Exercises for Quantum Mechanics 3 Set 11 (module 1)

Exercise 22: Klein-Gordon equation versus probability interpretation

Identifying the reason why the Klein-Gordon theory is not a suitable starting point for setting up relativistic 1-particle quantum mechanics

Consider the plane-wave solutions to the Klein-Gordon equation for a free particle with rest mass m :

$$
\psi_{p}(x)=\exp (-i p \cdot x / \hbar)
$$

where the contravariant momentum vector p^{μ} is defined to satisfy

$$
p \cdot p=p^{2}=m^{2} c^{2} \quad \Rightarrow \quad p^{0}=E / c= \pm \sqrt{m^{2} c^{2}+\vec{p}^{2}}
$$

(i) Prove that $\psi_{p}(x)$ is indeed a solution to the Klein-Gordon equation if the condition $p^{2}=m^{2} c^{2}$ is satisfied.
(ii) Show that the "probability density"

$$
\rho(x)=\frac{i \hbar}{2 m c^{2}}\left[\psi^{*}(x) \frac{\partial}{\partial t} \psi(x)-\psi(x) \frac{\partial}{\partial t} \psi^{*}(x)\right]=\operatorname{Re}\left[\frac{i \hbar}{m c^{2}} \psi^{*}(x) \frac{\partial}{\partial t} \psi(x)\right]
$$

takes on negative values for the plane-wave solutions with negative energy.
(iii) Interpret these negative-energy solutions as being unphysical and remove them from the quantum theory. Next consider two physically acceptable plane-wave solutions $\psi_{p_{1}}(x)$ and $\psi_{p_{2}}(x)$ with $p_{1}^{0}>p_{2}^{0}>0$. Demonstrate that for a linear combination of these solutions the "probability density" $\rho(x)$ is still not automatically positive definite.

Hint: show that it is possible to construct a linear combination with real coefficients such that $\rho(x)$ can still become negative for certain values of x.
(iv) What goes wrong if we would remove such special linear combinations with $\rho(x)<0$ from the quantum mechanical theory?

As a result of these problems with the probabilistic interpretation, it had to be concluded that the Klein-Gordon equation is not a suitable starting point for setting op relativistic 1-particle quantum mechanics.

Exercise 23: Dirac equation ... getting to know the corresponding matrices

In the Dirac equation the matrices β and $\alpha^{j}(j=1,2,3)$ feature. These matrices are required to satisfy the matrix identities $\beta^{2}=I_{4} \quad, \quad \beta=\beta^{\dagger} \quad, \quad\left\{\alpha^{j}, \beta\right\}=0 \quad, \quad\left\{\alpha^{j}, \alpha^{k}\right\}=2 \delta^{j k} I_{4} \quad$ and $\quad \alpha^{j}=\left(\alpha^{j}\right)^{\dagger}$, where the symbol I_{N} is used to denote the identity matrix of rank N.
(i) Show that the following set of 4×4 matrices in spinor space satisfy these matrix identities:

$$
\beta=\left(\begin{array}{cc}
I_{2} & \varnothing \\
\emptyset & -I_{2}
\end{array}\right) \quad \text { and } \quad \alpha^{j}=\left(\begin{array}{cc}
\varnothing & \sigma^{j} \\
\sigma^{j} & \varnothing
\end{array}\right) \quad(j=1,2,3)
$$

where each 4×4 matrix is subdivided into 2×2 blocks.
Hint: wherever necessary you may use the properties of the Pauli spin matrices σ^{j} that are summarized in appendix B of the lecture notes.
(ii) Next we introduce the γ-matrices $\gamma^{0} \equiv \beta$ and $\vec{\gamma} \equiv \beta \vec{\alpha}$. Use the matrix identities for β and $\vec{\alpha}$ to verify that

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} I_{4} \quad \text { and } \quad\left(\gamma^{\mu}\right)^{\dagger}=\left\{\begin{array}{ll}
\gamma^{0} & \text { if } \mu=0 \\
-\gamma^{j} & \text { if } \mu=j
\end{array} \quad(j=1,2,3)\right.
$$

(iii) Derive from this that

$$
\left(\gamma^{0}\right)^{2}=I_{4} \quad \text { and } \quad\left(\gamma^{j}\right)^{2}=-I_{4} \quad(j=1,2,3),
$$

as well as

$$
\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} \quad \text { and } \quad \operatorname{Tr}\left(\gamma^{\mu}\right)=0
$$

(iv) In order to keep the expressions in spinor space as compact as possible, the so-called Feynman slash notation is used:

$$
\not q \equiv \gamma^{\mu} a_{\mu}=\gamma_{\mu} a^{\mu},
$$

where a^{μ} is an arbitrary 4 -vector. Use part (ii) to prove that

$$
\not \phi^{2}=a^{2} I_{4} .
$$

(v) Employ the latter identity to find an operator that applied to the Dirac operator $(i \hbar \not \supset-m c)$ produces the Klein-Gordon operator $\left(\square+m^{2} c^{2} / \hbar^{2}\right)$.

