Exercises for Quantum Mechanics 3 Set 12 (module 1)

Exercise 24: Lorentz transformations in the free Dirac theory

Determining the infinitesimal form of the spinor transformation matrix $S(\Lambda)$
Consider the Dirac equation for free spin- $1 / 2$ particles. In the associated spinor space, the infinitesimal Lorentz transformation $\Lambda^{\mu}{ }_{\nu} \approx g_{\nu}^{\mu}+\delta \omega_{\nu}{ }_{\nu}$ is characterized by the transformation matrix

$$
S(\Lambda) \approx I_{4}+s(\delta \omega)
$$

As derived in the lecture notes, $s(\delta \omega)$ is required to satisfy the conditions

$$
\begin{align*}
& {\left[\gamma^{\rho}, s(\delta \omega)\right]=\delta \omega^{\rho}{ }_{\nu} \gamma^{\nu} \quad(\rho=0,1,2,3)} \tag{1}\\
& s(-\delta \omega)=-s(\delta \omega) \tag{2}
\end{align*}
$$

In order to determine the precise form of the 4×4 matrix $s(\delta \omega)$, we use the decomposition

$$
s(\delta \omega) \equiv c I_{4}+c_{\alpha} \gamma^{\alpha}+c_{\alpha \beta} \sigma^{\alpha \beta}+\bar{c}_{\alpha} \gamma^{\alpha} \gamma^{5}+\bar{c} \gamma^{5}
$$

in terms of the basis (283) of 4×4 matrices, with the coefficients $c, c_{\alpha}, c_{\alpha \beta}, \bar{c}_{\alpha}$ and \bar{c} being complex numbers.
(i) Use the defining relation $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} I_{4}$ for the γ-matrices to derive that

$$
\gamma^{\mu} \gamma^{\nu}=\left\{\begin{array} { l l }
{ - \gamma ^ { \nu } \gamma ^ { \mu } } & { \text { if } \mu \neq \nu } \\
{ \gamma ^ { \nu } \gamma ^ { \mu } = g ^ { \mu \nu } I _ { 4 } } & { \text { if } \mu = \nu }
\end{array} \Rightarrow \left\{\begin{array}{l}
\text { vanishing anticommutators } \\
\text { vanishing commutators }
\end{array}\right.\right.
$$

$$
\gamma^{\mu} \gamma^{5}=-\gamma^{5} \gamma^{\mu} \quad \text { for } \quad \gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

and

$$
\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]= \begin{cases}i \gamma^{\mu} \gamma^{\nu} & \text { if } \mu \neq \nu \\ 0 & \text { if } \mu=\nu\end{cases}
$$

Consequence of these identities: upon multiplication by a particular γ-matrix the basis matrices change one-to-one into a specific permutation of the basis matrices (up to constant factors), with the number of γ-matrices raised/lowered by one if the particular γ-matrix was not/already present in the basis matrix. As a result, both left- and right-hand side of equation (1) involve basis matrices, making it possible to equate the corresponding coefficients.
(ii) Consider the basis matrices $\gamma^{\alpha}, \gamma^{\alpha} \gamma^{5}$ and γ^{5}.

- Find for each of these basis matrices a value for ρ such that the left-hand side of equation (1) does not vanish.
- Argue that this implies that $c_{\alpha}, \bar{c}_{\alpha}$ and \bar{c} should all vanish.
(iii) Use the commutator identity $\left[\gamma^{\rho}, \gamma^{\alpha} \gamma^{\beta}\right]=2 g^{\rho \alpha} \gamma^{\beta}-2 g^{\rho \beta} \gamma^{\alpha}$ to prove that

$$
c_{\alpha \beta}=-i \delta \omega_{\alpha \beta} / 4
$$

bearing in mind that both $c_{\alpha \beta}$ and $\delta \omega_{\alpha \beta}$ are antisymmetric in their indices.
(iv) Employ condition (2) to eliminate the term proportional to the identity matrix.

Exercise 25: Rotations in spinor space

Dirac spin operator $=$ generator of rotations in spinor space
Consider the Dirac equation for free spin- $1 / 2$ particles and a spatial rotation by an infinitesimal angle $\delta \alpha$ about the axis oriented along the unit vector \vec{e}_{n}. Under this infinitesimal spatial rotation the spatial components of the position 4 -vector x^{μ} transform according to

$$
\vec{x} \quad \rightarrow \quad \vec{x}^{\prime}=\vec{x}+\delta \alpha\left(\vec{e}_{n} \times \vec{x}\right)
$$

(i) Rewrite this infinitesimal transformation in the form $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \approx x^{\mu}+\delta \omega_{\nu}^{\mu} x^{\nu}$ and demonstrate that

$$
\delta \omega_{\nu}^{\mu}=\left\{\begin{array}{cl}
0 & \text { if } \mu=0 \vee \nu=0 \\
-\delta \alpha \sum_{l=1}^{3} \epsilon^{j k l} e_{n}^{l} & \text { if } \mu=j \wedge \nu=k
\end{array} \quad(j, k=1,2,3)\right.
$$

in terms of the completely antisymmetric coefficient $\epsilon^{j k l}$ that is defined in equation (274) of the lecture notes.

Hint: you may use the (very handy) identity $\left(\vec{e}_{n} \times \vec{x}\right)^{j}=\sum_{k, l=1}^{3} \epsilon^{j l k} e_{n}^{l} x^{k}$.
(ii) Derive from this that in the Dirac representation the corresponding infinitesimal transformation characteristic of the Dirac spinors is given by

$$
\psi^{\prime}\left(x^{\prime}\right)=\left(I_{4}-\frac{i}{\hbar} \delta \alpha \sum_{l=1}^{3} e_{n}^{l} \hat{S}^{l}\right) \psi(x), \quad \text { with } \quad \hat{S}^{l}=\frac{\hbar}{2}\left(\begin{array}{cc}
\sigma^{l} & \varnothing \\
\varnothing & \sigma^{l}
\end{array}\right)
$$

Hint: use equations (291) and (284) of the lecture notes, as well as $\sum_{j, k=1}^{3} \epsilon^{j k l} \epsilon^{j k l^{\prime}}=2 \delta^{l l^{\prime}}$.
(iii) The transformation characteristic for rotations by a finite angle α then becomes

$$
\psi^{\prime}\left(x^{\prime}\right)=\exp \left(-i \alpha \vec{e}_{n} \cdot \hat{\vec{S}} / \hbar\right) \psi(x)
$$

Take the rotation angle to be $\alpha=2 \pi$ and show that the spinor transformation matrix $S(\Lambda)$ equals $-I_{4}$ in that case. (Does this result look familiar to you?)
Hint: expand the exponent by means of the identity $\left(\vec{\sigma} \cdot \vec{e}_{n}\right)^{2}=I_{2}$ and use that

$$
\cos (z)=\sum_{k=0}^{\infty}(-1)^{k} z^{2 k} /(2 k)!\quad, \quad \sin (z)=\sum_{k=0}^{\infty}(-1)^{k} z^{2 k+1} /(2 k+1)!
$$

Exercise 26: Mutually commuting observables in the free Dirac theory
 Free Dirac particles can be described by their energy, momentum and helicity

 Consider the Dirac theory for free spin- $1 / 2$ particles, with Hamilton operator$$
\hat{H}=c \vec{\alpha} \cdot \hat{\vec{p}}+\beta m c^{2}
$$

The spin operator $\hat{\vec{S}}$ for Dirac spinors satisfies the commutation relations

$$
\left[\beta, \hat{S}^{j}\right]=0 \quad \text { and } \quad\left[\alpha^{k}, \hat{S}^{j}\right]=i \hbar \sum_{n=1}^{3} \epsilon^{k j n} \alpha^{n} \quad(j, k=1,2,3)
$$

with $\epsilon^{k j n}$ as defined in equation (274) of the lecture notes.
Prove that $\hat{H}, \hat{\vec{p}}$ and $\hat{\vec{p}} \cdot \hat{\vec{S}}$ are mutually commuting operators.

