrum, which makes them identifiable. The
distance travelled by the light then follows from the observed peak luminosity, by comparing

it to the known peak luminosity at the time of emission.
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Symmetry under rotations and boosts (continuous Lorentz transformations):

under an infinitesimal continuous Lorentz transformation

g g

2’ — 2 = AN 27~ + W

where w?? = —w?? € R is an infinitesimal tensor with six independent components. The

Lagrangian is a Lorentz scalar, so
L(z) - LA '2) ~ L(z —wz) ~ L(z) — w’, 279,L(z)

P _
w’p=0

L(z) —w 0,27 L(z) = L(x) — wpe0,(g" " L(z))

1

il A—— L(z) — iw,,(,au( [g“”a:"—g“":c”]ﬁ(x)) )

Since L(x) changes by a total four-divergence, relativistic field theories have a symmetry
under continuous Lorentz transformations with [G#(z)]” = — [g"°z” — g*"z*] L(z) for all

six independent components of w,, .
Now consider a Lagrangian for a scalar field ¢(z). Such a field transforms as

Br) = $(x) = $(A2) & 8(r) — L wpaT— 2 O]G(x) = B(a) + 5 wp [AG(a)]”

2
This results in six conserved currents, one for each independent component of w,,:

JH () =

oL
( 0(0u9)

and hence six conserved “charges”:

)[a:pa"—a:"ap]qﬁ(x) + [¢"P2” — g" 2P| L(x) = TH (z)z? — TH(z)a?

e Rotations (p,0 =1,5): J* = 1€ [d7 [T%(x)a’ — T%(x) x|, with summation over
the spatial indices ¢ and j implied. This is the k*" component of the physical angular

momentum carried by the field ¢(z).

e Boosts (p,0 = 0,7): K' = [dZ [T%(z)2’ — TY(z)a’'] = 2°P' — [dZ 2 T(x).
d

Conservation of these three “charges” implies that d—( ' Pt — [dz ' T (x ) =

P — T [dZ 2 T%(z) = 0. Since [dZ T (z) = H, this equation can be interpreted

as saying that the “centre-of-energy” of the field travels at constant velocity, in

analogy with the movement of the centre-of-mass of a free classical system.

@ The angular momentum of a field depends on the type of field and will thus
be useful after quantization. It will help us to determine the intrinsic spin of
the particles described by the free quantum field theory that corresponds to a
given wave equation. As a result of the relativity principle, each type of wave

equation will give rise to a specific particle spin.

11



Abelian internal symmetry (“global U (1) gauge symmetry”): an internal sym-
metry involves a transformation of the fields that acts in the same way at every spacetime

point, whereas abelian implies multiplying all fields by a constant phase factor. Consider

a complex scalar field ¢(z) that satisfies the Euler—Lagrange equations of the Lagrangian
L($, 9", 00, 0u0") = (0,0)(0"¢*) — m*$¢".

This Lagrangian is invariant under the continuous transformation ¢ — e®¢ , ¢* — e "@¢p*,
where o € R is a constant. This implies that under the infinitesimal version of this

transformation, i.e.
¢ — d+a(ip) = ¢+alAéd and ¢ — ¢+ a(—id*) = ¢" + alo*,
we get AL =0 = G* =0. As a result the current
= igdtg" —ig "¢ = i[(9"¢")¢ — ¢"0"¢]
is conserved. For an extended example of a gauge symmetry see Ex. 3.

@ We will see later that the conserved charge arising from currents of this type
have the interpretation of electric charge or particle number. The associated
U(1) gauge symmetry will feature prominently in a symmetry-based description
of electromagnetic interactions.

Symmetries versus unobservable quantities: the above-given symmetries are in fact

all related to quantities that are fundamentally unobservable.

@ The abelian internal symmetry is linked to the unobservability of the absolute
phase of a QM wave function. Translation and rotation symmetry are the
result of the unobservability of the absolute position and direction in spacetime.
Symmetry under boosts is related to the unobservability of the absolute velocity
of a chosen reference frame.

1.3 The free Klein-Gordon theory (real case, § 2.3 in the book)

We start our tour of the relativistic quantum-field-theory world with the simplest example:
the quantum field theory for real scalar fields that satisfy the free Klein-Gordon (KG)
equation. The classical Lagrangian for a real scalar field ¢(z) that satisfies the free KG
equation is given by

- %((%(]ﬁ)(@“(]ﬁ) B %m2¢2 Euler-Lagrange

oL
m = — =
9¢

(@+m")g(z) =0 ¢ .

The corresponding time-independent Hamiltonian reads (cf. page 6)
1 1 - 1
H = /df[§ﬂ2+§(v¢)2+§m2qﬁ2 :

12



@ Question: how should we quantize such a classical field theory?

1) Canonical quantization: in principle we could approach this in the same way as in the

case of the quantization of Newtonian mechanics: the dynamical coordinates and associated

conjugate momenta become operators that satisfy canonical commutation relations. In the

Schrodinger picture this reads
e Discrete quantum mechanics: [(jj,ﬁk] = iéjki , [(jj,(jk] = [ﬁj,;ﬁk] =0.

~

e Continuous quantum field theories: [$](f),ﬁk(ﬁ)] = i0;,0(Z —y)1,

Subsequently, the fully covariant (time-dependent) versions of these commutation relations
can be obtained by switching to the Heisenberg picture. This type of quantization proce-

dure is called canonical quantization.

2) Quantizing an infinite number of linear harmonic oscillators: in a general quan-
tum field theory the spectrum of H is hard to find, since it involves an infinite number of
degrees of freedom that in general do not evolve independently. However, in the case of free
theories each degree of freedom does evolve independently. The reason behind this is that
the corresponding equations of motion are linear wave equations, with all quantum fields
as well as their individual components satisfying the KG equation. This latter requirement
is needed in order to implement particle-wave duality in the right way by giving rise to
the correct relation between energy and momentum for the free particles described by the
theory. Consider now such a field component f(7,t) € R with (O + m?)f(%,¢t) = 0. In
order to decouple the degrees of freedom we use the momentum representation (Fourier

decomposition)

dp ..~
f@n) = [l el

so that the KG equation changes into

82 2 2
(55 + (3% +m") g t) = 0

for each Fourier-mode p. This means that g(p,t) solves the equation of motion of a har-
monic oscillator vibrating at a frequency wy = \/m The most general solution to
the KG equation will therefore be a linear superposition of simple harmonic oscillators, each
with a different amplitude and frequency. So, in order to quantize f(Z,t), one simply has to
quantize the infinite number of oscillators in terms of raising (creation) and lowering (anni-

hilation) operators. The associated harmonic energy quanta are interpreted as particles.

13



Next it will be proven that both procedures are actually equivalent.

Comparing both procedures: let’s first recall how the quantization of a linear harmonic
oscillator goes. Consider to this end the corresponding Hamilton operator
- —lp 1o wim [0.P) =i
2m 2 2 2 ’ ’
using P = p/y/m and Q = z4/m. Next we introduce a lowering operator a and raising

operator af according to
a+al - a—af
P = —iw

V2w

7 dT] — 1 follows and

From this the fundamental bosonic commutation relation

—
~
Ii

w(h+31),

where 7 = a'a can be interpreted as a counting operator. Using [I:I, dT] = wal, the energy

eigenvalues E,, and eigenfunctions |n) of this Hamilton operator can be obtained:

(ah"
Vn!

Based on this we use the following ansatz for the quantized KG field and its conjugate

E, = (n+3w , |n) = |0) (n=0,1,---).

momentum in terms of a continuous set of oscillator modes labeled by p":

— ~ AT =
57 dp_ a5+ 0y ipE / dp 1 (A ipE | At fip‘.g‘c‘) Tt
QS(x) B /(271')3 \/26017 ¢ - (271’)3 /26013‘ ape +aﬁe - (ZS (I‘) )

— ~ "T
i [ dp Uy — A 5 v (AP Jws (. mE b _ipa g
ﬂ-(x) = _Z\/(Qﬂ_)g wﬁ 2(.{)‘5‘ wa = = (27_‘_) ? ( ﬁez m_aﬁe ’ ‘T) =T (x) )

with [, &;,] = (27)35(5 — p")1 and all other commutators 0.

Let’s now see whether we have succeeded in properly quantizing and decoupling the free
real KG theory. From the fundamental bosonic commutation relations for creation and
annihilation operators it follows that

N ¢ [ApdD’ Wyt s . .
[qﬁ(az),ﬂ(y)] = — 5/ 2n)0 wj—,» piBT+P y)[aﬁ + aT_ﬁ,az—,v — alf_z-,»,]

U e s
= Wl/dpep( 9 = i§(F—-g)1,

in agreement with canonical quantization.
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Energy spectrum and zero-point energy: the Hamilton operator of the free real KG

theory now reads

|

dpdp T (F+") o
o [ B e [~ o it ) =l
p=p

~

(Vo) + %m%ﬁ]

. 1
H 72 4 =
7r+2

DO | =

Z integral dp 1 A st At A
_ / iw*(aﬁaﬁ‘i_a p‘a’*ﬁ)

F— —p in 2nd term dp o dp 1 A
/(27.‘.)3 wﬁa; P +/(27‘(‘)3 5(.05(271')3(5(0)1,

which is indeed nicely decoupled and properly time-independent. The last term in the final
expression is called the zero-point energy. It is a consequence of the uncertainty principle

and represents the ground-state energy in the absence of any oscillator quanta.

@ Question: have we obtained an energy spectrum that is bounded from below?

From the decoupled form of the Hamilton operator of the free real KG theory we can read
off that

e the energy spectrum is indeed bounded from below by the zero-point energy;
e only positive-energy quanta feature in the Hamilton operator;

e the zero-point energy is infinite:

— We have 27r35 = [dZ e®P = lim fd:c TP

L—oo
~L
This is an infinity originating from the fact that space is infinite. Such a long-

= lim fda:—V.

p=0 L—oo “p

distance infinity is often referred to as an infra-red (IR) divergence, since it is

related to p'=0.

dp
(27)? 2
|p'| — oo limit of the integrand. This type of infinity is called ultra-violet (UV)

— The zero-point energy density / wy is still infinite, originating from the

divergence, being related to short distances/high frequencies. It is the conse-

quence of our unrealistic assumption that the theory is valid up to arbitrarily

high energies. As we will see later, the p-integral should be cut off at a value
where the theory breaks down or a more fancy technique should be used to

quantify the UV infinity if we do not want to introduce a new energy scale.

15



@ The zero-point enerqgy is inessential for the particle interpretation, but it
is measurable in bounded sytems through the Casimir effect (as is explained in
the bachelor course “Kwantummechanica 3”) and it has explicit cosmological

implications in view of the fact that it contributes to the cosmological constant.

About 68% of the energy density in the universe bears the characteristics of a cosmological
constant with energy scale 1073 eV, which is surprisingly small. With the Planck mass
M, = O(10%®eV) being the natural scale of gravity, where ordinary quantum field theory
most likely breaks down, we would expect the energy scale belonging to the cosmological
constant to be O(My;) if it has a gravitational origin. One of the big questions in present-

day high-energy physics therefore reads “Why is the cosmological constant so small?”.

The art of covering up: normal ordering.

In most textbooks all issues related to properties of the vacuum of the theory are simply

1

circumvented by removing vacuum energies, charges, etc.. This is done by applying

normal ordering, i.e. bringing all creation operators to the front:

A dp
a'a — N(d'a) = a'a , ad' — N(aa') =ala = N(H) :/ b wyalas .

After quantization the momentum carried by the KG field (cf. page 8) becomes

P — —/ F#(ZF)VH(F) = /(2ﬂ)3 é(_iﬁ)(&ﬁ_&Tﬁ)(&ﬁjL&;)

Lfdp oy o g g dp 5.

= — = /(2ﬂ)3 D (afﬁa_,—,»— apay+a' ;a;— apa_p) = S D agay,

where in the last step we have taken p — —p in the first term and we have used that
paga_g, ﬁ&tﬁd} and p(27)*6(0) are all odd under 7 — —p whereas the integration
is even. This time there is no zero-point contribution and as such there is no need for
normal ordering, which is consistent with the fact that quantum fluctuations should have

no preferred direction.

Particle interpretation of the free real KG theory:

@ In the next step we determine the particle interpretation of the theory,
mostly by simply reading it off from N(H) and P.

e Vacuum (ground state)' |0) such that (0]0) = 1 and Gz|0) = O for all . Then

N( 7)|0) = 0 and P|O> =0, i.e. the vacuum “has” energy E = 0 and momentum
P=0.

!The tacit assumption here is that some underlying (high-scale) physics takes care of this

16



— For higher excitations &; is replaced by (d;)"/\/n! :
— The excitations are interpreted as particles.

— In view of the bosonic commutation relations for the associated creation and

annihilation operators these particles are bosons.

— In fact the particles are spin-0 bosons. This follows from [jk,d%] = 0 for
k =1,2,3. Bearing in mind that a zero-momentum particle does not give rise
to an orbital angular momentum, this indeed implies that the particles in the

real KG theory also carry no intrinsic angular momentum.

Proof: the quantized version of the angular momentum derived on page 11 yields

Lk 1= 5 [dPdp" ; [wpr iZ-(p+p') [ (5 At A A Al
B §€]/dmj/ 2me P\ wy © P (ap —alp)(ap+al ), 4

Uikl e (885 [0 i (5om o o ot 1 s
— §€]k/dxl']/ (271-)3 P w‘; e (p+p)(5(p')[aﬁ+aiﬁ]+5(p)[aﬁ/—aiﬁl]) .

The second term in the last expression vanishes trivially. The first term vanishes

as well since i # j and consequently the 2% integral will be proportional to §(p).

— An example of such a particle is the 7° pion.

Normalization of states and completeness relation: note that we did not specify
yet what normalization factor to use in the definition of the 1-particle states. Unlike what
is done in non-relativistic quantum mechanics, where the normalization factor is usually

taken to be 1, we will use a relativistically motivated normalization of the 1-particle states:

2, /wywg (0] [az, k] |0)

=y
S~
I
&
Sy
(=}
S —+
=)
S~
T~
Sy
=y
S~
I
[\
~
(S
<y
T~
<
)
=
Q>
Q=
=)
S~
Il

The latter expression is invariant under continuous Lorentz transformations.

Proof: in order to prove this statement we first derive the important integration identity

dp 1 d*
/(2:)3 2y = /(2;))3 §(p* —m?)O(p°)  (Lorentz invariant integration measure), (1)

with © the Heaviside step function. We get this identity by using that

5(h(z)) = Z (Sff?(i;:):?) for h(z;) =0 and h'(z;) #0,
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which leads to

. 0(po — wy 0(po + wy
(? —m?) = 8(s} 77 + m¥]) = o} — ) = (=) A te)
Wy 2(,017

Since p° cannot change sign for p*> > 0, the right-hand-side of equation (1) only contains
Lorentz invariant objects. As a result, the expression on the left-hand-side is Lorentz

invariant as well and the same goes for (p'|¢), since

dp @17)  [aa o
/(271')3 2wy —/dp5(p—q) = 1.

The 1-particle completeness relation is then given by

g 1 .
/ 7)) = i

(27)? 2wy

1-particle subspace

since

[ o p)pl) = [ 2D ) gy

(2m)3 2wy 2m)3 2wy

—

q

Finally we may ask the question what state is actually created by (ﬁ(f) = &T(f) Letting
this operator act on the vacuum one obtains

A dﬁ eiﬁ-a‘c‘ A 4 Fo—p / dﬁ efiﬁ-a? .
0) = s+al )]0y =—= .
6(#)[0) / (a5+4al;)|0) e 2w, )

; dp e % L
@00 = [t o (i) = e

is indeed identical to (¢'|#) in non-relativistic quantum mechanics.

Point to ponder: you might wonder now whether this contradicts the earlier statement

that there is no local single-particle concept in Quantum Field Theory. To check this we

consider the overlap between two such position states:
(0]¢(Z)d(H)|0) x e ™F 7l for large enough | —¢| ,

as determined on page 27 of the textbook by Peskin & Schroeder. In the non-relativistic
limit, which effectively corresponds to the limit m — oo, the overlap vanishes for ¥ # ¥
and ¢()|0) makes sense as a local particle state at position #. For finite masses, though,
$(Z)|0) is always an extended object with the Compton wavelength A, = 1/m governing
its effective range. This length scale represents the inherent minimum uncertainty on the
particle’s position, just as we predicted earlier. This also tells us that in Quantum Field

Theory a truly local measurement of a single particle at position # actually does not exist!
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1.4 Switching on the time dependence (§ 2.4 in the book)

Next we add the time dependence by switching to the Heisenberg picture,
which makes all operators time dependent according to O — O(t) = (ift)e it
as expected from the fact that H is the generator of time translations. This
implies that the canonical (equal-time) commutation relations have the same
form as in the Schrédinger picture: [gﬁ(x t), 7 (Y, )] = i6(Z — )1, with all

other commutators being 0.

Short derivation of ¢(x) = ¢(Z,t): we have [H 5] = —wpay; = Hay = a5 (H-wy)
a

and H ap = (H —wy)™. That means that eifltay e it = g ei(H—wplle=iflt — g g=iwpt

56

and e ;; it — &p et Applied to @(z) this yields:
7 dp 1 ipx | At eiPT - 9 -
60) = [ g e aper) e @) = )

where the first term corresponds to the positive frequency modes and the second term
to the negative frequency modes. This reflects particle-wave duality, with each frequency
mode corresponding to the creation/annihilation of fundamental quanta of the theory.
Analogously: ) )

[ﬁ, dﬁ] = —ﬁdﬁ = B_iﬁi&ﬁeiﬁ'f = Afj Biﬁ'f .
Combining both identities yields

Qg(x) [H,P]=0 ei(“t—ﬁ-f)gg(o)efi(ﬁtfﬁ-a?) _ eiﬁ-xé(o)efiﬁ-x.

This reflects the fact that the quantized conserved Noether charges are the generators of

the corresponding continuous transformations, which in this case implies that P ig the

generator of spacetime translations.

Next we invoke the following relativistic requirement.

@ Causality: a measurement performed at one spacetime point y can only
affect a measurement at another spacetime point r whose separation from the

first point is timelike or lightlike, i.e. (z — y)? > 0.

This latter requirement means that in such cases a particle can physically travel the cor-
responding spatial distance within the corresponding time period, since (z — y)? > 0
corresponds to a spacetime separation inside or on the lightcone |7 —¢| = |2°—%°|. In
the coordinate representation any observable involving scalar particles can be written in
terms of KG fields. So, if [g&(x), é(y)] =0 for (x —y)? < 0, then the measurements do
not influence each other for spacelike separations (i.e. outside the lightcone) and causality

is preserved.
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For the real KG field we find

[QAS(ZU)’ &(y)] = /dp dg L [dﬁe*ip'x + d;;eip'x, diefiq-y + d:rjeiq-y]

(271')6 21 /wﬁw(;

_ dp 1 (e—ip-(w—y) _ eizr(w—y))j
(2m)3 2wy

Po=wg,q0 =wg

= D(z—y)1-D(y—z)1.

po=wg

The function D(z) has the following properties:

1. In the previous expression each of the terms on the left-hand-side of the second line
is Lorentz invariant according to equation (1). As a result, the function D(z) is
Lorentz invariant as well and hence D(z) = D(Az) = D(z').

2. D(z) = D(—z) if »y = 0. This follows directly by taking p — — p’ in the integration.

Bearing in mind that for (z — y)? < 0 there exists a Lorentz transformation A such that
zy — yo = 0, we can derive from these two properties that

0 ZREE p(y! — )~ D(y —2') = D(A(z—y)) - D(A(y — )

property 1 D(:c—y)—D(y—a:) if (x_y)2<0‘

This automatically implies that causality is preserved in the real KG theory because prop-
agation from y to z, given by (0|¢(z)é(y)|0) = D(z —y), is indistinguishable from propa-
gation from z to y, given by (0|¢(y)é(2)|0) = D(y—z), if (z—y)? < 0. This sounds weird,
but in the spacelike regime we cannot think of propagation as particle movement. There
is no Lorentz invariant way to order events, since if we have in one frame that xq — o > 0

a Lorentz transformation can yield another frame where xzq — 3 < 0.

@ In fact, quantizing using canonical quantization conditions was already suf-
ficient for properly implementing causality. In spite of its non-covariant form,

there is no preferred treatment of time by quantizing in the canonical way!

Proof: the proof of this statement exploits the fact that [gﬁ(x), q@(y)] is Lorentz invariant,
as well as the fact that for (z —y)? < 0 there exists a Lorentz transformation A such that

zy — Yo = 0. Then we can readily obtain the causality requirement

~

[Q@(w),g&(y)] _Lor.inv. [&(fl,t’),é(gl,tl)] _ il [Qg(f'),é(ﬁ')] e—ilt _

for (x —y)? < 0 as a direct consequence of canonical quantization.
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1.5 Quantization of the free complex Klein-Gordon theory

The Lagrangian for a complex scalar field ¢(z) satisfying the free KG equation is given by
L = (0,9)(9"9") — m*¢¢",

which contains twice as many degrees of freedom as the Lagrangian of the real KG theory.

This can be seen explicitly by writing ¢ = (¢, + i¢a)/v2 with ¢15 € R (see Ex.4). Then

the Lagrangian becomes

£ = S@60(0%) — w6 + 5 (0:62)(0"8s) — TP}

Now we can either treat ¢, 5 or ¢, ¢* as independent degrees of freedom. The quantization

goes exactly as before, with % (G1,5+1id2,5) = ay and % (&J{,ﬁ+id;ﬁ) = b;; + d}. Hence:

R dp’ 1 . s
$a) = [ i —= e i

(271')3 \/2(,0;5‘ Po=wg

where the first term corresponds to particles and the second to so-called antiparticles. The

associated commutators are given by:

[dﬁ,&g] = [8:5‘,8:;»] = (2m)*0(p— ¢)1, with all other commutators being 0 .
From these commutation relations we can derive that causality is conserved in the complex

Klein-Gordon theory as well:

~ ~

[6(2), d(y)] = [¢'(2),9'(y)] = 0,

[6(x),8'(y)] = D@ —y)i—Dy—z)i 22 o 4 (z_y)2<0.

Note that D(z — y) originates from particle propagation, whereas D(y — ) originates from

antiparticle propagation. This brings us to the following important conclusion:

the correct causal structure of the complex Klein-Gordon theory hinges on

the combined treatment of particles and antiparticles, since particle propagation
from y to x, <0|$($)$T(y)|0> = D(x — y), is indistinguishable from antiparticle
propagation from z to y, (0|¢'(y)$(z)|0) = D(y — ), if (= —y)* <0.

Particle interpretation: as before we can derive the particle interpretation by looking
at the energy, momentum and “charge” operators (see Ex. 4 for a critical discussion). After
quantization these operators read:

N ds . o |
= /ﬁ w; ( ; P ; 5) + zero-point energy ,

(2m)
5 dp T . .
@ = /(271')3 (_a;aﬁ + ;r_f ﬁ) - _Nparticles + Nantiparticles .



The zero-point term for the charge operator has to vanish to guarantee Lorentz-invariant
vacuum properties (see Ex.4), so normal ordering is a physical requirement in that case!

This charge operator is the generator of U(1) phase transformations:
[Q,qg(a:)] = o(x) = ewéqg(x) e — () for § € R constant .

Since the aforementioned conserved quantities only contain number operators after quan-

tization, we have

oL

[H, ] = [H, Q] = [Ha Nparticles] = [Ha Nantiparticles] =0.

In free KG theories (in fact in all free theories) energy, momentum, number
of particles and number of antiparticles are all conserved. In interacting theories
the number of particles and the number of antiparticles are no longer separately

conserved, but their difference quite often is.

Now we can read off the particle interpretation of the complex KG theory: it resembles
the one for the real KG theory, with the difference being that for every particle state there
should now also be an antiparticle state with opposite “charge” quantum numbers and the
same 4-momentum quantum numbers. An example of such a scalar particle—antiparticle
combination is given by the 7T pions. The case g% = QET is special in the sense that particle

and antiparticle states coincide, so all “charges” should be 0.

Lorentz transformations and @(z): as before ¢(z) = eF2¢(0)e = but what about
Lorentz transformations? We know that |p) = /2wy &;|0> and that a similar expres-
sion holds for antiparticle states, so we can use this to define the unitary operator that

implements (active) Lorentz transformations in the Hilbert space of quantum states:

I .
Ap) = U(A)IP) = \[2wgyal.]0) = /2wy U(A) al oy ZRUE p DAY AL T (A)o)

w—
Ap gt
A )

= define: U(A)alU '(A) =

Wy

with a similar expression for I;;f.f As a result:

A( )‘ZAS( )ﬁ ( ) = /(;71%5;32%05 /2(,()/&7) (aﬁe pr_|_b”rp lpa:)

!

p'=Ap dﬁ, 1 ~ —ip'-Az it ipl Az ]
R 2 /(27r)3 2 \ 2wy (agre +bje ) = ¢(Az)

where the second line is obtained by using that [dp/(2wy) and e*®? are all Lorentz

invariant. This implies that the transformed field creates/destroys antiparticles/particles

at the spacetime point Ax.
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1.6 Inversion of the Klein-Gordon equation (§ 2.4 in the book)

For certain physical applications it is important to know the inverse of
the KG equation, for instance for deriving scattering amplitudes or for solving

systems that involve a KG field being coupled to a classical source.

Since a solution to (0 4+ m?)@g(z) = 0 exists, the inversion of the differential operator
(O+m?) does not exist formally, so it has to be defined. Once we have defined this inverse
(O + m?)~! properly an appropriate solution to the equation ([J + m?)¢ = j is given by
¢ = (O0+m?)~1j + ¢, given that ¢ = ¢y in the absence of the source j.

Green’s function: let’s try to find the so-called Green’s function G(z — y), which is the
inverse KG operator (0 + m?)~" written in coordinate space. By convention this Green’s
function is required to satisfy (0, +m?)G(z—y) = —id®(z—y) = —i6(z® —y°)0(F —7),
where the right-hand-side represents (up to the conventional factor —¢) the unit operator

in coordinate space. In momentum space this becomes

— d4p s —ip-(z—y) 4 d4p —ip-(z—y)
Gz —vy) = /(2ﬂ)4 G(p)e and 0*(z—y) = /(27r)4 ,
so that )
~ ) ~ 7
(- +m*)G(p) = =i = Gp) = o

The problem with defining the inverse of the KG operator is apparent now: it resides in
the fact that p*> —m? = p§ — (p* +m?) = pj —wZ: = 0 for the physical (anti)particles of the
KG theory. In these so-called on-mass-shell (or short: on-shell) situations with p* = m?
the Fourier coefficient of the Green’s function blows up, thereby leading to an ill-defined
Fourier integral. That brings us to the key question that we have to address if we want to

define a proper Green’s function:

how should we go around the poles of (p* — m?) ™! = (po — wy) *(po + wyp) !

while performing the Fourier integral?

There are several options for this, reflecting the fact that the Green’s function cannot be

defined uniquely. We mention here two useful possible definitions.

1) The retarded Green’s function: for taking into account influences that lie in the
past it is useful to shift the poles into the lower-half of the complex plane by an infinitesimal
amount —ie (see figure 2), where the infinitesimal constant ¢ € R* should be taken to 0

at the end of the calculation.
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Figure 2: Complex poles and closed integration contours for the retarded Green’s function.

Using the complex integration contours as indicated in figure 2, the Fourier integration

po :_wﬁ}

P — —p in 2nd term @(xo B yo) / dpr 1 (e,ip.(x,y) _ eip.(g;,y))‘
(2m)3 2wy

yields

je— i (z—y)

. dp je— P (z—y)
Dae —y) = O(a"~y)(~2ri) [ (W{ o

Po=wp o 2(,():5‘

L
Po=wp

which means that

Dg(z—y) = O(z" - y")(D(z —y) — D(y —z)) = O(2"—y°)(0|[(2), 4 (¥)]|0) .

Application: consider a real KG field coupled to an external classical source j(z) that is

switched on during a finite time interval. Then
(O+m*)(z) = j(z) €R,

which would correspond to an extra term + j(z)¢(x) in the Lagrangian (resembling a

forced oscillator). Before j(x) is turned on we have

A dp 1 . .
¢(l’) - ¢0($) N /(2:)3 \/2605 (dﬁe_w'x_f_d;elp'x) po:wﬁ’

with @g(z) a solution to the free KG equation (0 + m?)@o(z) = 0. After j(z) is turned
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on we have

~ ~

B(z) = dola) + i / d'y Da(z - 4)j(y)

2 : dp’ Jj(y ip-(a— i (o
= ¢o(x) + z/d4y/(2ﬂ)3 2(%3 @(xo_yO)(e p-(2—y) _ oip-( y))

po=wg

If 2° is smaller than the switch-on time of j then ©(z° — 4°)j(y) = 0 and only ()
remains, in agreement with the initial condition we started out with. If z° is larger than
the switch-off time of 7, then ©(z° — y°)j(y) = j(y). Using that [d*ye®¥;j(y) = j(p)

and [d'ye#vj(y) ££=

j*(p) we find in that case that

d(z) = /% \/%ﬁ{(&,—,» + 4 \‘;%)eip.x + (a}f — 1 3%)6@.9:}

Po=wp

I
—
S

3
s
E
<

and

A dp ot &
N(H) = /W w~a;r_faz—,»,

with IV denoting normal ordering. The operator &g is a quasi-particle annihilation oper-
ator, satisfying 3
i(p)

\/2(.{)‘5‘

So, the free-particle vacuum state |0) is now a quasi-particle coherent state. Its energy has

0) = A510) .

4z[0) = i

changed by an amount

AE, = (0|N(H)|0) = / ap 1|.7(p)|2,

(2m)* 2

. dp 4 dp
corresponding to <0|f(27r)3 0417045|0> = f(2ﬂ)3 A

quasi-particles.

o _ (9 P/
(27)?  wp

The particle interpretation has changed as a result of the influence of the ex-

ternal source! This example shows that particles and quasi-particles are derived

quantities and that the retarded Green’s functions are handy tools for dealing

with external influences that are switched on during a finite amount of time.

2) Feynman propagator: an alternative way of shifting the poles is given in figure 3. As
will be worked out in Ex. 5, this pole configuration is equivalent with replacing (p? —m?)~!
by (p? — m? + ie)™!, where again the infinitesimal constant ¢ € Rt should be taken to 0

at the end of the calculation.
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Figure 3: Complex poles and closed integration contours for the Feynman propagator.

Using the complex integration contours as indicated in figure 3, the Fourier integration

yields
4 — " —
d ip-(z—y)
—2m'/ b X if 20> 0
I (©219 LI S
F\T —Y) = )
dv e P (z—y)
+27ri/ p4 ze_ - if 20 <y
(2m) 2wy ——wy
\ Po = —wy

which means that
Dp(z —y) = O(2"—y")D(z —y) + O(y° — 2")D(y — 2)
= 0(z" — ") (0]6(2)' (1)[0) + Oy — 2°) (0] () d(x)[0)
(0T ($(=)$! ())[0) -

This is the definition of time ordering: the operator at the latest time is put in front. The

Feynman propagator Dp(z — y) is the time-ordered propagation amplitude.

@ The Feynman propagator will feature prominently in the derivation of scat-

tering amplitudes in perturbation theory!
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2 Interacting scalar fields and Feynman diagrams

The next eight lectures cover large parts of Chapters 4 and 7 as well as a few aspects of
Chapter 10 of Peskin & Schroeder.

@ The task that we set ourselves is to investigate the consequences of adding
interactions that couple different Fourier modes and, as such, the associated
particles. This will be quite a bit more complicated than the free theories that
we have encountered in the previous chapter, where the relevant quantities were
diagonal (i.e. decoupled) in the momentum representation and particle num-
bers were conserved explicitly. Even worse, up to now nobody has been able to

solve general interacting field theories. Therefore we will focus on weakly cou-

pled field theories, which can be investigated by means of perturbation theory.

Causality dictates us to add local terms only, i.e. ﬁ,nt(x) and not ﬁmt(x,y). In order
to investigate what is meant by “weak interactions”, the following interacting real scalar
theory is considered:

1 1 22 . )‘n n
L= 5(3;@)(3“@ —5m ¢” + Lint with Lint = — nz;g FQS (p €R),
where )\, € R is called a coupling constant. Note that L;,; = — H;n¢, since it contains

no derivatives. The corresponding Euler-Lagrange equation is not a simple linear (wave)
equation anymore:
An

1 2 /\n
¥ =0 = @Fm)e = _; (n—1)!

0u(0"¢) + m’¢ + gt
n>3

Since 74 = 0p¢ is unaffected by the interaction, the quantum mechanical basis
[(13(37), #4(y)] = i6(f — 7)1 and all other commutators being 0

is the same as in the free KG case. Hence, ¢(#) and #4(#) can be given the same Fourier-
decomposed form as before (cf. page 14). However, since the non-linear qgnfl term contains
for example (a")"~!, the number of particles is not conserved anymore as a result of the
interaction. Consequently, also the particle interpretation, which can be obtained from the

Hamilton operator, will be different.

2.1 When are interaction terms small? (§4.1 in the book)

To answer this question we have to perform a dimensional analysis: the

action S = [d'z L is dimensionless, so L must have dimension (mass)!, or
short “dimension 4”. The shorthand notation for this is [L] = 4.
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Kinetic term: the kinetic term has the form (0,¢)(0*¢). Since [9,] = 1, that means

that [¢] = 1, which is consistent with the dimension of the mass term oc m?¢?>.

Interaction terms: since [¢"| = n, the coupling constants have a dimension [A,] = 4—n.

So, A, is not dimensionless, except when n = 4. Three cases can be distinguished:

1. Coupling constants with positive mass dimension. Take A3 as an example. Using

the dimension of the field, we can see that [A;] = +1. In a process at energy scale E
the coupling constant A3 will enter in the dimensionless combination \3/FE. The ¢3

interaction can therefore be considered weak at high energies (E > A3) and strong at

small energies (E < \3). For the latter reason such interactions are called relevant.

2. Dimensionless coupling constants. For our real scalar theory, the only dimensionless

coupling constant is A4 since [Ay] = 0. The ¢* interaction can be considered weak if

the coupling constant is small (Ay<1). Such interactions are called marginal, since

they are equally important at all energy scales.

3. Coupling constants with negative mass dimension. For the coupling constants with

n > 5 we have [A,>5] =4 —n < 0. In a process at energy scale E the coupling
constants A, >5 will enter in the dimensionless combinations A\, E"~% The ¢"=> inter-

actions can therefore be considered weak at low energies and strong at high energies.

Because of this suppressed influence on low-energy physics, such interactions are

called irrelevant. Such interactions have their origin in underlying physics that takes

place at higher energy scales.

@ Complication: it is impossible to avoid high energies in quantum field
theory, because of the occurrence of integrals over all momenta at higher orders
in perturbation theory. We have in fact already encountered an example of this

in § 1.8 while discussing the zero-point energy and its infinities.

2.2 Renormalizable versus non-renormalizable theories

Renormalizable theories: a renormalizable theory has the marked property that it is

not sensitive to our lack of knowledge about high-scale physics. It therefore

e keeps its predictive power at all energy scales in spite of the occurrence of high-

energy effects in the quantum corrections;

e can be used to make precise theoretical predictions that can be confronted with

experiment;

e does not involve coupling constants with negative mass dimension.
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Guided by our quest for the ultimate “theory of everything”, the prevalent view in high-
energy physics used to be that any sensible theory that describes nature should be renormal-
izable. However, this requirement is based on the unrealistic assumption that any theory
that attempts to describe aspects of nature has to be valid up to arbitrarily large energies. It

is much more likely that at some energy scale new physics will kick in, causing the original

theory to be incomplete.

Non-renormalizable theories

@ In situations where our present theoretical knowledge proves insufficient or
where we prefer to describe the physics up to a minimum length scale, another
class of theories is particularly useful. These mostly non-renormalizable theories
are obtained by parametrizing our ignorance (scenario 1 discussed below) or by
“integrating out” known/anticipated physics at small length scales (scenario 2

discussed below).

Non-renormalizable theories, scenario 1: unknown new physics.

Suppose that we are starting to observe experimental deviations from our favourite model of
the world, caused by some unknown high-scale physics. If we only have access to this high-
scale physics through low-energy data (see the Fermi-model example below), we sometimes
have to content ourselves with an incomplete model that describes the physics as seen
through blurry glasses. In that case we only know the physics up to a certain energy scale p
(i.e. down to a length scale 1/u) with higher energy scales (i.e. smaller length scales) being

integrated out. This will in general result in a non-renormalizable effective theory that

describes nature up to the energy scale p and a Lagrangian that will parametrize our lack
of knowledge about the physics that takes place at higher energy scales. Such effective

theories

e have limited predictive power, since the physics at high energy scales E > u is not

described properly;

e can contain interactions with coupling constants of negative mass dimension, which

would formally lead to uncontrolled UV infinities at higher orders in perturbation
theory as a result of integrals over all momenta (if we would assume the theory to

be correct at all energy scales, ... which would be incorrect);

e can nevertheless be used to make reliable predictions at O(u) energies provided that

the unknown high-scale physics resides at an energy scale Ayxp > u;

e may reveal at which energy scale the unknown high-scale physics must emerge.
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Non-renormalizable theories, scenario 2: known/anticipated new physics.
The moment we (think to) know the underlying physics model that is responsible for the

observed low-energy phenomena, we can explicitly integrate out the high-energy degrees

of freedom from the model. This results in the same type of effective Lagrangian, but this

time the underlying physics model has left its fingerprints on the coupling constants. For

instance, if the energy/mass scale of the underlying physics resides at Ayp, then this scale
will act as a natural scaling factor in the couplings. This procedure of explicitly linking
the coupling constants of the effective theory to the parameters of the underlying physics

model is called matching.

L
high-energy theory fields ¢, ®
L(p)+ L'(¢, D) mass m, M

=M |— — — — — — — matching — — — — — — — _—
low-energy effective theory field ¢

p<M L(P) + Lint(@) mass m << M

Figure 4: Schematic display of a low-energy effective theory containing a light field ¢ with
mass m, originating from a high-energy theory that also includes a heavy field & with

mass M.

Example: the Fermi-model of weak interactions. This probably sounds rather ab-
stract, so let’s have a closer look at the above-given statements by considering an explicit
example. The so-called Fermi-model of weak interactions has in fact started out along the
lines just described. In this example the role of Ay is played by the mass M, of the W
boson. As will be explained in courses covering the Standard Model, decay processes like
p~ — v,e 7. (muon decay) proceed through the exchange of a W boson with a mass of
about 80 GeV between the particles. The associated decay amplitude contains a factor
1/(p> — M2), originating from the propagator of the W-boson (cf. page 25), and two
factors of g, corresponding to the coupling constant of the weak interactions. However, at
the typical energy scale of the decay process, i.e. E = O(m, = 0.1 GeV), the momentum
carried by the W boson is much smaller than its mass M, . In that case, the propagator
factor is perceived as having a constant value:
g p? < M2 g2

\ 2 4
P2 — M2 Y + (’)(p/MW) .
w w
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In terms of a diagrammatic representation of the physics that goes on in the decay process

(see later) this corresponds to

- [

On the basis of such “low-energy” decay processes the existence of (effective) 4-particle
interactions was postulated (Fermi, 1932), with the corresponding dimensionful effective

coupling constant (Fermi-coupling) being small in view of the absorbed 1/M? suppres-

3

sion factor. This explains the name “weak interactions”, which simply refers to the fact

that these interactions were perceived as weak at low energies. At p>=O(M?)) the weak-

interaction physics underlying the W-boson exchange will reveal itself and the weak inter-

actions will no longer be weak.

@ This is of course all hindsight, since in 1932 the correct model for the weak
interactions did not exist yet. In fact, the above argument can be reversed. The
low-energy Fermi-coupling was measured to be of O(107° GeV %) ~ O(A2),

which correctly signals that the physics underlying the weak interactions must
reveal itself at an energy scale of O(100 GeV).

Planck scale: applying the same reasoning to the even smaller gravitational constant,
i.e. G = O(107% GeV~?), we would predict that gravity becomes strong at an energy scale
of O(10' GeV), which is commonly referred to as the Planck scale Ap.

Generic properties of effective field theories: the philosophy behind effective field
theories is mostly a pragmatic one. If you want to describe certain physical phenomena
quantitatively, it is an overkill to use a physics model that also gives details about experi-
mentally inaccessible phenomena (like strong gravitational effects). In that case it is more
practical to make use of a simpler, effective description that captures the most important
physics of the system without giving unnecessary detail. Additional (small) effects result-
ing from the more fundamental theory can be taken into account by adding them as small

perturbations (like relativistic corrections in non-relativistic quantum mechanics).

Consider for instance a fundamental theory with dimensionless coupling constants that
describes the world at O(Ayp) energies. Assume, for argument’s sake, that this theory
contains a real scalar field ¢ that describes light particles with mass m < Ay and an-

other real scalar field ® that describes much heavier particles with mass M = O(Ayp).
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The laws of physics at £ < Ayp are best formulated in terms of the light scalar field with
interactions that are produced by the fundamental high-energy theory. After all, the heavy
particles cannot be produced directly at these energies and therefore it is more practical
to remove them from the description (i.e. integrate them out). This results in an effective
Lagrangian as given before with effective couplings A, = g,/A%.*%, where g, is a dimen-
sionless coupling constant governed by the high-energy theory. So, the impact of the ¢"~°
terms on physics at F < Ayp is suppressed by factors (E/Ayp)" ™%

e The interactions that are most likely to affect low-energy experiments are the renor-

malizable ¢ and ¢* terms. That is why at sufficiently low energies effective theories

only contain renormalizable interactions.

e The other interactions are suppressed at low energies and can therefore either be
ignored or incorporated as small perturbations. This aspect makes it possible to
include formally non-renormalizable interactions in the theory without spoiling its
predictive power at low energies. At high energies this is not true anymore, but there

the full glory of the underlying high-energy theory should be taken into account.

e Since the impact of the ¢" terms is extremely small for larger n, it is in general very

tough to figure out the entire high-energy theory from low-energy data alone!

Remark: the physics at different length /energy scales can be related through the so-called
renormalization group (see later). In particular in condensed-matter physics this renor-
malization group is a powerful analyzing tool, since different condensed-matter phenomena
are quite often governed by different characteristic length scales. As we will see later, also
in high-energy physics the renormalization group will prove very handy. The main dif-
ference between the field-theoretical treatments of both branches of physics resides in the
absence of a smallest length scale in high-energy physics, whereas the atomic scale provides

a natural cutoff in condensed-matter physics.

2.3 Perturbation theory (§4.2 in the book)

@ Our ultimate aim is to calculate scattering cross sections and decay rates,
from which information can be obtained on the fundamental particles that exist
in nature and their mutual interactions. The following two models will be used

in the remainder of this chapter:

1. ¢*-theory: £ = 1(9,0)(0"¢) — im?¢? — 5 ¢* with ¢ € R. This model contains the
type of quartic interaction with dimensionless coupling constant that also features in

the Higgs model.
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2. Scalar Yukawa theory: £ = (9,0*)(0"¢) + 5 (8,9)(0*¢) — M**p — tm?¢? — gY*ip¢
with ¢ € R and ¢ € C. This is a toy model that resembles the Yukawa theory for

the interaction between fermions and scalars, which will be discussed at a later stage.

Apart from spin aspects these two theories differ in the dimension of the coupling
constant, being +1 for the scalar Yukawa theory and 0 for the true Yukawa theory.

Non-relativistic quantum mechanics: in non-relativistic quantum mechanics scattering re-

actions are characterized by

e asymptotic free (non-interacting) situations at ¢ — F oo, involving free particles in

beam, target and detector (due to negligible wave-function overlap);

e a collision stage around ¢t = 0 when the colliding particles interact/vanish and new

particles may be produced.

Quantum field theory: we would like to use the same reasoning in quantum field theory,

assuming the initial and final states of the reaction to be free-particle states. In that case
the initial and final states of the reaction would be eigenstates of the Hamilton operator
of the free Klein-Gordon theory, which are therefore also eigenstates of the particle and
antiparticle number operator. In the end we will have to correct for two aspects that are

not taken into account properly in this way (see later):

e bound states may form;

e more importantly, a particle well-separated from the other particles in the reaction is
nevertheless not alone in quantum field theory, being surrounded by a cloud of virtual

particles. It is not possible to switch off interactions in quantum field theory, so we

have to correct for this later.

The Heisenberg picture: let’s ignore these issues for the moment and try to develop a
calculational toolbox based on the asymptotic free situations at ¢ — + oo. As mentioned
on page 27, we start out with the same quantum mechanical basis as in the free theory,
so the Schrodinger picture field (]3(92" ) can be given the same Fourier-decomposed form as
before. The fact that we are dealing with an interacting theory manifests itself through the
time-independent Hamilton operator, which is used in the Heisenberg picture and which

is needed for determining the particle interpretation:
B = Hy+ Hu = Hy +/dmmt<f) A, —/da? Lol @)

The interaction Hamiltonian H;,; is assumed to be weak compared to the Hamiltonian
Hy of the free theory. In the last step we have used that there are no derivatives in the

interaction, so H;,; = — Lins- This leads to Heisenberg fields

~

b(z) = §(t, ) = MG(@)e ",
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where et introduces extra creation/annihilation operators as a result of the presence
of f[mt and therefore changes the particle content and interpretation of the creation and
annihilation operators. The ground state of the interacting theory will be denoted by |2},
which in general does not coincide with the vacuum state of the free theory (see the exam-

ple on page 25). For this state we have H|Q) = Eo|Q), with E, the lowest energy level.

The interaction picture: the asymptotic free situation can be described by the free-

particle Hamilton operator Hy, so the corresponding time-dependent fields are given by
b,(a) = (@) it

and are called interaction-picture fields. This is actually the situation we have encountered
in the previous chapter, i.e. ¢,(2) = ¢gee(z). The creation and annihilation operators
have the same meaning as in the free theory, so the ground state is in this case the stable

vacuum |0) of the free theory, with N(H)|0) = 0 after normal ordering.

Switching between pictures: there is an operator that allows you to switch between
interaction picture and Heisenberg picture:
da) = MY(F)e M = MtemtG, (2) e = U7 (1,0)9,(2)U(2,0) -
The operator U (t,0) satisfies the differential equation
22 (](t 0) — eiﬁot(ﬁ_ﬁo)e—iﬁt — eiﬁotﬁinte—iﬁoteiﬁote—iﬁt P&S.
ot~
with boundary condition U(0,0) = 1 and with H,(t) only referring to the interaction
term (according to the definition in the textbook of Peskin & Schroeder).

H,t)U(t,0)

@ This constitutes a natural starting point for a perturbative exrpansion:

A

Ut>0,00 =1+ (—i)/tdtl H,(t,)U(t,0)

t t t1 R R
- (_i)/ dts (1) + (-i)?/ dt1/ Aty (1) () + -+ |
0 0 0

A A

where the product H,(t1)H,(t2) in the last term is ordered in time. In Ex.6 it will be
derived that

R [ee] _A\n t t R R
U(t,0) = T<efif0tdt'HI(t’)> — Z %/dtl---/ dt, T(H,(t1) - H,(t,)) ,
n=0 ’ 0 0

n

which can be truncated at the required perturbative order. Such an object is called a

time-ordered exponential. For now we will define time ordering according to

. R O1(t1)0s(ts)  t1 >t
T(Oi(t:)0s(t2)) = §
Os(t2)O1(t1) ta >t
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Later on we will have to extend the definition of time ordering to fermionic operator fields.

Since I:II(t’) consists of interaction-picture fields only, we have succeeded in

rewriting ¢(x) in terms of free fields through ¢(z) = U 1(t,0)¢,(z)U(t,0).
The definition of U can be extended to arbitrary reference points:
Ult, t) = efloteilt-t)—illots — Fr(¢ 0T 1(t,,0) .

9 . ..
This operator still satisfies the differential equation z& U(t,t1) = H,(t)U(t,t1), but with

boundary condition U(tl, t) = 1. The same procedure as before yields:
U(t,tl) _ T(e—ifttldt’ffl(t')) (t > tl) )
This operator has the following properties that follow trivially from the above-given defi-

nition of U(t,t;):

A~

U(tl,tg)ﬁ(tg,tg) = U(tl,tg) and UA'(tl,tg)Uil(tg,tg) = U(tl,tg) .

Note that we have not used that Hy and H are hermatian, by sticking to U-!
instead of writing U'. So, U(t, t,) can be generalized to non-hermitian H,(t) or
complex-valued time trajectories, as is used in some of the textbooks on quantum

field theory in order to deal with the problem of switching off interactions.

2.4 Wick’s theorem (§4.3 in the book)

The scattering amplitude for going from a free-particle initial state |i) to a free-particle

final state |f) now takes the form

lim (f|U(ts,t)|)) = (fIS1) = (FIA+iD)]e) -

t+ —+oo

In this expression the matrix (f|S]i) is called the S-matrix (scattering matrix), the unit

operator occurring on the right-hand-side corresponds to the case where no scattering takes

place, and T is the transition operator that describes actual scattering.

Question: what should be done to calculate such an S-matriz element at

lowest order in perturbation theory?

The clumsy way of calculating S-matrix elements: let’s consider the scalar Yukawa
theory, where Hi, = g [d# ¢!(Z))(Z)4(Z). Remember that ¢ is a complex Klein-
Gordon field, i.e. dAff ;é@/;, whereas ¢ is a real Klein-Gordon field, i.e. ¢§T :¢A5. Then we have:

lim T(ty,t) = T(en I 5mO) = i — g / d'z §!(2)9,(2)d,(z) + O(g?) .

t+ —+oo
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Consider the following decay process within the scalar Yukawa theory:

$(0) = Y(@) +9(@) ,

where ¢(p) denotes a ¢-particle with mass m and momentum p, whereas (g;) and

¥(g2) denote a t-particle and a t-antiparticle with mass M and momenta ¢ and ¢

respectively. The ingredients for the calculation are:

i) = 2wzal|0),
(f| = /2wg2wg, (0|ég by

)
Wi ko=wp=+/ k24m?2

(Z;Ele’ikl'” + el e““””) ,

(271-)3 V 2&);1 . kg =wi; \/m
1

=VE
p dk 5 —ikaw | ko
wT(x):/ (C~612x+b~622$)
' (2m)* /2, H g =vEE
Using that (f|i) =0 we get

(11311 = Bwpwgn Olésbs (~io [ dto §}(0)d, (00, (2))

Since the a-, b- and ¢-operators mutually commute, the d;% term in QASI can be commuted

0) .

) —+

to the left and will annihilate the vacuum. Similarly IA),—C»I in 1&, and ¢z in zﬁ;' can be
commuted to the right and will annihilate the vacuum there, bearing in mind that the
vacuum expectation value of an operator that involves an odd number of é-operators

vanishes trivially. In other words, only the a; term in QASI, the é;% term in zﬁ, and the 8;%
1 2

term in @Z;;f will contribute:

. dkdkydky / wswe wa \+ F
N 4 1dr2 1%G2 \2 Ji(kit+ka—k)z /)| A Poat o yaf
<f|S|7’> - _Zg/d l’/// (271')9 ( Lt et ) 6( 1tk ) <0|Cq*2b¢71 (b%célalz) aﬁ|0> .

Wi Wi Wi,

We know that
azapl0) = [ag,af] |0) = (2m)*8(k —7)0)
and similarly that
(01bgbL = (0](2m)*6(ka— @)  and  (0]égel = (0](2m)°6(ky — Gb) -
This leads to the following result for the lowest-order decay amplitude:

(fISli) = —ig /d4x eeta=e (00) = —ig(2m)*s™ (¢ + ¢ — p)
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with ¢ the strength of the interaction that is responsible for the decay. The §-function
ensures that energy and momentum are conserved in the decay. In the reference frame
of the decaying particle we have: p = (m, 6) = qG+@ =0, wq + wgp = m with
wg = \/m > M for 57 =1,2. So, the decay is only possible if m > 2M.

The smart way of calculating S-matrix elements:

@ the trick will be to bring all creation operators to the left and all annihilation
operators to the right, with the vacuum state doing the rest. In other words,
in order to calculate S-matrix elements we need a way to rewrite time-ordered

fields in normal-ordered form ... as will be provided by Wick’s theorem!

Step 1: consider a real Klein-Gordon field
5 dp e P® / dp e?* . o .
r) = — ——— a5z + — Q- = r) + x),
¢I( ) /(27_‘_)3 \/ﬂﬁ P (271_)3 \/27(.4)[,* ) ¢I ( ) ¢I ( )
where the first term corresponds to the positive-frequency part and the second term to the

negative-frequency part. The qgj and (]3; fields have the following useful property:
Fr@0) =0 and  (0]d,(x) = 0.

Since g%j’ only contains annihilation operators, the fields QAS;F(a:) and éj(y) commute.
Similarly, g%l_ only contains creation operators, so the fields QASI_(a:) and $; (y) commute

as well. As a result

0

2>y T(6,(2)8,(%) = (67 () + 6, (2)) (¢ (v) + &, (¥))

= N(¢,()¢,(2)) + [¢] (v), 6, (x)] = N(¢,(2)¢,(y)) + D(y—2)1.
Now we define a so-called contraction:

N R R [‘%j@)vé;(y)] = D(x—y)i if z%>¢y° A
¢1(x)¢1(y) = ¢I($)¢I(y) = . . A = DF('T_y)lv
— [0 (y), 0, (x)] = Dy —=z)1 if 2°<y°
with Dp(z — y) the Feynman propagator of the free Klein-Gordon theory. With this

definition, the time-ordered expression can be rewritten as
—

T(4:(2)d;(y)) = N(6,(2)6,(y)) + (), (y) -

As a consequence of normal ordering we get, as expected, that
(0T (6,(2)#,(y))10) = 0 + Dp(z —y) .
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Step 2, Wick’s theorem: let’s for the moment skip the annoying subscript I and use
the shorthand notation g§j = ¢§I (x;) for j=1,---,n. Wick’s theorem then states:

T(p1---pn) = N((ZSl e ggn + all possible contractions) .

For example:

1 1 [ 1

T(<51<732<53<134) = N(<51<732<53<£4 + P120301 + D102P30a + P1dadada + Prdadzda + P13

S I L
+ Q120304 + P1P20304 + P1P20304 + ¢1¢2¢3¢4) ;
AU o s
with N(¢1¢2¢3¢4) = DF(xl — xg)N(¢2¢4)
The decomposition stated in Wick’s theorem has the following important consequence:

leftover (uncontracted) normal-ordered terms vanish upon taking the vacuum

expectation value!

For example:

<0|T(<131<132<733<134)|0> = Dp(w1 — 29)Dp(23 — 24) + Dp(21 — 23)Dp(xy — 74)
+ DF(xl — l’4)DF(.TQ — .773) .

@ Feynman propagators thus play a central role in the resulting expressions.

Proof of Wick’s theorem: assume that the theorem is correct for all n < m—1, knowing
that it is okay for n = 1,2. For convenience we take x% > 29 > --- > 20 | bearing in mind

that the order of the scalar fields is irrelevant for time ordering and normal ordering. Then

~ ~ ~ ~ ~ ~

T(hr bm) = b162 - bm = 0T (¢ Ppm)

by assumption - -

¢1N(g§2 e qAﬁm + all possible contractions of ¢§2 )

= (6{ +1)N(--+) = o{N(-++) + N(¢y --+),
where in the last step we have used that (]31_ contains creation operators only and therefore
already is in the right position. In contrast, q@f contains annihilation operators only and
should be placed after all other fields. To get it in normal-ordered form, we need to

commute it past all other fields:

DFN(---) = N(---)¢7 + corrections for all uncontracted <]3]-_>1 :
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For instance:
SIN(ds- bm) = N([oF, 0515 bm + GoldT, 03104~ I +

~ ~ ~ ~

0 . T . AU, .
=L N2 bm + 10283+ O + P1d2d3da b + -++)
where we have used that N (@ --- ¢m)d = N(Gf s - ¢m). Consequently
$1N(¢§2 e $m) = N(¢A51¢A52 . $m + all single contractions of ¢; with another ¢§]) .

The other (contracted) terms can be worked out in an analogous way, completing the

inductive proof of Wick’s theorem.

2.4.1 Green’s functions: Heisenberg vs interaction picture (§ 4.2 in the book)

Before setting up a diagrammatic notation based on Wick’s theorem, we first introduce the
fundamental quantum mechanical objects to which this theorem should be applied. To this

end we consider n-point correlation functions (Green’s functions) in the full interacting

scalar ¢*-theory: A .
(QIT (¢(x1) -~ d(xn) ) |2)
(€)2) '

Here ¢(z1),---, d(x,) are Heisenberg fields in the interacting theory and |Q) is the ground

G(n)(xl, . .,xn) =

state of the interacting theory, which satisfies
HIQ) = E|Q) and (QQ) = 1.

These Green’s functions play an important role in the derivation of scattering amplitudes

and are interesting objects in their own right, for instance for studying density pertur-

bations. Without loss of generality we can take 2§ =t > 23 = t, > --- > 20 = ¢,,
so that
<Q|T(¢(l‘1) .- ¢(93n))|9> = <Q|¢(931) e ¢(%)|Q>

U(t1,t2) f](tn 1,tn)

2011 (t1,0),(21) D000 (,0) -+ Dltass 00 (.0 &, ()0t 0[2)

Projecting on the free-particle vacuum: for an arbitrary state |¢) it will prove handy
to consider

N Hp|0)=0 i completeness relation for H it
(W[0(0,-)]0) === ([e"™*|0) > (@le™[n)(n|0)

n

= e (|Q)Q[0) + Y et (y|n)(n]0)

n#Q
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and subsequently take the limit ¢_ — —oo. The “summation” over the excited states
{In) # |2)} is just a shorthand notation, in fact it will involve an integration over energy
(see later). Provided that there is a finite energy gap between the ground state |2) and
the excited states |n#Q), as is for instance the case for massive excitations, we can employ
the Riemann—Lebesgue lemma. This lemma states that

: o By _
ﬁLufoo : dv f(v)e 0

for any integrable function f and any compact or non-compact interval [vg,v;]. Using this
lemma one finds for an arbitrary state |¢) the identity

e (00, )]0) 3 e I
A T ) Wi+ tim_ 2, R

Similarly we can derive the identity

iEot 3
o e OIU (s, 0)Y)
s +oo (0[2)

= (Qy) .

This procedure closely resembles Fermi’s Golden Rule for time-dependent perturbation
theory. By supplying |0) with the right frequency factor and waiting long enough, only
the |Q2) component of |0) survives as a result of destructive phase interference.

Note: on pages 86 and 87 of the textbook by Peskin € Schroeder the same
identities are obtained by tilting the time axis according to t — t(1 — ie) with
€ € R infinitesimal. This procedure is closely related to the ie prescription for
obtaining the Feynman propagator in §1.6.

Inserting these identities in the numerator and denominator of the Green’s functions yields

(QIT (1) - d(@a)) 1) g

t1) Utn,t—)

i et ) QLU0 07 (01,00, (2)0 (b ta) - Ultacs, )y () Uk, 0)U10.£-) [0)
e (019 (220)

— lim ez‘EO(tJr_t,) <0|T($1(x1) ¢I(xn) (t+’ ))|0> = BT <0|T($I(ZB1) B $I(1’.n)'§)|0>
tamkoo (Q]0) ]2 N [(©210)?

and

m 01 (Q[0) RRERICDE

<Q|Q> — lim eiEo(t_,.ft_) <0|0(t+7 0) U(Ovt—)|0> _ BT <0|;§|0>

resulting in the following combined expression for the n-point Green’s function:

<0HT$AxO-~$A%J§)m>'

Gl m) = (01510




@ A Green’s function in the interacting theory can be expressed in terms of
time-ordered vacuum expectation values of free interaction picture fields and the

time-evolution S-operator, which too can be fully expressed in free fields.

Please also note that since (Q|Q) = 1, it follows that (0/S]0) oc e=#oT. This implies that
the vacuum expectation value of the S-operator (0|50} is related to the phase difference
caused by the difference in ground-state zero-point energies of the interacting theory and

the free theory, the latter of which was defined to be 0 in the discussion above.

2.5 Diagrammatic notation: Feynman diagrams (§ 4.4 in the book)

In order to study the implications of Wick’s theorem we will focus here on the interacting

scalar ¢*-theory, with the scalar Yukawa theory being worked out in the exercises.

@ For calculating amplitudes it will prove handy to introduce a diagrammatic

notation, called Feynman diagrams, for time-ordered vacuum expectation val-

ues of interaction-picture fields.

Propagator | : we start with a diagrammatic notation for contractions

Ty T2

OIT (3,(21),(22))10) = &,(21)$,(22) = Dp(z1—22) = o—n |

where the solid line represents the contraction (propagator) and the dots at the end of

the line represent the so-called external points in position space. From this it follows, for

example, that

1 2 z1 T2 1 o
O (b, (1) - by (@) |0) = " I I . I I
T3 T4 T3 T4 T4 T3

In order to deal with the Green’s functions introduced in the previous section, we will need

more complicated vacuum expectation values of the form

t+ —+oo

lim <0|T<‘£I(x1>---é,<xn>e‘”3”tﬁ’“)>|0>,

so let’s further develop the diagrammatic notation. We again start with the case n = 2:

(01T (8, (21)6, () e~ 4" (@) o) 222 <0|T(q3,<x1>q3,(x2>[i—z' /d‘*a: LAGREE -]) 0).

We can now calculate this quantity up to the required perturbative order.
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Lowest order:

T T2

(0T (¢,(1)8,(22))]0) = Dp(wr —z2) = oo

First order in A:

01T (dye)d e[~ [ 3 51 ) 0

Wik 5 (2) [ % (016,208, (22)0, ()0, (2)3, (2)3, ()0

| 1 | 1

r12(52) / d'z (0], (21)8, (22)8,(2)B,(2)8, (2),(x)0)

= - %DF(xl — I3) /d4x Di(x—x) — %/d%‘ Dp(zy — z)Dp(z2 — ) Dp(z — )

I T2 1| ( ) T2
= — o T + .
Xz

: the spacetime point = that is integrated over is called an internal point or vertex.
To such a vertex we assign the analytic expression —iX [ d*z, which is the amplitude for

emission and/or absorption of particles at the spacetime point z, summed over all points
where this can occur. Also notice that we encounter for the first time pieces of diagram

that involve closed loops.

An example of a higher-order term involving three powers in A:

1 /—1iA " a P A U
P (4—2!)3@'@(“)@('””2) [ e 06,60, [aty 0.0, [426,6,6,:8,0)
)3
= %/d4x/d4y/d4z Dp(z1—2)Dp(x—2)Dp(z2—y)Drp(zy—y)D%(y—2)Dp(2—2)
| : T

z ()

Here [d'z ¢,¢,¢,¢, is a shorthand notation for [d'z ¢,(z)¢,(x)d,(z)d,(z). The fac-

tor %(’4—?‘)3 follows directly from the expansion of e—iJd'a (@)

represents the number of times the contractions can be permuted without changing the

, whereas the factor P

contribution. This permutation factor is a product of the following terms:
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3! from permuting z,y and z;
e 4 x 3 from the z contractions;
e 4 x 3 from the y contractions;

e 4 x 3 from the z contractions;

From the O(A\) and O()\3) examples we see that the factor 1/n! is cancelled by the n!
permutation factor from interchanging vertices, and that the factors 1/4! are largely com-

pensated by the number of ways the contractions can be placed into qgléqulél.

Symmetry factor ‘ : we end up with a leftover factor 1/, with S the symmetry factor that
represents the number of ways in which diagram components can be interchanged such that
exactly the same diagram is obtained.

xr T T T xr xr
Examples: .1&.2 Q@ .1_@_.2 @3

S=2x3'=12

The expression <0|T(g§,(x1)¢§l(:c2) e_ifd‘l”ml(””)) |0) can now be represented
by the sum of all possible Feynman diagrams with two external points, where a
Feynman diagram is a collection (drawing) of propagators, vertices and external
points. The rules for associating analytic expressions with specific pieces of
diagrams are called the Feynman rules of the theory.

Feynman rules for the scalar ¢*-theory in position space:

xXr xXr
1. For each propagator o4 insert Dp(xzy — z2).
2. For each vertex >-< insert (—i)) [d*z.
xXr

3. For each external point o’ insert 1.

4. Divide by the symmetry factor.

@ Given a specific diagram, the complete analytic expression is obtained by
multiplying the above-given analytic expressions for the specific pieces of the

diagram.

Switching to momentum space: usually it is more convenient to work in momentum

space, rather than position space. First we consider the Feynman propagator:

d*p 7 iz rL P T2
Drla =) = /(27r)4 P2 —m? e = e

Y
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where the sign (direction) of p is arbitrary since Dg(z; — x3) = Dp(xzy — 1) for a scalar
field. In other words, we can assign a four-momentum p and complex factor i/(p? —m?+ie)
to each propagator, indicating the direction of the momentum flow by an arrow. This arrow
has no deeper meaning than that in ¢*-theory, but in the scalar Yukawa theory it will be
needed to distinguish particles from antiparticles. Using this momentum-flow convention

a vertex corresponds to the following Fourier integral:

P4 P1
p3 P2
On the left-hand-side of this equation the integral follows from the Feynman rule for the

vertex and the exponential factor is caused by the momentum-space expressions for the

Feynman propagators.

@ In momentum space we hence obtain four-dimensional d-functions that rep-

resent energy-momentum conservation at each vertexr. These §-functions can

be used to perform some of the integrals that originate from the Feynman prop-

agators, causing many of the propagators to be off-shell (i.e. not on-shell).

Feynman rules for the scalar ¢*-theory in momentum space:

p
1. For each propagator e—»—e insert i/(p* —m? + ie).
2. For each vertex >-< insert —iA\.

. r ~
3. For each external point e—<— insert e "%,
X

4. Impose momentum conservation at each vertex.

4,
5. Integrate over each undetermined momentum p;: [ éTp)ﬁ.

6. Divide by the symmetry factor.

Vacuum bubbles: the pieces of diagram that are disconnected from the external points

are called vacuum bubbles. For example:

1 | s 1 | 1 b1
[4t6,2)6,6,@)6,0) [a'96,08,00Wéw = w X ¥ ym
p2

The corresponding diagram will give rise to two energy-momentum J-functions
(2m)*6™ (p1 + p2) (27)*6™) (p1 + p2) -
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Upon inserting the first d-function, the last §-function will yield 6((0). This represents
the infinite spacetime volume factor that originates from the fact that this vacuum bubble
can occur at any spacetime point! We have in fact already encountered an example of such
an IR divergence in § 1.3 while discussing the infinities of the zero-point energy. Let’s now
label the possible vacuum bubbles by

V1 V3
V2 V4
then the following identity holds:

O1T (,(@0),(w2) e T #=7) 0) = eEJ'VJ'< womn (o

xr

DN .,_>.(2)

The part between parantheses on the right-hand-side is the sum of all connected diagrams,

i.e. continuous drawings that connect external points, whereas the exponential factor in
front is the vacuum-bubble contribution. This vacuum-bubble contribution involves no

external points and is therefore given by
eXiVi = <o|T( —i e )|o> — (0]3]0) .

Note: in the ¢*-theory each vertex has an even number of lines coming together. So,
r1 and z» must be connected to each other. The reason for this is that internal lines of
a diagram connect two vertices and therefore count as two lines that are attached to a
vertex. As such, a connected piece of diagram involves an even number of external lines

and points.

Proof of identity (2): consider a diagram with n; vacuum bubbles of type V; and one

connected piece without vacuum bubbles, like

o306

connected piece
p ng — 2

From the Feynman rules it follows that

analytic expression diagram = (analytic expression connected piece) x (H — (V)™ ) ,
J
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where the symmetry factor comes from interchanging the n; copies of V;. Hence we find

<O|T(¢A51(x1)¢31(:c2) e’ifd‘l’”ﬁf(’”)) |0) = sum of all diagrams

1
= Z Z (analytic expression connected piece) x (H — (V])m)
all possible ~ all {n;} PR
connected pieces
1
= (sum of all connected diagrams) x Z (H — (V])m>
n

= (sum of all connected diagrams) x <0|T(e’”d4’”ﬁ1(x)) |0} .

The only thing left to prove is that the last factor is indeed equal to e2i":

% = L = T 1 097) = (32 5 (0 (30 o 047 -+

ni n2

J nj

= > (ITom0)

all {n;} J )

We can generalize the above-given separation between connected diagrams and vacuum
bubbles to

OIT (8,(0) -+ ) =279 o)

= <0|T(e’”d4’”ﬁf (’”)) |0) x (sum of all connected diagrams with n external points) .

This means that the vacuum bubbles vanish in the definition of the Green’s function (see

page 40), leaving behind connected diagrams only.

1 T2
For 4,6, - - - external points such connected diagrams contain diagrams like q {(){)
that do not have all external points connected to each other. 3 T4

Remark: as mentioned on page 41 the sum of all vacuum bubbles . V; = log(<0|§|0>) =

—1EyT is actually related to the difference in the ground-state zero-point energies of the

interacting theory and the free theory, with the latter being defined to be 0. Bearing in
mind that V; contains an infinite spacetime factor (27)*3*)(0) = VT, the energy density

of the ground state of the interacting theory reads

E, Im(V; Im(>_,V;
_:_Z Vi) _ (2,15)

v VT~ (2m)4@(0)

The long-distance infinity from the infinite extent of spacetime has been removed in this
way, leaving behind the UV infinity that reflects our ignorance about the physics governing

the ultra-high-energy regime.
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2.6 Scattering amplitudes (§4.6 in the book)

@ At this point you might wonder what such time-ordered vacuum ezxpecta-
tion values of interaction-picture fields have to do with amplitudes for decay

processes or scattering reactions.

In order to calculate scattering cross sections and decay rates we will have to work out
plane-wave amplitudes of the form . (p1ps - - - |EAEB>M. Here |EAEB>Z-” is the so-called
“in-state”. In the case of scattering this is a 2-particle momentum state that is constructed
in the far past, also referred to as “the initial state”. Similarly ,,:(p1p2 - - - | is the so-called
“out-state”, which represents the final state particles in the far future, i.e. the particles

that will end up in the detectors of the experiment.

@ Since the detectors are in general not able to resolve positions at the level of
the de Broglie wavelengths of the particles, it is correct to work with plane-wave

states rather than wave packets in order to describe the collision.

The states ,u(p1Ps---| and |EAEB>m are plane-wave states in the Heisenberg picture.
Normally states are time-independent in the Heisenberg picture. However, the in and out
states that we use here are defined as eigenstates of momentum operators that do depend
on time. As such, the in-state contains the time stamp ¢ = t_ — — oo and the out-state
t =t, — +00. By evolving these states to the eigenstates at ¢ = 0, one unique set of

Heisenberg-picture plane-wave states is obtained:
out(P1P2 * - |EAEB>in = (PP - |S|EAEB> = (Pip2- - |(i + ZT) |EAEB> .

Because of the infinite time interval and the way we normalize the states (pjps---| and
|l; AE;_:;}, these matrix elements are Lorentz invariant. As was mentioned earlier, the matrix

element (F 7 ---|S|kakp) is called the S-matrix element and is naturally split into two

parts: a part containing 1, which corresponds to the case where no scattering takes place,

and a part containing the transition operator T, which describes actual scattering. So, the

latter part contains all the interesting physics.

The matrix element: the next step is to pull out the anticipated energy-momentum

conservation factor according to

(Pifa - |iT |kakp) = (2m)* 6@ (ka+kp — [pr+p2+--]) iM(ka,kp — p1,p2, )

= (27r)45(4)<2i: ki — Zf)pf) iM({k:} = {ps})

where M is called the invariant matrix element (or short: matrix element).? All four-

momenta occurring in this expression are on-shell, i.e. p> =m? with m the physical mass

Warning: in some textbooks the factor of i is absorbed into the definition of M
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of the particle. Therefore it suffices to know the three-momenta of the particles and the
reaction state they belong to (i.e. initial or final state) in order to obtain the complete
four-momenta. By means of this split-up the interaction details (“dynamics”) are sepa-

rated from the momentum details (“kinematics”).

Rewriting things in free-particle language (without proof, for now): as will be

shown later, the plane-wave states in the interacting theory can be expressed in terms of

free-particle plane-wave states o(pip»---| and |EAEB>0, resulting in
- — S . — — 7t+dtﬁ(t) SO
<p1p2 e |7’T|kAkB> = tilimioo <0<p1p2 e |T(6 g ! ) |kAkB>0 fully connected x factor
and amputated

o oz 4 Y - =
= (0<p1p2 e |T<6 gk :c’:'-ll(m)) |kAkB>0)fully connected X factor ,

and amputated

where the (not yet specified) factor comes in at loop level. In this way everything has been

translated into free-particle language, but some of the ingredients still need to be specified.

@ The actual proof of the above statement will be postponed until §2.9, since
we will need to know a bit more about the properties of loop corrections for that
purpose. This proof will be based on the type of time-ordered vacuum expectation

values of interaction-picture fields that we have encountered previously.

In order to get a feeling for the essential ingredients of that proof we will consider an explicit
example. Let’s have a look at the meaning of “fully connected” and “amputated” by con-
sidering the S-matrix element belonging to the 2 — 2 process ¢(ka)d(kp) — &(p1)d(p2)
in the scalar ¢*-theory.

The O(X°) term:

= 4“JEA°"EB(27T)6 |:5(]71 - EA)(S(ﬁQ - EB) + A<+ B]

diagrammatically

_|_

1 2 1 2
A B B A
This O(\°) term is part of the 1 term in § = 1 + T, so it does not contribute to the

matrix element M.

‘Arrow of time, Peskin & Schroeder style|: the external lines without external points in-

dicate the incoming particles, which are placed at the bottom of the diagram in the notation
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of Peskin & Schroeder, and outgoing particles, which are placed at the top of the diagram.
In many textbooks these diagrams will be turned by 90° with incoming particles on the
left and outgoing ones on the right, i.e. in that case the time-axis points from left to right

rather than from bottom to top.

The O(A) term:

L : A . o Wick
0(p1p2|T<—z/d4az o (]5;1(33)) kakp)y —— ( o P12 /d z N(¢ |kAkB>0

1

b (T2)olmil [ate N(66,016, 9, (2)6,0) + 35,200,013, (2)) ol

/\

This time terms that are not fully contracted do not vanish automatically:

(]3?(96‘)|E>0 _ / dp \/L m k — e_ik'm|0>.

It is now useful to extend the contraction definition with
—

5(@IF)0 = B @IFy = e ®l0)  and  o(Bldy(a) = o5l (1) = (0]

This means that we need additional Feynman rules for contractions of field operators with

external states:

q —iq-x 1 iq-x
4>~—<7 = e and *4—0<7 = 7,
x T

‘@z jg the amplitude for finding a particle with four-momentum ¢ at the vertex

where e~

position z. Diagrammatically the O()) terms then consist of the following contributions:

e A term with all ¢,’s contracted with each other:

] [ ] 1 2 1 2
z)\ N R R o o
S d*z o(pr 2|9, ( )0, (2)0,(7)d,(2)|kakp)e = = ‘ ‘ + ‘ ‘
A B B A
This is a part of the 1termin S =1+ iT, so it does not contribute to the matrix
element M.

e Terms where some (ZBI’S are contracted with each other and some with the external

states:
iA 4 | ~ ~ ~ | ~ - =
-5 d*z o(PrD2|¢,(x)d, ()b, (x)d,(x)|kakp)o + three similar terms
1 2 1 2 1 2 1 2
= dx + T b + dx + T b
A B B A B A A B



These terms contribute only if there are as many a as af operators left, so one field
should be contracted with an incoming particle state and one with an outgoing parti-
cle state. Again this is part of the 1 term in S =1+iT, since the integration fd4a:
yields a momentum-conserving J-function at each vertex. Again no contribution to

the matrix element M is obtained.

e A term where all ¢,’s are contracted with the external states:

— : ’
— z‘A/d“xo(* 02|, ()¢, (2)0,(2)8,(z)|kakp)o = ><
A B
— _i\ /d4x e—i(katkp—pi—p2)-z _ —i)\(27r)45(4)(kA + kg —p1—pa) .

This term gives rise to a — A contribution to the matrix element M!
Fully connected diagrams: the discussion above reflects the following general principle.

Only fully connected diagrams, in which all lines are connected to each

other, contribute to the T-matrixz and hence to the matriz element M.

At lowest non-vanishing order we find M(k4,kp — p1,p2) = — X in the scalar ¢*-theory,
which can be obtained directly from the momentum-space interaction vertex >< = —IA\.

Including higher-order terms, while keeping the external lines connected:
(Frpa|iT |kakp) = é >Q< >Q< +
: X 8
: ©< ><> ®< >@

The three sets of diagrams that occur on the separate lines of this expression are now

discussed individually.

Set 1: these diagrams contribute to M. Beyond leading order diagrams occur that involve
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the creation and annihilation of additional “virtual” particles. Such higher-order contri-

butions are called loop corrections.

Set 2: these diagrams involve disconnected vacuum bubbles, which will again exponentiate

to an overall phase factor that is irrelevant for physical observables! These graphs take
into account the energy shift between the ground state of the free theory and the ground
state of the interacting theory with respect to which scattering takes place. So, indeed

only fully connected diagrams matter!

Set 3: such diagrams give rise to contributions of the form

pP1 P2
;1 /d4k’ i / d*l i y
xk, T 2] en)t R —m2tie | (2m) 2 —m? +ie
)

X (—iN)(21)40W (kg + k' — p1 — po) (—iN)(21)*6W (kg — K')

' d4 i
CiA22m) 5D (kg + ks — pr — ! / .
(—1A)"(2m) (ka+kp —p1 p2)k%—m2+ie (2m)4 12 — m? + ie

DO | =

This contribution contains two propagators, Dp(z—y) and Dp(y—y), and two d-functions
from the integrals over z and y. It blows up, since external particles are on-shell,
i.e. k% = m?. In fact, the diagrams

represent the evolution of |p)y in the free theory into |p) in the interacting theory, which
causes the complex poles of the propagator to shift away from the free-particle positions at
p? = m?. As we will see later, this evolution will give rise to overall proportionality factors
in the T-matrix. All this reflects the fact that a particle is never truly free in quantum
field theory, being surrounded by a cloud of virtual particles. In quantum field theory it is

simply not possible to switch off interactions.

The amputation procedure: in order to deal with contributions of the latter type, the

following procedure is used.

@ Starting at the tip of each external leg, find the last point at which the
diagram can be cut by removing a single propagator in such a way that this
separates the leg from the rest of the diagram. The amputation procedure tells

us to cut the diagram at those points.
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Contributions to the T-matrix are then obtained as

(2m)* 6" (ka+kp =Y., pf) iM(ka, ks — {ps}) = sum of all fully connected amputated
Feynman diagrams in position space, multiplied by appropriate proportionality factors

at loop level.

The missing details concerning the amputation procedure will be discussed after we have

seen some properties of loop corrections.

Position-space Feynman rules for matrix elements in the scalar ¢*-theory:
T T2 |
1. For each propagator e——e insert Dp(z; — x3).

2. For each vertex >-< insert (—i)) [dz.

xr

. q . ;
3. For each external line 5._.7 insert e .
T

4. Divide by the symmetry factor.

Formulated in momentum space: in order to deal with plane-wave states it is more
natural to switch from position space to momentum space. As explained before, in mo-
mentum space each interaction vertex gives rise to an energy-momentum J-function. As
we have seen in the example discussed above, one of these d-functions is the overall energy-
momentum J-function of the T-matrix. Therefore, in momentum space one directly obtains

the matrix element as

@ z'./\/l(kA, kg — {pf}) = sum of all fully connected amputated Feynman diagrams

in momentum space, multiplied by appropriate proportionality factors at loop level.

Momentum-space Feynman rules for matrix elements in the scalar ¢*-theory:
q ) 1

1. For each propagator e—»—e insert -2

q m* + 1€

2. For each vertex >-< insert —i\.

3. For each external line }.—g— insert 1.

4. Impose momentum conservation at each vertex.

d*l;
5. Integrate over each undetermined loop momentum /;: / ﬁ.
T

6. Divide by the symmetry factor.
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Momentum-space Feynman rules for the scalar Yukawa theory: for completeness

we also list here the Feynman rules for the scalar Yukawa theory as derived in the exercises.
q i

- > -

1. For each ¢-propagator e o insert

g2 —m?2 +ie

For each for e s e insert d

or each i-propagator insert —————.
propag Z i

2. For each vertex >--- insert —1ig.

3. For each external ¢-line >g- insert 1.

~

For each incoming v-line -- insert 1, originating from .

Py
For each incoming 1)-line > -- insert 1, originating from z@’f.
P
. . p . C 5
For each outgoing 1/-line >-- insert 1, originating from .

_ S N
For each outgoing 1-line >-- insert 1, originating from 1.

4. Impose energy-momentum conservation at each vertex.

d*l;
5. Integrate over each undetermined loop momentum [;: / ﬁ.
T

The following observations can be made. First of all, in contrast to the scalar ¢*-theory no
symmetry factors are needed in the scalar Yukawa theory, since all fields in the interaction
are different. Secondly, whereas the arrows on the dashed ¢-lines have no special meaning,

this is not true for the arrows on the solid lines, which correspond to the 1& and W fields.

This arrow is needed for distinguishing particles () from antiparticles (3).

Drawing convention: draw arrows on the -lines and the 1-lines.

These arrows represent the direction of particle-number flow: particles flow along

the arrow, antiparticles flow against it. In this convention 1/3 corresponds to an
arrow flowing into a verter, whereas ’(;T corresponds to an arrow flowing out
of a verter. Since every interaction vertex features both 1& and 1&", the arrows

link up to form a continuous flow.

2.7 Non-relativistic limit: forces between particles

e We are now in the position to address our first major question: how do

forces come about in quantum field theory?
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To answer this question we compare the lowest-order relativistic matrix element for the

reaction ¢(ka)d(ks) — 6(p1)o(p2), i..

b1 D2
IM = = —1iA\,
ka kg

to the non-relativistic amplitude for elastic potential scattering in Born approximation.
Since the matrix element is Lorentz invariant, we are free to choose the center-of-mass
(CM) frame. In this frame k4 = —kg =k and p1 = — o = p with |k| = |F]| for elastic
scattering. The non-relativistic limit amounts to |k |, |7/| < m, from which it follows that
Wp = wy & m + O(k*m). For scattering from states with momenta + & into states with

momenta + p the comparison then reads:

Ao G X M(ka, kg — p1, 2
w(BIVE)E ) = /dFV(F) (ilE-p) T = /dFV(F) gir o Mk (’;m)fl p:)/2.

where the factor 1/2 multiplying the matrix element originates from having identical parti-
cles in the reaction. Furthermore, it has been used that the relativistic and non-relativistic

momentum states are related according to
7)o = \V 2wy D) = V2m P )xg

resulting in a relative factor (2m)2. By inverse Fourier transformation one obtains

—

for the interaction potential.
@ The scalar ¢*-theory involves a so-called contact interaction oc §(7),

which refers to the fact that the particles interact in one spacetime point at lowest order.

We can repeat this for (k)¢ (k) — ¥(p1)¥(p2) scattering in the scalar Yukawa theory.
In that case all external on-shell particles have mass M and the lowest-order matrix ele-

ment reads (see Ex.9):

b1 p2 b2 b1
iIM = >< + >< = My +iM,
ka kp ka kp

1 1
_ 2
- Y ((kA—p1)2—m2+ie * (kA—pz)z—m2+ie>




using CM momenta and k% —p° = Vk2+ — VPP M? = p%)/(2M). The +ie
terms have been dropped as a result of the fact that the energy components are suppressed.
Note that there are two contributions this time, originating from interchanging the final-
state particles (i.e. P — —p'). Using spherical coordinates for the inverse Fourier transform

with polar axis along 7 it now follows that
1

S 1 dA _ike A=A 2/01(;059 / AZ2p—iArcosf
= 1A-T o 2M dA Qe
V(F) 4M2/ P /20" | Gy AZ ¢ m?
-1 0
2 s iAr _ —iAr 2 X iAr
:_w/dAAL:_M/dA 'Ae .
A A%+ m? n%ir (A+im)(A — im)
0 — o0
T
Amir (A+im)(A —im) drr  ©

where the integration contour C' is given in figure 5.

ImA

A

infinite semsi circle

—m

Figure 5: Closed integration contour for the determination of the Yukawa potential.

The scalar Yukawa theory involves an attractive Yukawa interaction be-
tween the -particles, which dies off exponentially at 1/m distances. This
length scale (range) is in fact the Compton wavelength of the exchanged virtual

¢-particles, which mediate the interaction.

These virtual particles are short-lived off-shell particles, i.e. p?> # m?2. In fact, they are too
short-lived for their energy to be measured accurately. Hence the name virtual particles.
Over 1/m distances the energy can fluctuate by O(m), which is sufficient to create the
¢-particles. Over larger distances the energy can fluctuate less, resulting in the exponen-

tial decrease of the force. If the virtual particles are massless (like the photon) then the
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Yukawa interaction has an infinite range and changes into the familiar Coulomb potential

o 1/r, which is not decreasing exponentially.

The true Yukawa theory for the interaction between fermions and scalars was used to de-
scribe the interactions between nucleons. In that case the mediating particle is a pion.
It has a mass of about 140 MeV and therefore an associated characteristic length scale of

roughly 1.4 fm, which agrees nicely with the effective range of the nuclear forces.

Forces in quantum field theory: the forces between particles are caused (mediated)
by the exchange of virtual particles! Interactions caused by spin-0 force carriers (such
as the Yukawa interactions) are universally attractive, just like interactions due to the

exchange of spin-2 particles (such as gravity). The exchange of spin-1 particles can result

in both attractive and repulsive interactions, as we know from electromagnetism.

The relevant details of this statement are worked out in Ex.10 and 11. The implications
can be seen all around us. Gravity is attractive and gives rise to structure formation
in the universe. The force that holds together nucleons inside a nucleus is mediated
by the spin-0 pion, giving rise to a strong nuclear force that is attractive and of fem-
tometer range. This nuclear binding force overcomes the repulsive electromagnetic force
between the like-charged protons. The proton repulsion influences the nuclear binding-
energy properties of heavy nuclei, leading to the observed neutron over proton ratio and
nuclear instability of heavy elements as well as the possibility of nuclear fission. The fact
that the electromagnetic force can be both repulsive and attractive is responsible for the
multi-faceted properties of atoms and the chemistry among molecules. This involves the
intricate (quantum-mechanical) interplay between attractive forces that bind electrons to

nuclei and the repulsive forces among the electrons and among the nuclei.

Intermezzo 2: flux laws for forces with massless mediators

The previous discussion basically tells us that the interaction potential between particles
results from the inverse Fourier transform of the force carrier’s propagator. For massless
force carriers such as photons (electromagnetism) and gravitons (gravity) this immediately

implies a constant flux law for the corresponding force (Gauss’ law):

_/d§.ﬁ(r) = /ds*-%V(r) /ds V/ dA e—zAr

S(V) S(V)
L5 —iAF L
Gauss_ C'/d /dA € - C dA o AT
(2m)3
v

for a sphere V' centered around the origin #=0 of the interaction (CM) and with surface

d7

= O/dFJ(F) = C,
14
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S(V). Since d§ - F(r) is constant on S(V), we obtain for n spatial dimensions that

C 1 » c 7 I
W) = — () = — oo r
ve(r) L

for the corresponding interaction potential and force, with S, (1) the surface area of the
unit sphere in n dimensions. For n = 3 we obtain V®(r) = —C/(4nr), which indeed
coincides with a massless Yukawa potential with (g/2M)? = C. The power law for the
force simply reflects that at constant force flux the force lines spread (dilute) more rapidly

in higher-dimensional spaces.

Application: gravity in compact extra spatial dimensions

An idea to reduce the scale hierarchy between the Standard Model and the energy scale at

which gravity becomes strong (Planck scale) is to assume that the graviton can propagate

in compact extra spatial dimensions of size R. According to the previous discussion this

causes gravity to become stronger at r < R distances due to the different power law:

— mi1myoy retrieving — mi1myoy T Mmime
Fgrav(’f' < R) = W m Fgrav(r > R) - An—1 Rn—332 - (AP 7’)2 )
n

where the Planck scale can be expressed in terms of Newton’s contstant as Ap =1/ VG.

-

“our world”

Figure 6: As an illustrative example consider an infinite cylindrical shell (tube) with small
radius R. At r < R distances (blue region) the force lines (red) spread more rapidly as a
result of the wrapped extra dimension of size R. At r > R distances the spreading of the
force lines in the extra dimension will start to saturate and for r > R the 1-dimensional

case (representing “our world”) is approached asymptotically (yellow circle).

The fundamental Planck scale in n spatial dimensions then becomes
A, = (A%/Rn—3)1/(n*1) _ AP/(AP R) (n—3)/(n-1) ‘

By making Ap R = R/107% m sufficiently large, which is usually referred to as models with

“large extra dimensions”, the effective Planck scale can be lowered from O(10'° GeV) to
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O(TeV). For n —3=2,---,6 extra dimensions we can achieve this by setting the size of
the compact extra dimensions to R = 102 m, ---,107*m. This would imply that in those
scenarios gravity would become strong at the @(107!° m) length scales probed at the LHC,
giving rise to the production of microscopic black holes. Alternatively, the idea of extra

dimensions can be tested by performing dedicated submillimeter gravity experiments.

2.8 Translation into probabilities (§ 4.5 in the book)

At this point we know how to calculate amplitudes for decay processes and
scattering reactions by means of Feynman diagrams and Feynman rules. In the

next step we derive the probabilistic interpretation belonging to these amplitudes.

2.8.1 Decay widths

Consider an initial state consisting of a single particle in the momentum state |E a), de-
caying into a final state consisting of n particles in the momentum state |pj ---py,). The
probability density for this decay to occur is given by

[(P1 - - Pn| STka) |”

— — )
—

( A| A <ﬁ1"'ﬁn|ﬁ1"'iﬂn>

with
(kalka) = 2B (2m)*6(0) == 2B,V and  (§i-ulpr-Fa) = [ (2E5 V).
7=1

This is also valid for identical particles in the final state. Finding a set of particles with

the required momenta effectively identifies the particles. Since the initial and final states
are different in a decay process, the S-matrix element is in fact equivalent with the cor-
responding T-matrix element. In the rest frame of the decaying particle ks = 0 and

Ej = my, hence

(B PaliT |ka) |2 _IM(ka — {p;})I? [(%)45(4) (ka z": p,)r v
e e — — — — - J n
(kalka)(P1 -+ DnlPL -~ Pn) 2maV 7=t [T (2E;V)
i=1
)46 (0) = D2 & T
entsozvr [ MUba = D a5 (1, — 35 py) P
2myV =
4 =t 11 2EzV)
Jj=1

The linear time factor T = f:_*dt in this expression was to be expected from Fermi’s

Golden Rule! This factor can be divided out in order to obtain the constant decay rate.

Next we integrate over all possible momenta of the n final-state particles. This time

it does matter whether there are identical particles in the final state. In order to avoid

double counting we have to restrict the integration to inequivalent configurations or divide
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by 1/n;! factors for any group of n; identical final-state particles. Generically we will
indicate this combinatorial final-state identical-particle factor by C'y. The final expression

for the integrated constant decay rate then becomes

[ density of states

tn = Cf( HV/(%

(2089 (ka = 3 9,) |M(ka — ()P

j=1 2ma (1 2B5V)
Lorentz invariant 7=t
1 Y
= — Oy [dII, ka— {p; DI,
o Cr [l Mka = )

in terms of the relativistically invariant n-body phase-space element

dIl,, = (E ((21733 2; )(27r)45(4) (kA —]Z:pj) ) (3)

which is sometimes denoted by dPS,, in other textbooks. This decay rate is called the

partial decay width for the decay mode into the considered n-particle final state.

After summation over all possible final states one obtains the so-called total decay width

D= O Ay M b .

m
A final states

with dIl; corresponding to a given final state.

@ This total decay width is related to the half-life of the decaying particle
through the relation T = 1/T'. If the decaying particle is not at rest, the de-
cay width s reduced by a factor mA/EEA- This leads to an increased half-life
TE,—C»A/mA = 7/V/1— 42 =7, where ¥ is the velocity of the decaying particle.

2.8.2 Cross sections for scattering reactions

Consider a beam of B particles hitting a target at rest l,
consisting of A particles. The case of two colliding par- N*—
ticle beams can be obtained from this by an appropriate beam  p . * .t Pa

Lorentz boost. Let’s start by assuming constant densities
pa and pp in target and beam. The number of scatter-

ing events will be proportional to (pala)(pplp)O, with

O the cross-sectional overlap area common to both the

beam and the target. The ratio

# scattering events 1 # scattering events target
= — = 0
(OprA)(OKBpB)/O NA NB/O
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defines the cross section o as the effective area of a chunk taken out of the beam by each

particle in the target. The quantities N4 and Np are the numbers of A and B particles

that are relevant for scattering, i.e. the particles that at some point in time belong to the
overlap between beam and target. All of this can be equally well formulated in terms
of time-related quantities like the scattering rate and the incoming particle flux: simply
replace the number of scattering events by the number of scattering events per second and

lgpp by the flux vgpp of beam particles. Hence,

1 scattering rate

7= N—A beam flux

Approximate plane-wave states: in reality p4 and pp are not constant, since the
colliding particles are described quantum mechanically by wave packets and both beam

and target have a density profile. However,

the studied range of the interaction between the colliding particles is usually
much smaller than the width of the individual wave packets perpendicular to

the beam, which in turn is much maller than the actual diameter of the beam.

Therefore, in good approximation p4 and pg can be considered as locally constant on
quantum mechanical (i.e. interaction) length scales®, whereas the density profiles inside

the beam and target can be incorporated properly by averaging over the overlap region:

KAKB\/d?xJ_IOA(xL)IOB(Z'J_) = NANB/O.

Here N4 and Np are the effective numbers of A and B particles that are relevant for
scattering and x, is the spatial coordinate perpendicular to the beam. From this it
follows that

# scattering events = o NsNg/O

where o can be calculated for effectively constant values of ps4 and pp corresponding to

approximately plane-wave initial states. By the way, we don’t have to restrict ourselves to

the total number of scattering events. In a similar way we can study the cross section for
scattering into the region dpj---dp, around the n-particle final-state momentum point
P1, -+, Pn. Thisis actually what detectors usually do: they detect particles with energy and
momentum in certain finite bins, which are given by the detector resolution. These bins
cannot resolve the momentum spread of any of the wave packets, just like the detector cells
can in general not resolve the particle positions at the level of the de Broglie wavelengths.
For all practical purposes detectors observe classical point-like particles with well-defined
momenta (in direction and magnitude). So, in the final state it makes sense to use plane

waves as well.

3These (slowly changing) densities can even be locally zero!
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@ Calculating cross sections therefore amounts to calculating transition prob-
abilities in momentum space. These transition probabilities are universal in the
sense that they are independent of details of the experiment, such as the prop-

erties of the beams, the targets or the preparation of the initial-state particles.

The differential cross section: consider an initial state consisting of one target par-
ticle and one beam particle in the momentum state |12A, EB> scattering into a final state
consisting of n particles in a momentum state with momenta inside the bin dp; - - - dp,
around pi,- - -, P,. In analogy with the calculation in §2.8.1, the corresponding differential

transition probability per unit time and per unit flux is given by

1 1

do = ————
© T FiE BV

| M(ka, kg — {p;})]>dIL, ,

which is usually referred to as the differential cross section. As explained in §2.8.1 this

result for do is also valid for identical particles in the final state. In this expression F'
stands for the flux associated with the incoming beam particle:
1 |Ua — U| w=p/E |kA/Ei5A— kB/EEB|

F = — |G| = !
7 [Tl % %

where we have chosen €, along the beam axis. Furthermore, we have used that the four-
momentum of a massive particle reads pj = (m,ﬁ ) in its rest frame, which becomes

pt = (7(E0+17']70),7(]70+E017))
along the ¢€,-direction. We therefore find

Lo—m.po=0 (m7y, myv) upon boosting with velocity v

_ [M(ka, kg — {p;})? dIIL,

do = _
4|EEBkA — EEAkB|

for the differential cross section.

The so-called fluz factor i|EEBEA — EEAEBrl s 1variant under boosts
along the beam direction and the same goes for the differential cross section do,

as expected for a cross-sectional area perpendicular to the beam.

2.8.3 CM kinematics and Mandelstam variables for 2 — 2 reactions

Consider a 2 — 2 reaction with matrix element M(kA, kg — pl,pg). In the CM frame
with the z-direction taken along the beam axis and oriented parallel to the incoming A

particles the corresponding kinematics reads:
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A > B . C > 2-axis
¢

kZ:(EA70707k) ) kg’:(EBvoaov_k) pf:(Elvﬁ) ) pg:(E27_ﬁ)

Hence, the two final-state particles are produced back-to-back in the CM frame. Written

in compact notation the CM momenta and energies are given by

k= /Eig—mig , p=1p| =4 /BEis—mi, and Es+FEp = Ei+E; = Ecx

2 2 .2 2 2 2.2
_ Eow + MaB — MBA L= \/(Egm —mj —my)? — dmymp
= EA,B — ) - )

2ECM 2ECM
E _ E(Q}M + mi2 - m%,l _ \/(E(%M - m% - m%)Q — 4m% m%
1,2 2, ) p 2B o .

The matrix element is Lorentz invariant, so it can be expressed in terms of invariant
combinations of the particle momenta. Since only three out of four particle momenta are
independent, this leaves six kinematical variables: the squared masses of the four particles,
three so-called Mandelstam variables that combine two of the particle momenta and one

condition. We start with the Mandelstam variable

s = (kat+kp)® = (m+p)° = E2 .

In order to guarantee that both k,p > 0 and E4 p > my p this variable has to satisfy the
inequalities s > (m4 +mp)? and s > (my + my)%. The expressions for the CM energies

and momenta then become

P s+ miyp—mp B s+ mj, —mj,
A,B - 2\/5 ’ 1,2 - 2\/5 ’
IRl N 2 Sl Bl i

25

The other two Mandelstam variables are

25

t = (ka—p)* = (kp—p2)° and u = (ka—p2)® = (kg —p1)?,
which contain the angular dependence of the reaction through

2EA-;[71 = 2ke,-p = 2kpcosf and 2EA-;[72 = —2ké,-p = —2kpcosh .
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These three Mandelstam variables satisfy the energy-momentum conservation condition

s+t+u=mi+mp+mi+ms.

A few conventions: in general 2 — 2 reactions the most similar initial- and final-state
particles are combined into the t-variable. For instance, in the reaction ete™ — putpu~
one should combine the momenta of the electron (¢~) and muon (u~), or equivalently the
momenta of the positron (e™) and antimuon (p). A reaction channel is referred to as
s-channel (or ¢-channel, or u-channel) if the Mandelstam variable s (or ¢, or u) features in

the propagator at lowest order.

1 2
s-channel: t-channel: u-channel:
A B A A
The 2-body phase-space element: in the CM frame, where EA = —EB = ke,, the
beam flux reads
oo k(Eas+ Egp) _ kEou
M T EWEgV T E4EgV

The differential cross section for a 2 — 2 reaction in the CM frame therefore becomes

d _ |M(kA,kB —>p1,p2)|2dH2
Ocm — .
4k Eqy

Note that the differential cross section falls off as 1/E?,, at high energies.
This is a destructive interference effect caused by probing the relevant interac-

tion length scale with particles that have a much smaller de Broglie wavelength.

In analogy with equation (3) the Lorentz invariant phase-space element for two final-state

particles becomes
CM: 5(ECM —El—EZ) 6(ﬁ1 +ﬁ2)

A

dﬁl 1 dﬁg 1 4% ~
I, = 97)4 54 L
/d : /(27r)3 2E1/(27r)3 2g, (2m) 07 (kat k= 1= p2)

om dp p? /
o AQ §(Eoy — Ey — E,) .
1672 E,E, (Eow — By — By)

Replacing the integration variable p by Ej + Ey = 1/p2 + m? + +/p? + m3 this becomes

d(E'l + E'z) p2 /
dll, = dQé(Ey — FE{— E
/ 2 / 16m2E\Ey p/Ey+ p/E, (e ' 2)

D p 2T 1
= [dO = — d dcosf
1672 E / 1672 Eqy /0 ¢/—1 o
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where 6 is the polar scattering angle with respect to the beam axis and ¢ the azimuthal
scattering angle around the beam axis (as displayed in the figure at the start of this
paragraph). From this the following angular differential cross section can be obtained:
do P
— = ————— | M(ka, ks — p1, 2 4
(dQ>CM 617k Bz, (ka, ks = p, o)l (4)
In view of rotational symmetry about the z-axis there will be no ¢-dependence and the
¢-integral will straightforwardly yield a factor 27. Once we also integrate over 6 to obtain
the total cross section o, one has to restrict this integration to inequivalent configurations

or multiply by the appropriate final-state identical-particle factor C.
To give a simple example, we again consider the process

¢(ka) + ¢(kp) — ¢(p1) + ¢(p2)

in the scalar ¢*-theory. As we have seen on page 50, the lowest-order matrix element for
this process is given by —\. Hence,

(L) - M2 2~ X - s Ja(52).. = X
dQ Jow  64m2E2, k  64n2E2,,  64n2s 2 dQ Jom  32ms’

where the factor 1/2 occurring in the last expression is the identical-particle factor for two
identical final-state particles. Further examples of cross sections for 2 — 2 reactions can

for instance be found in Ex. 11.

2.9 Dealing with states in the interacting theory

@ In order to close the gaps that were left behind during previous steps, we now
have to address some of the non-perturbative properties of the states in the

interacting theory.

2.9.1 Kallén—Lehmann spectral representation (§7.1 in the book)

@ In the free theory <O|T($I(x)¢§’;(y))|0> could be interpreted as the ampli-
tude for a particle to propagate from y to x. The question now is: how should
the corresponding 2-point Green’s function (Q|T(<}3($)(]§T(y)) |©2) be interpreted
in the interacting theory? This question is related to the particle interpretation

of the interacting theory.

Complete set of interacting states: we start out by having a generic look at the excited
states of the interacting theory, with the corresponding energies being defined relative to
the ground-state energy FEj,. This analysis will be based on the fact that [f[, 13] =0,
which implies that there is a simultaneous set of eigenfunctions of H-F,1 and ﬁ’ These

states can consist of an arbitrary number of particles or they can even be bound states.
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1) Zero-momentum states: let {|\;)} be the set of excited eigenstates of H with van-
ishing total three-momentum, i.e. P|\5) = 0. These simultaneous eigenvalues of H—Ey1

and P can be combined into the four-vector py = (my, 6), where my > 0 is the “mass”

associated with the particular zero-momentum state.

2) Finite-momentum states: the generator of spacetime translations P* = (H—FEy1, P)
transforms as a contravariant four-vector under boosts: U~'(A)P*U(A) = A* P*. This
implies that all boosts of the states |A\;) have all possible total three-momenta § and are
also eigenstates of H — FEy1 with energy Ez(\) = \/m The other way round,
any eigenstate with explicit three-momentum can be boosted to a zero-momentum eigen-
state provided that my > 0. The sets of eigenvalues p* = (E— Ey,p’) are thus organized
into hyperboloids, as shown in the figure below. The lowest-lying isolated hyperboloid
corresponds to the “l-particle” states of the interacting theory, whereas the other ones
correspond to possible bound states. Above a certain threshold value of m, a continuum

of “multiparticle” states starts (see later).

E—E, “multiparticle”
continuum

\ moving “particle”

\ “particle” at rest

bound states
mph L

—

> [P

Proof of the boost statement: consider the Lorentz transformation A that transforms
ph = (my,0) into p* = A® p¥ = (Ez(\),F). Then |\;) = U(A)[\;) indeed satisfies

PH\y) = UNT Y (A)PFU(AN)|Ng) = AL T(A)PY|Ng) = A% ps UN)|Ag) = p|Ap) -

By reversing the argument, the reversed statement can be proven as well, bearing in mind
that E—FEy > 0 for the excited states so that the combined four-momentum eigenvalues
p* = (E—Ey,p) have to satisfy p? > 0.

Completeness relation: in the interacting theory we can therefore use the following

completeness relation associated with this complete set of states:
; dp’ A5 (A5
1 = [2){Q LR 4
0l + 3 [ o sy
A

where the first term corresponds to the ground state and the second one to all excited states.
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The 2-point Green’s function: next we take 2° > y° and insert the above-given com-

pleteness relation into the 2-point Green’s function. This results in the following split-up:

QT ($(2)9!(y))192) = <QI¢3(:U)IQ><Q|$T(y)IQ>

+ 3 [ 655 s @ ORI

In the absence of preferred directions in the universe, the ground state [Q2) should be
invariant under spacetime translations and Lorentz transformations, i.e. e7?|Q) = |Q)
and U(A)|Q) = |Q). Therefore

~ .19 iPx ) _iPz —ip-z n
() ) E= (U F20(0)e F2y) = e PHQUGON|
= T WO WU WO
p.22 . - take A such that Ap=0

=72 (Q13(0)]Ag)

2 (Q|(A0) |\
e QUS(A0) A | o) PO=E; ()

and similarly
(Q(2)[2) = (QI$(0)|) =

The ground-state expectation value v, which in the literature is sloppily called the “vac-

uum expectation value” or short vev of the field qS, usually is taken to be 0. If this is not
the case then one should reformulate the theory in terms of the field ¢'(z) = ¢(z) —
which has a vanishing vev. The rest goes in the same way as described below. Leaving out

the vev we now obtain

@I = 3 (0 s e

pO=Ez(})

je— P (z—y)

2m)t p2—mi+ie

x0>y0,p.25 N ~ 2 d4p
e CCLEI b

The integral on the last line we recognize as the Feynman propagator belonging to a

“¢-particle” with mass my, i.e. Dp(z — y;m3).

@ The particle interpretation has in fact changed in the interacting theory
from free particles to dressed particles (quasi-particles), so the “particles” we

are dealing with here are not the particles that we know from the free theory!

Kallén—Lehmann spectral representation: a similar procedure can be applied in the

case that 2° < y° Combining both cases one arrives at the so-called Kéllén—Lehmann

spectral representation of the 2-point Green’s function:

QTE@H W) = [ 52 o) Dele 33
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where the function p(s) in the squared invariant mass s is a positive spectral density
function given by

pls) = Y 2m6(s — m3) [(QUS(0)[Ag)[* -

The states in the interacting theory that describe a single dressed particle correspond to

an isolated d-function in the spectral density function:
A 2
Prpart.(8) = 2m8(s —mp) [(/B(0) [ Aghrpart.|” = 20Z6(s — myy) -

The field-strength/wave-function renormalization Z is the probability for

(]BT(O) to create a state that describes a single dressed particle from the ground

state, whereas myyp is the observable physical mass of the dressed particle, be-

ing the energy eigenvalue in its rest frame. This physical (dressed) mass is in
general not equal to the (bare) mass parameter m occurring in the Lagrangian,

which is not observable directly!

In momentum space: the Kallén—Lehmann spectral representation trivially reads

*®ds 1

[dz e @r@wio) = [ 5

p? — s+ i€

17 +/°° ds () 7
p— —_—mm m m —_— S -
p? —m2, + e N o P p? — s+ 1€

Sth

in momentum space, where s;, denotes the threshold for the creation of the continuum
of “multiparticle” states. The fact that the last integral does not start exactly at sy, is
caused by the possible existence of multiparticle bound states. Graphically the analytic

(pole/cut) structure in the complex p-plane can be depicted as follows:

Im p?
“l-particle” bound-state
pole poles branch cut
[] e o > R.-e p2
2
Mk Sth (continuum of poles)

Figure 7: Poles and cuts of the 2-point Green’s function.

Interacting theory vs free theory:

e In the interacting theory [(|$(0)|A\s)|> = [(Q|#(0)|As)|* represents the probability
for the field &T(O) to create a given dressed state from the ground state, with the

factor Z being the associated probability for creating a “l1-dressed-particle” state.
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The factor Z differs from unity since in the interacting theory éT(O) can also create
“multiparticle” intermediate states with a continuous mass spectrum, unlike in the

free theory.
e In the free theory p(s) =2wd(s —m?) and Z = 1, since

b +a
2E~

F161(0)[0) = (01/2B, a,,/ q3

m>= (0j0) = 1

For 2° > 0 the quantity

/ dt ¢ (0T ($(x)3' (0))|0) = ———

p? —m? + e

is interpreted as the amplitude for a particle to propagate from 0 to z.

2.9.2 2-point Green’s functions in momentum space (§ 6.3 and 7.1 in the book)

@ Question: does all this also follow from an explicit diagrammatic calcula-

tion within perturbation theory?

In order to address this question we consider the 2-point Green’s function for -particles

in the scalar Yukawa theory (with tadpole diagrams excluded, as will be explained later):

p—1
[t r@@itoe = . ¢ I T
1

= L =+ L (_22(2)); + .-
p? — M? + e p? — M? + e 2P p? — M? +ie ’
where A
d*¢ i i
— i (p?) = (—i 2/ 1
i%(p7) (=ig) (2m)% 02 — M2 +ie (p— £1)? — m? +ie

is the so-called y-particle self-energy at O(g?). Since the corresponding diagram involves
one loop and therefore one energy-momentum integration, we usually refer to this self-

energy as the 1-loop self-energy.

@ There are two main approaches to calculate such an integral:

1. perform the ()-integration in the complex plane, involving four complex

poles, and work out the resulting a—integmtion;

2. apply the following two calculational tricks.
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Trick 1: use Feynman parameters. Writing the denominators in the integral as
D, = (7 — M? +ic and Dy = (p—£4)? —m? +ie

we can combine the two denominators into

1 1 ( 11 ) B { 1 1 ]"21
D]_D2 D]_ — D2 D2 D]_ D]_ — D2 a2D2 + (]. — Oég)D]_ s =0

1 1 1 1
=/[d =/ d dag §(ag +ay — 1
/0 @ [aa Dy + (1 — ap) Dy ]? /0 041/() @ (a1 +az2 1) (a1D1 + asD5)?

The parameters a; o are called Feynman parameters. Inserting the specific expressions for

the denominators we then obtain

-2

. ! a*e .
—i5,(p?) = 92/0 dag/(2—7r)14 [Ef—Qagp-€1+oz2p2—a2m2— (l—ag)M2+ze]

d*e
- /da2/ A +1€)2
2

0 = 0 —agp and A = aym? + (1 — ay) M? — as(1 — ay)p® .

with

We have gained the following in this first step:

e The original integrand had four poles in the complex ¢?-plane, whereas now we have

only two poles in the complex (°-plane.

e The integrand has become spherically invariant, implying that integrals with an odd

numerator in ¢ should vanish, i.e.

/d‘*é f(AHe, = /d‘*e f(Aet, = - =0.

In contrast, integrals with an even numerator in ¢ can be simplified. For instance

/d4£ f(£2)£;4£u % %/‘d‘lg f(£2)£2

using that
[aeseyey = [aeneer = [aerew? = - [ate @) ey
These properties will in particular prove important for non-scalar particles.

e The trick works equally well for an arbitrary number of propagators occurring in the

1) .. _
/dal- /dan n—1) 5(a1 + ay, 1)‘

alDl + -+ anDn)n

loop:




Trick 2: perform Wick rotation. In order to perform the (°-part of the integral
[d*e (6 — A +ie)=7/(2m)* the integration contour C' indicated in figure 8 is used. Since
the poles are situated outside the integration contour in the complex ¢°-plane, the integral

along the real ¢°-axis is transformed into an integral along the imaginary axis.

Im /°
A

infinite quarter-circle

— V24 A—ic
*
> — > Re/°
+VE2+A—ie

infinite quarter-circle Y

Figure 8: Closed integration contour used for performing Wick rotation.

In this way a Minkowskian integral can be transformed into a Euclidean one:

7 0 _7ZOO 0 ZOEMOE _.700 0o . 7 0 N [E[E‘ -
de’ — A’ ——= —i [dl, = 1 [dl, and d/ de, .
This results in
/ a'e 1 i /°°d P / y 1
Cry @ =aviep — @ ) T T - At

i : d*e,,
Ly [
167 (€2 + A —ie)
=y / e / A0, sin(6,) / A6 sin(6y) & / e b
~ 167 Y N K N oo P (2 +A )

o [ P
1672 o Z(24+A—ie)’

70



where the norm 2 = (£2)* 4 (£1)* + (€2)*> + (£2)? is positive definite in Euclidean space.
In the penultimate step it was used that in an n-dimensional Euclidean space the transition
to spherical coordinates is given by

/ dr f(r) = /0 Oodrr"_l f(r) /0 27:191 /0 ”d92 sin(fy) - - - /0 WdOn,l sin"2(0,_1)

27.‘.71/2 00 -
= gy, 470

where the gamma function I'(z) satisfies
r(1/2)=+vr , IT(1)=1 and  T'(z+1)==z2T(z).
The result after applying both tricks:

. 2 ig” ' = o é?z
_7,22(])) = 167‘_2/0(21042/0 deE (£%+A—ZE)2
1

;2
- 12697r2 /0 da (_ 1 —log [A(az) - if] + UV inﬁnity) ,

where the infinity originates from the large-momentum regime ZZ —00. The logarithm
log(z) = log(|z|e?) = log(]z|) + i¢

gives rise to a branch cut for 2 € R™, since log(—x + ic) = log(ze*™) = log(z) + im for
z > 0. This corresponds to situations where A(as) = a3p® + as(m? — M? —p?) + M? < 0
on the interval ay € [0,1]. Since A(az = 1) = m? and A(ay = 0) = M?, this happens
when A(az) =0 has both roots

P+ M2 —m?+\/(p® + M2 —m?)? — 4p>M?
2p?

Qi =

P+ M?*—m?+ \/[pQ — (M+m)?] [p* — (M—m)?
2p?

on the interval a, € [0,1], which results in the requirement that p? > (M + m)?.

There is a minimal value p2,;, = (M + m)? of p* for which the branch
cut of the 2-point Green’s function in the scalar Yukawa theory starts, being
the threshold for the creation of a two-particle state with masses M and m.
This 1s precisely what we would expect based on the Kallén—Lehmann spectral

representation.
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Dyson series: to all orders in perturbation theory the 2-point Green’s function (a.k.a. the

full propagator or dressed propagator) is given by the Dyson series

/ d*z e (QIT (P(2)P1(0)) Q) = J_Q_L
_ o, + T

where

O
= —iZ(p’) = L p L L o+

is the collection of all 1-particle irreducible (1PI) self-energy diagrams. Diagrams are called

1-particle irreducible if they cannot be split in two by removing a single line.

The single-particle pole and physical mass: the Dyson series is in fact a geometric

series, which can be summed according to
4 ip-x N i _ p p
d'z P QT (P(0)91(0))1Q) = A=

= : + ! (—iz( 2));+
p? — M? + ie p? — M? + ie b p? — M? + ie

i
P M- S(P) e

The full propagator has a simple pole located at the physical mass My, which is shifted
away from M by the self-energy:

p?— M — E(ﬁ)]

p2:Mp2h
Close to this pole the denominator of the full propagator can be expanded according to
p2 - M? - E(pz) ~ (PQ_ Mﬁh) [1 - E'(Mih)] + O([PQ_ Mpzh]Q) for p2 ~ Mﬁh )
where ¥'(p?) stands for the derivative of the self-energy with respect to p?.
@ Just like in the Kdllén—Lehmann spectral representation, the full propa-
gator has a single-particle pole of the form iZ/(p® — Mp2h + te) with residue
Z =1/[1—X'(M2)]. This observed close connection to the non-perturbative
analytic structure of the 2-point Green’s function serves as justification for our

procedure, which involved summing the geometric series outside its formal ra-
dius of convergence.
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2.9.3 Deriving n-particle matrix elements from n-point Green’s functions
For real scalar fields ¢(z) we have seen that

2 2 .
¥4 —)mph ZZ

/d4:c elpx<Q|T($(x)¢§(0))|Q> —— 5 >

p° — My, +1€

by which is meant that the quantities on either side have the same single-particle poles and
residues at the physical mass squared mf,h. The wave-function renormalization factor Z
can be obtained straightforwardly from the 2-point Green’s function in momentum space

by multiplying by (p*—m2,)/i and taking the limit p*>— m2,

@ We now wish to use this single-particle pole structure to obtain the asymp-
totic “in” and “out” states of the theory and in particular their matriz elements.

Consider to this end

00 Ty T_
/d4a: e (Q|T(q§(a:)q§(z1)$(22) )€ with /da:o = /dﬁv0 + /dav0 + /da:o :
Ty T_ —o00

0

? and Ty > max2).

where T_ < min z;
What can we say about the pole structure of this integrated Green’s function?

e The integration region z° € [T_,T,]: since the temporal integration interval is
bounded and the integrand has no p°-poles, the result of the integral is an analytic

function in p° without any poles.

e The other two integration regions: the integrand still has no poles, but the integration

intervals are unbounded. Therefore singularities in p® may develop upon integration!

The integration interval z°€ [Ty, 00): we again insert the completeness relation for H

and assume that the field ¢(z) has a vanishing vev. If (Q|¢(z)|Q) = v # 0, then ¢(z)
should be rewritten as g%(a:) = +¢§’(:c) and the particle interpretation should be obtained
from ¢'(z) rather than @(z). The integral then takes the form

[t faz e s [ o 5E o @R GalT (B(1)i ) )9

0
.66 o iz
2= /dxo/dxe e

Ty

dg

%(;; ()\(T|T($(z1)q§(22) )|Q> ig-# 4iz®[p"—Fz (V)] ’
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where (Q|¢(z)|A;) 296 e~i%(Q$(0)[Ag)

= /Z(\) e70® . The phase of
¢°=Eq() ¢°=Eq(\)

(Q/$(0)]A5) does not matter in this context, since it can be absorbed in the definition of
|A\j). Now the Riemann-Lebesgue lemma can be invoked, which states that the larger z°
becomes the sharper this integral is peaked around p® = Ez()). This fact can be quantified
explicitly by adding a damping factor e ¢*" (with infinitesimal e > 0) to the integral, in
order to ensure that it is well-defined. This procedure is equivalent with the ie prescription
for obtaining the Feynman propagator in § 1.6 and the tilted time axis prescription in the
textbook by Peskin & Schroeder. After performing the trivial ¥ integration we get

o0

5 Yo PaIT(0en)dea) iy [az® eith e

Ty

- Z QE%E;) <)‘ﬁ|T(<73(21)<73(22))|Q>

i et T+ [P’ —Eg(X)+ie]

p® — Ez(\) +ie ’

~—

which corresponds to isolated 1-particle poles, isolated bound-state poles or multiparticle

branch-cut poles. Subsequently we note that

i i 1 1 el TP’ Ep(N)+ie]
= an
p? —m3 + i€ Py — EZ(N) +ie 2E5(A\) p® — Ez(\) + ie

have the same residues at the pole p° = Ez()\) — ie.

The 1-particle state in the far future corresponds to an isolated pole at the

on-shell energy p° = Ey = /P2 +m2;

/d4$eip'x<Q|T(<73($)<£(Zl)<73(Z2)"')|Q> = 2 Wz

_ m?2 ;
mph+ze

P out<ﬁ|T($(zl)$(z2))|Q> )

using the notation |p')ous = |Ap)1-part. for a 1-particle eigenstate with momentum § that is

created at asymptotically large times.

The integration interval z°€ (—oo,T_]: in this case the steps are similar to the ones for

the previous integration interval. The following changes should be made though: the
damping factor e~<*" should be replaced by e+“0, ¢A5(a:) is now situated at the end of the
operator chain, e~“? should be replaced by e™® and the pole energy p® = Ez(\) — ie
now changes to p® = — Ez(\) + ie.

The 1-particle state in the far past corresponds to an isolated pole at the on-shell

energy p° = —Ey = —[p2+m2,

/ P~ B i Z QT (3(21)d(z2) )= F Vim -

4 . ipw 2 7 fy .. —_—
d*z e QT ($(x)d(21)$(2) - --) | P?—m2, +ie
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LSZ reduction formula: the procedure described above can actually be worked out for
situations with as many 1-particle poles as there are field operators in the Green’s function.
This leads to the so-called LSZ (H. Lehmann, K. Symanzik, W. Zimmermann) reduction

formula:

p/iE, (ﬁ L)(ﬁ L) Out@l.-.n. {*1....;;",%.;, (5)

2 __ .2 . 2 _ .2 .
B, m \jo1 P T M tie/ \ 2 ki — my, + i€
J

where the use of e "%’ ensures that the particles in the “in” state have positive energy.

The S-matrix element involving n' particles in the “in” state and n particles in the
“out” state can be obtained from the corresponding (n + n')-point Green’s function by
extracting the leading singularities in the energies k?, and p?, which coincide with the

situations where the external particles become on-shell.

@ The pole structure of the Green’s functions emerging at asymptotic times contains all
relevant information about the scattering amplitudes of the theory! To select the required

information one should project on the right singularities by using appropriate plane waves.

Wave packets instead of plane waves:

e In the asymptotic treatment of multiparticle states it is better to use normalized wave
packets. In that case z is constrained to lie within a small band about the trajectory
of a particle with momentum p’, with the spatial extent of the band being determined
by the wave packet. In this way the particles do not interfere and can effectively be
considered free at asymptotic times, unlike plane-wave states. Therefore we formally

should have made the replacement

: dk : o
\/'(:]_437 e — /(2 )3 \/'(:].437 elpoxogo(k)efzk-x ,
T

with go(lg) a function that is peaked around p, and we should have taken the limit

of a sharply peaked wave packet (k) — (27)38(k—p) at the end of the calculation.

e A l-particle wave packet spreads out differently than a multiparticle wave packet, so
the overlap between them goes to zero as the elapsed time goes to infinity. Although
(]B(x) creates some multiparticle states, we can “select” the 1-particle state that we
want by using an appropriate wave packet. By waiting long enough we can make
the multiparticle contribution to the matrix element as small as we like (cf. Fermi’s

Golden Rule for time-dependent perturbation theory).
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e An n-particle asymptotic state is created/annihilated by n field operators that are
constrained to lie in distant wave packets and therefore are effectively localized.
Under these conditions an n-particle excitation in the continuum can be represented

by n distinct (independent) 1-particle excitations of the ground state.

Translated in terms of Feynman diagrams: in order to investigate the implications

of the LSZ reduction formula we consider the 4-point Green’s function

/d4:l?1 eip1-a:1 /d4:l?2 eipz-m /d4y1 e—ikA-yl /d4y2 efikB'yz<Q|T($(x1)é(x2)¢§(y1)$(y2))|Q>

in the scalar ¢*-theory. From this we want to derive the T-matrix element for the scattering
process ¢(ka)p(kp) — @d(p1)d(p2). To this end we need to consider the contributions from
fully connected diagrams, as was explained in §2.6. These diagrams can be represented

generically by

The blob in the centre of the diagram represents the sum of all amputated 4-point diagrams:
1 2 1 9 12
1 2 1 2
)= X O XK O
A B B A
A B A B A B
The shaded circles indicate that the corresponding full propagators

P P i

should be used, where

Z-E(p2)LL+&+%+...

represents the 1-particle irreducible scalar self-energy diagrams in ¢*-theory. Near the

physical particle pole p? = mf,h the full propagator can be expanded according to

Pomi=S(p?) & (o) [1-S(m2)] + O([P=m ) = 2+ O(IP—m2, )
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As a result, the sum of all fully connected diagrams contains a product of four poles:

VA VA VA 17
2 2 2 2 2 2 2 2 )
Py — My, D3 — Moy k — my,, kg —my,

multiplying the amputated 4-point diagrams. According to the LSZ reduction formula (5)
the T-matrix element for the scattering process ¢(ka)p(kp) — @(p1)P(p2) thus reads

with all external momenta being on-shell.

Any 4-point diagram that is not fully connected, like the

one displayed in the figure on the right, does not contain A B
a product of four poles. Such diagrams are therefore pro-
jected out in the transition from the Green’s function to ka kp

the T-matrix.

@ This completes the derivation of the connection between scattering ma-
trixz elements and fully connected amputated Feynman diagrams that was given
on page 52 of these lecture notes. In fact we have also obtained the missing

ingredient in the Feynman rules for the scalar ¢*-theory on page 52.

Multiply the sum of all possible fully connected amputated Feynman diagrams in posi-

tion/momentum space by a factor (v/Z)**" for n+n' external particles.

2.9.4 The optical theorem (§ 7.3 in the book)
From the unitarity of the S-operator it follows that
§1¢ = 1 ML i th(iniT) = 1ei(T—TH+T'T =1 = —i(T-T%) = 717
In order to investigate the implications of this equation we consider the scattering process
$(ka)$(ks) — ¢(p1)@(p) in the scalar ¢-theory:

— i (p1pa| T\kakip) + i (D1l T |kakp) = (Pipe|T T |kakp)

= 5 i (11 [ oo 3 ) BT M ()

n




where in the last step a complete set of intermediate plane-wave states has been inserted.

In terms of matrix elements this becomes:

—iM(ka,kp = p1,p2) +iM*(p1,p2 — ka, kp)

= Z %/dﬂn M (p1,p2 = {g;}) M (ka, ks — {g5}) ,

n

containing the n-body phase-space element that was defined in equation (3). Using the

abbreviations a = k4, kg, b=pi,ps and f = {¢;} this results in the generalized optical

theorem
—iM(a—b)+iM b —a) = 3 Cf/dHfM*(b—> HM(a - f)
f

where C} stands for the combinatorial identical-particle factor belonging to the state f
(i.e. the factors 1/n! in this ¢* example). This generalized optical theorem is equally
valid for initial /final states consisting of one particle or more than two particles. In more
complicated theories the summation on the right-hand-side of the optical theorem runs

over all possible sets of “final-state” particles that can be created by the initial state a.

Specialized to forward scattering, i.e. p; = k4 and py = kg (= a = b), this yields the
optical theorem in its standard form:

2ImM(a — a) = Z Cf/dHf IM(a — f)]* = inverse flux factor * oy (a — anything) ,
f

where the inverse flux factor reads 4Eqy |k | in the CM frame of the reaction.

@ The optical theorem expresses the total cross section for scattering in terms
of the attenuation (reduction) of the forward-going wave as the beams pass
through each other. This is caused by the destructive interference between the

scattered wave and the beam.
Diagrammatic example for ¢*-theory at first non-trivial order: in Ex.12 it is
worked out that
ka kp 2
ki - ks - . q1 q2
oTm | _ i —i XX -i XX :§/dH2 ><
ka k k ka
ki kg B B ka kp

The factors —¢ on the left-hand-side are in fact cancelled by the factor ¢ from Wick-
rotating the loop integral. Note the absence of the lowest-order matrix element on the
left-hand-side, because it has no imaginary part. This is nicely consistent with the right-
hand-side, which contributes at O()\?) rather than at O()).
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Sources of imaginary parts: the imaginary parts that feature in the optical theorem
originate from the ¢e parts of the propagators. For instance
1 p? — m? 1€ 1
— = :P<7) ind(p? —m?) ,
P2 — m2 + ie (P2 — m2)? + €2 T (P2 — m2)? + ¢ P2 — m?2 T (p )

where P stands for the principal value. When going from p? —ie to p? + ie there is a

—2mi§(p* — m?) jump (discontinuity) in the propagator.

@ Non-vanishing imaginary parts correspond to those situations where in-
termediate particles inside the loop(s) become on-shell. The associated lines of
the diagram are in that case referred to as being “cut”. The tmaginary parts
are the result of branch-cut discontinuities, marking invariant-mass values for

which certain multiparticle intermediate states become physically possible.

The Cutkosky cutting rules (without proof): the discontinuities of an arbitrary
Feynman diagram can be obtained by means of a general method that is based on the
discontinuities of the individual propagators. It involves the following three-step procedure
(usually referred to as the Cutkosky cutting rules):

e cut the diagram in all possible ways, with all cut propagators becoming on-shell

simultaneously;

e replace 1/(p> — m? +ie) by —2mid(p?> — m?) in each cut propagator and perform
the loop integrals;

e sum the contributions of all (kinematically) possible cuts.

2.10 The concept of renormalization (chapter 10 in the book)

Before we close this chapter on interacting scalar field theories, there is one
final issue to be addressed.

As we have already observed in the previous discussion, there still is the issue of UV di-
vergences from the loop integrals [;°d¢2 €2 /(£2 + A — i)’ for j < 2.

@ Question: how should we deal with UV divergences that occur at loop level
in the perturbative expansion of interacting quantum field theories, bearing in

mind that physical observables should be finite?

The occurrence of singularities should not come as a surprise, though. Inside the loops
particles of all energies are taken into account as being described by the same theory, i.e. we

treat them as point-particles at all length scales, which is rather unrealistic.
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Regularization: before we can continue the discussion we first have to quantify the UV

divergence. This is called regularization.

@ An obvious way to quantify UV divergences is by using a cutoff method:

oo to be replaced by A?
2 2
/ e — dez |
0 0

which removes all Fourier modes with momentum larger than A.

This means that the corresponding fields are not allowed to fluctuate too energetically.
In this way we look at the physics through blurry glasses: we are interested in length
scales L > 1/A, but we do not care about length scales L < 1/A. This approach reflects
that quantum field theory is in some sense an effective field theory with A marking the
threshold of our ignorance beyond which quantum field theory ceases to be valid. As such,
the cutoff A plays the role that 1/a played in the 1-dimensional quantum chain in Ex. 1,
although A does not correspond to a specific energy/mass scale in the theory and should

in fact be taken much larger than any such scale.

@ We speak of a renormalizable quantum field theory if it keeps its predictive

power in spite of its shortcomings at small length scales.

Technically this means that we should be able to absorb all UV divergences of the theory

into a finite number of parameters of the theory (like couplings and masses).

Example: consider the ¢*-process ¢(k4)d(kp) — ¢(p1)¢(p2) at 1-loop order in the CM
frame of the reaction. To make life easy we will neglect the mass of the particles in this
study, which will not affect the outcome. Indicating the relevant invariant-mass scale of

the process by s, the matrix element reads

o () () () ] + o

2 2

= 2+ 3;\7r2 [310g<%) +10g(

Mg sg6(8,0) = — X +

)+m+3] + O(N%) .

sin’6

Details of the calculation are worked out in Ex.12. As we will see later Z = 1+ O(\?), so
there will be no 1-loop contribution from the wave-function renormalization factor (v/Z)*
in ¢*-theory.

From this result a few interesting observations follow.

1. The Lagrangian parameter (bare coupling) A is not an observable quantity! The

quantum corrections are an integral part of the effective coupling, which can be

measured through |M s (s, 0)%
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This effective coupling is energy-dependent due to the creation and
annihilation of virtual particles (quantum fluctuations) at 1-loop order. So,

the effective strength of the ¢*-interaction changes with energy!

2. Myss6(s,0) depends logarithmically on the cutoff at O(A?). A short but sloppy
way of saying this is that “Mss_es(s,0) is logarithmically divergent”.

3. [Myses(s,0)|* is observable and should therefore be independent of A. After all, A
can be chosen arbitrarily and as such an observable cannot depend on it. To achieve
this, the unobservable bare coupling A should depend on the cutoff A:

0 — dMg-40(s, ) _ dA (_ 1+ A [310g<%2) +log<,i29> +i7r+3]>

dA? dA? 1672 sin
331 3
t oot O(X°)
d(1/)) A2 dA 3 1 1 3 A2
—_— = - = 2 — 10g(—)
dlog(A?) A2 dA? 32m? A(A?) A(p?) 322 p?
= /\(A2) ~ )‘(:u2)
~ . :
1— 26 Jog(A2/p2)

This is an example of a so-called Renormalization Group Equation
(or short: RGE), which tells us that A\(A?) grows with A? if A(u?) > 0.

The miracle of vanishing divergences: renormalization
Suppose we measure the above-given effective 4-point coupling at s = p* and 6 = 7/2,

and let’s call this physical observable )\Zh:

2

{310{;(%) +log(4)+3] + O(/\2)> .

_ .2 2 2 _ 2
Masls = /20 = 2 = 2 (1= 12

The bare coupling A can then be expressed in terms of the physical coupling Ap, and the
divergence log(A?/u?) according to

2 2

—A = =y — 32‘;2 {3 log(ﬁ) + log(4) +3} + O(\h) -

If we now want to know the effective 4-point coupling at an arbitrary scale s and scattering

angle 6, then we can simply write

2

A .
|M¢¢_>¢¢(s,9)|2 = )\f,h <1 ~ 1 ph [310g<%) —log(sm29)] + (’)()\Zh)> ,




where the log(u?/s) term is completely governed by the above-given RGE for . This re-

flects that the observable effective 4-point coupling should not depend on the choice of

reference scale p.

The reference scale 1 labels an entire equivalence class of parametrizations of
the ¢*-theory and it should not matter which element of the class we choose for

setting up the theory.
When expressed in terms of the physical coupling Ay, the effective coupling |[Mgs-s44(s, 0)|?

is independent of the cutoff A, as expected for a correct observable! The cutoff dependence
has been absorbed into a redefinition of the unobservable Lagrangian parameter (bare cou-
pling) A in terms of the observable physical parameter (effective coupling) A,,. In the

literature this physical observable is usually referred to as the renormalized coupling Ag,

although this terminology is a bit strange bearing in mind that the original coupling was

not normalized to begin with. This is an example of the concept of renormalization.

Renormalization: express physically measurable quantities in terms of

physically measurable quantities and not in terms of bare Lagrangian parameters.

e For setting up a perturbative expansion, the bare Lagrangian parameters are in fact
not the right parameters. Instead the physically measurable parameters should be

used (cf. the discussion about m and myy, in §2.9.2).

e The occurrence of infinities in the loop integrals is linked to this. Our initial pertur-
bative expansion consisted of taking A — oo while keeping A and m finite. From
the renormalization group viewpoint, however, the set (u=A =00, <00, m < 00)

does not belong to the equivalence class of the ¢*-theory!

e The convergence of the perturbative series can be further improved by using phys-
ical quantities at the “right scale”, thereby avoiding large logarithmic factors like
log(1?/s) in the example above. This choice of scale has no consequence for all-order

calculations, but it does if the series is truncated at a certain perturbative order.

To complete the story for the scalar ¢*-theory we consider the UV divergences that are
present in the scalar self-energy. This time the mass parameter is essential and therefore
should not be neglected.

Scalar self-energy at O(A):

b
Q —ix [ d% '
—in(p?) =2 - = / e —
p P 2 (271‘)4 El—m2+ze
it " /Ad€2 LY e log(A—2> .
Wick rotation 3272 J, 7 £2 +m? — ie 32m? m?
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After Dyson summation the full propagator becomes

? 17
= + regular terms .

p*—m?—S(p?) +ie — p*—my,

Since the 1-loop scalar self-energy does not depend on p? it is absorbed completely into

the physical mass:

2 _ 2 2\ © 2 A 2 2 ( A_2 )
My, = M° + B(my,) == m” + 392 [A m* log )|
whereas the residue of the pole remains 1.

@ Note the strong A? dependence of the scalar mass, which implies that this
mass is very sensitive to high-scale quantum corrections. This is in fact a gen-
eral feature of scalar particles, like the Higgs boson: intrinsically the quantum
corrections to the mass of a scalar particle are dominated by the highest mass

scale the scalar particle couples to!

Scalar self-energy at O(A?): the residue of the pole is affected at 2-loop level by the

contribution
b
_(=iN)? / d*e /014132 i i i
P Sg p 6 (2m)* ] (27)* 62 — m? + i€ 03 — m? +ie (b + by +p)2 — m? + i€
1

= a+bp’+cpt+--- .

To assess the UV behaviour of this diagram we perform naive power counting, which in-

volves treating all loop momenta as being of the same order of magnitude. For ¢; — oo

157]

we obtain an integral of the order [d*(p /(S AR A A,
e a = O(A?) is obtained by setting p = 0;

e b=0O(logA) is obtained by taking £0%/9p§ and then setting p = 0. In naive power

counting this logarithmically divergent term corresponds to integrals of order A°.

e ¢ = (1) is obtained by taking 5 0*/dps and then setting p = 0.

Adding all self-energy contributions and focussing on the diverging terms

1 1 1z
. — = + regular terms ,
p? —m? — X(p?) +ie p? —m?— A— Bp? p?—m2, 8

1 2L A
Z = —— = O(logA) mf,h = n;lb—+B =Zm’>+ém? |, m® = — = O(A?).
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This leads to an O(A?) shift in the mass and an O(logA) contribution to the wave-

function renormalization, which can be absorbed in the field ¢ itself.

So, UV divergent loop corrections in ¢*-theory are present in X(p?) and M4, 44(s,6), with

B(m2,) = m, —m? = (Z—1)m?+om? = m*s;+om> |, ¥(md) =1-1/Z

and  Myygp(s =12 m/2) = —dpp = —Z°X =6y .

The occurrence of the factor Z? in the last expression originates from the multiplicative
factor (v/Z)* that should be added according to the Feynman rules.

2.10.1 Physical perturbation theory (a.k.a. renormalized perturbation theory)

The lowest-order ¢*-theory should have been written in terms of the ex-
perimentally measurable physical parameters my, and Ay, and perturbation

theory should have been defined with respect to this lowest-order theory.

This is done as follows: take the original Lagrangian and write
¢ =0 NZ , m’Z =m}—om> | N2 =Xp—0y and Z =144,
so that

L= 2 (00)@) - -

4l

A
5 = 5 (0,62)(0,) — ik — g

m2¢2 5 i

1
2

+ 2 02(0,8,)(0%6,) + 5 om’, + Do
We get back the original Lagrangian in terms of renormalized objects (first line) and we
obtain extra interactions that are called counterterms (second line), since their purpose
is to cancel the divergences in the theory. The Feynman rules for the propagators and

vertices including counterterms are now given by

p 1 A\
—p—o = _ y = —1 ,
p? —m2, +ie >< ph
p p
~a— = (P +m?) . w( = iy

Renormalization conditions: as an explicit example, the full propagator now reads

i/ [p*—m2, — Zr(p?)], with the renormalized self-energy given by

—iSR(p?) = LL+—®—+&+%+QL+A®~+W
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The parameters 6 and dm? can be fixed by imposing the renormalization conditions

Sg(my,) =0 and XR(m),) =0 = full propagator = ﬁnﬂregular terms .
ph

The pole structure of the full propagator then resembles that of a free particle, so in that
sense the physical 1-particle states have been re-normalized by this procedure. Adding
one more renormalization condition based on Mgy, 44 in order to fix ), we have three
conditions fixing three counterterm parameters. This will in fact be sufficient to make all
observables of the ¢*-theory finite.

The scalar ¢*-theory is called renormalizable: “the infinities of the theory

can be absorbed into a finite number of parameters”.

2.10.2 What has happened?

The above procedure seems odd: we calculated something that turned out to be infinite,
then subtracted infinity from our original mass and coupling in an arbitrary way and ended
up with something finite. Moreover, we have added divergent terms to our Lagrangian and
we have suddenly ended up with a scale-dependent coupling. Why would a procedure
consisting of such ill-defined mathematical tricks be legitimate? To see what has really

happened, let us closely examine the starting point of our calculation.

In general, we start with a Lagrangian containing all possible terms that are compatible
with basic assumptions such as relativity, causality, locality, etc. It still contains a few
parameters such as m and )\ in the case of ¢*-theory. It is tempting to call them “mass”
and “coupling”, as they turn out to be just that in the classical (i.e. lowest-order) theory.
However, up to this point they are just free parameters. In order to make the theory
predictive, the parameters need to be fixed by a set of measurements: we should calculate
a set of cross sections at a given order in perturbation theory, measure their values and then
fit the parameters so that they reproduce the experimental data. After this procedure, the

theory is completely determined and becomes predictive.

The bare parameters m and A\ are only useful in intermediate calculations and will be
replaced by physical (i.e. measured) quantities in the end anyway. So, we might as well
parametrize the theory in terms of the latter. The renormalizability hypothesis is that this
reparametrization of the theory is enough to turn the perturbation expansion into a well-
defined expansion. The divergence problem then has nothing to do with the perturbation
expansion itself: we have just chosen unsuitable parameters to perform it. Also, the
fact that our physical coupling is scale-dependent should not surprise us. The physical
reason for this “running” is the existence of quantum fluctuations, which were not there

in the classical theory. These fluctuations correspond to intermediate particle states: at
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sufficiently high (i.e. relativistic) energies, new particles can be created and annihilated.
As the available energy increases, more and more energetic particles can be created. This

effectively changes the couplings.

Having traded the bare parameters m and A for renormalized parameters my, and Ay,
let us take a closer look at the internal consistency of the renormalization procedure. We
have introduced the physical coupling at a reference scale i, but we could equally well have
chosen an energy scale p' with corresponding effective coupling A ,. Physical processes
should not depend on our choice of reference scale, hence the couplings should be related
in such a way that for any observable O we have O = O(mpn, tt, Apn) = O(Mmpn, ', \yp) -
In other words, there should exist an equivalence class of parametrizations of the theory
and it should not matter which element of the class we choose. This observation clarifies
where the divergences came from: our initial perturbation expansion consisted of taking
A — oo while keeping m and A finite. From the viewpoint of the renormalization group,
however, the set (u=A =00, m < 00, A < 00) does not belong to any equivalence class
of the ¢*-theory.

2.10.3 Swuperficial degree of divergence and renormalizability

The statement at the end of §2.10.1 was a bit premature. In fact we still
have to prove that amplitudes with more than four external particles do not
introduce a new type of infinity that cannot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will contain singular building blocks like 4@ and >O< that should become finite
once we perform the afore-mentioned renormalization procedure. The question that re-
mains is whether the overall 6-point diagram can give rise to a new type of infinity. To assess

this we perform naive power counting, i.e. we treat all loop momenta as being of the same

large order of magnitude O(A). The outcome of this power counting is called the superficial

degree of divergence D of the diagram, with D = 0 denoting logarithmic divergence.

Consider a 1PI amputated diagram with N external lines, P propagators and V vertices.

e In ¢*-theory four lines enter each vertex, each propagator counts twice towards the
total number of lines entering vertices and each external line counts once. This results

in the condition

4V = N+2P = P = 2V —N/2 and N = even number .
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e The number of loop momenta is given by the number of propagators — the number
of four-momentum J§-functions + 1, since one of the §-functions corresponds to the

external momenta and will not fix an internal loop momentum. This results in
L=P-V+1=V-N/2+1

independent undetermined loop momenta. So, loop diagrams require V > N/2.

Power counting: assume for argument’s sake that the loop momenta are n-dimensional.
That means that in the context of naive power counting each loop momentum contributes
A™ and each propagator A 2. The superficial degree of divergence of the diagram then reads

D =nL—2P = n(V—-N/2+1) =202V = N/2) = n+V(n—4)+ N(1—n/2),

whereas the coupling A has mass dimension [A\] =4 —n in n dimensions.

Superficially the diagram diverges like AP if D > 0 and like log(A) if D =0,
provided it contains a loop. The diagram does not diverge superficially if D < 0.

Let’s now consider a few values for the dimensionality n of spacetime.

n =4: D =4— N is independent of V and [A\] =0 = the theory is renormalizable.
Divergences occur at all orders, but only a finite number of amplitudes diverges
superficially (i.e. amplitudes with N =2 or 4)! The theory keeps its predictive
power in spite of the infinities that occur if we assume it to be valid at all energies.

n=3D=3-N/2—V and [\] =1 = the theory is superrenormalizable. At most a
finite number of diagrams diverges superficially (i.e. the diagrams with N = 2 and
V=1 or V=2), as the diagrams get less divergent if the loop order is increased!

n=>5 D=5—-3N/24+V and [\]=—1 = the theory is nonrenormalizable. Now all
amplitudes will diverge superficially at a sufficiently high loop order! An infinite
amount of counterterms would be required to remove all divergences, which means

that all predictive power is lost if we assume the theory to be valid at all energies!

If we express the superficial degree of divergence in terms of V and N,
the coefficient in front of V determines whether the theory is superrenormaliz-
able (negative coefficient), renormalizable (zero coefficient) or nonrenormaliz-

able (positive coefficient)!

In conclusion: for n > 4 the scalar ¢*-theory is nonrenormalizable and [\] < 0, for n =4
it is renormalizable and [A] = 0, and for n < 4 it is superrenormalizable and [A] > 0.

These conclusions agree nicely with the general discussion on page 28 of these lecture notes.
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3 The Dirac field

During the next three and a half lectures Chapter 3 of Peskin & Schroeder will be covered.
We have seen various aspects of scalar theories, describing spin-0 particles. However, most

particles in nature have spin # 0.

Question: how should we find Lorentz-invariant equations of motion for

fields that do mot transform as scalars?

Consider to this end an n-component multiplet field ®,(z) with a = 1,---,n, which has
the following linear transformation characteristic under Lorentz transformations:
Lorentz transf.
By(r) ———— My(N)®y(A 1)
with summation over the repeated index implied. A compact way of writing this is
Lorentz transf.
d(r) ————— M(A)P(A'z) .
In the case of scalar fields the transformation matrix M (A) was simply the identity matrix.
In order to find different solutions, we make use of the fact that the Lorentz transformations
form a group: A*, = g* is the unit element, A=' = AT is the inverse, and for A; and
A5 being Lorentz transformations also A3 = A;A; is a Lorentz transformation. The

transformation matrices M (A) should reflect this group structure:
M(g) = I, , M(A™) = M7'(A)  and  M(AAy) = M(A)M(Ay)

where I,, is the nxn identity matrix. To phrase it differently, the transformation matrices

M(A) should form an n-dimensional representation of the Lorentz group!

The continuous Lorentz group (rotations and boosts): transformations that lie
infinitesimally close to the identity transformation define a vector space, called the Lie
algebra of the group. The basis vectors for this vector space are called the generators of
the Lie algebra. The Lorentz group has six generators J** = —J"# three for boosts and
three for rotations. These generators are antisymmetric, as a result of A~! = AT and they

satisfy the following set of fundamental commutation relations:

[J’#V’ Jpa] — '(ngJ'uU o gusz/U o gVUJup 4 guUJVp) )

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by
. . , 1 . , .
K7 = J% respectively J/ = §€]kljkl = Jik = ¢k J! (7,k,1=1,---,3),

with summation over the repeated spatial indices implied. The latter generators, which

span the Lie algebra of the rotation group, satisfy the fundamental commutation relations
9T = Mt
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@ In fact it is proven in Ex. 15 that all finite-dimensional representations
of the Lorentz group correspond to pairs of integers or half integers (jy,j_),
where both j, and j_ correspond to a representation of the rotation group.
The sum j, + j_ should be interpreted as the spin of the representation, since

it corresponds to the actual rotations contained in the Lorentz group.

A finite Lorentz transformation is then in general given by exp(—iw,,J*’/2), where the

antisymmetric tensor w,, € IR represents the Lorentz transformation. For instance:

0 O 0 0
0 0 —d060 O

Wig = —Wey = 00 , rest=0 = w“y =
060 0 O
0 O 0 0

for an infinitesimal rotation about the z-axis (see Ex.14), and
0 6v 0 O
v 0 0 O
- - == 6 3 t = 0 = HI/ =

Wo1 w10 v res w 0 0 0 0
0 0 00

for an infinitesimal boost along the z-direction (see Ex.14).

The task at hand is now to find the matrixz representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

o (J)% = i(g"*g"s — g"39"*) are the six generators that describe Lorentz transfor-

mations of contravariant four-vectors:

Lorentz transf. ) y @ ? y
r* —mm— Ao‘ﬁxﬂ = [exp(—iwu J*/2)] ﬁxﬁ ~ (9% — §wuu(J“ )ag]xﬂ-

This implies that g% — £ w,, (J*)% = g% + w% represents the infinitesimal form of

the Lorentz transformation matrix A%, as is indeed the case.
o JH = j(xFd¥ — x¥OM") are the six generators in coordinate space, which describe the
infinitesimal Lorentz transformations of scalar fields

o) IR (AT) ~ b(a) — g (270~ 2201 0(a)

as derived on page 11.
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Dirac’s trick: introduce four n x n matrices y* that are referred to as
the ~y-matrices of Dirac, which satisfy the Dirac algebra (Clifford algebra)

{97} = A = 20"
with I, the nxn identity matriz. In Fx. 14 it is proven that this implies that

the nxn matrices S* = ﬂy“,v”] form a representation of the generators

J* of the Lorentz group.*

Four-dimensional solution to the Dirac algebra: since there are no solutions for
n = 2 or 3, the first solution can be found for n = 4. Written in 2 x 2 block form in terms

of the 2 x 2 identity matrix I and the Pauli spin matrices

01 0 —1 1 0
ol = N — and i ,
10 i 0 0 -1

the solution reads

0 0k d o oo (j=1,2,3)
7' = and 9 = . i=1.2,
IQ 0 — o’ 0

in the Weyl representation, which is also known as the chiral representation. In fact there

is an infinite number of such four-dimensional representations, since for any invertable 4 x4
matrix V also Vy#V~!is a solution. In the Weyl representation the generators of the

Lorentz group have a block-diagonal form. The generators for boosts are given by

. . . J 0
L PV VL BRSOV % R =1,2
S 4[%7] 57" 2( 0 i (7=1,2,3),

whereas the generators S*, S and S® for rotations follow from

iokl 0 (it 0 ,
ol, o o

1500 1
- Sl:<2 l) 5521 (1=1,2,3).

EJEE= S RV

o |

N [—=

1
50'
The generators for rotations look like twice replicated two-dimensional representations of

the rotation group. We will come back to this point later on. As a result of the properties

=9 (' = (=123 = () =",
the generators of the Lorentz group satisfy
14 l 14 i 14 14
(8 = =[N = [0 6NT] = A"

4In fact this is true for any spacetime dimensionality
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This means that the generators of rotations are hermitian, since (S7¥)! = S7* indicating
that rotations preserve normalization. On the other hand, the generators of boosts are
non-hermitian, since (S%)! = — 5% indicating that boosts do not preserve normalization

owing to the Lorentz contraction of spatial volumes.

Dirac spinors and adjoint Dirac spinors: a four-component field ¢(z) that Lorentz
transforms according to this four-dimensional representation of the Lorentz group is called

a Dirac spinor:

Lorentz transf.
Y(r) —— A1/2¢(A_1x) with Ay = exp(—iwu, S*/2) .

The adjoint Dirac spinor 1)(z) is defined as

Y(z) = Y()y°

and therefore transforms as

_ Lorentz transf. _
Bla) —TE T BA ) A

since

(51)t =058 0

7°AJ{/2 Y0 = yPexp(iw[S*]1/2)~° exp(iw,, S*/2) = Af/lz'

Using the important y-matrix property
i i
2 2

= i(9"9% = 9% 97" = (J7)"

(v, 577 = - [, 7] = 5 (" =) = (g — g*)

the following infinitesimal Lorentz-transformation identity holds up to O(w):

(I4 + %wpaspa )'7“ (I4 - %waﬂsaﬂ ) ~ [guy - %wP”(Jpa)MV] 7

This reflects that for finite transformations
A A = Ay

which indicates that * transforms like a contravariant four-vector provided it is properly

contracted with Dirac spinors and adjoint Dirac spinors.

Consequently, Y(z), v*0,¢(z), vY*4*0,0,¢(x), - - are good building blocks

for constructing a Lorentz-invariant wave equation for Dirac spinors, whereas

V(@)Y(z), b(x)y*d,(x),- -+ are scalar building blocks for obtaining the cor-

responding Lagrangian.
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3.1 Towards the Dirac equation (§ 3.2 and 3.4 in the book)

@ Dirac-field bilinears (currents): the interesting objects in spinor

space are of the form YT, with T' a 4 x 4 matriz that consists of a sequence

of y-matrices. These objects are called bilinears or currents. They will be

needed to construct Lagrangians that include interactions with other fields, like
V(x)y*h(x)Au(x) for interactions with a vector field and (x)y*y" b (x)h,, ()
for interactions with a tensor field. A basis for T' that satisfies TT =+°T° is
given by the following combinations of y-matrices:

i

I4 ) /Yﬂa ot = 9 [7H77u] ) 7ﬂ757 7’75 ’

where

- Z Vpo
v = i’y = — 0 e

in terms of the totally antisymmetric tensor
+1 if (uvpo) = even permutation of (0123)
P = ¢ —1 if (uvpo) = odd permutation of (0123)

0 else

Properties of v°: the properties of the matrix v will prove important for the description

of weak interactions. They read:
(,)/5)Jf - ’)/5 ) (75)2 = .[4 and {’}/5,’}/“’} = 0 (:U’:O’)?))
= 8] =0 = [ Ap =0.

This means that 7® is a “Lorentz scalar” if it is properly contracted with Dirac spinors
and adjoint Dirac spinors. Since v° commutes with the generators of Lorentz transforma-
tions in spinor space, eigenvectors of ¥5 corresponding to different eigenvalues transform

independently (i.e. without mixing).

@ According to Schur’s lemma this implies that the Dirac representation of the

Lorentz group is reducible, i.e. we should be able to write it in terms of two in-

dependent lower-dimensional chiral representations.

In the Weyl representation of the y-matrices, the matrix * has the following form in terms

of 2 x 2 blocks:
75 _ —I, 0
0 I
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As a result,

PRE

N | =
N | =

) 0 0
(Is+7°) = - and Py =
2

e (B0
T=) =1

are (chiral) projection operators on 2-dimensional vectors ¥ and ¥r:

(53 0 Y,
= P, = d P =
y (¢) S P (¢) wd Py (0)

which are eigenvectors of ¢® corresponding to the chirality eigenvalues +1 and —1.

In terms of these right-handed Weyl spinors g and left-handed Weyl spinors v, the in-

finitesimal Lorentz transformations of ¢ can be rewritten as (cf. Ex. 15 and the generators

that are given on page 90)

YL Lorentz transf. [ I —i§-&/2—5-&/2]¢L
_— o .
YR (I, —i0-5/2+B-7/2]Yr
The real infinitesimal parameters g and E coincide with the parameters da and 67 that
were used in Ex. 14. We see that the Weyl spinors transform independently, which indeed
implies that the four-dimensional Dirac representation of the Lorentz group is reducible
and can be split into two two-dimensional representations. For later use we mention the
following identity for the Pauli spin matrices:
. 9 ik Lorentz transf. 9 P = .
o°¢* = —do° = oY — o' [L+i0-5Y2—-[5-572]|yY]
= [L,—i6-G/2+ f-3/2])0%Y;

which indicates that o2} transforms like a right-handed Weyl spinor.

Chirality and currents: from the 4 x 4 matrix basis on the previous page all possible
_ _ F—nO0pA0
hermitian currents can be obtained as T, since (YT¢)T = T4y = JTy.

These currents and their associated continuous Lorentz transformations read:

) _ Lorentz transf. ) 4
scalar current : js(x) = Y(x)p(zr) —  js(A z),

) _ Lorentz transf. . 1
vector current : ji(z) = Y(2)Y*p(z) — A Gp(AT2)

. _ y Lorentz transf. . P
tensor current : ji’(z) = Y(x)o"P(z) ——————— A A7 (AT D),

. ) _ 5 Lorentz transf. . 1
azial vector current : j4(z) = Y(x)V*y’Y(z) —  A¥ (A 2),

) - 5 Lorentz transf. ) 4
pseudo scalar current : jp(z) = iY(x)y’Yp(r) —  jp(AT2),

making use of the fact that Al_/lﬂ“Al/z = A* " and A;/1275A1/2 = 15,
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Using the chiral projection operators Pr g, the Dirac spinors can be decomposed into

chiral components according to

Ppr(z) = Y = Yrr = W)Y’ = ¢ Py’ = ¢y’ Prip = ¥Pg/1
This results in the following chiral decompositions of the currents.

e The scalar current mixes left- and right-handed Weyl spinors, since

i = P(Pr+ Pr)y = $(Pp+ PL)Y = Yrpr + Yrir .
This will prove important for the description of massive spin-1/2 particles.

e The vector current treats left- and right-handed Weyl spinors on equal footing, since

1;’7“1& = lE’Y“(P?:z + Pi)w = lE(PL’Y“PR + Pry"Pr)Y = Z;R’Y“wR + l/_)L’Y“l/)L .

This will prove important for vector-like theories, describing for instance the electro-

magnetic and strong interactions.
e Similarly the tensor current mixes left- and right-handed Weyl spinors:
Yo' = Yo"y + Yro™ YL .
This is needed for describing Lorentz transformations, as we have seen already.

e The axial vector current treats left- and right-handed Weyl spinors in opposite ways:

YY"y = 9y (Pr+ PR = $(PLy"y" P+ Pry*y" Pr)y

Y Yr/L =% ¥R/

= YrY*Y"Ur + " Y VeV YR — YL y"Yr -

This will prove important for chiral theories, like the one that describes weak inter-

actions.
e Similarly the pseudo scalar current decomposes according to
WYY = iy YR + VR YL = iPrR — iYRYL -

This will prove important in describing interactions between spin-0 and spin-1/2

particles.

Handy combinations of such currents are given by the left /right-handed vector currents

Jrp(@) = Y(x)V*Pryr(x) = drr(z)y"r/r(z)
which will feature in the Standard Model of electroweak interactions.
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Dirac equation: let’s now try to construct a Lorentz-invariant wave
equation that has the Klein-Gordon equation built in. The simplest candidate

18 the Dirac equation

(79, — m)v(z) = 0.

This is a first order differential equation, whereas the Klein-Gordon equation was a second
order equation. This is possible because y* behaves like a vector without actually intro-

ducing a preferred direction, which is not possible in scalar theories!

Proof: first of all

0 = ("9 +m)(i"0, — m)b(z) = — (1'7"0,0, + m*)h(a)

= — (M{"4"Y8,0, + m?) () L2 (O m2)g(a)

so the Klein-Gordon equation is indeed built in! Secondly, under continuous Lorentz trans-
formations a Dirac spinor transforms according to ¢(z) — ¥'(z) = Ayjp(A1z). If Y(z)

satisfies the Dirac equation then it follows that

V ((7#0, —m)y(z) = 0 = (i7", — m)Aip(Ax) = Ay (iA* 778, — m)Y(A 'z)

= Ay [N 7 (A1), (8,9) (A Te) — my(A )]
= Al/g[i’y"a,,zp—mw](A’lx) =0
=  (iY"0, —m)Y'(z) = 0.

If the field v (z) satisfies the Dirac equation then so does the Lorentz transformed field

Y'(x), as required for having a Lorentz invariant wave equation.

In the Weyl representation the Dirac equation reads

0 (990, m) :< —ml, ¢(1200+&-§)><¢L> _ (—m[2 z‘aﬂa“><sz>
2([280—0_"V) —mfg wR ié-ﬂau _mI2 lZ)R

using the compact notation

0 ot
ot = (I,0) and at (I,—7) = o= ( )

From this we conclude that

the two representations associated with 1y, and g are mized by the mass
term in the Dirac equation! In the massless case the Dirac equation splits into

two independent wave equations for g and Vg, the so-called Weyl equations

1640, ¢r(x) = 0 and ick0,Yr(x) = 0.
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The Dirac Lagrangian: the Lagrangian that corresponds to the Dirac equation reads

['Dirac(-T) = &(x)(w”@u - m)¢($) :
Proof: the Euler-Lagrange equations for the ¢ and 1/ fields are given by

or oL |
a“(a(f‘Tzﬁ)) ~ g~ ~WO-my =0,

oL oL o _ _ e
“(a(TQp)) ) = au(“p’yu) +my = PEgr+m) = 0,

which are indeed the Dirac equation and the corresponding adjoint equation
- —
0 = [0 —m)u(@)]"" = =i (0 (2))7" 1" —my!(@)y" = = (@) (i0uy" +m) .

@ Conserved currents: in preparation for the quantization of the free
Dirac theory and the derivation of its particle interpretation, we have a closer

look at the conserved currents for the solutions 1(x) of the Dirac equation.

1. The vector current ji;(x) is conserved.

Proof 1: aujxﬁ; = (0“1;)7“11) + %"0“1# imyp —imyp = 0 .
Proof 2: in Ex. 17 an alternative proof is given based on global U(1) invariance.

Dirac eqns.

2. The axial vector current j'(z) is conserved if m =0.

Dirac eqns.

Proof 1: 9,54 = (0,0)v*¥°¢ — Yy y*9, ) ———= 2imyy*y = 0 if m = 0.
Proof 2: in Ex. 17 an alternative proof is given based on global chiral invariance.

3. The energy-momentum tensor T is conserved.

Only the spacetime coordinates of v(z) and w(z) transform under translations,
i.e. the spinors themselves do not transform. Consequently, the energy-momentum
tensor T" derived on page 8 will be conserved. This gives rise to four conserved

charges, the field energy
H = /df’H - /df [W¢¢+zz7r,,-, —L:Dim] - /dpr'

and field momentum
P = —/d:z? [71',/,61,04—(6@5)7(1;] = —/dfﬂ'd,%w.
Here we used that in these Noether charges ¢ (x) should satisfy the Dirac equation,
a£Dirac ) . 0£Dirac
= i7" = il aswellas w5 = — =
0(00¥) I

From these conjugate momenta we can read off that out of the eight real

and that my =

degrees of freedom of the Dirac spinor (z) in fact four belong to the

conjugate momentum.
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4. Under continuous Lorentz transformations a Dirac spinor transforms as

Lorentz transf. inf. 7 1
P(@) T N (A1) [ L w0089 (E) — e [1700— 20 T(2)
where the first term is typical for Dirac spinors and the second term is the same
as for scalar fields. Bearing in mind that the Dirac Lagrangian is a Lorentz scalar,
we can generalize the derivation on page 11 to arrive at the following six conserved
Noether currents:
OLpirac

(@) = gy [0 a0 —iS](e) + (a7~ ¢70"] Loiae(w)
)

= THaxP — TFPx° + ah(x)y*SP4p(x) .

The last term in these conserved Noether currents is specific for Dirac
theories. After quantization of the Dirac theory this term will help us to
determine the spin of the particles described by the (free) Dirac field theory.

3.2 Solutions of the free Dirac equation (§ 3.3 in the book)

@ Since solutions of the (free) Dirac equation automatically satisfy the Klein-

Gordon equation, we can use the standard plane-wave (Fourier) decomposition

in order to decouple the degrees of freedom as much as possible.

The positive-energy case: according to this decomposition we introduce
Vp(z) = u(p)e™* with p’=m? and p° >0 = pt= ( p24+m2,p) = (B, p).
The spinor u(p) then has to satisfy the Dirac equation in momentum space:
(Ypu —m)u(p) = (# —m)u(p) = 0,
using Feynman slash notation. The claim is now that u(p) can be written as
u(p) = ( Vot ) :
VP&

with & an arbitrary normalized 2-dimensional vector.

Proof: using that

{aj,ak}ZQijlg

\/(p-a)(p-ﬁ) = \/(p0[2_ﬁ.3)(p0[2+ﬁ.&) Ly/pt—p? = ml,

it easily follows that

—m)u = —mle peo pot =
i = () (T <
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The negative-energy case: similarly we introduce
Yp(z) = v(p)e™® with again p* = (Ejz,p)

to get two more independent solutions of the Dirac equation. The spinor v(p) has to

satisfy
— (Ypu+m)v(p) = — (P +m)v(p) = 0
and is given by o ( - )
—Vvpan )

with 7 another arbitrary normalized 2-dimensional vector.

Helicity: for the normalized base vectors ¢!, ¢2 and n',n? we could for instance choose

the eigenvectors of & - p/|p| = & - €, with eigenvalues +1,—1. This results in

VE; =o€\ sm [0
1 — E-‘
v (\/Eﬁ+|ﬁ| ¢! i\ )

VE; +1p| €\ 15>m ¢
2 N /2F -

o(p) = Ez — 17| n K _ J3F, 0 |
—VE; + 19| n' U

E; + |p| n? 5> m 2
v*(p) = ( p+p] )_},, \/TEZ?<77 :

—VE; =Pl 7

and

In the ultrarelativistic limit the chiral states coincide with the eigenstates

of the helicity operator

In that case positive helicity (h = +1/2) corresponds to right-handed chirality
(Yr) and negative helicity (h = —1/2) to left-handed chirality (Yr,).

Helicity is frame dependent if m # 0, since €, can be flipped by a boost along
that direction. Helicity is frame independent if m = 0. The Lorentz invariance
of helicity for m = 0 is manifest in the notation of Weyl spinors, since Y /g

live in different representations of the Lorentz group.
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Normalization and orthogonality of the v and v spinors: from the orthogonality
properties 7 1¢% = §,, and 1" 'n® = 6,, of the normalized 2-dimensional base vectors &', &2
and n', n?, it follows that

e

w)te) = €V, € VED) ( Vs

) = & p-o+p-6)& =2E50,,
N
—Vp-on

vp-on'
—pon’

with p# = (p°, —p) = p-6 =p-o and p-o = p-5. This is obviously not boost-invariant.

v" T (p)vi(p) = (nrjfw/p-o, —n" Vp-&)( ) =np-o+p-5)n° = 2E6,, ,

u(p)'(p) = (€Vp-o, 5”\/p-6)< ) =0 = (B (p)

Lorentz invariant contractions are obtained through

@’ (p)ut(p) = u"H(p)y"ui(p) = (€TVp o, & /—p.5)< Vpro & ) = 2m 6,

VTTE

—Vvp-on
- _2m5rs )

" v° _ Ur’f OUS _ r o, — r - T
(p)v* (p) v (p) = (n"'vp UG )( S

—v/p-on
Vpron®

' (p)v*(p) = (¢'Wp-o, ZETT\/p-&)( ) =0 = 7" (p)u(p) .

Polarization sums: for dealing with Feynman diagrams that involve Dirac fermions,

polarization sums (helicity sums) are an essential ingredient. These polarization sums read

us ,as — & p'O'gs s - st -0
; (p)@* (p) 322(\/19-—&3)(5 VDG, €N /po)

2 2

N Z:fléfséf”\/p-f‘f N ;555”\/10-0
2 2

N/ Z;l&s&”\/pﬁ N/ Z;l&s&”\/p-o

1. ml. -0
compl. 2 D :’Yupu+mj4 :Fj_i_le,
p-d mls

> v (p)e(p) = p—ml,

s=1

where in the third step the completeness relation for the 2-dimensional basis &1, €2 is used.

99



3.3 Quantization of the free Dirac theory (§ 3.5 in the book)

@ The same philosophy will be applied as in the Klein-Gordon case. We

diagonalize the Hamiltonian H of the Dirac theory in its quantized form by
expanding the solutions of the Dirac equation in spatial plane-wave modes,
which are written in terms of creation and annihilation operators. The par-
ticle interpretation is obtained by letting these creation operators act on the
vacuum state |0), which is defined to contain no particles (i.e. positive-energy
quanta) and to have the lowest energy. This leads to the requirement that
the spectrum of H should be bounded from below. On top of that, we again de-

mand that causality should be preserved for having a viable theory.

Derivation of the operator algebra: step 1. According to the discussion on page 96

Hpirac(z) = Ty(2)i(z) = iy (z)d(z) .

In analogy with the scalar case we expand a solution of the Dirac equation in terms of

plane-wave modes, bearing in mind that zﬁ(:c) is non-hermitian and has spinorial degrees
of freedom:

Iz) = / dp’ \/;T Z( w-w+z§;‘ws(p)eiﬁ~w>

The difference with the scalar case is the occurrence of the v and v spinors that span

spinor space. The Hamilton operator of the free Dirac theory now reads

- 2
H = /dfi’(ﬂ / /dpdp' Eq' Z (As‘r s’r sz+bs ( )e_ip.gc) y

po=Egz

(B)e s — sl Lu (p) ()¢5

po=Egz
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From this expression for the Hamilton operator of the free Dirac theory we can read off
that

e the energy spectrum is not bounded from below if we use commutation relations like

in the case of scalar theories;

e it does certainly not help if B;T is replaced by ¢3, since in that case the problem

cannot be solved at all;

° we are forced to impose fermionic anticommutation relations on the creation and

annihilation operators I;;T and l;;, being the alternative starting point for setting up

a many-particle quantum theory:
{5,051 = (2m)%0(5 — p")d0swl and {b3,b5} = {651,051} = 0.

Upon implementing these anticommutation relations, the Hamilton operator indeed be-

comes bounded from below by a zero-point energy:

i dp T o
"= /(27r)3 > Bs(aylag + byl oy — (2m)*6(0)1) -
e Again only positive-energy quanta feature in the Hamilton operator.

e This time we find an infinite zero-point energy with opposite sign, which can again

be removed by normal ordering:

B o NGB = b, b — N(bH) = — b

Note the extra minus sign that is required for normal ordering of fermionic operators.
This will also have repercussions on the derivation of Wick’s theorem and the ensuing

Feynman rules.

The opposite-sign fermionic zero-point energy could actually cancel the infinities
originating from bosonic zero-point energies. So, there might be some profound

physical concepts hidden in the zero-point sector ...!?

Let’s ignore the latter issue from now on and proceed with the operator algebra.

Question: do the operators a ,al also obey fermionic anticommutation relations

or bosonic commutation relations?
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Derivation of the operator algebra: step 2. To address the previous question we
need to study the causal structure of the theory. In the scalar case this was intimately
linked to the particle and antiparticle propagation amplitudes. This will involve both the
Dirac operator field and the adjoint Dirac operator field, which is given by

N

~

= Pi(z)y°

po=Egz

2 o) — dp 1 aStas () eP® 1 D555 (p)e—P®
wie) _/(27r)3 o5, 2 U TR

P s=1

ﬁ

We start by having a look at the propagation of positive-energy particles from y to x.

This is defined according to

R A dpdp —ip-z+ip'-y
(Ola(e)in(y)]0) = / D Z (o) (') (0las a% T 0)

(27r) pOZEﬁva):EﬁI
dp e~ 2 dp e~ #@=y)
= = 1),
/(27r Z u, m:EQ /(2#)3 2F; (P + mly)a po=,;
s=1
= (i + ML) D(z —y) ,
where a,b = 1,---,4 are Dirac spinor indices (which should not be confused with the

spin-1/2 quantum numbers s,s') and D(x — y) is given on page 19. This expression is

valid irrespective of the statistics for the a-operators:
(Olagag'10) = (01[(2m)*6(5 — 5")8e 1 £ a3 'ag](0) = (2m)°6(5 — 5") b ,

where the +/— sign occurring after the first step refers to bosonic/fermionic statistics.

Similarly the propagation of positive-energy antiparticles from x to y is given by

- . dodp’ ip-z—ip'-y
ORI = [ e Z POl 8310)

po=Ep,py=Eg

dp e® @y
= —— (p —mly),
po=Ey / (271_)3 QEI}‘ (ﬂ m 4) b

po=Ey

Important observation for the causality discussion: for (x —y)*> < 0 we know

from the scalar case that D(x —y) = D(y — ), hence we have to conclude that

(0| wa(x),izb(y)] |0) #0 and (0|{1ﬁa($),1zb(y)}|0> =0 in that case.
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Causality: in the coordinate representation any observable that involves Dirac particles

contains an even number of spinor fields, i.e. as many 1 as 1 fields, since such an observ-
able should have no open spinor indices. So, if either [@Z;a(a:) , zﬁb(y)] = [@Z;a(a:) , dA)b(y)] =0

or {zﬁa(az),izb(y)} = {&a(x),zﬁb(y)} =0 for (z —y)? < 0, then measurements do not
influence each other for spacelike separations and causality is preserved! As we have seen

above, the first option cannot be achieved but the second option is possible. Based on the

previous discussion,

A

(ele) b} = / 7 > (“s(p) S(p) e g ast
(27r)6 2 EﬁEﬁl ss' =1 p D

!

+ 03 (p)os (p) e VLB b+ ul(p)vy (p) e P v {ay by )

=0

po=Ep,py=Eg

+ o) (p') e v (B an )

A ) dpdp’ 1 2 i
{Va(2), ()} = / 2n)5 2./E, By > (“Z(p)mf(p')6‘”"'““"”"”{&%’&%'}

s,8'=1

’

+ 03 (p)vy (p) eP =T VBN BTY + ul(p)vy (p) e PP {ag b2

+ v (p)ul(p') eP* Y LpET 48, ) =0

2 (P)u; () LI 08 |

is guaranteed for spacelike separations (z —y)? <0 if

{a, A;’,T} = (2m)36(F—7") sl = {l;%, lA);’,T ,  with all other anticommutators being 0 .

Note: the anticommutation relation for @ and af follows from the first two terms in the
first expression, bearing in mind the anticommutation relation for b and b' as well as the
equality D(z —y) = D(y — ) for (z —y)? < 0.

In the free Dirac theory both particles and antiparticles have to be fermions.
On top of that, the creation and annihilation operators for particles anticom-
mute with those for antiparticles. This implies that particles and antiparticles
are versions of the same object, differing merely by the quantum number charge

(as we will see below).
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Canonical equal-time anticommutation relations: from the fundamental fermionic

anticommutation relations for creation and annihilation operators it follows that

-

a A 1 [ s 5 (5—7)
{d)a(f’t)vwb(?j’t)} ﬂ/(27f_))3 i |: ip-(7— y)(¢+mf4)ab+€ip 7=y) (ﬁ mI4)ab]
p

po=Ejy

p——p in 2nd term / dp piP" s
(2m)3

= {Ya(@, 1), 7 (5,1)} Z{zpa ) itn(7, )} (1) L= 6,0 6(F — 7)1

and
{0a(@, ), e, 1)} = {Fy(F,8), 79 (§,1)} = 0.

The quantization of the free Dirac theory could equally well have been

performed by imposing canonical equal-time anticommutation relations for the

fields and their corresponding conjugate momenta.

Completing the particle interpretation: what else do we know about the particles

and antiparticles in the Dirac theory?

e After quantization the momentum carried by the Dirac field becomes (cf. page 96)

just like in the scalar case.

e After quantization the conserved charge (called particle number) originating from

the global U(1) gauge symmetry becomes

which implies that particles/antiparticles have particle number +/— 1. Multiplied
by the electromagnetic charge ¢ of the particles this yields the total charge operator
for interactions with electromagnetic fields (see later). So, in that case we can read

off that particles and antiparticles have opposite charge.
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e Based on the discussion on page 97, the total spin operator is given by

i~ . 1z 0 .
S = /dw*@:)(?o 5)¢<x>.

Just like in the previous case, the order of the l;; and lA);Jr operators results in

N [

opposite spin quantum numbers for antiparticles if we would set n®* = £° in the

v and u spinors.

This allows us to read off the particle content of the free Dirac theory. We already know
that for anticommuting creation and annihilation operators there exists a groundstate
(vacuum state) |0) such that (0/0) =1 and a3[0) = l;;|0> =0 for all p and s. Then
N(H)[0) = 0, ﬁ|0> = 0 and N(Q)|0) = 0, ie. the vacuum “has” energy E = 0,
momentum P = 0 and charge @ = 0. From this groundstate the 1-particle excitations

can be obtained as d;t

|0) and B;T |0), corresponding to an energy Ej, a momentum p,
spin 1/2 and opposite charge/particle number. In view of the fermionic anticommutation

relations, af creates fermionic particles and b' creates fermionic antiparticles.

@ We can summarize the particle interpretation of the free Dirac theory as

follows: dy creates particles with energy Ez, momentum §, spin 1/2, charge q
and polarization appropriate to £°, whereas b;T creates antiparticles with energy
E5, momentum p, spin 1/2, charge —q and polarization opposite to n°. Hence,

if m =20 then QﬁL/R(x) annihilates particles with negative/positive helicity and

creates antiparticles with positive/negative helicity.

Inversion of the Dirac equation: the retarded Green’s function is obtained by

[Sr(z —y)], = 6(z° —y°) (0[{¢ha(x), Pu(y) }|0)

p.102

0(z° — y°) (i@ + mIs)as (D(z — y) = D(y —2)) = (ifs +mIs)ay Dr(z —y) .
We have used in the last step that 9y60(z° — 3°) = 6(2° — 3°) causes D(z —y) — D(y — x)
to vanish according to property 2 on page 20, which implies that it is safe to interchange
the order of 8(z°— ¢°) and (1@, + mIy)as-

Proof that this Green’s function indeed inverts the Dirac equation:
(iPe—m) Sr(z—y) = (iPe—m)(ids+m) Dp(z—y) = — (O+m?) Dp(z—y) Iy = i6¥ (z—y) L.

In Fourier language this inversion reads:
d*p

d*p

i, —m)Sp(x — — el —m ~R e—w(@—y) — e (z—y) .

(i =m)Snle =) = [ 5 (5= m)Sa) [ I
S iam)

= SR(p) - p2 — m2 - ﬂ —m )
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with the same prescription to go around the complex poles as in the Klein-Gordon case.

Similarly the Feynman prescription yields the Feynman propagator

d'p i +mIas e .
[SF(x_y)]ab - /(27r)4 p2 —m?2 + ie e ") = (i@ +mly)a Dr(z — y)

(i@ + mI)a D(@ —y) = Olda(@)Dp(y)|0)  if a® >y

(i + mI)a D(y — z) = — (Odhy(y)va(2)]0) if 2® < 3"

(O|T (a() 5(y))|0) .

Note the extra minus sign in the definition of time ordering for fermionic fields. Just
like in the Klein-Gordon case the Feynman propagator [S r(z — y)]ab is the time-ordered

propagation amplitude, which will play a crucial role in the Feynman rules for fermions.

Lorentz transformations and (x): just like in the Klein-Gordon case the 1-particle
states are normalized according to |p, s) = /2E5 d;T |0}, with a similar expression holding
for 1-antiparticle states. Using this definition we can define the unitary operator that

implements (active) Lorentz transformations in the Hilbert space of quantum states:

. A SN
Ap,s) = U(A)|p,s) = QEHdKT) = V2E; U(N)as' U™ (A)U(A)]0)
= define: U(A)as U (A) = T asl
P E; Ap’

provided that we choose the axis of spin quantization to be parallel to the boost/rotation

axis. The transformation property of B;T has an analogous form. As a result:

/\

U(A)d(2)U (M) = /@d—&ﬁ 2B 3 (s w(p)e #* + L o))

~

= U907 (L) = Ajpd(Ae)

where the second line is obtained by using that [dp/(2E;) and e*® are all Lorentz
invariant. This implies that the transformed field creates/destroys antiparticles/particles
at the spacetime point Ax.
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3.4 Discrete symmetries

Apart from the symmetry under continuous Lorentz transformations and
translations, there are two more spacetime symmetries a free Lagrangian should
have in relativistic field theories. These correspond to the discrete Lorentz trans-

formations that complete the Lorentz group:

e parity (spatial inversion) P, which reverses the handedness of space: ¢, L t,—7.

e time reversal 7', which interchanges forward and backward light cones: t, % L —t,T.

In addition it is also useful to consider a non-spacetime discrete operation called charge
conjugation C', which interchanges particles and antiparticles. In particular P and C' play
a crucial role in constructing the Standard Model of electroweak interactions. In these
lecture notes we will explicitly consider parity transformations. The details for the other

discrete transformations can be found in the textbook of Peskin & Schroeder.

Parity: this mirror-reflection spacetime trans- mirror
formation is implemented in the Hilbert space

of quantum states by a unitary operator (basis

transformation) P. Its action on the creation
and annihilation operators is such that a state
|’y s) is transformed into a state | —p, s), pro-
vided that the spin is quantized along an arbi-

trary fixed axis.® This implies

A

~s D _ ~S D1s D _ 78
Paﬁp — /Baa_ﬁ and Pbﬁp — /Bbb_ﬁ;

<« parity —»

where [, are phase factors. Applying P twice

should have no effect on observables in the Dirac theory. These observables contain as
many 1 as ¢ fields, so the phase factors drop out as long as 3, and B, are related
appropriately (see below). In analogy to the case of continuous Lorentz transformations,

the transformation property of the Dirac field under parity then becomes

N oA ~ dﬁ 1 ~s s —ip-x *78 s ip-x (5
Py(z) Pt = /(2@3 2F- Z (Bad® ;u’(p)e ™ +6bb:%v (p)e™™) = AY/JQ)@Z)(QJ),

P s=—1

ﬁ

po=Ejy

with ## = (2°,—Z). Using p* = (p°,—p) = p-6 =p-0 and p-0 = p- &, we can

Qi

rewrite the u and v spinors according to

SIf we would instead use spin quantization along the momentum direction, then also the associated

quantum number helicity would be reversed under parity.
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() = (”"”8) - (”“8) _ (” ’55) )
NS VB-o ¢ VPG & ’

v (p) = ( VP o ) _ ( VDT’ ) _ _70< VDo’ ) _ ()
—Vp-an ~Vp-on’ -Vp-an’ '

Bearing in mind that the integral over p and the energy Ej; are unaffected by the transition

from § to p = — p, this leads to

A A ~ dﬁ 1 2 B3 *78 S =\ D&
PIOP = [ Gl 3 3= (A 0)eP il (5e7)
P s=1

= B =-B. and A} =8

The transformation property of J(x) then follows:

Pi@)Pt = Pl pt L= ()P0 = G0 = d@)AE)

since P acts on the Hilbert space of quantum states and not on spinor space. The effective

transformation properties of the y-matrices then read

P 5;,3(1:1
A§/2) “A1/2 Py’ = Vi s
which we can write as
1 0 0 0
AEI/DQ)_IVHAY/DQ) = (AP)," with  (AT)A, = 0 =1 0 0 | _ gpatial inversion
0O 0 -1 o0
0 0 0 -1

in analogy with the continuous Lorentz transformations. Furthermore
p)-1 P
Ay A = "™ = =97 = det(AT)y”

Now we have all ingredients for deriving the transformation properties of the normal-

ordered currents that are the basic building blocks for observables:
N P N
scalar current : N(js(z)) — N(js(@)) ,
. P .
vector current : N(jh(z)) — N(j/ (%)) ,

tensor current : N(j}“j(x)) —> N(J,w( )) )

azial vector current : N(}j(w)) S N(jf(:ﬁ)) ,

~

pseudo scalar current : N (jp(z)) I N(jp(7)) .
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These transformation properties actually follow from the fact that left /right-handed fields
are transformed into right/left-handed fields under partity. Note that the phase factor £,
does not occur in any of these transformation properties. Therefore we might just as well

set B, = — By = 1, resulting in the following textbook statement:

@ in the Dirac theory particles and antiparticles have opposite intrinsic parity.
P
Since 9, — O0*, the free Dirac Lagrangian is evidently invariant under parity.

Charge conjugation and time reversal: after similar sets of steps it can be derived
how the normal-ordered currents transform under charge conjugation and time reversal.
These topics will not be discussed in these lecture notes. The interested reader is referred
to p.67—71 in the textbook of Peskin & Schroeder.

Interacting relativistic field theories: the free Dirac Lagrangian is invariant under
all three discrete symmetries. For interacting theories involving Dirac fields, however, the

following holds:
e electromagnetic, strong and gravitational interactions are P- and C-invariant;

e weak interactions violate P- and C-invariance (maximally) in the Standard Model,

but preserve the combined C'P-invariance;

e rare processes involving K-mesons violate C P-invariance: within the Standard Model

this leads to the requirement that there should be at least three families of fermions;

e all interacting relativistic field theories should be C PT-invariant in order to have a

theory that preserves causality and that has a Lorentz-scalar hermitian Lagrangian.
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4 Interacting Dirac fields and Feynman diagrams

The next lecture covers §4.7 of Peskin & Schroeder.

@ We have already seen in detail how the Feynman rules come about in scalar
theories. Next we move on to theories that involve Dirac fermions. In that case
the interaction Hamiltonian will contain an even number of spinor fields in

order to have a Lorentz invariant action.

4.1 Wick’s theorem for fermions

The first thing we have to do is to generalize Wick’s theorem. We start with the propagator
using explicit spinor indices a and b:

O (da(2)h(@))]0) = [Sr(z—y)], = /(dp (6 +m L)

3 o—ip(@—y)
2m)* p? —m? + e

+ (0 dha() Do()0)  if 2 > y° o
- o = — (0|7 (dn(y) dalz))]0),
— (01dn(y) da(@)[0) if 20 <

which involves time-ordered fields. For Wick’s theorem we will have to generalize the

definition of time ordering to cases with more fields. Define time ordering to pick up one

minus sign for each interchange of fermionic operators: e.g. for z3 > z% > 29 > z

T(zzcu(xl)d}az(x2)¢a3(x3)¢a4(x4)) = (—1)31%3(9:3)12)(11(931)12)(14(:64)1@(12(:62).

Similarly the definition of normal ordering is generalized for more than two fermionic op-

erators according to

N(agarar') = (-1)’atagar = (-1)%alazay

¥ »
S
¥ »

A8 AT
pq

where again each interchange of fermionic operators gives rise to a minus sign.

@ In the proof of Wick’s theorem the order of the creation and annihilation

operators will matter this time.

Based on these generalizations of time ordering and normal ordering, we can extend the

definition of contractions (see Ex.20):



where 1&* and ﬂf correspond to the positive and negative frequency parts. Furthermore

T

Ya(2)0(y) = Va(z)tu(y) = 0,

since these fields anticommute.

Wick’s theorem for fermionic fields: let’s again skip the subscript I that we would

normally use to indicate (free) interaction picture fields. Wick’s theorem then states

T(zﬁa1 (21) - - VY, (z,)) = N(@/;al (21) - - - Y, (xn) + all possible contractions) ,

as before, with for example

[ |

A A A

~ oy

— Py (21) g (23) N Py (23) Py (1))

~ ~ fa) oy

N(¢a1 ($1)¢a2 (x2)¢a3 (x3)¢a4 (x4))

= — N(Py (22) Yy (24)) [ S (a1 — 23)]

The proof of this version of Wick’s theorem (see Ex.20) proceeds in a way similar to the

aiaz
one that was worked out for scalar fields.

4.2 Feynman rules for the Yukawa theory

In order to assess the consequences of the fermionic version of Wick’s theorem we consider

the Yukawa theory for the interactions between fermions and scalars. The Lagrangian of

the Yukawa theory is given by
- 1 1 _
EYukawa - ¢(Z7H8M —m¢)¢ + 5(8u¢)(8ﬂ¢) - §mi¢2 - 9¢F¢¢ = EDirac+£KG+£int )

with ¢ a real scalar field and ¢ a Dirac field. Here I' = I; represents scalar interactions

and ' = i7® pseudoscalar interactions. This gives rise to the following interaction term in
the Hamilton operator of the Yukawa theory: H;,; = g [d& (x) T (z)p(x).

4.2.1 Implications of Fermi statistics

In order to study the consequences of fermionic minus signs we consider the -fermion

scattering reaction

w(kAv SA)lZ)(kB, SB) — w(plv rl)d)(p% Tg)

at lowest order in perturbation theory, with the momenta and spin quantum numbers of the
particles indicated between parentheses. In chapter 2 we have seen that the corresponding

T-matrix element is given by (skipping spin quantum numbers)

<ﬁlﬁ2|iT|EAEB> = (0<ﬁlﬁ2|T(6_ifd4xHI(x)>|EAEB>0)fully connected X factor

and amputated

in terms of free-particle plane-wave states and interaction-picture (free) fields. The lowest-
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order contribution to the 1-scattering reaction then reads
ol (S22 [t .00, 216,(2) [a'y 3,600 000 0)) Rakiy

In order to perform the corresponding calculation we have to define

N R 5 —iq-x
Bk sh = 97 @I oh = [ 005 T 3 @ VB I0) = ¢ il

with similar expressions for other initial and ﬁnal states.

Since 1& contains a and bl operators, it can be contracted with a fermion
state on the right (mztzal state) or an antifermion state on the left (final state).

The opposite holds for d},, since it contains b and &' operators.

Minus signs from interchanging fermions: for the lowest-order 1 -fermion-scattering
T-matrix elements we obtain (with the numbers indicating the order in which we perform

the contractions and the + behind the colon indicating the corresponding sign)

: 3:+
(—2g)2 % R | L ] — ) |
51 20 o(p1s| [ d*z ¢, ()T, (2),(z) [ d*y ¢I( VT, (), (y)|kakp)
| L= T
g —ig 1500 (@
N _/(27T)4 q? —mj + ie (2m)"6" (ka — p1 — q) (2m)°6" (kg — p2 +q)

x [ (pr)Tu (ka) ][4 (p2) Tu® (kp) |

(ka —p1)? — mj + e [a™ () Du (ka)] [ (p2) Du? (k)] (27)*0) (ka + ki — p1 — 2)

(2”)45(4)(]% +kp —p1—p2) i M,y

and
1. 3: 4+
(—ig)? . T . =] | — — ]
5 20 o(pipo| [ d*x ¢1(37)F¢ (z)[d% ¢ )T, (y) 9, (y)|kakr)o
2. — 4: 4+

= (ha— p2;2ig_ m3 + e (@ (p2) Du (ka) ] [@* (p1) T (kp) ] (2m)*6™ (ka + kg — p1 — p2)

(27T)45(4)(kA +kpg —p1—pa2)iMs,

which have opposite signs. Note that we have used here a definition for the two-fermion

initial and final states: |k4,s4; kg, sp) aZAT BT|0> and (pi,71; P2, 2| o< (0] 4z -
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These T-matrix elements correspond to the following Feynman diagrams:

plq ka—p b2 pzq ka—p b1

—RrRA—P1 — RA—P2

iM, — > ...... A and  iM, = > ...... ATr
k kg k kg

In these Feynman diagrams solid lines are used to indicate the fermions and dashed ones

to indicate the scalar particles.

@ Due to Fermu statistics the second contribution has a relative minus sign

with respect to the first one, since it involves the interchange of two fermions.

The overall sign depends on the definitions of the multiparticle states, for instance one

might define (pyps| o (0|az,a5 instead of o< (0|agz Gz, -

Minus signs from closed fermion loops: the Feynman rules for fermions result in a
factor —1 for closed fermion loops, as well as a trace of a product of Dirac matrices. We

find for instance that

1 1 1 |

o Z%, )Tt Pty (1) ey (22) Tea W (22) ey (3) ey s, (23) gy (24) oy ()

avv

r_— 1

A

= - Z Uny (24) Dy (21) Cap (1), (2) Tea g, (w2) e, (23) Dep g, (23) g, (24) T

= — TlI‘(SF(.T4 — xl)FSF(azl — $2)FSF($2 — Qfg)FSF(xg — $4)F) .

In order to figure out how the matrices in the propagators should be contracted, we have

used explicit (repeated) spinor labels during intermediate steps.

This sign difference between fermionic and bosonic loops has important im-
plications for the high-energy behaviour of the fundamental interactions: strong

interactions are asymptotically free, electromagnetic interactions are not.

4.2.2 Drawing convention

@ In analogy with the conventions for the scalar Yukawa theory, we also
draw arrows on the fermion lines in the actual Yukawa theory. These arrows
represent the direction of particle-number flow: particles flow along the arrow,
antiparticles flow against it. In this convention 1& corresponds to an arrow
flowing into a vertex, whereas zp corresponds to an arrow ﬂowzng out of a
vertex. Since every interaction vertex features both zp and zp, the arrows link

up to form a continuous flow. But this time there is more to it!
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Consider for example a Feynman diagram like

D1 D2 .-
\V\ /'/ _[ _l‘ Fa3 ~ A~ | 2~ N ~ | - -
N . = — 92 Z 0<p1p2|f d4$ ¢a1 (x)rab ¢b1 ($)¢I(x)f d4y ¢CI (y) ch ¢d1 (y)¢1(y)|kAkB>0
m a’...’d L 1 | |
A kB

. ioa kel X - da* + My Ie)be o (o Hp1—ka)-
— —292/d4x/d4y6(p2 kp) Z ’Ua(kB)Fab/(QTr(§4 ((]g_mg _;1_);‘)66 q-( y)rcdud(kA)e(pl ka)y

a,d

.2 d'q 9(kp)T(f + my)Tu(ka) 454 4¢(4
=Y /(27r)4 q2—mfpiie (2m) 5()(p2—q—k3) (2m) 5()(p1+q—kA)

: 2
= " 5 154)
= kg)T — FCu(kq) (27)°0 (K kg —p1 — .
(ka —p1)? — mj +ie o(kp) T (Fa = p1 + my)ulka) (27) (ka+kg —p1—p2)

In order to figure out how the spinors and matrices should be contracted, we have used

explicit (repeated) spinor labels during intermediate steps.

@ Here we see the importance of introducing the arrow convention: the spinor
indices are in this way always contracted along the fermion line, with the ar-
row indicating the reversed order. Phrased differently, you should insert 4 x 4

matrices and spinors while going against the arrow on fermion lines!

4.2.3 Kallén—Lehmann spectral representation for fermions

The non-perturbative analysis of the 2-point Green’s function follows the same steps as in
the scalar case with just a few obvious modifications:

iZy ) u®(p)u’(p)

/d4x e <Q|T(1ﬁ(x)12(0)) ) = ——————— -+ remainder containing other states
p° — My, + 1€

iZQ (]é + mph) i
p? — m?)h + i€
Like before, Z, represents the probability for the fermionic quantum field to create or

annihilate an exact “l-dressed particle” eigenstate of H from the ground state, with myy,

denoting its observable physical mass:
QPO0)F,5) = w'(k)v/Z2 , (ADO)E,s) = 7°(k) /2 ,
@, rle0)Q) = T@E)VZ (B r102) = v(p)VZ -

More details will be worked out in the next chapter.
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4.2.4 Momentum-space Feynman rules for the Yukawa theory

The Feynman rules that we have obtained for the Yukawa theory in the previous sections

can be summarized by the following list:

q 7
1. For each scalar propagator e-»-e insert —————.
2 _ 2
q> — my + i€
q g +m
For each fermion propagator e—»—e insert the 4 x4 matrix —(Qf 1/)). )
2 _ 2
q> — my, + i€

2. For each vertex >.-- insert the 4 x 4 matrix —igl'.

3. For each external scalar line > E ~ insert v/Z.

~

For each incoming fermion line >-- insert u®(k)+/Zs, originating from .
k

For each incoming antifermion line >.-- insert ©°(k)+/Zs, originating from 1/2)
“k
p 2
For each outgoing fermion line >-- insert @"(p)\/Zs, originating from .

p
For each outgoing antifermion line >. -- insert v"(p)y/Zs, originating from .

4. Impose energy-momentum conservation at each vertex.

d*l;
5. Integrate over each undetermined loop momentum /;: / ﬁ.
m

6. Figure out the relative signs of the diagrams, caused by interchanging fermions.

7. Insert 4 x 4 matrices and spinors while going against the arrow on fermion lines.

8. Each fermion loop receives a minus sign and involves a trace over spinor space.

The following observations can be made. First of all, no symmetry factors are needed in
the Yukawa theory since all fields in the interaction are different. Secondly, as can be seen
from the propagator, the sign (direction) of the momentum matters for fermions. Finally,
each distinct type of particle in the theory will have its own wave-function renormalization
factor, i.e. v/Z for the scalar particles and 1/Z5 for the fermions.
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4.3 How to calculate squared amplitudes

The final expressions for amplitudes that involve external fermions typi-
cally feature suberpressions starting with a @ or v spinor, followed by a chain
of contracted matrices in spinor space, and closed by a uw or v spinor. How

should we calculate squared amplitudes of that form?

In order to answer this question we select a typical term that features in |M|?:

*

[a(p) Ty u(k)] [@(p) Tau(k)]"

where the first factor originates from M and the second one from M?*. Here I'; 5 denote

arbitrary 4 x4 matrices in spinor space.

Step 1: expressing things in terms of traces in spinor space.

We can make use of the identity
[a(p)Tou(k)]” = a(k)y° Ty u(p)
a(p)Cau a(k)y Tyy u(p
to rewrite the expression given above in terms of traces in spinor space:

[a(p)Lru(k)] [a(p)L2u(k)]" = Y [a(p) Tryus(k)] [c(k) (1°T37° )caralp) ] =

> [6)@(p)] 4, T [w(0)@(0)],, (4T )ea = Tr( [wp)p)] T [u(k)a(k)]1°Th° ) -

Looking at the trace in the last line, the various combinations of Dirac spinors occurring

between square brackets are in fact 4 x4 matrices in spinor space.

Step 2: employing polarization sums.

e If we are not able to produce polarized beams or to measure the polarization of the
final-state particles, then we have to average over the initial-state polarizations and

to sum over the final-state polarizations:
T ([u(p)a(p) T [u(k)a(k)]°T°)

—

Tr( [ u"(p)a"(p)| Ty [ X w(k)a* (k)] +° FW))

r 8§

NN

1
= 5 Tr([F+my] Ta[E+my]1° T ) |
if we assume that one of the fermions is an initial-state fermion and the other one
a final-state fermion. The final trace can be worked out using the trace technology

developed in Ex. 16.
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e If we are able to polarize the beams or measure polarization, then we can use a similar

trick provided that we project the Dirac spinors on the correct polarization states:

el

u'(k) — Pu’(k) = a*(k) — a@'(k)y"P'y° = a°(k)
u'(p) — Pu(p) = @'(p) — @(p)y"P"Y’ = @(p)P .

This allows us to perform the spin sums as before, but this time without plugging in
the spin average factor 1/2. The spin projection matrices P, P and P’, P' will select

the correct states! This time we get
Tr(P'[]ﬁ+m¢]P'F1P[k+m¢]P70F£70> .
Once we know the spin projection matrices, the resulting traces can be calculated.

o If we are interested in polarized cross sections at high energies, then m, can be
neglected with respect to the energy of the fermions. On top of that it will in
that case make sense to consider helicity states as our polarization states of choice.
After all, helicity eigenstates and chirality eigenstates coincide and are not mixed by

Lorentz transformations if m, = 0. In that case the spin projections become

u'(k) — Pp,u’(k) , @’(k) — @a’(k)P,, for helicity +/— fermions ,
vi(k) — P, v'(k) , @°(k) — ©°(k)P,, for helicity —/+ antifermions ,
where it is used that PL R = P, e The indicated chiralities reflect the fact that

particles and antiparticles have an opposite definition for their polarization states.

To summarize: calculating cross sections involving fermions simply boils
down to working out a collection of traces, irrespective of the fact whether one

is able to polarize the beams and/or measure final-state polarization.

Trace technology: the most important trace identities have been worked out in Ex. 16.

The relevant part that we need later on is summarized by
Tr(y#t - .- y#2n+1) = Tr(odd number of y-matrices) = 0,
Tr(y" -y y%) = 0,

Te(ly) =4, Te(y"") = 49", Te(v*4""7) = 4g"9"” — 9’9" + 9"9"") |
Tr(y") = Te(v"9"y°) = 0, Te(¥*9"9*79°) = —die"?”,
with e#*fe,,,, = 25"‘0(55p - 25%5/30.
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5 Quantum Electrodynamics (QED)

During the last two lectures material will be covered that is not treated in this form in the
textbook of Peskin & Schroeder.

@ In this last chapter we will have a look at electromagnetic interactions of
matter particles. This will be used as motivation for the gauge principle, which

introduces the concept of gauge bosons as fundamental force carriers.

5.1 Electromagnetism

We start with the derivation of Maxwell’s equations in vacuum in covariant form. For an
electromagnetic field in vacuum with charge density p.(t,Z) = p.(z) € IR and current
density jc(t, )= jc(:c) € R the Maxwell equations read:

VB =0, VxEa) = -2 B,
V-E@) = polx),

- o - .

vV x B(z) = a&'(az) + je(z)

where £(t,#) = £(z) € R® and B(t,Z) = B(z) € R? are the electric and magnetic fields.
Next we introduce the electromagnetic 4-vector potential

At(e) = (¢(2), A(e))

such that B 9 )
E(z) = —Vo(x) - 55(33) , B(z) = Vx A(z) .

In this way the two Maxwell equations on the first line are satisfied automatically, since

V- (6 X ff(x)) —0 and V X (6(]5(90)) — 0. The other two Maxwell equations can be
rewritten as

pe() = —&(§-X(x)) — V- (Vé(x))
- (;’_; — 62)¢(z) - E(ﬁ-ﬁ(w) + % (x))
and
Jo(z) = Vx (Vx A=) + %A(x) + %@ﬁ(x)
= (2 - YA + (5 Aw) + 2 o)



using the identity

general ~

V(v Ax)) - V A@) .

v x (6 x A(z))

Defining the electromagnetic 4-current density

-

it (x) = (pel@),Je(z))
Maxwell’s equations can be cast in the form of the covariant electromagnetic wave equation

OAY(z) — 8" (9,4%(z)) = j¥() .

Gauge freedom: the vector potential A¥(z) is not fixed completely by its relation to
the electric and magnetic fields. For an arbitrary, sufficiently differentiable scalar function

x(x) that vanishes sufficiently quickly as |#| — oo, the transformed vector potential
A*(z) — A'M(z) = AM(z) + 0*x(x)

gives rise to the same electric and magnetic fields and therefore describes the same physics.
@ The associated freedom to choose the vector potential is called the gauge freedom.

Since the current density j¥(x) is a physical observable, the field-derivative combination

O A¥(z) — 9" (9,A*(z)) should be gauge invariant, i.e. independent of the choice of gauge.

Proof: introduce the electromagnetic field tensor (see Ex. 2)

0 —&Yz) —&z) —E%a)
81 T _63 T 62 T
F(z) = 0"A(z) — 0"AF(z) = — F"™(x) = 52Ex; B;z:v) O( | —Bs(i) |

E¥(x) —B*(z) Bl(z) 0
then the electromagnetic wave equation can be rewritten as
j(z) = 0,0tA"(x) — 0”0, A (z) = 0, (8”A”(a:) —8”A“(x)) = J,F"(z) .
Since the electromagnetic field tensor is gauge invariant, i.e.
F¥(a) = 0°A™(2) — A (2) = 0% (A¥(x) + 0" x(x)) — & (A(x) + " x(2)) = F*(a),
the same holds for 9,F* (z) = j¥(x).

Local charge conservation: from the electromagnetic wave equation one can derive that
o,ji(x) = 0,0,F"(z) = 0,

since F*(z) = — F"#(z). Hence,

the current density j¥(x) is a conserved current and the electric charge

[dZ j2(z) = [dZ p.(x) is conserved locally.
v v
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Electromagnetic Lagrangian: the Lagrangian density belonging to the electromagnetic

wave equation is given by

1 y .
Lem () = — ZFW(%)F“ (z) — ji(z)Au(z) .
Proof: first we consider
oL 1 0 1 0
e = — == F,)F® — “F | ———~ F"
2(0,A,) 4 (8(8“AV) p ) 4" <8(8MA,,) )
Ex.2 1 y y S vo  up po v
= _Z(upga_gpgua)Fp _ZFPU(QMPQ _gpgu):_FM_

As a result, the Euler-Lagrange equation for the field A,(z) indeed reads

“OFM(@) 4 @) = 0 = 9,FM(2) = ).

5.2 QED and the gauge principle

For Dirac fermions (matter particles) with charge ¢ the electromagnetic current density

is given by J¥ piwac(#) = q9(2)7*%(z), since

e this current is indeed conserved (cf. page 96);

e after normal ordering the 0®® component can indeed be identified with the total

charge density (cf. page 104):

N ~ dﬁ ~stas 78118
/dx N(]cO,Dirac(x)) = q/(2ﬂ-)3 Z( ﬁTaﬁ - bﬁTbﬁ) ’

s=1

counting particles with charge ¢ and antiparticles with charge —gq.

Minimal substitution and QED: the Lagrangian density of Dirac fermions with charge

g in an electromagnetic field is obtained by applying the

minimal substitution prescription pt — pt—q At =2 (G — (G — g AH

to the Lagrangian density Lpirc(z) of the free Dirac theory and by subsequently adding

the kinetic pure electromagnetic term Lypaxwen () = —iFu,,(a:)F“"(x).

@ This results in the Lagrangian density for Quantum Electrodynamics (QED):

1

Lapn(2) = ()i —m)(z) — 7 Fu(@)F*(2) — q9(2)7"d(x) Au(2) ,

containing the aforementioned interaction term
Lin(z) = —q()7" (@) Au(r) = = 5L pirac(®) Au(z) -
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As in the case of the Yukawa interactions, also the local electromagnetic interactions be-
tween the matter particles are mediated by force carriers. This was to be expected, bearing
in mind that charged objects are observed to interact while being at non-zero disctance!
Since [¢)] = [)] = 3/2 and [A,] = 1, the electric charge ¢ € IR is a dimensionless coupling

constant. We will see later that this dimensionless coupling constant indeed implies that

QED is a renormalizable theory.

QED from a symmetry principle: gauge invariance and the gauge principle.

Alternatively we could start from the free Dirac Lagrangian

‘CDirac(x) - Zd—)(x)’yuaud)(x) - md_)(x)d)(x) )

which is invariant under the global gauge transformation (abelian U(1) transformation)

v(z) = Y (z) = eYlx) , P(z) = ¢'(z) = e “Y(z) (a € IR independent of z#) .

According to Noether’s theorem this global gauge symmetry can be associated with a

conserved current and charge. In non-relativistic quantum mechanics this global gauge

invariance of a free-fermion system simply underlines the unobservability of the absolute

phase of a wave function: only relative phases are observable through interference.

@ The gauge principle: in the context of relativistic gauge theories, which should

be local, it 1s now postulated that this gauge tnvariance should also hold locally.

Consider to this end the local gauge transformation

Y(x) = Y'(z) = e@p(z) | Pla) = P () = e @@P(z)  (a(z) areal scalar field) .

The requirement of local gauge invariance® has profound consequences, since the kinetic

term transforms as

(@) 8,(x) — wW(z)e Dy 9, [P y(a)] = W (x)1*9u(x) — d(2)y"¢(z) [Bua(z)]

and therefore is not invariant under local gauge transformations. The last term, which
involves the covariant vector field d,a(z), explicitly spoils the invariance. So, we need
to replace the ordinary derivative 0, by a gauge covariant derivative (or short: covariant
derivative) D, such that

D,y(z) — Diy'(z) = @ D,y(z) ,

causing D,9(z) and ¢ (z) to transform similarly under local gauge transformations! This

can be achieved by

D, = 0, +igA,(x), with Au(z) > Al(z) = Au(x)—éaﬂa(x),

6See the bachelor thesis of Pim van Oirschot for more details and extra motivation
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where g is a gauge coupling and A,(z) a gauge field. In view of the Lorentz transforma-

tion property of d,a(z), this gauge field should be a covariant vector field. Its transfor-

mation property resembles a gauge transformation for the electromagnetic vector potential
with x(z) = —a(x)/g. This observed gauge-freedom redundancy in the electromagnetic

description is exploited here to reveal the more profound local gauge invariance of QED!

Proof:

D' (@) = (0,+ g [Au(o) = Do) ) (a)

= @ [9,(z) + i (2)0ua(w) + igAu(@)¥(2) — iv(2)dua(x)] = €@ D).

This means that the Lagrangian

(@)Y Dup(x) — mp(x)i(z) = iP(@)7"0up(x) — mip(2)y(z) — g¥(z)7"P(x) Au()

is locally gauge invariant. It contains the gauge interaction

Ling(z) = —gd_)(a:)’y“zp(x)Au(x),

which involves a gauge field that is coupled to a conserved current. Finally we can add

the gauge-invariant kinetic term Lyaxwen(z) = — Fju(z)F*(z) for a free gauge field,
where the field tensor F,,(z) is defined as

igF(z) = [Du, D)) = [0, +igAu(z)] [0, +igA,(z)] — [0, +igAu(z)] [0, + igAu(z)]
= ig[0uAy(z) — By Au(2)] -

In conclusion, for g = |e| we find the same Lagrangian Lqzp as obtained by minimal
substitution for a particle with charge +|e|. For a general charge ¢ = Qle| one has to
modify the gauge transformation according to e*®® — i®2(#) and the covariant deriva-
tive according to D, — 0, + iQle|A,(z) = 0, +igA,(z). Such a rescaling leaves the
transformation property of the gauge field unaffected, but changes the interaction strength

from |e| to gq.

Massless gauge fields: a massive gauge field would correspond to an extra mass term
+1M3% A,(x)A*(z) in the Lagrangian, which is obviously not gauge invariant. A theory
that is manifestly invariant under local gauge transformations requires the gauge bosons
described by A,(z) to be massless, i.e. M4 = 0. So, in order to give mass to gauge bosons

an additional mechanism is required in the context of gauge theories.

@ Going beyond QED: motivated by the success of describing QED through
the gauge principle, this postulate will later on be extended to other types of
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gauge transformations in order to describe other fundamental interactions in
nature, i.e. the strong and weak interactions. The associated extended gauge
interactions will describe the fundamental interactions between matter fermions
as being mediated by gauge bosons, just like we have just worked out for the elec-
tromagnetic interactions that are mediated by photons. In order to find the right
group structure for the extended gauge transformations, we will be guided by ez-

perimental observations of particle interactions and charge conservation laws!

5.2.1 Quantization of the free electromagnetic theory

The gauge freedom of the electromagnetic vector potential complicates the usual

quantization procedure. The reason for this lies in the following observations.

The electromagnetic gauge freedom revisited:

e The gauge freedom for non-constant x(z) reflects the redundancy in our description
of electromagnetism: the gauge-transformed fields describe the same physics and
are therefore to be identified. This can be traced back to the electromagnetic wave

equation
DA (x) — 0"(3,4%(x)) = (¢ 0~ 0"0,)A%(x) = j(x) .

where the differential operator (¢g”,00 — 8”9,) is not invertible in the Green’s func-
tion sense as (g”,[0 — 00,)0"x(x) = 0 for arbitrary x(z). Given an initial field
configuration A*(ty,Z) we cannot unambiguously determine A*(¢, %), since A*(z)
and A*(z) + 0*x(x) are not distinguishable. -

Hence, A*(z) is actually not a physical object as it contains redundant
information! All fields that are linked by a gauge transformation form an

equivalence class and are therefore to be identified: the physics is uniquely

described by selecting a representative of each equivalence class. Different

configurations of these representatives are called different gauges. By fizing

the gauge the redundancy is removed and an unambiguous electromagnetic

evolution is obtained. We can choose freely here, but some choices will

prove more handy for certain problems than others.

e By choosing an appropriate x(z) it is possible to cast A,(z) in such a form that
the Coulomb condition V- A™nS(z) = AWans(z) = 0 is satisfied. In this form we

see immediately that A}*S(z) has in fact only two physical (transverse) degrees of

freedom! These are the degrees of freedom that should be quantized in the corre-
sponding quantum field theory ... however, the Coulomb condition is not Lorentz

invariant and therefore leads to Feynman rules that are rather unpleasant.

123



e Lorentz invariance is manifest, resulting in simple Feynman rules, if we choose x(z)
such that the Lorenz condition 0 - A(xz) =0 is satisfied. In this form we do not

see straightaway that A#(z) has two physical degrees of freedom. One would ex-

pect three physical degrees of freedom in view of the Lorenz condition 9 - A(z) =0,

but there is still more gauge freedom left as a result of the gauge transformation
Au(z) — A, (z) = Au(z) + 9,x/(z) with Ox/(z) = 0.

Quantized free electromagnetic field: the quantized electromagnetic theory should
reproduce the classical Maxwell theory in the classical limit. Due to the correspondence
principle this implies that the above-given gauge-fixing conditions are to be implemented
as expectation values for physical (asymptotic) Fock states [1)). As a direct consequence
of implementing the Lorenz condition (|8 A(z)|t)) = 0, all relevant components of the
electromagnetic potential satisfy the massless KG equation A, (z) = 0. In the Coulomb

gauge we can therefore quantize as in the massless scalar case:

2
ttran Al@)=4u(@) dp 1 N A s
Ae(s) St [ S (@ )e P + al & (r)e)

2r)3 /2B, po=Ez=1p|

in terms of the two physical transverse polarization vectors

e(p) =€) =0, €(p)-p =) -7=0

with normalization condition €"(p) - € *(p) = — &,». The creation and annihilation opera-

Ar"‘ ~
tors a5 and a;; of the

@ massless electromagnetic spin-1 energy quanta (photons = antiphotons)

satisfy the bosonic quantization conditions

65,401 = (2m)%0,6(F— 7)1  and  [a

- d'l’,] = [arj &C,T} =0.

PP
If we replace the Coulomb condition by the Lorenz condition, the two versions of the
electromagnetic field are linked by the identity (y|A,(z)[) = <¢|flffans(a:)|¢> + dux(z),
with Ox(xz) = 0. This identity reflects the remaining gauge arbitrariness of the classical

electromagnetic field (1|A,(z)[¢) in the Lorenz gauge.
Feynman propagator and polarization sum: for performing Feynman-diagram cal-

culations we need one more ingredient, the photon propagator. The amplitude for the

propagation of photons from y to z reads

Atrans Atrans dﬁd ' —ip~m+ip’~y ap oAt
OLAg(@) Ao = [ 5 Z (") (0l 0y

21)8 2,/Es Eg il
B dp’ e*”’ 2
/(27r Z
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This expression for the propagation amplitude is rather awkward, since it involves the

so-called polarization sum for external (physical) photons:
2

r T % pupll punll + nupll
€\P)€, P) = — Gu — + ,
;u() (p) b T -

expressed in terms of the temporal unit vector n, = (1, 0 ). Such a complicated expression

is unavoidable for external photons and for the propagator in the Coulomb gauge, but we
can exploit the gauge freedom in the Lorenz gauge to remove all terms « p,,p, (see §5.5).

In this so-called 't Hooft-Feynman gauge the photon propagator reduces to

Y d'p —igw  ipe
OIT (A=) w)I0) = /(2%)4 P’ i © 7Y = — g Dp(x —y;m? =0) .

The propagator for internal (virtual) photons has become extremely simple

and manifestly Lorentz covariant in the 't Hooft-Feynman gauge!

5.3 Feynman rules for QED (§ 4.8 in the book)

In order to obtain the full set of momentum-space Feynman rules for QED we simply have
to supplement the Feynman rules for fermions, which were given in the context of the

Yukawa theory, by the following four photonic Feynman rules:

H v, _iguzl
1. For each photon propagator é\N\N\s insert ———.
- q° + 1€
q
2. For each QED vertex )-WM insert —igvy*.
W N
3. For each incoming photon line >rv<\_, = Au(2)|p,r)o insert €,(p)v/Zs (r=1,2).
p
o
For each outgoing photon line lﬁ_m.< = ofp,r|Au(z) insert €*(p)vZs (r=1,2).
p

The following remarks are in order. First of all, the polarization vectors featuring in
the last two Feynman rules are transverse (physical) ones and y/Z3 is the wave-function
renormalization factor for photons. Secondly, the sign (direction) of the momentum in the
photon propagator does not matter, like in the scalar case. Finally, the y-matrix occurring
in the QED vertex is a 4 x4 matrix in spinor space that will be contracted with other 4 x4
matrices and/or spinors, with the Dirac indices contracted as usual along the fermion line

against the arrow.

(140) Remark: since (W] A,(@)¥) = WAL @)]0) +0,x(@) with Ox(a) =,

we can always add to eZ(p) a term o« p, with p* = 0 without changing the

physics outcome (see §5.5).
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5.4 Full fermion propagator (§7.1 in the book)

To all orders in perturbation theory the full fermion propagator in QED is given by the

Dyson series

/d4x " (QIT (P(x)(0)) Q) = J_Q_f_'
P N p . p X + -,

where

E_ig(ﬁj): %+m+%+&+...

is the collection of all 1-particle irreducible fermion self-energy diagrams. This Dyson series

can again be summed up as a geometric series:

/d4xeip'x<Q|T(z&(x)1;(0))|Q> = ‘—?—Q—f—'

i(p+m) N i(p+m) <—i2(¢)> i(p+m) N

2 —m?2 + e P

p
v
p-m—-%@F)

using that Z(p) = Ss(p?) m + Sy (p?) p commutes with p and the mass parameter m in

the Lagrangian. The full propagator has a simple pole located at the physical mass my,

which is shifted away from m by the fermion self-energy:

p;—m—z(p;)]‘ =0 = mp—m—S=mm) = 0.

P=mypp

Close to this pole the denominator of the full propagator can be expanded according to

P—m—3@) = @—mm)[1-E' @ =mp)] + O([p—mp]*) for §rmy,

where ¥'(p) stands for the derivative of the fermion self-energy with respect to p. Just like
in the Kallén—Lehmann spectral representation, the full propagator has a single-particle
pole of the form iZy(pp+myn)/(p* —m2, +i€) with Zp = 1/[1—X'(jf = mps)| (see p.114).

The fermion self-energy: in order to find out whether the fermion self-energy is more

difficult to calculate we consider the 1-loop contribution in QED. Indicating the photon
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mass by A we then obtain

p—1{1

~

PINT i - (—iq)z/d b ilhm) , —igw

P 2m)* " —m? +ie  (p—£)? — A +ie |y

_ q2/ d*e, 4m — 2/,

(2m)* [62 — m? + i€] [(p—t1)% — N2 + €]

p-69,41 =L+ azp / / d4€ 4m—2/—2a2¢
da2
— A +ie)?

) [ d*¢ 1
- —g /0 day (4m — 20,p) /(27r)4 (02 — A + i¢)?

with
A = A+ (1 — ap)m® — ax(l — ag)p?

just like in the scalar case. In the second line of this expression we have used that

YU +m)ve = (m— L)Yy, +20 = 4m —2f, .

The threshold for the creation of a fermion—photon 2-particle state is here situated at
p> = (m + \)?, which approaches m? in the limit A |0 for massless photons. The rest of
the calculation, including the regularization of the UV divergence, goes like in the scalar

case worked out in §2.9.2. Note that the fermion mass receives a UV-divergent shift
To(p = mypn) o mpn log(A?/my,).

Fermion masses are naturally protected against high-scale quantum correc-
tions: if there would be no coupling between left- and right-handed Dirac fields
in the Dirac Lagrangian (i.e. m = 0), then no such coupling can be induced by

the perturbative vector-current QED corrections! Fermion masses are protected

by the invariance under chiral transformations of the massless theory.

5.5 The Ward —Takahashi identity in QED (§ 7.4 in the book)

Question: how does the gauge invariance of QED manifest itself in Green’s

functions and scattering amplitudes?

In order to answer this question, we consider a QED diagram to which we want to attach
an additional on/off-shell photon with momentum k. Upon contraction of this photon line
with the corresponding momentum £k a special identity can be derived that is related to

the U(1) gauge symmetry. After all, local U(1) gauge invariance causes the photon field
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to couple to a conserved current resulting from charged matter. By replacing the photon
field by its momentum we perform the effective momentum-space replacement A, — 9,,

which should produce a vanishing result when applied to a full-fledged conserved current.

Step 1: how can the photon be attached to an arbitrary diagram involving (anti)fermions

and photons?

e The photon cannot be attached to a photon, since it has charge 0.

e The photon can be attached to a fermion line that connects two external points or

to a fermion loop.

Step 2: consider an arbitrary fermion line with j photons attached to it and all photon

momenta defined to be incoming. Graphically this can be represented by

fj 61;1 61;2 EQ El eo
Vj Vi1 125 1%}
kj kj—l kz kl

i
where ¢; = ¢y + > k,. This line can either flow between external points or close into a

n=1
loop (which means that lp = [;) and the photons can either be on-shell or virtual. There
will be 741 places to insert the extra photon with momentum k, for example between
photons ¢ and 7+1:

= ... [q(lzim _ li—i_;_m)(_iq,}/w)lil%m] s

where we have used that ¥ = f; + ¥ — m — ({; — m) in the last step. Insertion between

photons 7 —1 and ¢ gives in a similar way:

e e O i ey =R RS
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th insertion.

Note that the second term of the i*® insertion cancels the first term of the (i—1)
Finally we have to sum over all possible insertions along the fermion line. This causes all

terms to cancel pairwise except for two unpaired terms at the very end of the chain:

Ci+k € 14k b+k  bo+k
—q * —4?—4?—4— ————————— TT—A
kj kj—l kz kl

As soon as all charge is accounted for, the fermion line represents a conserved current
and the right-hand-side of the above identity should vanish! This happens in two distinct

cases.

Case 1: if the fermion line is part of an on-shell matrix element and connects two of

the external (asymptotic) fermion states, then the corresponding amputation procedure
removes both terms on the right-hand-side. This is caused by the fact that one of the
endpoints gives rise to a shifted 1-particle pole, i.e. 1/(£; —m?) instead of 1/[(;+k)*—m?]
or 1/[(ly + k)* — m?] instead of 1/(£2 —m?).

Case 2: if the fermion line closes in itself to form a loop (i.e. £y = ¢; + k), then the two

terms on the right-hand-side give rise to the integrals

. d*e 1 1 1
_ gt O |y v; vi-1 ., Vi
1 /(%)4[ (zo_mwzj_l—mw —m’ )

_ﬁ(loﬂlé—m”u"zj1+1;e—m7”j_1 11+;e—m7"1>] =0,

if we are allowed to change the integration variable from ¢y to ¢y + &k in the first term!
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Diagrammatically this can be summarized by the following two Ward — Takahashi identities

for on-shell amplitudes and fermion loops:

N 4
pitk
where the blobs represent all possible diagrams and photon insertions. In formula language
this can be written compactly as
kuGH(kipr, - Dni @1, ) = @ Y (G(pl, S DRy Qi1 G — Ky Qi 5 Gn)
i
- G(pl) ey Di—1,Ds + k)piJrl’ oy Pnyqry e )qn)> .

This is the diagrammatic identity that imposes the U(1) gauge symmetry

and assoctated electric charge conservation on quantum mechanical amplitudes!

Example of a Ward—Takahashi identity:

p+k
1
k, * —
_>
k
b

Ward - Takahashi

_ S(p—|—k)(—iqkﬂrﬂ(p-Fk,p))S(p) qS(p) —qS(p+k)

= —ik,JT*(p+k,p) = S p+k)—S5S'(p) = —i[k+Z@) -S@F+ )]

Here S(p) is the full fermion propagator, X(§) the corresponding 1-particle irreducible
self-energy and —iq'*(p + k,p) the sum of all amputated 3-point diagrams contributing
to the QED vertex. Hence, I'*(p + k,p) is given by ~* at lowest order in perturbation
theory, which is indeed in agreement with the Ward-Takahashi identity.

130



5.6 The photon propagator (§ 7.5 in the book)

The Ward - Takahashi identity has important implications for the properties of
the photon propagator.

Transversality: the 1-particle irreducible photon self-energy

) = G

k k
satisfies the Ward —Takahashi identity (transversality condition )

k07 (k) = 0.

In view of Lorentz covariance IT"(k) can be decomposed into only two possible terms, a
term o< g" and a term oc k#kY. Therefore the Ward—Takahashi identity translates into
the condition

() = (K" — KR")II()
with II(k?) regular at k=0 since a pole at k*=0 would imply the existence of a single-

massless-particle intermediate state. As a result, the full photon propagator is of the form

k k
— 19w —Gup /12 po o a1 —Yov
k*g”” — kPE)II(k
k2+ie+k2+ie[l( J ) )]k2+ie+
? 1 kuk
= — ———(gu — kuky, JE}) [T+ TI(R?*) + -] — i
k2+ie(g“ ub/ )[ + (k) + ] k% +ie k2
_ —i(guw — kuky /) B i (kuk,,>
(k2 + i€) [1 —H(k2)] k2 +de \ k2 /°
Mass of the photon: consider an arbitrary internal photon line
‘qZQIe\‘ q’ZQ’\el‘
% v
on-shell on-shell
k k

The k, and k, terms in the full propagator yield a vanishing contribution due to the

Ward —Takahashi identity for on-shell amplitudes. Hence,

W v effectively — G
—- — k2 +ie) [1 — II(k2)] °
2O CEIE)
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which has a pole at k? = 0 with residue Z3 =

[1- H(O)]_l. As a result of the Ward —

Takahashi identity, which in turn is a consequence of the gauge symmetry, m n0n = 0 to

all orders in perturbation theory:

+ @ the local U(1) gauge symmetry protects the photon from becoming

massive through quantum corrections.

Observable charge: consider the same amplitude as before for

e low |k?| = e — e+/Z3, which is the finite physically observable charge obtained

from the singular quantities e and Z3;

- 2 . 2 . 2
: —iguwe —igwe — 1w Z3€
high |k2| = —22— — s = a
igh [k?| k2 kz[l—H(k2)] k2(1—Z3[H(k2)—H(0)]>
e? Z3za
= — =a — ak?) = ,
w7 el 1— Z [1(k2) — 11(0)]

where the factor Z3 in front of [II(k?)—TI(0)] turns e” inside the photon self-energy

into the finite combination Z;e?.

@ The electromagnetic fine structure constant becomes a running coupling,

i.e. a coupling that changes with tnvariant mass. In fact it becomes larger
with increasing invariant mass, causing the exchanged (virtual) photon to

propagate more easily through spacetime.

The physical picture behind this is that virtual fermion-antifermion pairs that are
created from the vacuum partially screen the charges of the interacting particles

(vacuum polarization), resulting in a lower effective charge. For larger |k%| more of

the polarization cloud is penetrated and hence more of the actual charge can be felt.

o

All couplings in the Standard Model of elec-
troweak interactions are in fact running cou-
plings. As can be seen in the plot, the be-
haviour of the hypercharge coupling, indicated
by U(1), resembles the one for QED. How-
ever, due to bosonic loop effects the couplings
of the weak interactions, indicated by SU(2),
and strong interactions, indicated by SU(3),
actually become weaker for increasing invari-

ant mass.
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UV divergences: at 1-loop order the photon self-energy in QED is given by
k+¢4

gy P v o [ d'G Te(y*[fy +mly [l + § +m))
L (k) = m = (g / @m)t (6 + k)2 — m? + ie][Z — m? + ie]

2 d*ey Ol + k)Y + & + k)P + g [m? — 2 — 0 - K]
T (27)4 (61 + k)2 — m2 + i€][6} — m? + ie]

P69 / d*e, /d QN+ MRV + (Y + g [m? — 2 — 0y - k]
(2m)4 @2 (02 — m2 + 20y - k + ask? + i€)?

1
0=t1+ask 9 a*e 2000 + g" (A — 02) + (E2g" — k"EY)200(1— ag)
0

27)* (02 — A+ ie)?
1 oo
. 2 pv _ LV _
p. 70 4 i /don A2 2 g (A +0%/2) + (kg .k k") 205(1— asz) ’
1672 (63 4+ A —ie)?
0 0

where A = m? — ay(1 — ap)k?. The resulting integral is clearly divergent.

Transversality lost: if we were to regularize (quantify) the UV divergence in the usual

way by means of a cutoff A, then II5(k) would contain a leading singularity that is pro-

portional to g f0A2d€2E = A2¢g#. This has disastrous consequences, since it violates the
transversality requirement and gives the photon an infinite mass. After all, a A2g"” term
in TT*(k) gives rise to a A?/k? contribution to II(k?) and therefore shifts the pole of
k*[1 —TI(k*)] away from k*=0.

Question: what has happened here?

In fact the fermion-loop Ward —Takahashi identity on p. 130 has been invalidated, since we

are actually not allowed to shift the integration variable without consequences when using
the cutoff method.

@ We need another reqularization scheme that preserves the fundamental U(1)

symmetry, otherwise the results cannot be trusted. Dimensional reqularization

(’t Hooft —Veltman, 1972): compute Feynman diagrams as analytic functions of

the dimensionality of spacetime. Use to this end an n-dimensional Minkowsk:

space consisting of one time dimension and n—1 spatial dimensions.

o For sufficiently small n any loop integral will converge in the UV domain

and the fermion-loop Ward—Takahashi identity is retained for all such n.
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e The final expressions for observables are then obtained as n — 4 limats.

Examples of integrals calculated with dimensional regularization (DREG):

o0

/d4£E 1 DREG /dngE 1 p.70,71 1 271_11/2 1/d£2 (€2 )n/271
(2m)* (04 4+ A)? ’ (2m)n (0% + A)? (2m)" T'(n/2) 2 (02 + A)?

(=]

1

2=A/(A+ ) A/22 Qe 21n2( et = AR/2-2
(4m)"/2T(n/2) °F ‘ B

0

Here we have used the integral identity
1 IN(IN
/dz Zb_l(l—z)c_l — ( ) (C)
0

in terms of the gamma function I'(z), which satisfies
/2 =+~ , I'l)=1 and  T'(z+1)==z2T(z).

This time I'(2—n/2) represents the UV singularities, since the gamma function I'(z) has
poles at z =0,—1,—2,--- and therefore I'(2—n/2) has polesat n = 4,6,8,---:

n/4

'2—n/2) =~ -

et O(n—4) with v = 0.5772 = Euler’s constant .
n J—

In a similar way one finds

1
4 2 DRE n/2—1 n
(2m)* (05 +A)? (4m)"/2T(n/2) 2—n ) (2m)" ((4+A)?
0

Transversality restored: returning to the integrand on page 133, we see that the non-

transverse term indeed vanishes:

" " o, DRE " 9 Wick " o integrals
2000 + g" (A — 0°) TR g (A-01-2/n]) — g™ (A+z1-2/n]) —— 0,
as required by gauge symmetry. So, dimensional regularization is a viable way of dealing
with UV divergences in the context of gauge symmetries. This regularization method was
used successfully by 't Hooft and Veltman to prove the renormalizability of the Standard

Model of electroweak interactions, for which they were awarded the Nobel Prize in 1999.
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