Quantum Field Theory Exercises week 13

Exercise 20: contractions and Wick’s theorem for fermions

For Dirac fields the definitions of time ordering and normal ordering are extended in such a way
that a minus sign is picked up for each interchange of fermionic operators. For example:
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where aj,...,a4 are spinor indices. Based on these generalizations of time ordering and normal

ordering we can extend the definition of the contraction of free Dirac fields:
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where the superscript “+” refers to the positive-frequency part of the field and “—” to the negative-

frequency part. The function Sg(z — y) is the usual Feynman propagator of the Dirac theory.

Furthermore
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With this definition, the time-ordered expression can be rewritten as
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Wick’s theorem for free fields then states:
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Browse through the steps on pages 37—-39 of the lecture notes to convince yourself that the above

statements are correct and work out (0|7 (1a, (21)%a, (22) ag (23) P, (24) )|0) in terms of Feynman
propagators.



Exercise 21: an exam-style exercise about a Yukawa-like fermionic theory!!!

Make sure that you get started with this important exercise during the exercise class
of week 13 and that you complete it the week after.

Consider the Lagrangian of the following fermionic theory:
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where ¢(z) is a Dirac field, ¢(x) its adjoint, ¢(z) a real scalar field and ' a 4 x 4 matrix in
spinor space (i.e. I' = I for a scalar interaction and ' = i7® for a pseudo scalar interaction). The
constant m,, represents the mass of the Dirac fermions and m, the mass of the scalar bosons. This
Lagrangian contains an interaction between Dirac fermions and scalar bosons:

Ling(z) = —g¥(z)T(z)g() -

(a) Derive the equations of motion of the theory.

(b) Determine the dimension of the various fields in the theory and explain why the coupling
constant g must be dimensionless.

(c) Give a simple argument why in the non-interacting (free) quantized theory
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where the subscript I indicates that the fields are considered in the interaction picture. The
indices a and b are spinor indices.

(d) Use this to determine
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to first order in the coupling constant g. Draw the corresponding position-space Feynman
diagrams and express them in terms of
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using solid lines to indicate the fermions and dashed ones to indicate the scalar bosons.

Mind the arrows and use explicit Dirac spinor labels in ?Atintl (z) during intermediate steps to
figure out how the various spinors and matrices should be contracted! To convince yourself
that you got the right result, please check whether your findings are compatible with the
Feynman rules for the Yukawa theory.

(e) Use the Feynman rules for the Yukawa theory to calculate the lowest-order matrix element
for the process
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where kg4,---,p2 are the momenta of the incoming and outgoing ¢ -antifermions and s4,---,72
the corresponding spin quantum numbers.

(f) Use the language of contractions to determine the relative signs of the contributions in part
(e) and give a quantum mechanical explanation of your findings.



(g) Consider the one-loop self-energy for a scalar boson with arbitrary momentum p in the pure
scalar version of the Yukawa theory (i.e. for I' = I;). Draw the corresponding diagram(s) and
use y-matrix properties to show that the self-energy is given by
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(h) Consider an arbitrary 1-particle irreducible amputated loop diagram in the Yukawa theory
with
N,. external fermion lines and N, external boson lines,

P, fermion propagators and P, boson propagators,

V vertices and L loop momenta.

— Argue that 2V=N_+2PF, , V=N, +2P, and L=P, +P, -V + 1.

— The superficial degree of divergence D of the diagram is obtained by treating all loop
momenta and all components of the loop momenta as being of the same order of magnitude.
Assume that these loop momenta are 4-dimensional and derive that D =4— N, — 3N, /2.

Hint: first work out how the different types of particles contribute to D.

— Is the Yukawa theory renormalizable or not?

(i) Extra challenge: when the pieces of the puzzle do not seem to fit!
— Draw all one-loop superficially divergent diagrams.

— Indicate what counterterms you can use to cancel the divergence of each of these diagrams.
Do you notice something strange?

— How could you resolve this issue?



