
Exercises for Quantum Mechanics 3

Set 10 (module 1)

Exercise 21 : ideal gases contained inside a harmonic trap

This is how gaseous Bose–Einstein condensates can be realized in the lab

Consider a 3-dimensional many-particle system consisting of a very large, constant number

N of non-interacting identical spin-s particles with mass m. The particles are contained

inside a harmonic trap with potential V (x, y, z) = 1

2
m(ω2

xx
2 + ω2

y y
2 + ω2

z z
2). The corre-

sponding (spatial) 1-particle energy eigenvalues are given by

Eνx,νy,νz = E0 + ~
(

νxωx + νyωy + νzωz

)

(νx,y,z = 0 , 1 , 2 , · · · ) ,

with E0 and ωx,y,z positive real constants. If we include spin, the density of 1-particle

quantum states at energy E can be written in delta-function form:

D(E) = (2s+ 1)
∞
∑

νx=0

∞
∑

νy=0

∞
∑

νz=0

δ(E − Eνx,νy,νz) .

The amount of energy E −E0 that the particle has in excess of the zero-point energy E0

will be called the excitation energy of the particle.

(i) If the number of occupied states is sufficiently high, we can replace these sums by

integrals (continuum limit). Show that the density of states then changes into

D(E) ≡ (2s+ 1)

∞
∫

0

dνx

∞
∫

0

dνy

∞
∫

0

dνz δ(E −Eνx,νy,νz)

=











2s+ 1

2~3ω̄3
(E − E0)

2 if E ≥ E0

0 if E < E0

, with ω̄ = (ωxωyωz)
1/3.

Assume the system to be in thermal equilibrium with a very large heat bath at temperature

T = (kBβ)
−1 . Contrary to the case of particles in a box, the volume V will play no role in

the spectrum of energy eigenvalues of the system. As such, the volume can be left out in

the discussion without invalidating the canonical and grand-canonical ensemble approaches

that were worked out in the lecture notes. Employ the grand-canonical ensemble approach

to answer the following questions.
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Scenario 1: the particles have s = 1/2 and the temperature is given by T = 0.

(ii) Determine the maximum value for the excitation energy E −E0 of such a particle.

(iii) Show that the average excitation energy per particle amounts to a fraction 3/4 of

this maximum.

Scenario 2: the particles have s = 0 and it is given that
∫

∞

0
dx x2/[exp(x)− 1] = 2.404.

(iv) Assume that kBT > ~ω̄
(

N/1.202
)1/3

. Show that the total number of particles can

be written as

N̄ =
1

2

( kBT

~ω̄

)3

∞
∫

0

dx
x2

exp(x+ α + βE0)− 1
≡ N

and explain why α > − βE0 .

(v) Suppose we lower the temperature to the regime kBT < ~ω̄
(

N/1.202
)1/3

.

– Which quantum mechanical phenomenon will occur in that case?

– Explain what you know about α in this situation.

– Determine the fraction of particles with 1-particle energy E0 .

Experimental realization of Bose–Einstein condensates: it took rougly

70 years to realize a Bose–Einstein condensate in a nearly ideal gas. The main

problem was to refrigerate the gas without creating a liquid or solid and without

the atoms binding into molecules. To achieve this dilute, neutral gases had to

be used and any contact with walls had to be evaded in order to avoid freezing.

This meant that the dilute gas had to be refrigerated to extremely low tempera-

tures without physical contact with the outside world. To this end the gas was

contained inside a magneto-optical trap (harmonic trap) and cooled down to

the nano-kelvin regime by means of laser-cooling and evaporative-cooling tech-

niques. The resulting many-particle system is precisely of the type that we have

just investigated.

Bose–Einstein condensation for photons (group challenge): now con-

sider the 2-dimensional photon gas inside the microresonator described on the

next page, for which D(E) ∝ E − E0 . As a result of the perfectly reflecting

mirrors, this photon gas possesses two crucial properties that make the forma-

tion of a Bose–Einstein condensate of photons possible. Your task is to figure

out what these decisive properties are.
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The curved-mirror microresonator (University of Bonn, 2010)

Klaers et al., Nature 468, 545-548 (25 November 2010)

Consider a microresonator consisting of two spherically curved, perfectly reflecting di-

electric mirrors. These mirrors impose a rigid-wall boundary condition (quantization con-

dition) on the allowed photon modes inside the resonator (see later). In order to analyse

the implications of the boundary condition we first have a look at the geometrical aspects

of the mirrors and the resonator, as sketched in the 2-dimensional illustration given below.

The spherical mirrors have a radius of curvature R = O(1m) and an optical axis that

is positioned along the z-direction. The transverse distance with respect to the optical

axis is denoted by r. The distance between the two mirrors in the resonator is very small:

D0 ≈ 1.56µm ≪ R .

R

Spherical mirror

optical axis = z-axis

∆z(r) = R−
√
R2 − r2

r

z
0

r

Microresonator

D(r) = D0 − 2∆z(r)

The resulting wave-vector quantization in the z-direction is then given by (see §2.5):

kz(r) = ν
π

D(r)
(ν = 1 , 2 , · · · ) ⇒ kzmin

(r) =
π

D(r)
≥ π

D0

= kzmin
(0) .

The spectrum of 2-dimensional transverse wave vectors kx,y with kr =
√

k2
x + k2

y is

continuous. Inside the microresonator we have r ≪ R , so that ∆z(r) ≈ 1

2
r2/R . For the

low-energy modes we can take ν = 1 and kr ≪ kzmin
(r) , which allows us to approximate

the corresponding energies by

Elow = ~c
√

k2
zmin

(r) + k2
r = ~c

√

π2/D2(r) + k2
r ≈ ~cπ

D0−r2/R

[

1 +
k2

r(D0−r2/R)2

2π2

]

≈ ~cπ

D0

+
~ck2

rD0

2π
+

~cπr2

RD2

0

≡ mγc
2 +

(~kr)
2

2mγ
+

1

2
mγΩ

2r2 ≈ Elow .

So, we end up with a transverse 2-dimensional bosonic gas with certain special properties.
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