
Quantum Field Theory Exer
ises week 11

Exer
ise 14 (
ontinued)

Complete exer
ise 14.

Exer
ise 15 : generi
 �nite-dimensional representations of the Lorentz group

Do exer
ise 3.1 parts (a) and (b) from Peskin and S
hroeder, using that
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with summation over the repeated index l implied. The real in�nitesimal parameters
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oin
ide with the parameters Æ~� and Æ~v that were used in Ex. 14.

Exer
ise 16 : tra
e te
hnology for gamma-matri
es

The 
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have the following properties:
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Use the �rst two properties to answer a few questions about tra
e identities.

(a) { Show that for an odd number of 
-matri
es Tr(
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) = 0 .

Hint: multiply the argument of the tra
e by (
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)
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and use one of the above-given

identities as well as the 
y
li
 property of tra
es.

{ Why does that automati
ally imply that Tr(
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) = 0 ?

(b) Reason that similar tri
ks 
an be applied to prove that Tr(
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) = Tr(
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) = 0 .

(
) Show that Tr(
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) 
an be expressed as a sum where ea
h term is of the form

Tr
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[2n�2℄ 
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� a metri
 tensor.

(d) Use this method to derive the following tra
e identities:
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(e) { Argue that Tr(
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) = 0 if (����) 6= permutation of (0123) .

{ Determine Tr(
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:

+1 if (����) = even permutation of (0123)

� 1 if (����) = odd permutation of (0123)

0 else.
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